客户端信号映射电路以及映射方法与流程

文档序号:11772803阅读:692来源:国知局
客户端信号映射电路以及映射方法与流程
本发明涉及客户端信号映射电路以及映射方法,特别涉及进行将客户端信号收容到OTN(OpticalTransportNetwork,光传输网络)来传送时的映射的客户端信号映射电路以及映射方法。

背景技术:
作为能够对客户端信号进行大容量且长距离转送的光通信网的复用层次,在2001年由ITU-T将OTN(OpticalTransportNetwork)在G.709中推荐有标准化技术(参照非专利文献1)。OTN具有强固的管理·监视功能,并且能够通过将纠错符号导入帧格式而实现大容量的转送。以往,在OTN中,规定有借鉴了SDH/SONET(SynchronousDigitalHierarchy/SynchronousOpticalNetwork,同步数字体系/同步光纤网络)以及Ethernet(注册商标)的收容的复用层次,但伴随ICT(InformationandCommunicationTechnology,信息和通信技术)服务的发展和多媒体服务的大幅普及,在OTN中收容的客户端信号的类别也多样化,为了高效地收容这样的各种客户端信号,在2009年,在G.709ver.3中追加规定了新的复用层次的规定(参照非专利文献1)。以往,在OTN中,规定有ODU1(OpticalchannelDataUnit1:239/238×2488320kbit/s)、ODU2(239/237×9953280kbit/s)、ODU3(239/236×39813120kbit/s)这3个比特率,但在上述G.709ver.3中,新追加了ODU0(1244160kbit/s)、ODU2e(239/237×10312500kbit/s)、ODU4(239/227×99532800kbit/s)、ODUflex(通过CBR信号将客户端信号映射到ODUflex的情况的比特率是239/238×clientsignalbitrate、在通过GFP-F对客户端信号进行封装化而映射到ODUflex的情况的比特率参照非专利文献1的Table7-8),能够提供与各种客户端信号的比特率对应的有效载荷容量。另外,作为映射方式,除了AMP(AsynchronousMappingProcedure,异步映射程序)、BMP(Bit-synchronousMappingProcedure,比特同步映射程序)以外,还新规定了GMP(GenericMappingProcedure,通用映射规程)。GMP是能够根据客户端信号的比特率和所收容的OTN帧的有效载荷容量唯一地决定客户端信号的映射位置的映射方法。这样,能够通过导入新追加的ODU和GMP方式,针对各种客户端信号,灵活并且高效地收容到OTN,使用了OTN的传送装置得到广泛普及。虽然能够收容各种客户端信号,但另一方面,在OTN中收容影像信号等抖动规定严格的客户端信号时,解填充(destaff)抖动的影响有可能对客户端信号的传送质量造成影响。在对OTN非同步地收容或者复用客户端信号时,进行吸收频率偏差的填充(staff)处理,但在接收端中去除填充字节时读出时钟的相位变化,所以发生解填充抖动。关于该解填充抖动,发生与填充字节的插入周期对应的抖动,所以在插入填充字节的周期极端长的情况下,发生低频分量的解填充抖动,PLL(PhaseLockedLoop,锁相环)等中的抑制变得困难。作为对解填充抖动进行抑制的技术,有以不使用填充插入率极端少的频率偏差的区域的方式,对时钟频率附加限制的方法(参照专利文献1)。另外,有在从低次帧向高次帧收容时,针对每个并行处理分散插入1比特的填充的方法等(参照专利文献2)。非专利文献1:ITU-TRec.G.709/Y.1331"InterfacesfortheOpticalTransportNetwork(OTN)"12/2009.专利文献1:日本特开2009-212882号公报专利文献2:日本特开2004-282632号公报

技术实现要素:
但是,在所述对时钟频率附加限制而对解填充抖动进行抑制的方法中,需要以在零填充抖动附近的频率下使装置不动作的方式预先对动作的频率范围设置限制,所以无法维持与在G.709中规定的以±20ppm或者±100ppm动作的装置的互换性。另外,关于上述针对每个并行处理分散插入1比特的填充的方法,在G.709中未被推荐,通常在OTN中按照1字节单位在OH(Overhead)的特定部位插入填充,所以在此也产生无法保持与既存装置的互换性这样的课题。本发明是鉴于上述点而完成的,其目的在于提供一种客户端信号的映射电路以及映射方法,能够维持与依照标准推荐(G.709)的装置的互换性,并且能够通过简易的结构对解填充抖动进行抑制。根据本发明的一个实施方式,提供一种客户端信号映射电路,将客户端信号收容到传送帧,其特征在于包括:缓冲器单元,临时地存储所述客户端信号;缓冲器使用量监视单元,对所述缓冲器单元的使用量进行通知;填充处理决定单元,根据所述缓冲器单元的使用量,决定在传送帧内有无插入填充字节以及填充处理量;开销插入单元,对从所述缓冲器单元读出的客户端信号赋予开销,形成传送帧;以及读出控制单元,根据所述填充处理决定单元的决定,进行从所述缓冲器单元读出所述客户端信号的控制,所述填充处理决定单元具备:比较单元,对从所述缓冲器使用量监视单元通知的缓冲器使用量和规定的基准值进行比较;伪随机序列发生单元,输出伪随机序列信号;以及第1加法单元,对所述伪随机序列信号和从所述比较单元输出的比较结果进行加法运算。另外,所述填充处理决定单元还具备:填充信息保持单元,直至成为固定值为止,对所输入的填充信息和所保持的填充信息进行加法运算。另外,所述填充处理决定单元还具备:多个填充信息保持单元,保持从所述第1加法单元输出的填充信息;第2加法运算单元,对来自所述多个填充信息保持单元的值进行加法运算;以及平均化单元,针对所述填充信息保持单元的个数,将由所述第2加法运算单元进行了加法运算的结果进行平均化。另外,根据本发明的一个实施方式,提供一种映射方法,将客户端信号收容到传送帧,其特征在于包括:缓冲器使用量监视步骤,缓冲器使用量监视单元对临时地存储所述客户端信号的缓冲器的使用量进行通知;填充处理决定步骤,填充处理决定单元根据所述缓冲器的使用量,决定在传送帧内有无插入填充字节以及填充处理量;开销插入步骤,开销插入单元对从所述缓冲器读出的客户端信号赋予开销,形成传送帧;以及读出控制步骤,读出控制单元根据通过所述填充处理决定步骤执行的决定,进行从所述缓冲器读出所述客户端信号的控制,在所述填充处理决定步骤中,对从所述缓冲器使用量监视单元通知的缓冲器使用量和规定的基准值进行比较,对伪随机序列信号和比较结果进行加法运算。另外,在所述填充处理决定步骤中还包括:直至成为固定值为止,对所输入的填充信息和所保持的填充信息进行加法运算的步骤。另外,在所述填充处理决定步骤中,将所述伪随机序列信号和所述比较结果的加法运算结果保持于多个填充信息保持单元,所述填充处理决定步骤还包括:加法运算步骤,对由所述多个填充信息保持单元保持的值进行加法运算;以及平均化步骤,针对所述填充信息保持单元的个数,将在所述第2加法运算步骤中进行了加法运算的结果进行平均化。进而,根据本发明的一个实施方式,提供一种客户端信号映射电路,将客户端信号收容到传送帧信号,其特征在于包括:非同步缓冲器单元,临时地存储所述客户端信号;频率信息生成单元,根据所述客户端信号的时钟和传送帧信号的时钟,生成频率信息;随机信号重叠单元,在通过所述频率信息生成单元生成的频率信息上重叠随机的信号序列;读出控制单元,根据所述客户端信号的时钟和所述频率信息,控制从所述非同步缓冲器单元的客户端信号的读出;以及开销插入单元,在从所述非同步缓冲器单元读出的数据列中插入传送帧信号的开销。另外,根据本发明的一个实施方式,提供一种客户端信号解映射电路,从传送帧信号恢复客户端信号,其特征在于包括:开销抽出单元,从所述传送帧信号抽出频率信息;写入控制单元,根据抽出的所述频率信息以及传送帧的时钟,进行传送帧的写入控制;随机信号重叠单元,在抽出的所述频率信息上,重叠随机的信号序列;时钟再生单元,根据重叠了所述随机的信号序列的频率信息,再生客户端信号的时钟;以及非同步缓冲器单元,根据来自所述写入控制单元的控制信号,临时地积蓄传送帧,根据由所述时钟再生单元再生的时钟,进行数据的读出。另外,在所述客户端信号映射电路或者所述客户端信号解映射电路中,其特征在于还包括:选择器单元,选择重叠了所述随机的信号序列的频率信息或者未重叠所述随机序列的频率信息的某一个。另外,在所述客户端信号映射电路或者所述客户端信号解映射电路中,其特征在于还具有如下单元中的某一个:频率信息比较单元,对重叠了所述随机信号序列的频率信息和基准值进行比较,根据比较结果更新频率信息;或者频率信息保持单元,对重叠了所述随机的信号序列的频率信息和基准值进行比较,根据比较结果更新频率信息,临时地保持与比较结果的差分,与下一频率信息进行加法运算。进而,根据本发明的一个实施方式,提供一种客户端信号映射方法,将客户端信号收容到传送帧信号,其特征在于包括:频率信息生成步骤,频率信息生成单元根据从临时地存储所述客户端信号的非同步缓冲器取得的该客户端信号的时钟和传送帧信号的时钟,生成频率信息;随机信号重叠步骤,随机信号重叠单元对在所述频率信息生成步骤中生成的频率信息上重叠随机的信号序列;读出控制步骤,读出控制单元根据所述客户端信号的时钟和所述频率信息,控制从非同步缓冲器部的客户端信号的读出;以及开销插入步骤,开销插入单元在从所述非同步缓冲器单元读出的数据列中插入传送帧信号的开销。另外,根据本发明的一个实施方式,提供一种客户端信号解映射方法,从传送帧信号恢复客户端信号,其特征在于包括:开销抽出步骤,开销抽出单元从所述传送帧信号抽出频率信息;写入控制步骤,写入控制单元根据抽出的所述频率信息以及传送帧的时钟,进行传送帧的写入控制;随机信号重叠步骤,随机信号重叠单元在抽出的所述频率信息上重叠随机的信号序列;时钟再生步骤,时钟再生单元根据重叠了所述随机的信号序列的频率信息,再生客户端信号的时钟;以及非同步缓冲步骤,根据所述写入控制步骤中的控制信号,将传送帧临时地积蓄到非同步缓冲器,根据在所述时钟再生步骤中再生的时钟,进行数据的读出。另外,在所述客户端信号映射方法或者所述客户端信号解映射方法中,其特征在于还包括如下步骤中的某一个:选择重叠了所述随机的信号序列的频率信息或者未重叠所述随机的信号序列的频率信息的某一个的步骤;或者频率信息比较步骤,对重叠了所述随机的信号序列的频率信息和基准值进行比较,根据比较结果更新频率信息。另外,在所述客户端信号映射方法或者所述客户端信号解映射方法中,其特征在于还包括:频率信息保持步骤,对重叠了所述随机的信号序列的频率信息和基准值进行比较,根据比较结果更新频率信息,临时地保持与比较结果的差分,与下一频率信息进行加法运算。如上所述,根据本发明,根据缓冲器内的客户端信号积蓄量决定填充处理量,并且关于填充处理量,通过伪随机序列信号随机地调制,所以能够对低频的抖动发生进行抑制。另外,本发明能够通过在既存装置中设置所述伪随机系数发生单元而容易地实施。进而,通过在接收侧进行通常的填充处理而进行客户端信号的恢复,能够起到确保与依照G.709的装置的互换性的效果。另外,根据本发明,根据客户端信号以及传送帧信号的时钟计数或者缓冲器部内的客户端信号积蓄量决定频率信息、并且针对频率信息通过随机信号序列随机地进行调制,所以能够对低频的抖动发生进行抑制。另外,本发明能够通过在既存装置中设置所述随机序列重叠单元而容易地实施。进而,通过在接收侧进行通常的填充处理能够进行客户端信号的恢复,能够起到确保与依照G.709的装置的互换性的效果。附图说明图1是本发明的第1实施方式中的客户端信号映射电路的结构图。图2是本发明的第1实施方式中的填充处理决定部的结构图。图3是本发明的第2实施方式中的客户端信号映射电路的结构图。图4是本发明的第2实施方式中的填充处理决定部的结构图。图5是本发明的第3实施方式中的客户端信号映射电路的结构图。图6是本发明的第3实施方式中的填充处理决定部的结构图。图7是本发明的第4实施方式中的客户端信号映射电路部的结构图(其1)。图8是本发明的第4实施方式中的客户端信号映射电路部的结构图(其2)。图9是本发明的第4实施方式中的频率信息检测方法。图10是本发明的第4实施方式中的频率信息检测方法(64并行的情况)。图11是本发明的第4实施方式中的重叠了随机序列的频率信息。图12是本发明的第4实施方式中的客户端信号解映射电路部的结构图。图13是本发明的第5实施方式中的客户端信号映射电路部的结构图。图14是本发明的第5实施方式中的客户端信号解映射电路部的结构图。图15是本发明的第5实施方式中的在中继装置中随机地具备信号重叠部的结构。图16是本发明的第6实施方式中的客户端信号映射电路部的结构图(其1)。图17是本发明的第6实施方式中的客户端信号映射电路部的结构图(其2)。图18是本发明的第6实施方式中的在ODU2中收容了STM-64时的抖动输出。图19是本发明的第6实施方式中的客户端信号解映射电路部的结构图。图20是本发明的第7实施方式中的客户端信号映射电路的结构图。图21是本发明的第7实施方式中的由频率信息比较部生成的频率信息(影像)。图22是本发明的第7实施方式中的使用了AMP处理的情况的帧结构。图23是本发明的第7实施方式中的使用了GMP的情况的OH(开销)结构。图24是本发明的第8实施方式中的客户端信号映射电路部的结构图。图25是本发明的第8实施方式中的频率信息保持部的结构图。图26是本发明的第8实施方式中的频率信息保持部的控制流程。图27是本发明的第8实施方式中的由频率信息保持部生成的频率信息。(符号说明)100:缓冲器部;110:缓冲器使用量监视部;120:填充处理决定部;121:比较器;122:加法运算部;123:伪随机序列发生部;130:填充处理决定部;131:比较器;132:加法运算部;133:伪随机序列发生部;134:填充信息保持部;140:填充处理决定部;141:比较器;142:第1加法运算部;143:伪随机序列发生部;145:填充信息保持部;146:第2加法运算部;147:平均化部;148:第3加法运算部;149:填充信息保持部;200:读出控制部;300:开销插入部;400:客户端信号映射电路部;401:频率信息生成部;402:OH(开销)插入部;403:随机信号重叠部;404:读出控制部;410:客户端信号映射电路部;411:非同步缓冲器部&频率信息生成部;412:OH插入部;413:读出控制部;420:客户端信号映射电路部;421:频率信息生成部、非同步缓冲器部&频率信息生成部;422:OH插入部;424:随机信号重叠部;425:选择器(SEL)部;430:客户端信号映射电路部;431:非同步缓冲器部&频率信息生成部;432:OH插入部;433:读出控制部;434:随机信号重叠部;435:SEL部;436:频率信息比较部;440:客户端信号映射电路部;441:非同步缓冲器部&频率信息生成部;442:OH插入部;443:随机信号重叠部;444:读出控制部;445:SEL部;446:频率信息保持部;500:客户端信号解映射电路部;501:OH抽出部;502:非同步缓冲器部;503:写入控制部;504:时钟再生部;510:客户端信号解映射电路部;511:OH抽出部;512:非同步缓冲器部;513:写入控制部;514:时钟再生部;515:随机信号重叠部;520:客户端信号解映射电路部;521:OH抽出部;522:非同步缓冲器部;523:写入控制部;524:时钟再生部;525:随机信号重叠部;526:SEL部;4461:加法部;4462:比较部;4463:差分保持部。具体实施方式以下,根据附图,说明本发明的实施方式。[第1实施方式]图1示出本发明的第1实施方式中的客户端信号映射电路的结构。在本实施方式中,说明使用了伪随机序列调制的客户端信号映射电路。该图所示的客户端信号映射电路包括写入客户端信号的缓冲器部100、读出控制部200、开销(OH)插入部300。缓冲器部100包括监视缓冲器使用量的缓冲器使用量监视部110、和根据来自缓冲器使用量监视部110的使用量通知来决定有无填充处理的填充处理决定部120。填充处理决定部120如图2所示,包括比较器121、加法运算部122、伪随机序列发生部123。说明上述结构中的动作。缓冲器部100依次写入所接收的客户端信号。关于在写入中使用的时钟,使用从所输入的客户端信号抽出的客户端时钟。缓冲器能够使用DRAM(DynamicRandomAccessMemory)、SRAM(StaticRandomAccessMemory)等,优选能够非同步地进行写入和读出。另外,通常此处,能够将非同步FIFO型的存储器用作缓冲器部100。在缓冲器部100的缓冲器使用量监视部110中,始终监视所写入的数据量,根据需要将缓冲器的使用量通知到填充处理决定部120。关于缓冲器使用量的通知方法,有每传送1帧时间或者在缓冲器使用量被更新的阶段通知等通知方法,但不限于此。填充处理决定部120根据从缓冲器使用量监视部110输入的缓冲器使用量,决定有无填充处理。“填充处理”是指,能够决定在传送帧内有无插入填充字节(不具有数据的虚设的字节),同时还能够决定填充处理量的处理(关于填充处理决定部120的详细的动作后述)。OH(开销)插入部300根据从填充处理决定部120输出的填充信息对从缓冲器部100读出的数据赋予开销,进行填充字节的插入。在读出控制部200中,根据从填充信息决定处理部120输出的填充信息将读出使能信号输出到缓冲器部100。仅在读出使能信号输出到缓冲器部100的期间,将数据从缓冲器部100输出到OH插入部300。以在插入OH的期间、插入填充字节的期间,不输出读出使能信号的方式,进行控制。另外,关于缓冲器部100的读出时钟,使用装置内的传送帧时钟进行读出。在填充处理决定部120中,进行所接收的缓冲器使用量和在比较器121内保持的数据的比较。通常,在比较器121内保持进行填充处理的阈值,比较所通知的缓冲器的使用量和比较器121内的填充处理阈值,在超过了填充处理阈值的情况下,指示填充处理。例如,在客户端信号的频率偏差是0ppm的情况下,以始终插入1字节的填充这样的条件,在客户端信号的频率偏差成为+xppm的情况下,随着时间变化,在缓冲器部100内积蓄的客户端信号的数据量时刻增加。如果将客户端信号的频率偏差是0ppm时的缓冲器使用量假设为M字节,则在缓冲器使用量成为M+1字节的时间点,输出指示填充处理的信号。相反地,即使在客户端信号的频率偏差是-xppm的情况下,也同样地,在缓冲器部100的使用量成为M-1字节的时间点,从比较器送出指示填充处理的信号。在填充处理决定部120中,根据从比较器121输出的值,在始终插入了通常数据字节的部位插入填充字节(以后称为“负面填充处理”),或者在始终插入了通常填充字节的部位插入数据(以后称为“正面填充处理”),从而吸收客户端信号的频率偏差。从比较器121输出的填充处理的指示信号被输出到加法运算部122,与从伪随机序列发生部123输出的伪随机序列信号进行加法运算。关于伪随机序列信号,通常使用0或者1这2值信号,但在本实施方式中的伪随机序列信号中,使用-1或者1这2值信号。在所述伪随机序列信号中,能够使用Gold序列、M序列等任意的随机信号。在运算后的填充信息是-1的情况下,进行1字节的负面填充处理,在填充信息是0的情况下,不进行填充处理,在+1的情况下,进行正面填充处理。从比较器121,根据缓冲器的使用量,输出-1、0、+1的填充信息。通过加法运算部122对这些值加上从伪随机序列发生部123输出的-1或者+1的值,最终地输出-2~+2填充信息。在-2的情况下,进行2字节的负面填充处理,在+2的情况下,进行2字节的正面填充处理。这样,通过对填充处理施加利用伪随机序列的调制,能够抑制填充处理频度提高而在PLL等中未完全抑制的、低频分量的抖动发生。[第2实施方式]图3示出本发明的第2实施方式中的客户端信号映射电路的结构。该图所示的客户端信号映射电路与第1实施方式中的图1的结构相同,但缓冲器部100的填充处理决定部的功能不同。图4示出本发明的第2实施方式中的填充处理决定部的结构。该图所示的填充处理决定部130包括:比较器131、加法运算部132、伪随机序列发生部133、填充信息保持部134。与第1实施方式的区别在于,在填充处理决定部130中具备填充信息保持部134。填充信息保持部134保持多个从加法运算部132输出的填充信息,将与过去的填充信息的加法结果作为填充信息输出。例如,在从加法运算部132输出的值是+1、+1、0、0、+1、+1、+1…的情况下,保持以使填充信息保持部134的值成为+1、+2、+2、+2、+3、+4…的方式当前保持的填充信息和所输入的填充信息的加法结果。在填充信息保持部134中,在达到固定值的时间点,输出填充信息,之后对填充信息保持部134内的值进行复位,再次反复同样的处理。通过具有填充信息保持部134,能够进行例如+1、0、-1这样的3值的填充处理。在比较器131内,作为基准,保持-0.5、+0.5(4比特单位)这样的值,根据缓冲器的使用量从比较器131输出-0.5、0、+0.5这样的值。在伪随机序列发生部133中,以-0.5、+0.5这样的值输出0、1信号,通过加法运算部132进行加法。将加法结果输出到填充信息保持部134,在填充信息保持部134中,在值成为-1或者+1的时间点,输出填充信息。这样,在无填充信息保持部134的情况下,输出-2、-1、0、+1、+2这样的5值的填充信息,但通过具备填充信息保持部134,能够输出-1、0、+1这样的3值的填充信息,能够维持与以3值进行填充处理的既存的OTN传送装置等的互换性。[第3实施方式]图5示出本发明的第3实施方式中的客户端信号映射电路的结构,该图所示的客户端信号映射电路与第2实施方式中的图3的结构相同,但缓冲器部100的填充处理决定部的功能不同。在本实施方式中,说明加上了平均处理的客户端信号映射电路。图6示出本发明的第3实施方式中的填充处理决定部的结构。该图所示的填充处理决定部140包括:比较器141、第1加法运算部142、伪随机序列发生部143、填充信息保持部1451~145n、第2加法运算部146、平均化部147、第3加法运算部148、填充信息保持部149。与第2实施方式的差异点在于:在填充处理决定部140中具备多个填充信息保持部1451~145n、以及第2加法部146、平均化部147。通过对多个运算结果进行平均化,填充处理量被平滑化,作为结果能够提高解填充抖动的抑制效果。从第1加法运算部142输出的填充信息被存储到填充信息保持部1451。以来自第1加法运算部142的输出为触发,填充信息保持部1451中保持的填充信息被输出到填充信息保持部1452,填充信息保持部145n的值被依次更新。在填充信息更新时,各填充信息保持部1451~145n对第2加法运算部146输出填充信息,通过第2加法运算部146进行加法处理。在加法之后,通过平均化部146进行与填充信息保持部145的个数对应的平均处理,输出到第3加法运算部148。第3加法运算部148以及填充信息保持部149与第2实施方式同样地,直至成为固定的值,进行填充信息的加法以及保持,在达到了规定值的时间点,输出填充信息,对填充信息保持部149内的值进行复位。另外,填充信息保持部1451~145n能够使用移位寄存器来构成,但不限于此。另外,在图6的结构中,对第1加法运算部142从伪随机发生部143输出了伪随机系数,但也可以是删除第1加法运算部142,对第3加法运算部148输出伪随机系数的结构。[第4实施方式]图7示出本发明的第4实施方式中的代表性的客户端信号映射电路的结构。该图所示的客户端信号映射电路部400发挥在将客户端信号收容到传送帧信号的作用,在内部包括:根据客户端时钟生成频率信息的频率信息生成部401、插入传送帧的开销的开销(Overhead:以下简称为OH)插入部402、以及对频率信息重叠随机的信号序列的随机信号重叠部403。图8更详细地示出本发明的第4实施方式中的客户端信号映射电路部的结构。以下,使用图8,说明各块的功能。图8是示出图7所示的客户端信号映射电路部400的更详细的结构的图。在所述客户端信号映射电路部400中,具备非同步缓冲器部·频率信息生成部401、读出控制部404、随机信号重叠部403、OH插入部402。输入到客户端信号映射电路部400的客户端信号被临时地积蓄到非同步缓冲器部401。在非同步缓冲器部401中,根据客户端信号的时钟写入客户端信号,根据传送帧时钟读出所写入的客户端信号,所以进行时钟的变换。在非同步缓冲器中,能够使用DRAM(DynamicRandomAccessMemory)、SRAM(StaticRandomAccessMemory)这样的存储器来构成,只要是能够非同步地进行读出以及写入的存储器,则不限于此。另外,在非同步缓冲器部401中,具备检测客户端时钟和传送帧时钟的频率偏差的频率信息生成部,所述频率信息能够通过对非同步缓冲器部401内的客户端信号积蓄量或者客户端时钟的数量进行计数来生成。假设在未形成网同步的网络的情况下,关于客户端信号的积蓄量以及时钟数的计数,以传送帧单位或者特定的传送帧时钟数为基准而进行计数。另外,在网同步了的网络的情况下,能够根据网同步用的时钟,对所述客户端信号的积蓄量或者客户端信号的时钟进行计数,生成频率信息。关于频率信息的生成方法,以下举出具体例进行说明。考虑假设将客户端信号设为CBR10G(ConstantBitrate10Giga,比特率是9953280kbit/s),收容于传送帧OTU2(OpticalchannelTransportUnit,比特率是255/237×9953280kbit/s)的情况。基本上,关于频率信息,针对传送帧的每1周期进行更新,所以以表示传送帧的1周期的传送帧脉冲、或者传送帧时钟的时钟数(在OTN的情况下,1帧与4080column×4row×8bit=130650时钟相当)为基准,对客户端时钟的时钟数进行计数。关于传送帧时钟以及客户端时钟可取的频率范围,相比于G.709都是±20ppm,所以关于在1帧时间计数的客户端时钟的最大值,如下式[式1]是121349时钟,关于计数的客户端时钟的最小值,如下式[式2]是121339时钟(参照图9)。所计数的客户端时钟数是在传送帧内收容的客户端信号的比特数,可以说能够处理为两个时钟之间的频率偏差。关于频率信息,将客户端时钟的计数数、或者所计数的时钟数与距基准值(客户端时钟以及传送帧时钟的频率偏差是0时)121344的差分用作频率信息等,频率信息的形式是任意的,而不限于此。另外,在LSI等集积电路中,以几百MHz程度的频率动作,所以一般并行化地进行处理。例如,在根据64并行的客户端信号生成频率信息的情况下,如图10所示,能够将针对传送帧1周期2040时钟计数的客户端时钟数1895~1897用作频率信息,或者使用所检测的客户端时钟数与基准值1896(客户端时钟以及传送帧时钟的频率偏差是0时)的差分,形式能够自由选择。另外,关于频率信息的检测方法,有对所述时钟数进行计数的方法、或者从在缓冲器部内积蓄的数据数检测的方法、使用外部频率计数器来检测的方法等频率信息的检测方法,但不限于此。由上述频率生成部401生成的频率信息被输出到随机信号重叠部403。在随机信号重叠部403中,将平均值是0的随机序列重叠到频率信息。关于随机序列,能够选择M序列、Gold序列等伪随机序列。这些序列能够使用移位寄存器来构成,能够简易地安装到LSI。另外,随机序列除了伪随机信号以外也可以是均匀随机数、标准随机数等,不限于这些。另外,关于随机序列的重叠,例如如后述图18所示,在PLL的频带是10Hz的情况下,作为随机序列使用伪随机二进制-比特序列27-1即可。以下,说明随机信号重叠部403的具体的处理。如果使用上述客户端信号(CBR10G)和传送帧信号(OTU2),将以1帧单位为计数的客户端时钟的时钟数作为频率信息,则如图11(a)所示,可取121339~121349的值(根据客户端时钟以及传送帧时钟的频率偏差范围以及客户端信号的比特率、传送帧的比特率而该值不同)。通过随机信号重叠部对所生成的频率信息重叠平均值0的随机序列(图11(b))。在图11的例子中,有重叠±1的随机序列,但该值可任意地取值。±2、±3、±4等整数值或者±0.1、±0.2、±0.3、±0.4等小数值、在±x中均匀分布或者标准分布的随机数等,但不限于此,也可以重叠组合了它们的随机序列。最终地重叠了±1的随机序列的频率信息(图11(c))可在121338~121350的范围内取值,分别输出到OH插入部402以及读出控制部404。在读出控制部404中,控制从传送帧的时钟以及频率信息读出客户端信号的期间,除了OH插入期间、填充字节插入期间外,将读出使能信号也输出到非同步缓冲器部401。仅在非同步缓冲器部401中输入读出使能信号的期间,从非同步缓冲器部401输出客户端信号。针对从非同步缓冲器部401输出的客户端信号,通过OH插入部402插入传送帧的OH。此时,在所述OH内插入所述频率信息而最终地输出传送帧信号。另一方面,在接收侧使用解映射电路从传送帧信号进行客户端信号的恢复。图12示出接收侧的客户端信号解映射电路部的结构例。在客户端信号解映射电路部500中具备:OH抽出部501、非同步缓冲器部502、写入控制部503、时钟再生部504。以下,沿着信号的流动依次说明各块的功能。OH抽出部501从所接收的传送帧进行OH的抽出。OH被用于信号质量的监视、警报的监视等,关于所述频率信息也通过OH抽出部501进行读出。所读出的频率信息被输出到写入控制部503以及时钟再生部504,在写入控制部503中根据频率信息仅在与客户端信号的数据对应的期间将写入使能信号输出到非同步缓冲器部502。另一方面,在时钟再生部504中,根据所接收的传送帧时钟和频率信息进行客户端时钟的再生。时钟再生部504一般能够使用PLL(PhaseLockedLoop)等同步电路,时钟再生部504的结构不限于此,在本实施方式中,没有特别限定。所再生的客户端时钟被输出到非同步缓冲器部502,被用作读出时钟。在非同步缓冲器部502中,通过传送帧时钟,写入所接收的传送帧信号内储存的客户端数据,根据由所述时钟再生部504再生的客户端时钟进行读出,客户端数据被恢复。关于以上进行了说明的客户端信号解映射电路部500,是一般的解映射电路的结构,本发明不特别限定于解映射电路的结构。[第5实施方式]图13示出本发明的第5实施方式中的客户端信号映射电路部的结构,图14示出本发明的第5实施方式中的客户端信号解映射电路部的结构。在本实施方式中,在接收侧的客户端信号解映射电路部510中具备随机信号重叠部515的第一点是与第4实施方式不同的。该图所示的客户端信号映射电路部410包括:非同步缓冲器部,临时地积蓄客户端信号,从客户端信号的时钟向传送帧信号的时钟变换速率;频率信息生成部411,根据客户端时钟和传送帧时钟生成频率信息;读出控制部414,根据所生成的频率信息和传送帧的时钟,输出与客户端信号被映射到传送帧的期间对应的读出使能信号;以及OH插入部412,在从非同步缓冲器部411读出的数据中插入传送帧的开销以及频率信息。另一方面,在客户端信号解映射电路部510中,包括:OH抽出部511,从所接收的传送帧信号进行OH的监视;随机信号重叠部515,在OH内的频率信息中重叠随机序列;写入控制部513,根据所述频率信息和传送帧时钟,仅在与客户端信号对应的期间输出写入使能信号;时钟再生部514,根据所接收的传送帧时钟以及频率信息再生客户端时钟;以及非同步缓冲器部512,将时钟从传送帧时钟变换为所述再生的客户端时钟。在本实施方式中,在客户端信号解映射电路部510内在频率信息中进行随机序列的重叠。关于随机序列的重叠方法,与第4实施方式同样地,重叠平均值是0的随机序列,所重叠的随机序列的振幅或者所使用的随机序列能够任意地选择。另外,随机信号重叠部515也可以设置于客户端信号映射电路410或者客户端信号解映射电路510这双方。通过在客户端信号解映射电路部510中具备随机信号重叠部515,即使当与在客户端信号映射电路部410中不具备随机信号重叠部的装置对向地连接的情况下,也能够进行随机信号重叠的重叠处理,即使在与既存装置连接的情况下,也能够抑制解填充抖动的发生。以上,在第4实施方式以及第5实施方式中,说明了在发送侧或者接收侧具备随机信号重叠部403、515的结构,但还能够采用如图15所示,在中继装置中具备随机信号重叠部的结构。在中继装置中临时以OH为终端而读出了频率信息之后,重叠随机序列而再次插入到OH。OH终端能够根据需要在全部OH的终端或者仅在频率信息部分以OH为终端而进行随机序列重叠。终端方法依赖于中继装置的结构,不论在哪一个方式中,都能够实施本发明的随机序列重叠处理。[第6实施方式]图16、17是示出本发明的第6实施方式中的客户端信号映射电路部的结构的图。在本实施方式中,新具备选择器(Selector:以下简称为SEL)部425的这一点是与第4、第5实施方式不同的。以下,说明本实施方式中的客户端信号映射电路。在客户端信号映射电路420中包括:非同步缓冲器部(设置于421内),临时地积蓄客户端信号,从客户端信号的频率向OTN帧信号的频率进行变换;频率信息生成部421,根据由非同步缓冲器部计数的客户端信号的时钟数或者缓冲器部内的客户端信号积蓄量生成频率信息;随机信号重叠部424,在所生成的频率信息中重叠随机序列;SEL部425,选择未重叠随机序列的频率信息或者重叠了随机序列的频率信息的某一方;OH插入部422,在从非同步缓冲器部421读出的客户端信号中插入OH并且将从SEL部425输出的频率信息存储到OH。SEL部425能够采用由用户进行手动切换、或者根据从频率信息生成部421生成的频率信息进行自动切换的方式。关于解填充抖动,在客户端信号与传送帧信号的频率偏差接近0ppm的情况下频繁地发生,所以在大幅产生了解填充抖动的频率偏差的情况下,通过SEL部425选择重叠了随机序列的频率信息,并且在几乎不发生解填充抖动的频率偏差的区域中,能够通过SEL部425选择由频率信息生成部421生成的频率信息(参照图18,将STM-64收容到ODU2的情况的抖动输出)。在使用频率信息自动地进行切换的情况下,通过预先对与频率偏差对应的抖动发生量进行实测或者计算,能够设定切换的阈值(执行切换的频率信息的值),在SEL部425中读取所述频率信息,选择未重叠随机序列的频率信息或者重叠了随机序列的频率信息中的某一个。另外,SEL部425也可以如图19所示,与第5实施方式同样地,设置于客户端信号解映射电路部520,或者设置于客户端信号映射电路部、客户端信号解映射电路部这双方。[第7实施方式]图20示出本发明的第7实施方式中的客户端信号映射电路部。在本实施方式中,新具备频率信息比较部436的这一点是与第4、第5实施方式不同的。说明本实施方式中的客户端信号映射电路。在客户端信号映射电路430中,包括:非同步缓冲器部,临时地积蓄客户端信号,从客户端信号的频率向OTN帧信号的频率进行变换;频率信息生成部431,根据由非同步缓冲器部计数的客户端信号的时钟数或者缓冲器部内的客户端信号积蓄量,生成频率信息;随机信号重叠部434,在所生成的频率信息中重叠随机序列;SEL部435,选择未重叠随机序列的频率信息或者重叠了随机序列的频率信息的某一方(也可以采用省略SEL部的结构。在该情况下,来自随机序列重叠部434的输出被直接输出到频率信息比较部);频率信息比较部436,比较从SEL部435输出的频率信息和在频率信息比较部436内保持的基准值,根据比较结果更新频率信息;读出控制部433,根据从频率信息比较部436输出的频率信息决定客户端信号的读出量而输出读出使能信号;OH插入部432,在从非同步缓冲器部431读出的客户端信号中插入OH并且将频率信息储存到OH。以下,说明频率信息比较部436中的更详细的处理。图21示出本发明的第7实施方式中的由频率信息比较部436生成的频率信息(影像),且重叠了从频率信息生成部431输出的频率信息、随机序列、随机序列的频率信息。该图左上的图形是从频率信息生成部431输出的频率信息,将在使客户端信号成为所述CBR10G信号、使传送帧信号成为所述OTU2时检测的客户端时钟数作为频率信息。图21右上是在随机序列重叠部434内生成的随机序列,作为±8的随机序列。进而,图21左下的图形是在所述频率信息中重叠了所述随机序列时的结果。在频率信息比较部436中针对重叠了所述随机序列的频率信息进行与基准值的比较。在图21中,使基准值成为121344、121352、121336这3值,在输入到频率信息比较部436的频率信息是上限值121352以上的情况下,使频率信息成为121352而从频率信息比较部436输出,在所输入的频率信息是下限值121336以下的情况下,使频率信息成为121336而从频率信息比较部436输出。进而,在频率信息不超过上限值以及下限值中的任意一个的情况下,使频率信息成为121344而从频率信息比较部436输出。这样,通过具备频率信息比较部436,能够将所生成的频率信息的值从4值变换为3值。因此,能够在进行-1、0、1字节的3值填充处理的AMP处理中应用本发明的实施方式。以下,说明在AMP处理中应用了本发明的情况的、更详细的实施方式。图22示出使用AMP的OTN帧格式。所述OTN帧包括OTU(OpticalchannelTransportUnit)OH、ODU(OpticalchannelDataUnit)OH、OPU(OpticalchannelPayloadUnit)OH、OPUPayload、FEC(ForwardErrorCorrection),表示客户端信号的映射信息的OPUOH包括JC(JustificationControl)、PSI(PayloadStructureIdentifier)、NJO(NegativeJustificationOpportunity)、PJO(PositiveJustificationOpportunity)、RES(Reservedforfutureinternationalstandardization)(非专利文献1)。在AMP处理中,通过根据客户端时钟以及传送帧时钟的频率偏差将NJO以及PJO适宜用作填充字节或者数据字节,能够吸收频率偏差。另外,示出JC字节是NJO以及PJO是填充或者数据字节中的某一个。即,如图22所示,示出JC字节的7、8比特是·"00"的情况:NJO=填充字节、PJO=数据字节、·"01"的情况:NJO=数据字节、PJO=数据字节、·"10"的情况:NJO=填充字节、PJO=数据字节、·"11"的情况、NJO=填充字节、PJO=填充字节。在发送侧,在Column16的Row1~3中生成同一JC字节,在接收侧,通过多数决判断决定3个JC字节,进行填充或者数据的判断。在AMP中,通常进行-1、0、1字节的3值填充处理,所以在所述频率信息比较部436中,准备3个基准值。如图21所示,使基准值成为121336、121344、121352,在从频率比较部436输出的频率信息是121336的情况下,使JC字节的7、8比特成为"11",将NJO字节以及PJO字节作为填充字节。在所述频率信息是121344的情况下,使JC字节的7、8比特成为"00",将NJO字节作为填充字节、将PJO字节作为数据字节。另外,在所述频率信息是121352的情况下,使JC字节的7、8比特成为"01",将NJO字节以及PJO字节作为数据字节。在读出控制部433中,输出与所述填充处理对应的读出使能信号,在传送帧中进行客户端信号的收容。另外,即使在伴随GMP处理的非同步收容的情况下,也能够应用本发明的实施方式。以下,说明在GMP处理中应用了本发明的情况的、更详细的实施方式。在GMP的情况下,根据客户端时钟和传送帧时钟,检测频率信息,将决定客户端信号的映射位置的Cm和表示客户端信号的频率信息的ΣCnD传送到接收侧。图23示出在非同步收容方式中使用了GMP的情况的传送帧格式。GMP将传送帧的有效载荷区域按照比特单位分割为多个块,将各块处理为有效载荷区域或者填充区域。作为块单位的m被定义为m=M×8,M是传送帧的从属时隙数。能够根据客户端信号的频率fclient和传送帧信号的频率fserver,如以下那样求出决定客户端信号的映射位置的Cm。[式3]此处,Bserver是所收容的传送帧的比特数。在Cm决定之后,从块的开头赋予编号i(1,2,3…),使用下述条件式进行填充区域或者数据区域的判断。[式4]if(i×Cm)modP<Cm→数据区域if(i×Cm)modP≥Cm→填充区域此处,P表示块的w总数。Cm被通知到接收侧,在接收侧根据上述判断式进行数据区域以及填充区域的判断。另外,在客户端信号的时钟再生中,另外使用频率信息Cn。在Cm的情况下,粒度大,所以在安装上简易的这一点,用于决定映射位置,但关于时钟再生精度,由于粒度大而相应地降低,所以使用粒度细的Cn值。通过下述的式定义Cn。[式5]此处,n表示Cn的粒度,在n=8的情况下,按照字节单位,在n=1的情况下,按照比特单位,传递频率信息。实际上在GMP中,并非原样地转送Cn,而传送以相同的粒度观察时的与Cm以及Cn的差分ΣCnD。通过作为差分传送频率信息,能够降低传递所需的比特数。另外,通过以下的式来表示ΣCnD。[式6]此处,关于ΣCnD(t)可取的范围,在将CBR(ConstantBitRate)的客户端信号收容到LOODU(LowerOrderODU)时,在OPU0中是0~7、在OPU1中是0~15、在OPU2中是0~63、在OPU3中是0~255、在OPU4中是0~639。因此,关于频率信息,能够在规定的范围内取多个频率信息,可取3值的值的AMP和频率信息的处理不同。因此,在假设使客户端信号成为FC-100(FibreChanel1G:比特率是1.0625Gbit/s、频率偏差是±100ppm),使传送帧信号成为ODU0的情况下,关于频率信息Cn,能够在13061~13065(设为n=8的情况)的范围内取值。因此,频率信息比较部中保持的基准值成为13061、13062、13063、13064、13065,比较从随机信号重叠部434输出的频率信息和所述基准值,从基准值选择频率信息。以上,进行了说明的所述频率信息比较部436的所述基准值不限于该值,并且基准值的个数能够如1,2,3,4···等任意地取值。进而,随机序列重叠部434以及频率信息比较部436既可以与第5实施方式同样地,设置于客户端信号解映射电路部,也可以设置于中继装置、或者在客户端信号映射电路部、客户端信号解映射电路部、中继装置中设置多个。另外,在本实施方式中,在频率信息比较部436中,一部分频率信息缺失,所以有时在非同步缓冲器中产生溢出以及不足。因此,使用电路上监视非同步缓冲器的使用量,在使用量超过了特定的阈值的情况下,强制地变更频率信息的手段。[第8实施方式]图24示出本发明的第8实施方式中的客户端信号映射电路部的结构。在本实施方式中,新具备频率信息保持部446的这一点是与第7实施方式不同的。使用图25,说明本实施方式中的频率信息保持部446的详细的动作。图25是频率信息保持部446的更详细的结构。频率信息保持部446包括:加法部4461,进行所输入的频率信息和差分保持部4463中保持的值的加法;比较部4462,进行所加法的频率信息和基准值的比较;以及差分保持部4463,临时地保持与基准值的差分。图26示出更具体的频率信息保持部446内的控制流程。频率信息保持部446内的差分保持部4463使初始值成为0(步骤101),直至从随机序列重叠部输入频率信息,成为待机状态(步骤102)。如果从随机信号重叠部443输入了频率信息,则通过加法部4461进行差分保持部4463中保持的值和所输入的频率信息的加法(步骤103),通过比较部4462进行与基准值的比较(步骤104、105)。基准值可任意地取多个值,在假设使客户端信号成为CBR10G,使传送帧信号成为OTU2的情况下,能够将121352(相互的频率偏差是0的情况的客户端时钟计数数)、121336、121338用作基准值,图26的控制流程示出了其一个例子,但基准值可取的个数以及值不限于此。通过比较部4462进行与基准值的比较并从比较结果选择并输出频率信息(步骤106~112)。即,例如,在频率信息是121352以上的情况下(步骤104的“是”),将从121352减去频率信息而得到的值储存到差分值保持部4463(步骤106),将频率信息更新为121352(步骤107),并输出(步骤112)。即使在其他情况下,也如图26所示进行处理。在比较部4462中,关于基准值与所输入的频率信息的差分,通过差分值保持部4463,直至下次的频率信息被输入到频率信息保持部446,保持值。图27示出由频率信息保持部446生成的频率信息的例子。该图所示的频率信息是重叠了频率信息、随机序列、随机序列的频率信息,从频率信息保持部446输出。这样,通过具备频率信息保持部446,能够与第6实施方式同样地对所生成的频率信息的个数设置限制,能够应用于AMP、GMP这样的非同步收容方式。另外,通过将差分的值反映到接下来的频率信息,能够抑制非同步缓冲器部441内的不足以及溢出。以上,详述了本发明的实施方式,但本发明不限于上述特定的实施方式,而能够在权利要求书中记载的本发明的要旨的范围内,实现各种变形·变更。本申请主张基于在2010年12月10日申请的日本专利申请2010-276130号、以及在2011年6月20日申请的日本专利申请2011-136733号的优先权,将2010-276130号、以及2011-136733号的全部内容援用于本申请。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1