智能家居照明节能信息共享方法_2

文档序号:9721215阅读:来源:国知局
然光(例如阳光)照射在所述环境光感应单元上。构成环境光感应单元的多个环境光感应电路被形成为板状或其他曲面形状,然后使得环境光感应电路中的光传感器朝向窗外。
[0031 ]根据本发明的优选实施例,当所述多个环境光感应电路被够成为阵列时,该阵列的各行和各列的输出端被设置有多个不同的电阻,从各行和各列输出的电流被经过这些不同的电阻输出为电压。这些不同阻值的电阻被作为各行和各列的输出值的不同加权值。这些加权值通常具有递增或递减的样式,从而只要根据这些电阻输出的电压即可判断当前自然光照射的角度。
[0032]所述环境光感应单元的存储单元存储有包括安装所述环境光感应单元被安装地域的光照角度、对应的时间以及环境光感应单元输出电压信息对应关系的对应关系表,该表作为环境光感应单元的工作参考信息,每一次环境光感应单元输出电压时均与该表中记录的环境光感应单元输出电压信息存在对应关系。该对应关系表在环境光感应单元安装阶段或安装前由调试人员经过安装该环境光感应单元的地域的本地化年均光照时间(例如对某些地域的年平均光照时间是11.5小时)以恒定亮度的光照射并在本地化年均光照时间内均匀改变光的角度而获得并存储于上述存储单元的。
[0033]经过这样的设置,当自然光照射到所述环境光感应单元时,随着时间的推移,光照的角度发生改变,相应地,照射到所述环境光感应单元的不同区域,即不同的行和不同的列上。被光照射的行和列输出电压值,而未被照射的则不输出电压值,根据输出的电压值经过查询所述对应关系表即可确定当前环境光的照射角度。在所述环境光感应单元的输出端,通过具有各个行和各个列的输出电压的值的对应关系表。
[0034]在环境光感应单元的安装阶段之后,该环境光感应单元的输出值本质上取决于自然光照射到其上的光传感器的亮度,该环境光感应单元的各行和各列的电压输出值本身就是由光照强度的表示。这是因为:所述光信号处理单元用于根据所述环境光感应单元中的上述各行和各列输出的电压值,将其与所述存储单元中已经存储的对应关系表中当前时间(通过计时单元获得)对应的电压值相减,得到的值即为当前自然光的照度对应的值。
[0035]因此,该环境光感应单元将输出跟随安装该环境光感应单元的区域的自然光照射情况(包括自然光的照度和照射角度)的变化而改变的输出电压。
[0036]所述灯光照明单元用于以照明角度可调整的方式进行室内照明。根据本发明的实施例,灯光照明单元为具有可旋转角度的灯座且发光亮度可调节的灯具。所述红外测距单元与温度检测单元、红外测距单元相互电气地连接地设置于所述灯光照明单元上,且检测使用者与所述红外测距单元所在的灯光照明单元之间的距离,所述灯光照明单元用于根据所述距离进行角度调整和照度调整。根据本发明的优选实施例,每个所述灯光照明单元上均设置有多个红外测距单元,且这多个红外测距单元被设置于所述灯光照明单元的不同方向上。
[0037]根据本发明的优选实施例,一个灯光照明单元附近或其上设置有多个朝向不同方向检测的红外测距单元以及与这些红外测距单元相对应的温度检测单元,其中这个灯光照明单元附近或其上设置的红外测距单元和温度检测单元的信号被电气地传输到灯光控制单元。
[0038]图2中示意性地示出了三组灯光照明单元以及与其相互电气地连接地设置的温度检测单元、红外测距单元。其中一个灯光照明单元附近或之上设置的温度检测单元和红外测距单元的数量通常为多个,在图1中仅表示他们相对于本发明的控制装置的其他组件的相对位置关系。图1中以无线的方式示出了他们之间的连接方式。本领域技术人员应当清楚的是:他们之间可以通过有线、无线或者有线和无线相结合的方式进行单向和/或双向地连接,以进行控制信号、状态信号和数据的传输以及实现本发明上下文中涉及的各种控制操作。
[0039]在计时单元开启的同时,所述多个红外测距单元也将开始工作。这些红外测距单元均具有红外检测装置和热红外检测装置,所述红外检测装置、热红外检测装置和灯光照明单元彼此电气地连接。其中各个红外检测装置用于检测在其设置方向上是否有活动的对象,热红外检测装置用于在存在活动的对象的情况下检测活动对象的红外发热特征并确定该被检测到的特征是否符合人体发热特征。当符合时,红外检测装置还检测活动对象的行动状态(即静止或运动)、行动方向以及该红外检测装置所在的灯光照明单元与该对象之间的距离。
[0040]所述计时单元在所述环境光感应单元的控制下启动并计时。根据本发明的优选实施例,当智能家居系统开启且灯光照明开启时,计时单元开始工作。
[0041]所述灯光控制单元用于根据所述红外测距单元检测到的信息对灯光照明单元进行角度调整和照度调整。根据本发明的优选实施例,当根据所述红外测距单元检测到的信息确定存在活动的对象时,所述灯光控制单元根据所述红外测距单元检测到的活动对象的行动方向以及室内灯光照明单元的布局,确定活动对象将要进入哪个/哪些灯光照明单元的照明区域以及将要离开哪个/哪些灯光照明单元的照明区域,并据此以及红外检测装置检测到的所述距离,调节上述区域的灯光照明单元的照明角度和照度随着所述距离逐渐变化(或亮度)。例如,当人从房间A进入不同于房间A的房间B时,灯光控制单元将控制房间A内的灯光照明单元逐渐降低照度且逐渐使照明角度朝向人的运动方向并在人离开房间A后恢复其照明角度至朝向其安装表面的垂直方向,同时房间B内的灯光照明单元将逐渐调整其照明角度使照明角度朝向人进入房间B的门口方向,并逐渐调整灯光照明单元的照度变大,从而提高人-环境交互体验以及降低智能家居系统的能耗。
[0042]所述温度检测单元包括多个温度探头,用于检测室内环境温度;所述多个温度探头被分布式地设置于所述温度调整单元,并且还被一一对应地设置于所述灯光照明单元附近,以检测所述灯光照明单元附近的室内温度。
[0043]所述温度调整单元用于根据所述温度检测单元的检测结果调整室内环境温度。根据本发明的一些实施例,当所述温度检测单元的检测结果超过或低于预设的阈值时,该温度调整单元通过空调等加热和制冷设备进行室内温度调整,以避免由于灯光照明和/或自然光照明造成室内温度不舒适的问题。
[0044]根据本发明的优选实施例,当温度超过预设的温度阈值(例如26摄氏度),则通过热红外检测装置检测室内人物所在的区域,并降低不包括人所在内的区域的灯光照明单元的照度或者优选地关闭这些区域内的灯光照明单元,从而达到节能的目的。
[0045]如图3所示,所述光传感阵列是由多个环境光感应电路组成的阵列。所述环境光感应电路包括晶体管Τ1 -Τ 18以及电容C1-C4,其中:晶体管Τ1的栅极连接CLK,源极连接T9的漏极,Τ1的漏极连接T3的栅极,T3的源极连接Τ13的漏极,T3的漏极连接OUT,T2的栅极连接CLK,T2的源极连接CTRL,T2的漏极连接Τ13的栅极、T6的栅极以及Τ15的漏极和C3的一端,Τ13的源极连接Τ11的漏极和Τ15的源极,Τ15的漏极还连接T4的基极,T4的漏极连接T5的源极,T4的源极连接C1的一端和T6的漏极,C1的另一端连接T15的漏极,T6的源极连接电容C2的一端和T16的漏极以及T18的源极,C2的另一端连接0UT,T18的栅极连接T13的栅极和T2的漏极以及T5的栅极,T9的源极连接T7的漏极,T7的源极连接C3的另一端,T7的源极还连接Vin、T8的源极以及C4的一
当前第2页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1