一种具有电力载波单元的节电器的制造方法_3

文档序号:9815234阅读:来源:国知局
与非门器件UA的第一输入端即为驱动模块MD2的第一输入端INl,该与非门器件UA的第二输入端连接与非门器件UB的第一输入端,与非门器件UB的第一输入端即为驱动模块MD2的第二输入端IN2,该与非门器件UB的第二输入端连接与非门器件UA的输出端。上述的全桥式逆变电路单元112中,门极电阻RlOl和门极电阻R103的一端分别与与非门器件UB的输出端相连接,门极电阻RlOl的另一端连接P沟道场效应管Vl的门极,P沟道场效应管Vl的源极连接限流电阻R105的一端,限流电阻R105的另一端连接电源VCC,电源VCC还与限流电阻R106相连接,该限流电阻R106的另一端连接P沟道场效应管V2的源极,P沟道场效应管V2的门极连接门极电阻R102,门极电阻R102的另一端连接与非门器件UA的输出端,该与非门器件UA的输出端还连接门极电阻R104,门极电阻R104的另一端连接N沟道场效应管V4的门极,该N沟道场效应管V4的源极连接电源地,门极电阻R103的另一端与N沟道场效应管V3的门极相连接,该N沟道场效应管V3的源极也连接电源地,P沟道场效应管V2的漏极和N沟道场效应管V4的漏极分别与脉冲变压器Tl原边绕组的一端连接,P沟道场效应管Vl的漏极和N沟道场效应管V3的漏极分别与脉冲变压器Tl原边绕组的另一端相连接。
[0061 ] 上述的全桥整流电路201包括四个二极管D101、D102、D10103、D104,脉冲变压器Tl次级绕组的一端分别连接二极管DlOl的阳极和二极管D10103的阴极,二极管DlOl的阴极连接二极管D102的阴极,二极管D102的阳极与二极管D104的阴极分别连接脉冲变压器Tl次级绕组的另一端,二极管D104的阳极与二极管D10103的阳极相连接,在该全桥整流电路201中,二极管DlOl或二极管D102的阳极即为上述的正极输出端,二极管D10103或二极管D104的阴极即为上述的负极输出端。
[0062]上述的输出电路202包括二极管D105、P沟道场效应管V5、电阻R107以及电阻R108,二极管0105的_阳极连接上述的正极输出端、P沟道场效应管V5的门极以及电阻R107,电阻R107的另一端连接上述的负极输出端和P沟道场效应管V5的漏极,二极管D105的阴极连接P沟道场效应管V5的源极以及电阻R108,电阻R108的另一端G以及上述的负极输出端E之间形成驱动电压信号输出端。场效应管V1、V2、V3、V4和V5可为M0SFET。
[0063]该驱动电路,主要是驱动模块的工作原理为:驱动模块MD2的第一输入端INl与脉冲方波发生器MDl的输出端OUT相连,驱动模块MD2的第二输入端IN2与外部低频驱动信号相连,通常情况下,脉冲方波发生器MDl输出的脉冲方波的频率范围为十几千赫兹到几十千赫兹,而与输入端IN2相连的外部低频驱动信号DRIVEA的频率范围在零点几赫兹到几百赫兹之间;在驱动模块MD2的第二输入端IN2为高电平的条件下:当驱动模块MD2的第一输入端INl为高电平时,与非门器件UA的输出脚为低电平,而与非门器件UB的输出脚则为高电平;当驱动模块MD2的第一输入端INl为低电平时,与非门器件UA的输出脚为高电平,而与非门器件UB的输出脚则为低电平。所以在输入端IN2为高电平时,与非门器件UA和UB的输出脚输出两路频率和脉宽与所述第一输入端INl相同的直流高频脉冲互补信号,这两路互补的信号通过门极电阻R101、R102、R103及R104驱动由P沟道场效应管V1、V2以及N沟道场效用管V3、V4所组成的全桥逆变电路,进而将直流高频脉冲信号逆变为交流高频脉冲信号,交流高频脉冲信号再经由脉冲变压器Tl隔离变压,脉冲变压器Tl输出的交流高频脉冲信号经二极管0101、0102、010103和0104组成的全桥整流电路201整流后,其正极输出端则有正电压输出,此时P沟道场效应管V5由于门极和源极电压相同而处于截止状态,所以此时在驱动电压信号输出端G和E上就有驱动电压,最终使所驱动的功率管导通;在驱动模块MD2的第二输入端IN2为低电平的条件下:与非门器件UA和UB的输出脚都输出高电平,从而使逆变桥上的场效应管V3和V4导通,因而脉冲变压器Tl原边绕组两端都与电源地相连而无电压,此时脉冲变压器Tl输出端也没有电压,致使P沟道场效应管V5的门极和源极之间产生电压差而使其导通,使驱动电压信号输出端G与E通过R108导通,S卩G和E之间间失去电压,最终导致所驱动的功率管处于阻断状态。总之,驱动电压信号输出端G和E之间输出的驱动电压信号跟随驱动模块MD2第二输入端IN2上的低频驱动信号,当该第二输入端IN2为高电平时,驱动模块的G和E上就有驱动信号,反之则无驱动信号,从而实现了驱动电路的目的。本实施例提供的电压转换电路,采用多级电荷栗电路分别实现正电压、负电压的输出,通过改变电荷栗电路的级数来改变输出的正电压和负电压的大小,电路结构简单,而且灵活可调。该驱动电路通过整体电路设计而实现利用脉冲变压器来进行信号隔离,因而比起传统驱动电路采用光电耦合的信号隔离方式,本发明的驱动电路无需额外独立电源,从而能够节省电源,其工作稳定性较好。
[0064]如图7所示,第一电力载波耦合通道1051、第二电力载波耦合通道1052、滤波电路1053、电力载波处理电路1054和载波功放电路1055,所述第一电力载波耦合通道1051设置在交流电缆的火线AC_L与零线AC_N2间,在交流电缆的火线六(:_1^与零线AC_N2间接收和发送第一载波信号;所述第二电力载波耦合通道1052设置在交流电缆的地线AC_PE与零线AC_N之间,在交流电缆的地线AC_PE与零线AC_N2间接收和发送第二载波信号。由于现有的噪声和干扰主要在火线与零线之间,高频干扰信号比较严重,将信号耦合到零线与地线上,因为零线和地线之间没有电压或者没有高频干扰,相对而言,没有火线与零线之间的干扰信号大。电力载波信号在载波功放电路发送后,同时将电力载波信号耦合到第一电力载波耦合通道1051、第二电力载波耦合通道1052两个通道中,如果火线和零线间的干扰信号比较大,那么电力载波信号可以通过零线与地线的通道传输到下一个设备中,下一个设备中同时接收了两个通道的耦合信号,只要有一个通道能正常接收到信号,那么通讯将进行下去,很好的避免了单通道传输数据时,因干扰导致无法传输信息的问题。同时,该电路只要增加一路电力载波耦合通道,即可以实现多路载波耦合,对现有电路的改造小,成本小。
[0065]同时由于两个通道都可以传输信号,地线AC_PE与零线AC_N之间在直流电或者没有电压的情况下也可以进行数据传输,与现有的只能在具有交流电的情况下才能进行数据传输,扩大了实用性。
[0066]所述第一电力载波親合通道1051包括第五一电感L51、第一五电容C51和第一親合变压器Tl,所述第五一电感L51和第五一电容C51串联且一端与火线AC_L相连,另一端与第一耦合变压器Tl相连,所述第一耦合变压器Tl的一侧分别与火线AC_L与零线AC_N相连,另一侧与载波功放电路1055的输出端、滤波电路1053相连。所述第二电力载波耦合通道1052包括第二电感L52,第五二电容C52和第二耦合变压器T2,所述第二电感L52和第五二电容C52串联且一端与地线AC_PE相连,另一端与第二耦合变压器T2相连,所述第二耦合变压器T2的一侧分别与地线AC_PE与零线AC_N相连,另一侧与载波功放电路1055的输出端、滤波电路1053相连。
[0067]本发明的耦合方式可以进行高低压隔离,绝缘耐压可以达到4KV。同时采用了三重绝缘线双线并饶方式。由于本发明是1:1耦合,不会放大噪声或干扰,同时利用三重绝缘线进行双线并饶,相比传统的单独绕线方式,可以降低干扰,保证信号不失真。所述第一电力载波耦合通道1051、第二电力载波耦合通道1052并联且与所述滤波电路1053的一端相连,所述滤波电路1053的另一端与电力载波处理电路1054的输入端相连,所述电力载波处理电路1054的输出端与载波功放电路1055的输入端相连,所述载波功放电路1055的输出端分别与所述第一电力载波耦合通道1051、第二电力载波耦合通道1052相连。
[0068]所述滤波电路包括高阻低阻三阶滤波器、衰减器和限幅电路,所述高阻低阻三阶滤波器包括:并联的第五四电容C54和第五四电感L54、并联的第五五电容C55和第五五电感L55、并联的第五六电容C56和第六电感L6,第五七电容C57和第五八电容C58,所述并联的第五五电容C55和第五五电感L55—端与接地端相连,另一端与并联的第五四电容C54和第五四电感L54的一端、第五八电容C58的一端相连,所述第五七电容C57的一端与親合通道相连,所述第五七电容C57的另一端与并联的第五四电容C54和第五四电感L54的另一端相连,所述第五八电容C58的另一端与并联的第五六电容C56和第五六电感L56的一端相连。本实施例采用T型的三阶滤波器进行滤波,带宽比较宽,滤波效果更好,在其他实施例中,也可以采用传统的η型滤波。所述第五四电感L54与第五四电容C54并联,第五六电感L56与第五六电容C56并联,阻隔了 140K以上的高频波;第五五电感L55与第五五电容C55并联,阻隔了120K以下的高频波,从而实现了高阻低阻滤波。
[0069]所述衰减器包括第五一电阻R51、第五二电阻R52、第五一开关管Q51和控制信号端CAGC,所述第五一电阻
当前第3页1 2 3 4 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1