一种降低干扰的方法和设备与流程

文档序号:11842624阅读:160来源:国知局
一种降低干扰的方法和设备与流程

本发明实施例涉及通信领域,并且更具体地,涉及降低通信系统中的同频小区的干扰以提升下行性能的方法和设备。



背景技术:

随着现代通信的发展,第三代(3rd generation,3G)和第四代(4th generation,4G)网络在全球的大规模建设,原有的全球移动通信(global system for mobile communications,GSM)系统用户规模在不断缩小。由于频谱资源有限,因此将GSM所占用的频谱资源重整(refarming)给通用移动通信系统(universal mobile telecommunications system,UMTS)或长期演进(long term evolution,LTE)是全球网络发展的普遍趋势。但是由于GSM设备成本及网络覆盖优势,GSM网络预计还会存在很长一段时间,在未来物联网的(machine-to-machine,M2M)时代,很多低速小包传感器数据可能会广泛采用低成本的GSM模块。因此,尽管GSM用户数在不断缩小,但是运营商还是希望GSM作为基础网络长期存在。

统计发现全球有一半以上GSM网络带宽小于7.4M,如果再从GSM网络Refarming出部分带宽资源给3G/4G,那么GSM频谱资源会更少。如何采用剩余的带宽频谱进行GSM组网,是很多运营商需要面对的问题。一种方式是通过更紧密的复用方式组网方式,例如采用3*3,甚至2*3,1*3。但采用更紧密的复用方式组网会使得下行载干比急剧下降,从而会使得终端接收性能恶化。



技术实现要素:

本发明提供了一种在BCCH频载上发送调制信号以降低干扰的方法,利用在特定时隙发送调制信号的方式,以达到在采用紧密的复用方式组网时降低干扰的影响,提升下行接收性能。

第一方面,提供一种在BCCH频载上发送调制信号以降低干扰的设备,所述设备包括:

确定单元,用于确定发送调制信号的时隙;

发送单元,用于在确定的所述时隙发送所述调制信号;

其中,所述调制信号的自相关度量值大于第一阈值。

结合第一方面,在第一方面的第一种可能的实现方式中,所述调制信号与GMSK调制信号的平均能量等同。

结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,还包括频谱处理单元;

所述频谱处理单元,用于对所述调制信号进行频谱搬移,以使得所述调制信号远离信道中心频点。

结合第一方面,在第一方面的第三种可能的实现方式中,所述确定单元,还用于在确定发送调制信号的时隙之前,根据发送内容判断是否发送调制信号。

第二方面,提供一种在BCCH频载的Dummy时隙上发送优化调制信号以降低干扰的方法,该方法用于主BCCH复用场景,所述方法包括:

确定发送调制信号的时隙;

在确定的所述时隙发送所述调制信号;

其中,所述调制信号的自相关度量值大于第一阈值。

结合第二方面,在第二方面的第一种可能的实现方式中,所述调制信号与GMSK调制信号的平均能量等同。

结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,对所述调制信号进行频谱搬移,以使得所述调制信号远离信道中心频点。

结合第二方面,在第二方面的第三种可能的实现方式中,在所述确定发送调制信号的时隙之前,还包括:

根据发送内容判断是否发送调制信号。

第三方面,提供一种基站,其特征在于,包括第一方面或第一方面的第一至第三任一种可能的实现方式。

基于上述技术方案,本发明实施例提供的在BCCH中传送调制信号的方法和网络侧设备,通过利用调制信号的相关性,能够降低同频小区的干扰,提高下行接收性能,从而提高通信系统的性能。

附图说明

为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。

图1(a)和图1(b)是本发明实施例的应用场景的示意图;

图2是根据本发明实施例的发送调制信号的方法的示意性流程图;

图3是根据本发明实施例的发送调制信号的方法的另一示意图;

图4是根据本发明实施例的发送调制信号的方法的另一示意图;

图5是根据本发明实施例的在错位时隙发送调制信号的示意图;

图6是根据本发明实施例的发送调制信号的结构示意图;

图7是根据本发明实施例的发送调制信号的结构示意图;

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。

应理解,本发明实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile Communication,简称为“GSM”)系统、码分多址(Code Division Multiple Access,简称为“CDMA”)系统、宽带码分多址(Wideband Code Division Multiple Access,简称为“WCDMA”)系统、通用分组无线业务(General Packet Radio Service,简称为“GPRS”)、长期演进(Long Term Evolution,简称为“LTE”)系统、LTE频分双工(Frequency Division Duplex,简称为“FDD”)系统、LTE时分双工(Time Division Duplex,简称为“TDD”)、通用移动通信系统(Universal Mobile Telecommunication System,简称为“UMTS”)或全球互联微波接入(Worldwide Interoperability for Microwave Access,简称为“WiMAX”)通信系统等。

应理解,在本发明实施例中,网络侧设备可以是基站,也可以是具有基站的功能的其他设备,其中基站可以是GSM或CDMA中的基站(Base Transceiver Station,简称为“BTS”),也可以是WCDMA中的基站(NodeB,简称为“NB”),还可以是LTE中的演进型基站(Evolutional Node B,简称为“ENB或e-NodeB”),本发明并不限定。

还应理解,在本发明实施例中,用户设备也可称之为终端设备(Terminal Equipment)、移动台(Mobile Station,简称为“MS”)、移动终端(Mobile Terminal)等,该用户设备可以经无线接入网(Radio Access Network,简称为“RAN”)与一个或多个核心网进行通信,例如,用户设备可以是移动电话(或称为“蜂窝”电话)、具有移动终端的计算机等,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入 网交换语言和/或数据。

图1(a)和图1(b)示出了可应用本发明实施例的场景的例子的示意图。应注意,图1(a)和图1(b)的例子是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本发明实施例的范围。

如图1(a)所示,基站由多个扇区(图中为3扇区)组成,多个基站采用4*3的频率复用模式。GSM基本载频是主广播控制信道(broadcast control channel,BCCH)载频,BCCH频点覆盖范围和信号质量决定网络服务范围和性能,一般要求主BCCH的C/I达到12dB以上,且相邻扇区不邻频。GSM每个载频所占用带宽为200kHz,则所需带宽为3*4*0.2=2.4(MHz)。

由于全球有一半以上GSM网络带宽小于7.4M,以此来计算,如果将GSM的频谱资源Refarming出5M带宽给3G/4G,那么GSM剩余的频谱不足2.4M。要利用GSM剩余的频谱资源进行复用组网,就只能采用紧密的复用方式,例如采用3*3,如图1(b)所示,甚至2*3,1*3等更紧密的复用方式进行组网。

由于采用了更紧密的复用方式组网,使得下行载干比急剧下降,据统计分析,当采用3*3的复用方式组网时,相比4*3复用,下行载干比恶化4.5dB;而当采用2*3复用,相比3*3复用,下行载干比恶化7dB。

下行载干比的降低,同频小区间的干扰加大,会使得终端接收性能恶化。

实施例一

本发明实施例提供一种方法,用于在采用紧密的频率复用方式时,发送优化调制信号以降低干扰,方法示意图如图2所示。

S201,确定发送调制信号的时隙。

本实施例以图1(b)所示的3*3复用组网为例来进行说明,BCCH载频需要用作下行测量,但载波上并非时时会分配业务,即在BCCH上有时不需要传送业务信号,但终端需要对邻区进行测量,因此在主BCCH上始终需要保持有发送功率。为此,在没有业务信号时,需要发送调制信号,该调制信号可以不含有具体信息,只用于终端侧进行邻区测量。

为此,先判断是否需要发送调制信号。具体的,可以根据当前发送的内容来判断是否需要发送调制信号。当前无业务信号需要发送时,确认发送该调制信号。

S202,在确定的所述时隙发送所述调制信号。

当确定需要没有业务信号发送时,在确定的时隙发送该调制信号,

其中,所述调制信号的自相关度量值大于第一阈值。

具体的,本实施例以如下调制信号为例来说明,

<mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>K</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <mi>sqrt</mi> <mrow> <mo>(</mo> <mi>K</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>*</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mi>j</mi> <mo>*</mo> <mn>2</mn> <mo>*</mo> <mi>pi</mi> <mo>*</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>*</mo> <msub> <mi>nT</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mi>K</mi> <mo>&GreaterEqual;</mo> <mn>1</mn> <mo>,</mo> </mrow>

该调制信号满足以下条件:

该调制信号的自相关度量值大于阈值。

该所示调制信号的自相关度量值Corrmin可以通过如下函数计算所得:

<mrow> <msub> <mi>Corr</mi> <mi>min</mi> </msub> <mo>=</mo> <munder> <mrow> <mi>arg</mi> <mi> </mi> <mi>min</mi> </mrow> <mi>k</mi> </munder> <mrow> <mo>(</mo> <mi>Corr</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow>

<mrow> <mi>Corr</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mi>&Sigma;</mi> <mi>i</mi> </munder> <mi>x</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mi>i</mi> <mo>)</mo> </mrow> <msup> <mi>x</mi> <mo>*</mo> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mi>i</mi> <mo>-</mo> <mi>D</mi> <mo>)</mo> </mrow> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>nBurstLen</mi> <mo>-</mo> <mi>D</mi> </mrow>

因此,为了保证一定的性能效果,调制信号的自相关度量值Corrmin要大于一定阈值,该阈值可以根据应用需要来设定,例如可以设置为45。

应理解,调制信号的自相关度量值Corrmin越大,信号的时域相关性越强。该调制信号只是一种示例,满足时域强相关的信号都可以作为调制信号,例如窄带周期信号,甚至单音信号等窄带信号都可以。

优选的,所述调制信号与GMSK调制信号的平均能量等同。假设现有的调制信号为GMSK调制信号,用

r(n),n=1,2,3...,nBurstLen来表示,

本实施例使用的调制信号为:

x(n),n=1,2,3...,nBurstLen,

那么,为了不对终端侧的邻区测量造成影响,可以使得调制信号平均能 量和现有的GMSK调制信号的平均能量等同,即满足:

<mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>nBurstLen</mi> </munderover> <mi>x</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <msup> <mi>x</mi> <mo>*</mo> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&ap;</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>nBurstLen</mi> </munderover> <mi>r</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mo>*</mo> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow>

应理解,本发明实施例所示例的调制信号的能量和现有的GMSK调制信号的能量大致相当即可,在一定范围内都可以认为等同。

优选的,还可以对所述调制信号进行频谱搬移,本实施例给出一个频谱搬移的示例搬移公式:

y(n)=x(n)*exp(j*2*pi*Δf/FST/Fs)

由于变化后的信号频谱较窄,为了最大化下行解调性能收益,可以在GMSK的信道200K带宽内对信号x(n)进行一定的频谱搬移,离信道中心频点越远,对其同频的载波的干扰就越小,下行终端侧的性能收益就越大。应理解,如频谱搬移过大,则会影响到下行终端侧电平测量的准确行,因此频谱搬移量Δf一般需要控制在合适的范围内。本实施例给出了一个示例范围,但不限定为该范围,-60KHz≤Δf≤60KHz。

图3所示为采用本实施例的调制信号仿真频谱图,通过上述所示的频谱搬移,本实施例以Δf=-30KHz为例,经过仿真,得到如图4所示的经过频谱搬移后的调制信号的频谱图,由图中可以看出,经过频谱搬移后的调制信号频带更窄,对同频的干扰更小。

实施例二

对于两个主BCCH同频小区,相互间会形成同频干扰,基于同步网络,如果直接应用,主BCCH时隙相互碰撞,会形成较强的同频干扰,对网络接入及覆盖等造成影响,可以通过时隙错位,如图5所示,小区2的主BCCH的0时隙与小区1的非0其它时隙对应,使用实施例一中的调制信号,可以使得下行主BCCH的0时隙解调性能的提升,减小相对同频间碰撞的影响,固定配置空闲时隙可以最大化的提升下行终端侧的性能。

对于同步网络,当采用如上方式将时隙错位后,例如小区2的主BCCH 的0时隙与小区1的其它时隙对应,也可以将与之对应的时隙固定配置为TCH时隙,当无有用信息发送(DTX段或者信道无占用时),发送实施例一中所采用的调制信号,使得下行主BCCH解调性能的提升,缓解同频间相互碰撞的影响,通过将时隙错位这种应用方式在系统容量无损的条件下,可以实现下行解调性能的改善。

对于异步网络,两个同频小区的主BCCH时隙完全碰撞的概率很小,当与TCH时隙碰撞时,在无有用信息发送(DTX段或者信道无占用时),也可以发送上述提到的调制信号,在异步网络场景下同样可以带来下行解调性能的提升,减小同频碰撞的影响。

实施例三

实施例三提供一种在BCCH中传送调制信号以降低干扰的设备600。该设备600可以为基站或其他功能实体。该设备包括确定单元601,发送单元602。

确定单元601,用于确定发送调制信号的时隙。

本实施例以图1(b)所示的3*3复用组网为例来进行说明,BCCH载频需要用作下行测量,但载波上并非时时会分配业务,即在BCCH上有时不需要传送业务信号,但终端需要对邻区进行测量,因此在主BCCH上始终需要保持有发送功率。为此,在没有业务信号时,需要发送调制信号,该调制信号可以不含有具体信息。

为此,先判断是否需要发送调制信号。具体的,可以根据当前发送的内容来判断是否需要发送调制信号。当前无业务信号需要发送时,确认发送该调制信号。

发送单元602,用于在确定的所述时隙发送所述调制信号。

当确定需要没有业务信号发送时,在确定的时隙发送该调制信号,

其中,所述调制信号的自相关度量值大于第一阈值。

具体的,本实施例以如下调制信号为例来说明,

<mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>K</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <mi>sqrt</mi> <mrow> <mo>(</mo> <mi>K</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>*</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mi>j</mi> <mo>*</mo> <mn>2</mn> <mo>*</mo> <mi>pi</mi> <mo>*</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>*</mo> <msub> <mi>nT</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mi>K</mi> <mo>&GreaterEqual;</mo> <mn>1</mn> <mo>,</mo> </mrow>

该调制信号满足以下条件:

该调制信号的自相关度量值大于阈值。

该所示调制信号的自相关度量值Corrmin可以通过如下函数计算所得:

<mrow> <msub> <mi>Corr</mi> <mi>min</mi> </msub> <mo>=</mo> <munder> <mrow> <mi>arg</mi> <mi> </mi> <mi>min</mi> </mrow> <mi>k</mi> </munder> <mrow> <mo>(</mo> <mi>Corr</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow>

<mrow> <mi>Corr</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mi>&Sigma;</mi> <mi>i</mi> </munder> <mi>x</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mi>i</mi> <mo>)</mo> </mrow> <msup> <mi>x</mi> <mo>*</mo> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mi>i</mi> <mo>-</mo> <mi>D</mi> <mo>)</mo> </mrow> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>nBurstLen</mi> <mo>-</mo> <mi>D</mi> </mrow>

因此,为了保证一定的性能效果,调制信号的自相关度量值Corrmin要大于一定阈值,该阈值可以根据应用需要来设定,例如可以设置为45。

应理解,调制信号的自相关度量值Corrmin越大,信号的时域相关性越强。该调制信号只是一种示例,满足时域强相关的信号都可以作为调制信号,例如窄带周期信号,甚至单音信号等窄带信号都可以。

优选的,所述调制信号与GMSK调制信号的平均能量等同。假设现有的调制信号为GMSK调制信号,用

r(n),n=1,2,3...,nBurstLen来表示,

本实施例使用的调制信号为:

x(n),n=1,2,3...,nBurstLen,

那么,为了不对终端侧的邻区测量造成影响,可以使得调制信号平均能量和现有的GMSK调制信号的平均能量等同,即满足:

<mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>nBurstLen</mi> </munderover> <mi>x</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <msup> <mi>x</mi> <mo>*</mo> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&ap;</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>nBurstLen</mi> </munderover> <mi>r</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mo>*</mo> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow>

应理解,本发明实施例所示例的调制信号的能量和现有的GMSK调制信号的能量大致相当即可,在一定范围内都可以认为等同。

可选的,该实施例还包括频谱处理单元603,可以对所述调制信号进行 频谱搬移,本实施例给出一个频谱搬移的示例搬移公式:

y(n)=x(n)*exp(j*2*pi*Δf/FST/Fs)

由于变化后的信号频谱较窄,为了最大化下行解调性能收益,可以在GMSK的信道200K带宽内对信号x(n)进行一定的频谱搬移,离信道中心频点越远,对其同频的载波的干扰就越小,下行终端侧的性能收益就越大。应理解,如频谱搬移过大,则会影响到下行终端侧电平测量的准确行,因此频谱搬移量Δf一般需要控制在合适的范围内。本实施例给出了一个示例范围,但不限定为该范围,-60KHz≤Δf≤60KHz。

实施例四

实施例四提供一种在BCCH中传送调制信号以降低干扰的设备700。该设备700可以为基站或其他功能实体。该设备包括处理器701,发送器702。

处理器701,用于确定发送调制信号的时隙。

处理器701先判断是否需要发送调制信号。具体的,可以根据当前发送的内容来判断是否需要发送调制信号。当前无业务信号需要发送时,确认发送该调制信号。

发送器702,用于在确定的所述时隙发送所述调制信号。

当确定需要没有业务信号发送时,在确定的时隙发送该调制信号,

其中,所述调制信号的自相关度量值大于第一阈值。

具体的,本实施例以如下调制信号为例来说明,

<mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>K</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <mi>sqrt</mi> <mrow> <mo>(</mo> <mi>K</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>*</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mi>j</mi> <mo>*</mo> <mn>2</mn> <mo>*</mo> <mi>pi</mi> <mo>*</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>*</mo> <msub> <mi>nT</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mi>K</mi> <mo>&GreaterEqual;</mo> <mn>1</mn> <mo>,</mo> </mrow>

该调制信号满足以下条件:

该调制信号的自相关度量值大于阈值。

具体的确定方式在前述实施例中已有详细描述,此处不再赘述。

优选的,所述调制信号与GMSK调制信号的平均能量等同。

可选的,处理器701,还可以对所述调制信号进行频谱搬移,本实施例给出一个频谱搬移的示例搬移公式:

y(n)=x(n)*exp(j*2*pi*Δf/FST/Fs)

由于变化后的信号频谱较窄,为了最大化下行解调性能收益,可以在GMSK的信道200K带宽内对信号x(n)进行一定的频谱搬移,离信道中心频点越远,对其同频的载波的干扰就越小,下行终端侧的性能收益就越大。应理解,如频谱搬移过大,则会影响到下行终端侧电平测量的准确行,因此频谱搬移量Δf一般需要控制在合适的范围内。本实施例给出了一个示例范围,但不限定为该范围,-60KHz≤Δf≤60KHz。

应理解,根据本发明实施例的设备600,700可对应于执行本发明实施例中的方法。

应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。

在本发明的各种实施例中,应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。

另外,本文中术语“系统”和“网络”在本文中常可互换使用。应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。

在本申请所提供的实施例中,应理解,“与A相应的B”表示B与A相 关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。

本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。

所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。

在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。

所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。

另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。

集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称为“ROM”)、随机存取存储器(Random Access Memory,简称为“RAM”)、磁碟或者光盘等各种可以存储程序代码的介质。

以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1