具有光谐振器的光电振荡器的制作方法

文档序号:7589734阅读:435来源:国知局
专利名称:具有光谐振器的光电振荡器的制作方法
本申请要求1999年1月27号申请的美国临时申请第60/117568号、1999年1月26号申请的美国临时申请第60/117452号、和1999年1月26号申请的美国临时申请第60/117451号的权益。
公开的渊源此处描述的该系统和技术是在满足NASA合同要求的工作性能的条件下进行的,并符合公法96-517(35 USC 202)条款的规定,其中选择承约人保留权利。
背景技术
该申请涉及产生振荡信号的方法和装置,更具体涉及通过利用光电振荡器产生振荡信号的方法和装置。
通过利用各种具有能量存储元件的振荡器可产生振荡信号。能量存储元件的品质因数Q或能量存储时间能确定相应振荡信号的光谱线宽。提高品质因数Q或增加能量存储时间可减小振荡信号的光谱线宽,从而提高信号的光谱纯度。
光谱纯射频(RF)振荡器可用于产生、调节(tracking)、清除、放大和分配RF载波。该RF载波在射频谱线范围的通信、广播和接收系统具有重要应用。特别是,其中具有锁相环的电压控制RF振荡器可用于时钟恢复、载波恢复、信号调制和解调、以及频率合成。
可通过利用构成光电振荡器(“OEO”)的电子和光学部件来构造RF振荡器。例如,参见授予Yao和Maleki的美国专利第5723856号和授予Yao的美国专利第5777778号。这种OEO包括可电控的光学调制器和至少一个有源光电反馈环路,该反馈环路包括通过光电检测器相互连接的光学部分和电学部分。光反馈环路接收来自调制器的调制光学输出并将其转换成控制调制器的电信号。当有源光电环路和任何其它附加反馈环路的总环路增益超过总损耗时,环路产生所希望的延迟并将同相电信号提供给调制器,由此产生并维持射频频谱的光学调制和电振荡。
OEO利用光学调制产生频谱范围内的振荡(例如RF和微波频率范围内),该频谱范围在光谱范围之外。所产生的振荡信号在频率上是可调的,并与其它RF和微波振荡器产生的信号相比,其具有更窄的光谱线宽和更低的相位噪音。值得注意的是,OEO为光学和电子混合器件,因此它可用在光学通信装置和系统中。
根据上述原理可制造各种获得某种操作特征和优点的OEO。例如,另一种OEO是授予Yao和Maleki的美国专利第5929430号中所述耦合的光电振荡器(“COEO”)。该COEO直接将光学反馈环路中的激光振荡耦合到光电反馈环路中的电振荡中。如授予Yao的美国专利第5917179号中所述,也可通过设置至少一个有源光电反馈环路得到光电振荡器,该光电反馈环路可基于受激的布里渊散射产生电调制信号。该布里渊OEO包括反馈环路中的布里渊光学介质,并利用布里渊散射的天然狭窄线宽选择单振荡模式。
发明概述本公开包括光电振荡器,该振荡器在可电控的反馈环路中具有至少一个高Q的光谐振器。设置光电调制器以响应至少一个电控制信号调制光学信号。将具有光学部分和电子部分的至少一种光电反馈电路与电光调制器耦合,以产生电控信号作为正反馈。反馈环路的电子部分将与反馈环路光学部分耦合的一部分已调制光学信号转换成电信号,并将其中的至少一部分作为电控信号提供给电光调制器。
高Q的光谐振器可布置在光电反馈环路的光学部分中或布置在与光电反馈环路耦合的另一个光学反馈环路中,以便提供足够长的能量存储时间,从而产生窄线宽和低相位噪音的振荡。光谐振器的模间隔等于光电反馈环路的一个模间隔、或多倍模间隔。另外,OEO的振荡频率等于光谐振器的一个模间隔或多倍模间隔。
可以用多种结构实现光谐振器,例如包括Fabry-Perot谐振器、光纤环形谐振器、和以传声廊模式运行的微球谐振器。这些和其它的光谐振器结构能缩小OEO的实际尺寸,并使OEO与其它光子器件和部件集成在例如单半导体芯片的紧凑组件上。
根据详细的说明书、附图和所附加的权利要求书可使这些和其它方面以及相关优点更加清楚。
附图简要说明

图1表示本发明单环路光电振荡器的一个实施例,其中光电振荡器具有光谐振器。
图2A、2B、2C和2D说明适用于图1所示振荡器的模式匹配条件。
图3A和3B表示在图1所示振荡器中对激光器与谐振器之间的相对频率进行有源控制的实施方式。
图4A和4B说明频率控制电路基于高频振动激光器或谐振器所产生的错误信号而运行。
图5表示频率控制电路的实施方式,它收到光电振荡器中由光谐振器反射的光学信号输入。
图6、7、8A和8B表示光谐振器示例,它可用在本发明的光电振荡器中。
图9说明了根据本发明将光电振荡器与它的所有预制部件一起集成在半导体基板上的实施例。
图10A和10B表示具有本发明光谐振器的双环路光电振荡器。
图11表示根据本发明的一个实施例实施光谐振器和频率控制电路的布里渊光电振荡器。
图12表示图11中所示布里渊光电振荡器的模式匹配条件。
图13表示一个布里渊光电振荡器,它利用一个激光器产生泵激光和信号激光。
图14表示具有布里渊光电环路和非布里渊光电环路的双环路布里渊光电振荡器的示例。
图15A表示具有光学反馈环路和光电环路的耦合光电振荡器的一个实施例。
图15B说明图1SA的装置中谐振器传输、激光模式、光电振荡器模式和RF滤波器的中心频率和带宽之间的光谱关系。
图15C表示基于图15A中系统的、具有两个光谐振器的耦合光电振荡器。
图16表示基于传声廊模式微型谐振腔的集成耦合光电振荡器的实施例。
详细描述当高Q因数的光谐振器作为能量存储元件结合到光电振荡器的光学部分时,该光谐振器可在振荡器中产生许多效果。第一,当光谐振器意欲作为能量存储元件时,它能实现振荡器能量存储时间的增加,由此缩小了光电振荡的光谱线宽并减少了相位噪音。
第二,在振荡器中除了由其它反馈环路产生的模式外,光谐振器还产生其自身的谐振器模式。这需要谐振器模式与振荡器中其它模式的某种模式匹配,以便正确地操控整个光电振荡器。
第三,当光谐振器所设有的模间隔比振荡器中另一个模间隔大时,模式匹配条件迫使光电振荡的模间隔成为谐振器的模间隔。由此,可将谐振器的谐振腔长度做得如此之小,以至于使振荡器的模间隔大到足以通过电滤波简单选择振荡单模。
下面描述不同结构的光电振荡器的示例,这些光电振荡器具有光谐振器和它们各自的模式匹配条件。
图1表示具有光谐振器121的单环路光电振荡器的一个实施例100。在授予Yao的美国专利第5723856号中描述了基于单光电环路但没有光谐振器的这种振荡器和其它装置,在此通过引用其全部内容将其结合到本申请中。OEO包括光源101、电光(“EO”)调制器110、和与EO调制器110连接的光电反馈环路120。来自光源101的光束102耦合进入EO调制器110,调制器110响应来自反馈环路120的反馈信号对其进行调制,其中反馈环路120与驱动端口115相接。
在EO调制器110中,输入光耦合器111将光束102分成两路112和114,这两路光经受不同的相位或偏振调制。偏压端口113用于通过外部电源施加电偏压以便使调制偏移。通过偏压端口113的电压偏置和驱动端口115的反馈电压控制光调制。驱动端口115的反馈电压使光调制以所希望的频率(例如RF频率)振荡。输出光耦合器116将来自两条光路112和114的已调制光重新结合,以便通过相干干涉产生RF调制光信号。输出耦合器116将调制器110的一部分耦合输出作为光学输出117而将另一部分耦合输出作为反馈118发送到光电反馈环路120中。光电反馈环路120与EO调制器110构成了支持光电振荡的封闭环路。
光电反馈环路120通常包括光学部分122和与光学部分122连接的电子部分124。光电检测器127通过将光学信号转换成电信号从而将光学部分122与电子部分124相互连接在一起。光耦合器125可用于将外部光信号126耦合到光学部分122的输出中,从而可通过光电检测器127测量来自光学部分122的光信号与外部信号126的总和。
光学部分122包括光谐振器121和诸如光纤等光波导元件123。光波导元件123将输出118耦合到谐振器121中,并将谐振器121的输出引导到光电检测器127中。光谐振器121形成有在OEO100中产生最长延迟的高Q因数。振荡器100可这样构成当由环路120和EO调制器110构成的闭合环路中的环路增益大于一(unity)时,为支持光电振荡,应使谐振器121的模式、振荡器100的振荡频率、以及反馈环路120的模式相互间必需具有所希望的模式匹配关系。
光波导元件123的长度要形成产生除光谐振器121所产生的延迟之外的所想要的延迟。例如,光学部分122中的延迟可通过改变谐振器121的谐振腔长度得以调整。此外,可改变光波导元件123的长度以便改变光学部分122中的延迟。可利用光纤延伸器达到该目的。
光电反馈环路120的电子部分124包括电放大器130和电信号带通滤波器,该滤波器能选择电子部分124中所想要的谱分量作为向端口115输出的反馈驱动信号。此外,在部分124内可设置电信号耦合器140,以便注入外部电信号141并产生电输出142。另外,在部分124内可利用可变电延迟160来改变部分124中的信号延迟,由此改变反馈环路120中的总延迟。
为产生振荡,使从光电反馈环路120向OE调制器110输出的反馈为正。通过控制反馈环路120的总延迟或相移可达到该目的。由反馈环路120和OE调制器110构成的闭合环路中的总增益要大于一,即增益超过了环路中由于环流波带来的损耗。通过利用电放大器130、注入的信号126或141或上述的结合来控制并保持环路增益。值得注意的是,振荡器100中的电信号与光信号位于反馈环路120中,此后二者保持固有的相互连接。如果一个信号改变,则另一个也改变。
通常,在单环路OEO100中多个模能同时谐振。例如RF滤波器等滤波器150可用于通过抑制其它振荡模式获得单模振荡。滤波器150也可用于粗略调节振荡频率。也可以通过偏压端口113处的偏压和RF驱动端口112的电压输入实现频率调节。光学部分122中的延迟可用于控制并精细调节振荡频率。由于反馈环流120中的总延迟增加,因此显著降低了该单环路OEO中的相位噪音。
将光谐振器121的谐振腔长度设定为具有一自由光谱范围,即位于两个相邻谐振腔谐振模之间的间隔,该间隔大于由环路120和OE调制器110构成的光电环路模式的模间隔,其中OE调制器110包括来自谐振器121的成分。因此,可通过谐振器121的模间隔基本确定OEO100的模间隔。谐振器121的谐振腔长度可设定得足够小,以便为使带通滤波器150能滤出不想要的模式并使振荡器100以单模运行,而使谐振器膜间隔通常足够大。因为,如果不想要的残余边带模仍然存在,它也能被从外部滤出,因此由光谐振器121提供的大模间隔对于雷达和其它应用也是有利的。
为维持使环路增益大于损耗的振荡,必需满足OEO100的确定模式匹配条件。不能满足模式匹配条件的模除要经受由反馈环路120和OE调制器110构成的闭合光电环路中的其它损耗外,还要经受由可容许的正常光电振荡模式和可容许的谐振器模式的光谱分布产生的显著损耗。
模式匹配条件包括(1)自激光器101输出的输入光束102的激光中心频率V激光在光谐振器121的一个传输峰值(transmission peak)范围内,由此可使足够的光到达光电检测器,从而保证了光电环路的开环增益大于1,即,V激光=M·FSRr其中M是正整数,FSR为光谐振器121的自由光谱范围(range);(2)光谐振器的自由光谱范围FSRr等于光电环路中一个本征模式模间隔△VOE环路或是它的多倍,即,FSRr=N·△VOE环路其中N为正整数(1,2,3……); (3)OEO100的光电振荡频率△VOEO等于振荡器121自由光谱范围FSRr的多倍VOEO=K·FSRr其中K也是正整数(1,2,3……)。
图2A、2B、2C和2D表示上述模式匹配条件。图2A表示光频率范围内光谐振器121的容许谐振器模式。图2B示出了在与图2A相同的频率等级范围内EO调制器110的输入光束102的激光频率V激光位置,其与图2A中模式匹配条件(1)下的一个谐振器模式产生共振或重叠。图2C表示模式匹配条件(2)下、OEO100的光电振荡频率范围(例如RF频率范围)内的光电环路本征模式,其中N=2。图2D表示在模式匹配条件(3)下由2FSRr(K=2)给出的光电振荡频率VOEO。
EO调制器110调制输入光束102产生一个或多个调制边带。图2B表示边带的头两级(order)。由于模式匹配条件(3),每个调制边带与谐振器模式相协调。因此,当激光中心频率与谐振器模式210重叠时,+1边带与谐振器模式214重叠,而-1边带与谐振器模式212重叠。这自动地保证了由调制器产生的光学边带以最低损耗通过谐振器。
当满足了上述三个模式匹配条件时,OEO100的模间隔成为谐振器121的自由光谱范围FSRr。如图2C所示,对于单模选择,可利用带宽小于谐振器121的自由光谱范围FSRr的带通滤波器150。在某一实施方式中,可将谐振器121的FSRr构成为比光电振荡的模间隔△VOE环路大许多,例如,大约是以OEO为基础的光纤延迟线模间隔的100倍(相当于10MHz或更大)。因此,与在没有光谐振器121的单环路OEO中不同的是,RF滤波器150的带宽不需要很窄,例如,相当于10GHz(难于达到)级载频上的大约数百KHz的带宽。相反,滤波器150的带宽相当于10MHz级或更大,这样的RF滤波器是可得到的。因此,单环路OEO100中光谐振器121的实施不仅因增加了环路120中的总延迟而降低了相位噪音,而且还提供了保证单模操作的频率选择机构。
在实际应用中,环境条件的变动和装置部件的老化(例如温度、应力的变化或其它类型的干扰)可引起激光器101的激光频率V激光和谐振器121的传输峰值频率的变化。因此,在缺少控制机构的时间内,激光频率V激光的相对值与相应谐振器121的谐振传输峰值可发生变化。当变化超过一定范围时,该变化能破坏模式匹配条件(1),并由此引起图1中OEO100的故障。
因此,可取的是控制激光频率V激光与相应谐振器121的传输峰值之间的差,以便维持模式匹配条件(1)。可通过以下方式达到该目的既可以相对于相应谐振器121的传输峰值有效锁定激光器101的频率V激光,或可以选择的是,也可以相对于激光器101有效锁定谐振器121。这两种频率锁定技术的选择取决于在特定应用中哪一个对环境更稳定。在这两项有效锁定技术中,使用监控机构监控激光频率与相应谐振器121的传输峰值之间的差以产生误差信号。然后,响应该误差信号,利用频率校正机构将频率差值降低到容差范围内。
图3A和3B表示对激光器101与谐振器121之间的相对频率进行有效控制的两个实施方式。这两个实施方式利用了频率控制电路310,该频率控制电路能检测频率差并向激光器101或向谐振器121的谐振腔施加控制信号。对电路310的输入进行耦合以便接收由光谐振器121的光学输出转换来的电信号。指定的光电检测器330可用于产生电路310的输入。可选择的是,该输入可从光电检测器127的输出中获得,光电检测器127与图1中OE0100反馈环路120的两个部分120和124相互连接。
频率控制电路310的一个实施例包括信号相位检测器314、低通滤波器316、高频振荡信号发生器318、和信号加法器320。可利用信号放大器312放大相位检测器314的输入信号。高频振荡器318产生频率为fd的正弦高频振荡信号,并被耦合以便将该高频振荡信号提供给加法器320和相位检测器314。在操作过程中,相位检测器314将高频振荡信号的相位与谐振器121的输出相位相比较以产生第一误差信号。经低通滤波器316滤波后,第一误差信号和高频振荡信号相加并形成第二误差信号,该第二误差信号既可以提供给图3A中所述的激光器101也可以提供给图3B中所示的谐振器121,由此缩小了频率差。
图4A和4B表示频率控制电路310基于激光器101或谐振器121的高频振荡产生的误差信号的操作。图4A表示谐振器121的传输光谱峰值与激光频率存在一定关系。当激光中心频率V激光与所希望的谐振器121的传输峰值对准时,在fd处的检测信号为零,在2fd处的检测信号最大。如果激光频率V激光位于传输峰值的左侧(v<vo),在fd处的检测信号就不为零,并且该误差信号与所施加的高频振荡控制信号同相。另一方面,当激光频率V激光位于传输峰值的右侧(v>vo),fd处的检测误差信号与所施加的高频振荡控制信号相位相反。利用对相位灵敏的检测设计(scheme),通过相位检测器314和加法器320的操作产生对相位变化灵敏的误差信号,可在所希望的范围内有效锁定激光器101与谐振器121的相对频率以维持模式匹配条件(1)。
也可以利用其它的有效频率锁定方法。例如,由R.Drever等人在“Laser phase and frequency stabilization using an opticalcavity”Applied Physics B,Vol.31,pp.97-105(1983)中描述了一项可供选择的技术。由Hansch和Couillaud在“laser frequencystabilization by polarization spectroscopy of a referencecavity”Optics communication,Vol.35,pp.441-444(1980)中描述了另一项可选择的技术。
在一个可供选择的实施方式中,频率控制电路310的输入可由谐振器121反射的光学信号转换而来。图5表示其结构。光陀螺仪或分光镜510可设置在EO调制器110与谐振器121之间,用以将反射的光信号导入光电检测器330。
可以用不同结构构成作为光学能量存储部件的光谐振器121。例如,可利用光纤Fabry-Perot谐振器、光纤环形谐振器、光学微球谐振器、以及其它微型谐振器构造OEO。由于光纤谐振器的高Q因数,因此利用光谐振器能显著缩小OEO的尺寸。特别是,可利用光纤微球谐振器和其它类型的微型谐振器在芯片上集成OEO。
可通过在光纤段603的两端形成高度反射的涂层601和602,从而将结构紧凑且重量轻的Fabry-Perot谐振器构造成光纤Fabry-Perot谐振器。图6表示这样一种光纤Fabry-Perot谐振器。一种制造光纤Fabry-Perot谐振器的可选择方式是在光纤两个末端上或光纤两个末端附近形成光纤Bragg光栅以代替反射涂层601和602。耦合到谐振器的光在射出前在谐振器内部来回反射,从而显著增加了有效能量存储时间。对于光学载波器上的RF信号,光纤Fabry-Perot谐振器的有效能量存储时间τ有效是τ有效=τd·(1+R)/(1-R)其中R为涂层的反射率,τd是光纤传输延迟。自由光谱范围是 其中c是光在真空中的速度,n有效是谐振器的有效指数,而Lr是谐振器的长度。
由于反射率R=0.99的原因,τ有效=199τd。因此,对于给定长度的光纤,其有效延迟时间增加了199倍,或对于给定的所需能量存储时间τ有效,所需的光纤长度被缩短了199倍。由于适当反射涂层的存在,利用具有20米长光纤的光纤Fabry-Perot谐振器可使有效延迟时间等于由3千米长光纤带来的延迟时间。
光谐振器121的另一个结构是图7所示的光纤环形谐振器。可通过将两个光纤定向耦合器710和712耦合到光纤环714上来构成该环形谐振器。耦合到光纤环714中的光在射出前在环714内循环多次。最后得到的有效能量存储时间取决于耦合器710与712的耦合比和额外损耗。环形谐振器的自由光谱范围给出如下 其中Lr为环714的周长。图7A和7B表示基于光纤环形谐振器的两个示范性单环振荡器。
图8A表示微型传声廊模式的谐振器800,该谐振器甚至比上述谐振器的体积和重量更小。该谐振器800包括透明微球、环、或圆盘801和两个光学耦合器802和804。该谐振器的质量因数受到材料中的光衰减和由于表面不均匀性引起的散射的限制,在微型环和圆盘中该质量因数可高达104~105,在微球内可高达1010。例如,参见Suzuki et等人的IEEE Photon.Technol.Lett.,Vol.4,pp.1256-1258(1992);Little等人的J.Lightwave Technol.,Vol.15,pp.998-1005(1997);Braginsky等人的 Phys.lett.A,V.137,pp.393-397(1989);以及Gorodetsky等人的Opt.Lett.,Vol.21,pp.453-455(1996)。用于谐振器801的材料可以是各种介电材料,它包括用于光纤的低损耗材料的熔融石英。每个耦合器可以是棱镜或采用其它形式。
光以传声廊模式通过位于球体801表面的渐逝场耦合进并耦合出微型谐振器800,光在球体801外部按指数规律衰减。一旦光耦合进入球体801,它就以类似于光纤中的光传播方式在球体801表面经历全内反射。就象在光纤环形谐振器中那样,通过循环增加了有效光路长度。
可以预期的是,直径为几百微米并以1550nm运行的微型谐振器的有效光路长度可达10km,该长度受到材料固有衰减的限制。还已经示出,由于高Q微球长度可达25km,这与30GHz的19兆的Q因数相当,因此高Q微球能有效代替OEO中的光纤延迟。该高Q谐振器可用于获得小于1Hz的-60dB的、远离OEO中30GHz载波的相位噪音,以满足深空间阴极带通信的需要。
图8B表示利用两根光纤810和820作为耦合器的可选择微球谐振器810。两根光纤耦合器810和820的端面以预定角度被切断并抛光成微棱镜。可利用基底内形成的两个波导构成两根光纤耦合器810和820,其中基底用于将OEO集成到单芯片上。
如图8A和8B所示的传声廊模式谐振器,除其作为OEO中的光谐振器的功能外,它们还可用于构成集成到基底上的专用紧凑型OEO。特别是,当适当形成后,光电反馈环路可被简化,例如通过去掉图1的OEO100中所示的电放大器130进行简化。
图9表示集成OEO900的实施例,其所有部件都在半导体基底901上形成。该集成OEO900包括半导体激光器910、半导体电吸收调制器920、第一波导930、传声廊模式的微型谐振器940、第二波导950、以及光电检测器960。在基板901上还形成了一电连接链路970(例如导电通路),用以将检测器960电连接到调制器920上。微型谐振器940可以是微球、微型圆盘、或环,其以传声廊模式运行。可将其用作高Q能量存储元件以达到低相位噪音和微型化。可在链路970上设置RF滤波器以确保单模振荡。缺少这样的滤波器时,可通过调制器920与检测器960之间进行窄带阻抗匹配达到频率滤波的效果。
波导930和950分别具有耦合区932和952,以便在微型谐振器940内的两个不同位置进行适当的光学耦合。第一波导930的一端与调制器920相接以接收经调制的光学输出,另一端提供OEO900的光学输出。第二波导950耦合了来自微型谐振器940的光能,并将该能量传送给检测器960。
由以下部件构成完整的闭合光电环路调制器920、第一波导930、微型谐振器940、第二波导950、检测器960、和电连接链路970。设定闭合环路中的相位延迟,以便使从检测器960到达调制器920的反馈信号为正。此外,总开环增益超过总损耗以维持光电振荡。也需要满足前述的模式匹配条件。
通常,可在检测器960与调制器920之间连接电信号放大器。虽然检测器960与调制器920的固有阻抗很高(例如,在几千欧左右),但光电检测器和调制器通常端接50欧姆的阻抗,以便与传输线或其它微波部件的阻抗相配。因此,光电检测器960产生的光电压(其等于光电流乘以50欧姆)太低,以致于不能有效的驱动调制器920。由此,为正常驱动调制器920就必需在链路中使用信号放大器。
然而,在高度集成的例如OEO900的芯片设计中,不希望有这样的大功率元件。例如,放大器的大功率由于其高热耗散而带来一些问题。此外,放大器能带来噪音或失真,甚至可能干扰芯片上其它电子部件的运行。
OEO900的一个区别特征是通过在电吸收调制器920与光电检测器960之间匹配高阻抗值的阻抗从而在链路970中省掉了该信号放大器。希望的匹配阻抗是这样一个值无需放大就被传送到调制器920的光电压要足够高,以便正常驱动调制器920。例如,在某一系统内,该匹配阻抗约为1千欧姆或几千欧姆。使用电连接链路970而不是信号放大器直接连接光电检测器960和调制器920,以便保持它们的高阻抗。该直接电连接链路970也确保了两个装置920和960之间的最大能量传送。例如,以1000欧姆匹配的一对检测器和调制器具有的电压增益是该对装置以50欧姆匹配的电压增益的20倍。
图3A、3B和3C中示出的前述频率控制电路310可类似地在图9的OEO900中实施,以便支持模式匹配条件(1)。例如,为调整微型谐振器940的谐振腔长度,可利用电路310的输出信号通过压电传感器在谐振器940上产生机械挤压。
可将单环路OEO中的光谐振器和频率控制电路用在以其它方式构造的OEO中,以便降低本征模式匹配条件下光电振荡中的相位噪音。这些其它的OEO包括但不限于多环路OEO、布里渊OEO、和耦合OEO。以下是这些不同OEO中的一些示范性实施方式。
多环路OEO在至少两个反馈环路中的一个光电反馈环路中使用至少一个光纤环路作为能量存储元件。该装置在授予Yao的美国专利第5777778号中公开了,在此通过引用全部内容将其结合到本申请中。不同反馈环路具有不同的延迟。使用具有最长延迟的光电反馈环路以获得低相位噪音和窄的光谱线宽。由于该环路的模间隔比其它任何反馈环路的模间隔小,因此该环路也可用于提供精细的频率调谐。另一方面,具有最短延迟和最宽模间隔的反馈环路(光电的或纯电的)可用于提供粗频率调谐以获得宽泛的连续调谐范围。多环路的总开环增益必需超过总损耗以便支持光电振荡,但每个环路的开环增益可小于该环路中的损耗。
本发明的一个实施例是将图1中OEO100的光谐振器121设置在美国专利第5777778号所建议的多环路OEO光电环路的光学部分中,以便进一步降低光电振荡的相位噪音并缩小光谱线宽。可将该光谐振器121设置在具有最长延迟的光电环路中,以减少OEO的光纤用量、实际尺寸、和成本。除了要满足前述的三个模式匹配条件外,振荡模式还必须与每个反馈环路中的一个模式协调,即,每个环路的一个模必需与其它每一个环路的一个模重叠。图3A、3B和3C中所示的频率控制电路310可类似地实施以便支持模匹配条件(1)。
图10A和10B表示具有光谐振器121的双环路OEO的两个示例。图10A中的OEO具有两个光电环路1001和1002,它们能分别驱动EO调制器110上的两个电子端口以控制光学调制。光谐振器121设置在较长的环路1002内。可在检测器127与放大器130之间接入例如为偏压Tee的RF信号分配器,用以将高频信号成分传送给调制器110,同时将低频成分导入频率控制电路310,该控制电路310响应该输入并控制激光器101。考虑到前面的描述也可以使用构成电路310的其它结构。
图10B表示具有一个电环路和一个光电环路的双环路OEO。利用电信号组合器1010组合两个环路的电信号,以产生驱动EO调制器110中单端口的和信号。通常,可以该方式利用信号组合器将来自两个或两个以上环路的电信号组合在一起。与图10A中的系统类似,在此频率控制电路310接收从偏压Tee低频输出的输入,用以控制激光器101,其中偏压Tee接在检测器127与耦合器1010之间。
布里渊光电振荡器至少利用一个有源光电反馈环路,该反馈环路能基于环路内布里渊光学介质中受激的(stimulated)布里渊散射产生电调制信号。例如可参见授予Yao的美国专利第5917179号,在此通过引用其全部内容将其结合到本申请中。由于电限制效应,光泵激光束射入布里渊光学介质中产生沿泵激光束方向移动的声栅。栅与泵激光束相互作用产生频率为VB的反向散射布里渊散射信号,该频率要小于因Doppler的频移VD产生的泵激光束的频率VP,即VB=VP-VD。通过光电反馈环路中的光电检测器将布里渊散射信号转换成电调制信号。
图11表示根据本发明一个实施例的布里渊OEO,其具有光谐振器121和频率控制电路310。EO调制器1101利用反馈环路1104的电调制信号调制由激光器101产生的光载波,以产生经调制的光载波信号,其中该光载波信号是以振荡频率F振荡=|VB-VS|=|VP-VS-VD|调制的。布里渊介质是环路1104中的光纤段1103。通过耦合器1110将泵激光以与已调光载波耦合到环路1104的方向相反的方向耦合到光纤1103中。布里渊散射信号在光学载波信号的方向上。光电检测器127接收布里渊散射信号和光学载波信号并产生电调制信号。耦合频率控制电路310,使其接收由谐振器121的光学传输部分转换过来的电信号。
图12表示布里渊OEO1100的模式匹配条件。除要满足图2B-2D中规定的模式匹配条件外,还要满足以下模式匹配条件fosc=|VB-VS|VP-VS-VD|=J·FSRr其中J为整数。由此,通过调节泵激光器1112的频率VP或信号激光器101的频率VB或对二者同时进行调节,就能使振荡频率f振荡成为可调谐的。
布里渊OEO1100采用了两个分离的激光器101和1112。这要求两个激光器的频率彼此能相对稳定。图13表示利用单个激光器既产生泵激光又产生信号激光的布里渊OEO1300。利用光陀螺1303将激光器的部分输出作为泵激光束耦合到环路1310中。由于布里渊效应而需将附加模式匹配改为f振荡=VD=J·FSRr。因此,由Doppler频移决定振荡频率f振荡,该振荡频率通常是不可调的。
除布里渊光电反馈环路外还设置一个或多个辅助反馈环路以构成多环路布里渊OEO。辅助反馈环路可以是任何类型的,它包括电反馈环路、光学环路、非布里渊光电环路、或另一种布里渊光电环路。每个环路的开环增益小于1,但只要所有环路的总开环增益大于1,它就能支持振荡。图14表示具有布里渊光电环路1420和非布里渊光电环路1410的示例性双环路布里渊OEO1400。与图10A中的系统类似,在检测器127的输出上耦接偏压TEE,以便将低频成分发送给频率控制电路310。
另一种OEO是耦合光电振荡器(“COEO”)。例如,参见授予Yao和Maleki的美国专利第5929430号,在此通过引用其全部内容将其结合到本申请中。该COEO直接将光学反馈环路中的激光振荡耦合到光电反馈环路中的电振荡中。激光振荡与电振荡彼此关联,从而使一个振荡的模式和稳定性与另一个振荡的模式与稳定性相配合。光学反馈环路包括一种能产生环路增益大于1的增益介质,以便能实现激光振荡。该光学环路可以是Fabry-Perot谐振器、环形谐振器、其它的谐振器结构。光电环路中的开环增益也要超过损耗以支持电振荡。可通过用光电反馈环路产生的电信号控制光学环路的环路增益完成两个反馈环路之间的耦合。COEO可完成单模RF振荡而无需RF带通滤波器或任何额外的光电反馈环路。可使用多模激光器。
与上述其它的示范性OEO比较,COEO的光谐振器既可设置光电反馈环路中也可设置在光学反馈环路中。前者的结构需要利用频率控制电路相对于谐振器的传输峰值锁定激光模式的频率。可以选择的是,可将两个光谐振器分别同时设置在光学环路和光电环路中。
图15A表示具有光学反馈环路1510和光电环路1520的COEO1500的一个实施例。光谐振器121设置在光学环路1510中。所示出的光学环路1510为环形激光器,它包括光学放大器1512和EO调制器1514。利用光学隔离器确保环路1510中的光波为单方向的。利用光纤1511或其它光学波导构成环。处于结合状态的光学放大器1512和EO调制器1514形成了激光增益介质,该增益介质的增益可由来自光电环路1520的电控制信号控制和调整。例如,可利用半导体光学放大器作为放大器1512与调制器1514的结合装置。
将光谐振器121设置在光学环路1510内的一个优点是光学环路1510内部的光学模式可被谐振器121的模式所控制,即,只有与谐振器121的模式重叠的环路1510的模式具有足够增益进行振荡。因此,激光器的光学频率能自动地与谐振器121的传输峰值对准。该结构排除了其它具有光谐振器的OEO中将光学环路1510和谐振器121相对彼此锁定的需要。此外,光学环路1510内部的谐振器121决定了光学环路1510内产生的光学信号和光电环路1520内产生的RF信号。这是因为两个信号恰好共用同一个能量存储元件、谐振器121。对于以COEO为基础的光纤放大器来说,用光纤构成的高Q光谐振器是优选的,它包括图6中的光纤Fabry-Perot谐振器和图7中的光纤环形谐振器。
图15B表示谐振器传输、激光模式、光电振荡模式、和RF滤波器中心频率及带宽的光谱关系。因为光学环路1510的谐振腔长度包括谐振器长度部分,因此其模间隔通常要小于谐振器121的FSR。因此,仅有那些与谐振器121的传输峰值重叠的激光模式能振荡。
光电反馈环路1520通常比激光器1510的谐振腔长度长得多,由此,相应的模间隔要小于环形激光器1510的模间隔。选择RF带通滤波器160的中心频率,使其等于环形激光器1510各种模式的RF拍频。选择RF滤波器160的带宽,使其窄于拍频的模间隔(相当于谐振器121的FSR)。在通带范围内,许多OEO模式竞争振荡。然而,由于只有频率最接近激光器纵模拍频的OEO模式能从激光器1510获得能量,因此胜者只能是该OEO模式。反馈该模式以调制环形激光器1510的增益,它有效地对环形激光器进行模式锁定。该模式锁定使激光的模间隔等于振荡OEO模式的频率,该模间隔是谐振器FSR的若干倍。
因为强迫模式锁定激光器1510内的所有振荡模式同相,因此任意两个相邻间隔模式模式间的所有模式拍节(mode beat)信号能同相加和并产生振荡OEO模式频率的强信号。该增强的模式拍节信号轮流向振荡OEO模式提供更多增益并增强其振荡。
因此,振荡条件为(1)光学环路1510(激光谐振腔)的总长度为谐振器121的谐振腔长度的多倍(或谐振器121的自由光谱范围是激光模间隔的多倍);
(2)光电环路1520的长度为谐振器的谐振腔长度的多倍(或谐振器自由光谱范围是光电环路模间隔的多倍);(3)RF滤波器160的中心频率为谐振器121的自由光谱范围的多倍;以及(4)RF滤波器160的带宽小于谐振器121的FSR。
图15C表示基于图15A的系统的、具有两个光谐振器的COEO。利用频率控制电路310相对于光学环路1510的模式锁定光电环路1520中光谐振器1530的模式。在该示例中,可通过控制光学环路1510的总谐振腔长度达到控制目的。除要满足上述模式匹配条件外,光谐振器1530的模间隔还必需是激光模式的多倍,并且谐振器1530的模式和谐振器121的模式必需具有一些重叠模式。
图16表示以传声廊模式的微型谐振腔为基础设在芯片上的COEO1600的实施例。该装置在半导体基底1601上形成,并包括两个波导1610和1602,这两个波导与高Q微谐振腔1602、例如图中所示微球相耦合。波导1610和1620分别具有有一定角度的末端1616和1626,以便使其能通过渐消散的耦合方式耦合到微型谐振腔1602上。波导1610的另一端包括一电绝缘层1611、电吸收调制器部件1612、和高性能反射器1614。该高性能反射器1614运行时将脉冲碰撞(pulse colliding)引入调制器1612中,从而增强了模式锁定能力。波导1620的另一端为抛光面1624,它通过间隙1621与光电检测器1622分隔开。该表面1624可作为局部反射镜,将部分光反射到波导1620内,同时将剩下的部分光传输给光电检测器1622以产生光输出和电信号。在调制器1612和光电检测器1622间接入电连接链路1630,以便产生电输出和馈送信号,并馈送电信号以便控制调制器1612。
由此,在装置1600中形成了两个耦合反馈环路。光学环路是以Fabry-Perot谐振器的结构形式构成的,该环路是在高性能反射器1614与波导1620的表面1624之间通过调制器1612、波导1610、微型谐振腔1602和波导1620构成的。间隙1621、检测器1622、和电连接链路1630构成了另一个光电环路,该环路耦合到光学环路上。由此,COEO1600的结构类似于图15A的COEO1500中使用的结构。因此,它们适用相同的模式匹配条件。
波导1610和1620是有源的,并也被掺杂(doped)作为增益介质,由此当光学环路被驱动电流启动时,它就作为激光器。该电流是从与电源连接的适当电接头注入的。调制器1612响应来自光电检测器1622的电信号对激光器增益进行电调制。
光电检测器1622在结构上可与电吸收调制器1612相同,但它被特别偏置成光电检测器。由此,光电检测器1622和调制器1612可具有相同的阻抗,例如相当于几千欧姆数量级,由此它们基本上实现了阻抗匹配。取典型值调制器转换电压为2伏,调制器1612和光电检测器1622的阻抗为1千欧姆,当检测器响应度为0.5A/W时,维持RF振荡所需的光能估计约为0.28mW。在半导体激光器中容易获得该光能。因此,在阻抗匹配条件下,就象在图9的集成OEO900中那样,在电连接链路1630中可去掉RF放大器。
两个波导1610和1620可相邻并彼此平行地设置在基底1601上,从而光电检测器1622和调制器1612能彼此相近。该设置简化了光电检测器1622与调制器1612之间的引线接合方法和其它连接方式。
尽管仅描述了几个实施例,但可作出各种修改和改进而不会脱离下面权利要求的范围。
权利要求
1.一种光电装置,包括一光调制器,它具有电输入端口和光输入端口,其中电输入端口接受电调制信号,而光输入端口接收具有光载波频率的输入光载波信号,从而能产生输出光载波信号,该信号以与所述电调制信号相关的振荡频率被调制;光电环路,它具有耦合的光学部分和电子部分,所述光学部分可接收至少部分所述的输出光载波信号,而所述电子部分与所述电输入接口耦合以产生所述电调制信号,所述光电环路在所述电调制信号中引起延迟,以便将正反馈提供给所述光调制器;以及光谐振器,它耦合在所述光电环路的所述光学部分中,其中所述光谐振器具有一自由光谱范围,该范围比所述光电环路的模间隔大第一整数倍,并比所述光载波频率小第二整数倍,比所述振荡频率小第三整数倍。
2.如权利要求1所述的装置,其中所述光学调制器和所述光电环路构成闭合环路,该环路的总环路增益超过总环路损失。
3.如权利要求1所述的装置,进一步包括频率控制电路,该电路与所述光学调制器和所述光电环路中的一个耦合,用以接收表示所述光谐振器的模式频率与所述光载波频率之间差值的信号,以便产生使所述差值小于容许范围的控制信号。
4.如权利要求3所述的装置,耦合所述频率控制电路,使其能调整所述光谐振器的谐振腔长度以维持所述模式频率与所述光载波频率的相关关系。
5.如权利要求3所述的装置,进一步包括产生所述输出光载波信号的激光器,所述激光器耦合到所述频率控制电路上,用以调整并维持所述光载波频率与所述模式频率的相关关系。
6.如权利要求1所述的装置,其中所述光谐振器包括Fabry-Perot谐振器。
7.如权利要求6所述的装置,其中所述Fabry-Perot谐振器包括一段光纤。
8.如权利要求1所述的装置,其中所述光谐振器包括环形谐振腔。
9.如权利要求8所述的装置,其中所述环形谐振腔是由光纤环构成的。
10.如权利要求1所述的装置,其中所述光谐振器包括传声廊模式的谐振器。
11.如权利要求10所述的装置,其中所述谐振器包括介电球。
12.如权利要求10所述的装置,进一步包括连在所述光学部分中的两个光耦合器,用以通过渐消散耦合将光能耦合到所述谐振器中,并将其从所述谐振器中耦合出来。
13.如权利要求1所述的装置,其中所述光电环路包括在所述光学部分和电子部分之间连接的光电检测器。
14.如权利要求13所述的装置,其中所述光电环路包括位于所述电子部分的电子带通滤波器。
15.如权利要求13所述的装置,其中所述光电环路包括位于所述电子部分的电信号放大器。
16.如权利要求13所述的装置,其中所述光电检测器和所述光调制器具有充分匹配的阻抗。
17.如权利要求13所述的装置,其中所述电子部分在所述光电检测器与所述光调制器之间没有信号放大器。
18.如权利要求1所述的装置,进一步包括至少一个附加反馈环路,它们被耦合以产生附加电调制信号,以便响应从所述光调制器输出的信号对所述光调制器中的光调制产生影响,其中所述附加反馈环路的延迟与所述光电环路中的所述延迟不同。
19.如权利要求18所述的装置,其中所述附加反馈环路为光电环路。
20.如权利要求18所述的装置,其中所述光电环路与所述附加反馈环路的总环路增益大于总环路损耗。
21.如权利要求20所述的装置,其中所述光电环路与所述附加反馈环路中至少有一个的环路增益小于对应的环路损耗。
22.如权利要求1所述的装置,进一步包括基底,其中所述光调制器、所述光电环路、和所述光谐振器都集成在所述基底上。
23.如权利要求1所述的装置,进一步包括产生激光振荡的激光谐振器,所述激光谐振器将所述激光振荡光路内的所述光调制器封闭在所述激光谐振器内,其中所述激光振荡以所述光谐振器的一个模式进行,该模式与所述激光谐振器的模式重叠。
24.如权利要求23所述的装置,其中所述激光谐振器为环形谐振器。
25.如权利要求24所述的装置,其中所述所述光调制器包括半导体光吸收器。
26.如权利要求23所述的装置,其中所述激光谐振器为Fabry-Perbot谐振器。
27.如权利要求23所述的装置,其中所述光谐振器位于所述激光谐振器内。
28.如权利要求27所述的装置,其中所述光谐振器包括传声廊模式的谐振器。
29.如权利要求28所述的装置,其中所述传声廊模式的谐振器包括介电球。
30.如权利要求1所述的装置,其中所述光电环路的所述光学部分包括一种光介质,该介质能响应光泵信号沿所述输出光载波信号的方向产生布里渊散射信号,其中所述光泵信号以所述光载波信号方向的相反方向传播。
31.如权利要求30所述的装置,进一步包括光耦合元件,该元件能将部分所述输入光载波信号作为所述光泵信号耦合到所述光学部分中。
32.如权利要求30所述的装置,进一步包括信号激光器和泵激光器,信号激光器能产生所述输入光载波信号,而泵激光器能产生所述光泵信号。
33.一种光电装置,包括以半导体材料制成的基底;在所述基底上形成的、用于产生激光束的半导体激光器;在所述基底上形成的半导体光调制器,它能响应所述电调制信号接收并调制来自所述半导体的所述激光束;在所述基底上形成的第一波导,该波导被耦合以便能从所述光调制器接收已调制光信号;在所述基底上形成的光谐振器,该谐振器与所述第一波导耦合以接收一部分所述已调制光信号;在所述基底上形成的第二波导,该波导被耦合以便能接收所述光谐振器中的所述已调制光信号;在所述基底上形成的半导体光电检测器,用以接收来自所述第二波导的光学输出,并将该光学输出转换成电信号;以及在所述基底上形成的电连接链路,该链路连接在所述光电检测器与所述光调制器之间,用以由所述电信号产生所述电调制信号。
34.如权利要求33所述的装置,其中所述光谐振器为传声廊模式的微型谐振器。
35.如权利要求34所述的装置,其中所述微型谐振器为介电球。
36.如权利要求34所述的装置,其中所述第一和第二波导包括与所述微型谐振器相邻的耦合部分,该耦合部分将光能通过渐消散的耦合方式耦合到所述微型谐振器中,并将其从所述微型谐振器中耦合出来。
37.如权利要求33所述的装置,其中所述光电检测器与所述光调制器具有充分匹配的阻抗。
38.如权利要求33所述的装置,其中所述电连接链路在所述光电检测器与所述光调制器之间没有信号放大器。
39.如权利要求33所述的装置,其中所述所述光调制器为电吸收调制器。
40.如权利要求39所述的装置,其中所述光电检测器是这样一种装置其在结构上与所述电吸收调制器一样,但它被偏压为光电检测器。
41.如权利要求33所述的装置,其中所述光谐振器具有自由光谱范围,该范围比光电环路中的模式模间隔大整数倍,其中光电环路由所述光调制器、所述第一和第二波导、所述光电检测器、和所述电连接链路构成。
42.一种光电装置,包括激光器,具有有源的光学反馈环路,其第一环路增益大于1,该环路增益随电调制信号而变化;以及光电反馈环路,它与所述有源光学反馈环路耦合,用以响应所述激光器的激光输出产生所述电调制信号,其中所述光电反馈环路包括被耦合的光谐振器,该光谐振器从所述激光器接收一部分所述激光输出,以及被耦合的光电检测器,该光谐振器将所述光谐振器的光学输出转换成电信号。
43.如权利要求42所述的装置,进一步包括与所述激光器耦合的装置,用以将激光频率维持在所述光谐振器传输峰值的频率上。
44.如权利要求42所述的装置,进一步包括与所述光谐振器耦合的装置,用以将所述光谐振器传输峰值的频率维持在所述激光器的激光频率上。
45.如权利要求42所述的装置,进一步包括位于所述激光器所述有源光学反馈环路内的第二光谐振器。
46.一种光电装置,包括以半导体材料制成的基底;在所述基底上形成的半导体光学调制器,用以响应电调制信号调制光束,所述光调制器具有第一侧面和相对的第二侧面,由它们限定了光路;在所述光调制器的所述第一侧面上形成的光反射器;在所述基底上形成的第一波导,该波导具有第一端和第二端,第一端用以从所述光调制器接收已调的光信号,第一端与所述光调制器隔离开,第二端具有成一定角度的切割面;以传声廊模式运行的、在所述基底上形成的光谐振器,它通过渐消散的耦合方式与所述第一波导成一定角度的切割面耦合;在所述基底上形成的第二波导,该波导具有第一端和第二端,第一端具有一定角度的切割面,它通过渐消散的耦合耦合到所述光谐振器上;在所述基底上形成的半导体光电检测器,它与所述第二波导的所述第二端隔开,以便从所述第二波导接收光学输出,并将光学输出转换成电信号;以及在所述基底上形成的电连接链路,该链路连接在所述光电检测器与所述光调制器之间,用以由所述电信号产生所述电调制信号;其中所述第一与第二波导掺杂(dope)产生光增益,用以在所述光反射器与所述第二波导的所述第二端之间形成的激光谐振腔中产生激光振荡。
47.如权利要求46所述的装置,其中所述光电检测器与所述光调制器具有充分匹配的阻抗。
48.如权利要求46所述的装置,其中所述电连接链路在所述光电检测器与所述光调制器之间没有信号放大器。
49.如权利要求46所述的装置,其中所述光调制器为电吸收调制器。
50.如权利要求49所述的装置,其中所述光电检测器是这样一种装置该装置在结构上与所述电吸收调制器一样,但它被偏置为光电检测器。
51.如权利要求46所述的装置,其中所述光谐振器具有自由光谱范围,该范围比光电环路中模式的模间隔大整数倍,其中光电环路由所述光调制器、所述第一和第二波导、所述光电检测器与所述电连接链路构成。
52.如权利要求46所述的装置,其中所述所述光谐振器是由介电材料制成的球体。
53.如权利要求18所述的装置,其中所述附加反馈环路为电环路,它能引起与所述光调制器相关的电信号中的延迟。
全文摘要
在光电振荡器(100)的反馈环路(120)中的光学部分结合一光谐振器(121)的系统与技术。该光谐振器(121)提供了足够长的能量存储时间,因此产生了窄线宽和低相位噪音的振荡。需要某种模式匹配条件。例如,光谐振器(121)的模间隔等于光电反馈环路的模间隔,或是光电反馈环路模间隔的多倍,该光电反馈环路可接收已调制的光信号并产生电振荡信号。
文档编号H04L7/00GK1338135SQ00803073
公开日2002年2月27日 申请日期2000年1月26日 优先权日1999年1月26日
发明者X·S·姚, L·马利基, V·伊利琴科 申请人:加利福尼亚理工学院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1