一种数据传输方法及数据处理设备与流程

文档序号:18545454发布日期:2019-08-27 21:37阅读:190来源:国知局
一种数据传输方法及数据处理设备与流程

本发明涉及一种电子技术领域,尤其涉及一种数据传输方法及数据处理设备。



背景技术:

电子电路之间的串行通讯方式主要分为同步通信方式和异步通信方式。同步通信方式要求通信双方以相同的时钟频率进行,而且准确协调,通过共享一个单个时钟或定时脉冲源保证发送方和接收方的准确同步,效率较高;异步通信方式不要求双方同步,收发方可采用各自的时钟源,双方遵循异步的通信协议,以字符为数据传输单位,发送方传送字符的时间间隔不确定,发送效率比同步传送效率低。

以DART协议为例,其特点是一个字符一个字符地传输,每个字符一位一位地传输,并且传输一个字符时,总是以“起始位”开始,以“停止位”结束,字符之间没有固定的时间间隔要求。发送端的发送时钟和接收端的接收时钟,其频率允许有一定差异,当频率差异在一定范围内,不会引起接收端检测错位,能够正确接收,并且这种频率差异不会因多个字符的连续加收而造成误差累计,因为每个字符的起始位处接收方均重新定位。而当发送时钟和接收时钟频率差异太大时,会引起接收端采样错位,造成接收错误,通讯效率降低。

因此函需提供一种新的数据传输方法及数据处理设备来解决上述问题。



技术实现要素:

本发明旨在解决上述问题/之一。

本发明的主要目的在于提供一种数据传输方法,为达到上述目的,本发明的技术方案具体是这样实现的:

方案1、一种数据传输方法,其特征在于,包括:

接收K个信号,检测所述K个信号中每相邻两个之间的时间间隔,判断第一时间间隔与第二时间间隔之间是否满足预设关系,所述第一时间间隔为第i个所述信号的开始时刻与第i-1个所述信号的开始时刻之间的时间间隔,所述第二时间间隔为第i个所述信号的开始时刻与第i+1个所述信号的开始时刻之间的时间间隔,i=2,4,……,2j,j=(K-1)/2,K≥3且K为奇数;

确定第一时间间隔组和/或第二时间间隔组,所述第一时间间隔组包括j个所述第一时间间隔,所述第二时间间隔组包括j个所述第二时间间隔;

若所述第一时间间隔与所述第二时间间隔满足预设关系,则根据所述第一时间间隔组中的至少一个第一时间间隔和/或所述第二时间间隔组中的至少一个第二时间间隔确定当前数据传输的时间参数;

按照所述时间参数接收数据。

方案2、根据方案1所述的方法,其特征在于,所述接收K个信号包括:

检测到K次低电平脉冲。

方案3、根据方案1所述的方法,其特征在于,

所述按照所述时间参数接收数据包括:按照所述时间参数获取N比特数据包含的2N个不同数值与时间间隔的对应关系,其中,不同数值对应的时间间隔不同,其中,N≥1;接收X个信号,确定所述X个信号中每相邻两个信号的起始时刻之间的时间间隔,得到X-1个时间间隔,其中,X为正整数,且X>1;根据确定的所述时间参数,获取所述X-1个时间间隔中每连续S个时间间隔中单个时间间隔对应的数值,得到所述S个时间间隔传输的数值,所述S个时间间隔传输的数值为所述单个时间间隔对应的数值,所述数值为N比特数据包含的2N个不同数值中的一个,其中,在S>1的情况下,所述S个时间间隔相同,其中,X和S均为正整数,且S≤X-1,N≥1。

方案4、根据方案3所述的方法,其特征在于,X-1=n*S,n≥1且n为整数。

方案5、根据方案3或4所述的方法,其特征在于,所述接收X个信号包括:检测到X次低电平脉冲。

方案6、根据方案1至5任一项方案所述的方法,其特征在于,接收X个信号包括:接收Y+1个信号,去除所述Y+1个信号中的干扰,得到所述X个信号,其中Y+1≥X。

方案7、根据方案1所述的方法,其特征在于,在所述按照所述时间参数接收数据之后,还包括:按照所述时间参数进行数据发送。

方案8、根据方案7所述的方法,其特征在于,所述按照所述时间参数进行数据发送,包括:按照所述时间参数获取N比特数据包含的2N个不同数值与时间间隔的对应关系,其中,不同数值对应的时间间隔不同,其中,N≥1;获取当前待发送的数据比特串;将所述数据比特串进行分组,每组数据为N比特;根据获取的所述对应关系,以每组数据的数值对应的时间间隔表示该组数据的方式发送该组数据。

方案9、如方案1至8任一项方案所述的方法,其特征在于:若所述第一时间间隔与所述第二时间间隔不满足所述预设关系,则继续执行接收所述K个信号的步骤。

方案10、一种数据传输方法,其特征在于,包括:确定时间参数;根据所述时间参数确定第一时间间隔组与第二时间间隔组,其中,所述第一时间间隔组包括j个第一时间间隔,所述第二时间间隔组包括j个第二时间间隔;

产生并发送K个握手信号,其中,所述第一时间间隔与所述第二时间间隔之间满足预设关系;所述第一时间间隔为第i个所述握手信号的开始时刻与第i-1个所述握手信号的开始时刻之间的时间间隔,所述第二时间间隔为第i个所述握手信号的开始时刻与第i+1个所述握手信号的开始时刻之间的时间间隔,i=2,4,……,2j,j=(K-1)/2,K≥3且K为奇数。

方案11、根据方案10所述的方法,其特征在于,所述产生K个握手信号包括:按照所述第一时间间隔和所述第二时间间隔产生K次低电平脉冲。

方案12、根据方案10或11所述的方法,其特征在于,在所述产生并发送K个握手信号之后,所述方法还包括:按照所述时间参数获取N比特数据包含的2N个不同数值与时间间隔的对应关系,其中,不同数值对应的时间间隔不同,其中,N≥1;获取当前待发送的数据比特串;将所述数据比特串进行分组,每组数据为N比特;根据获取的所述对应关系,以每组数据的数值对应的时间间隔表示该组数据的方式发送该组数据。

方案13、根据方案12所述的方法,其特征在于,对于每组数据,发送该组数据,包括:产生并发送M个信号,其中,每个所述信号的开始时刻与相邻的上一个信号的开始时刻的时间间隔为该组数据的数值对应的时间间隔,M≥1且M为自然数。

方案14、根据方案13所述的方法,其特征在于,所述产生M个信号包括:按照所述时间间隔产生M次低电平脉冲。

方案15、根据方案12至14任一项方案所述的方法,其特征在于,还包括:按照预设规则,将当前使用的时间参数替换为新的时间参数,将所述新的时间参数作为所述当前数据传输的时间参数;按照所述当前数据传输的时间参数更新所述对应关系;利用更新后的对应关系进行数据传输。

方案16、一种数据处理设备,其特征在于,包括:接收模块、判断模块、时间处理模块和数据处理模块,其中,所述接收模块,用于接收K个信号;所述判断模块,用于检测所述K个信号中每相邻两个之间的时间间隔,判断第一时间间隔与第二时间间隔之间是否满足预设关系,所述第一时间间隔为第i个所述信号的开始时刻与第i-1个所述信号的开始时刻之间的时间间隔,所述第二时间间隔为第i个所述信号的开始时刻与第i+1个所述信号的开始时刻之间的时间间隔,i=2,4,……,2j,j=(K-1)/2,K≥3且K为奇数;所述时间处理模块,用于确定第一时间间隔组和/或第二时间间隔组,所述第一时间间隔组包括j个所述第一时间间隔,所述第二时间间隔组包括j个所述第二时间间隔;若所述第一时间间隔与所述第二时间间隔满足预设关系,则根据所述第一时间间隔组中的至少一个第一时间间隔和/或所述第二时间间隔组中的至少一个第二时间间隔确定当前数据传输的时间参数;所述数据处理模块,用于按照所述时间参数接收数据。

方案17、根据方案16所述的设备,其特征在于,所述接收模块,用于接收K个信号,包括:所述接收模块,用于检测K次低电平脉冲。

方案18、根据方案16所述的设备,其特征在于,所述接收模块,还用于接收X个信号;

所述数据处理模块,用于按照所述时间参数接收数据,包括:按照所述时间参数获取N比特数据包含的2N个不同数值与时间间隔的对应关系,其中,不同数值对应的时间间隔不同,其中,N≥1;确定所述X个信号中每相邻两个信号的起始时刻之间的时间间隔,得到X-1个时间间隔,其中,X为正整数,且X>1;根据确定的所述时间参数,获取所述X-1个时间间隔中每连续S个时间间隔中单个时间间隔对应的数值,得到所述S个时间间隔传输的数值,所述S个时间间隔传输的数值为所述单个时间间隔对应的数值,所述数值为N比特数据包含的2N个不同数值中的一个,其中,在S>1的情况下,所述S个时间间隔相同,其中,X和S均为正整数,且S≤X-1,N≥1。

方案19、根据方案18所述的设备,其特征在于,X-1=n*S,n≥1且n为整数。

方案20、根据方案18或19所述的设备,其特征在于,所述接收模块,还用于接收X个信号,包括:所述接收模块,还用于检测X次低电平脉冲。

方案21、根据方案18至20任一项方案所述的设备,其特征在于,所述数据处理模块,还用于:接收Y+1个信号,去除所述Y+1个信号中的干扰,得到所述X个信号,其中Y+1≥X。

方案22、根据方案16至21任一项方案所述的设备,其特征在于,还包括:数据发送模块,其中,所述数据发送模块,用于在所述数据处理模块按照所述时间参数接收数据之后,按照所述时间参数进行数据发送。

方案23、根据方案22所述的设备,其特征在于,所述数据发送模块,用于按照所述时间参数进行数据发送,包括:按照所述时间参数获取N比特数据包含的2N个不同数值与时间间隔的对应关系,其中,不同数值对应的时间间隔不同,其中,N≥1;获取当前待发送的数据比特串;将所述数据比特串进行分组,每组数据为N比特;根据获取的所述对应关系,以每组数据的数值对应的时间间隔表示该组数据的方式发送该组数据。

方案24、如方案16至23任一项方案所述的设备,其特征在于,

所述时间处理模块,还用于若所述第一时间间隔与所述第二时间间隔不满足所述预设关系,则指示所述判断模块继续执行接收所述K个信号的操作。

方案25、一种数据处理设备,其特征在于,包括:第二时间参数模块、第二时间处理模块、第二信号产生发送模块;其中,所述第二时间参数模块,用于确定时间参数;所述第二时间处理模块,用于根据所述时间参数确定第一时间间隔组与第二时间间隔组,其中,所述第一时间间隔组包括j个第一时间间隔,所述第二时间间隔组包括j个第二时间间隔;所述第二信号产生发送模块,用于产生并发送K个握手信号,其中,所述第一时间间隔与所述第二时间间隔之间满足预设关系;所述第一时间间隔为第i个所述握手信号的开始时刻与第i-1个所述握手信号的开始时刻之间的时间间隔,所述第二时间间隔为第i个所述握手信号的开始时刻与第i+1个所述握手信号的开始时刻之间的时间间隔,i=2,4,……,2j,j=(K-1)/2,K≥3且K为奇数。

方案26、根据方案25所述的设备,其特征在于,所述第二信号产生发送模块,用于所述K个握手信号包括:所述第二信号产生发送模块按照所述第一时间间隔和所述第二时间间隔产生K次低电平脉冲。

方案27、根据方案25或26所述的设备,其特征在于,所述第二信号产生发送模块还用于,在产生并发送K个握手信号之后,按照所述时间参数获取N比特数据包含的2N个不同数值与时间间隔的对应关系,其中,不同数值对应的时间间隔不同,其中,N≥1;获取当前待发送的数据比特串;将所述数据比特串进行分组,每组数据为N比特;根据获取的所述对应关系,以每组数据的数值对应的时间间隔表示该组数据的方式发送该组数据。

方案28、根据方案27所述的设备,其特征在于,对于每组数据,所述第二信号产生模块,还用于发送该组数据,包括:所述第二信号产生发送模块,还用于产生并发送M个信号,其中,每个所述信号的开始时刻与相邻的上一个信号的开始时刻的时间间隔为该组数据的数值对应的时间间隔,M≥1且M为自然数。

方案29、根据方案28所述的设备,其特征在于,所述第二信号产生发送模块,还用于产生M个信号,包括:所述第二信号产生发送模块,还用于按照所述时间间隔产生M次低电平脉冲。

方案30、根据方案27至19任一项方案所述的设备,其特征在于,所述第二时间参数模块,还用于按照预设规则,将当前使用的时间参数替换为新的时间参数,将所述新的时间参数作为所述当前数据传输的时间参数;所述第二信号产生发送模块,还用于按照所述当前数据传输的时间参数更新所述对应关系;利用更新后的对应关系进行数据传输。

由上述本发明提供的技术方案可以看出,本发明提供了一种数据传输方法及一种数据处理设备,通过握手信号确定时间参数etu和pdt,从而保证每次数据传输时,发送端与接收端对etu和pdt的取值一致,保证了每次数据传输的稳定性与准确性,避免了频率差异因多个字符的连续加收而造成误差累计,有效防止当发送时钟和接收时间参数差异太大时,引起接收端采样错位,造成接收错误,通讯效率降低的技术问题,此外,发送端可以根据发送波形的时间间隔表示发送波形的数据,接收端可以根据接收波形的时间间隔确定接收波形的数据比特,可以仅使用两线完成数据的接收,适用在电子设备中时,可以有效减小电子设备的体积。

附图说明

为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。

图1为本发明实施例1提供的数据传输方法的流程图;

图2为本发明实施例2提供的数据接收方法的流程图;

图3为本发明实施例3提供的数据传输方法流程图;

图4为本发明实施例4提供的数据发送方法的流程图;

图5为本发明实施例4提供的N=2时,发送数据比特串0011100100的波形示意图;

图6为本发明实施例4提供的N=1时,发送数据比特串0011100100的波形示意图;

图7为本发明实施例4提供的N=3时,发送数据比特串0011100100的波形示意图;

图8为本发明实施例5提供的一种数据处理设备的结构示意图;

图9为本发明实施例5提供的另一种数据处理设备的结构示意图;

图10为本发明实施例6提供的一种数据处理设备的结构示意图;

图11为本发明实施例6提供的一种实施例5以及实施例6中涉及的数据发送模块的结构示意图;

图12为本发明实施例6提供的另一种实施例5以及实施例6中涉及的数据发送模块的结构示意图。

具体实施方式

下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。

在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或数量或位置。

在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。

下面将结合附图对本发明实施例作进一步地详细描述。

实施例1

如图1所示,本实施例提供一种数据传输方法,为达到上述目的,本发明的技术方案具体是这样实现的:

步骤S101:接收K个信号;

K为预先设定值,K≥3且K为奇数,例如预先设定K=5,那么当累计接收到5个信号时,则对接收到的5个信号进行处理,本实施例提供的方法可以通过该K个信号之间的时间间隔的关系判断出是否可以开始接收数据,即,如果满足预设关系在K个信号之后开始接收数据,可以将该K个信号视为指示开始接收数据的握手信号;其中,信号可以为脉冲信号,即接收到的是高电平脉冲信号(上升沿信号),或者是低电平脉冲信号(下降沿信号),脉冲信号可以为方波、正弦波、三角波或其他不规则波形,也可以是上述不同波形的组合。

在本实施例中,接收K个信号,包括以下方式至少之一:

方式一:检测到K次低电平脉冲;

在该方式中,终端可以检测到连续高电平中的K次低电平脉冲,例如,在检测到高电平一段时间后,检测到1次低电平脉冲,然后又恢复检测到高电平的状态,在经过一段时间后,又检测到1次低电平脉冲,以这样的方式可以连续检测到K次低电平脉冲;

方式二:检测到K次高电平脉冲;

在该方式中,终端可以检测到连续低电平中的K次高电平脉冲,例如,在检测到低电平一段时间后,检测到1次高电平脉冲,然后又恢复检测到低电平的状态,在经过一段时间后,又检测到1次高电平脉冲,以这样的方式可以连续检测到K次高电平脉冲;

在上述方式中,K个信号属于跳变信号,且跳变幅度明显,便于与噪声信号进行区分。

步骤S102:检测K个信号中每相邻两个之间的时间间隔;

在本实施例中,当连续接收到K个信号后,检测K个信号中每相邻两个信号之间的时间间隔,可选地,当K个信号为连续高电平中的K个低电平信号时,确定第p个低电平信号的起始时刻至第p+1个低电平信号的起始时刻之间的时长为第p个和第p+1个信号之间的时间间隔;同样地,当K个信号为连续低电平中的K个高电平信号时,确定第p个高电平信号的起始时刻至第p+1个高电平信号的起始时刻之间的时长为第p个和第p+1个信号之间的时间间隔;其中,1≤p≤K-1,且p为自然数;作为一种可选的实施方式,通过检测每个脉冲信号的起始时刻,从而准确迅速地获得相邻两个信号起始时刻之间的时间间隔。

步骤S103:判断第一时间间隔与第二时间间隔之间是否满足预设关系;

作为本实施例一种可选的实施方式,在步骤S103中,第一时间间隔可以为第i个信号的开始时刻与第i-1个信号的开始时刻之间的时间间隔,第二时间间隔可以为第i个信号的开始时刻与第i+1个信号的开始时刻之间的时间间隔,其中,i=2,4,……,2j,j=(K-1)/2,K≥3且K为奇数;示例性的,当K=5时,5个信号中每相邻两个之间共会产生4个时间间隔,当i=2时,第一时间间隔为第一个信号与第二个信号开始时刻之间的时间间隔,标记为t0,第二时间间隔为第二个信号与第三个信号开始时刻之间的时间间隔,标记为t1;当i=4时,第一时间间隔为第三个信号与第四个信号开始时刻之间的时间间隔,标记为t2,第二时间间隔为第四个信号与第5个信号开始时刻之间的时间间隔,标记为t3。判断第一时间间隔与第二时间间隔之间是否满足预设关系即指,判断t0与t1之间,以及t2与t3之间是否同时满足预设关系,该预设关系可以根据技术人员的经验确定,或者根据实际运行时的参数确定,只要保证满足这样的预设关系,就可以确定该K个信号为指示开始接收数据的握手信号。作为一种可选的实施方式,预设关系可以为t1=a*t0且t3=a*t2;或者,t1=(a+b)*t0且t3=(a+b)*t2;或者,t1=(c*a+b)*t0且t3=(c*a+b)*t2,其中,a、b、c为≥1的自然数,例如,a=2,该预设关系可以是多种,此处不再赘述。

步骤S104:确定第一时间间隔组和/或第二时间间隔组;

其中,第一时间间隔组包括j个第一时间间隔,第二时间间隔组包括j个第二时间间隔,j=(K-1)/2,K≥3且K为奇数。当i取值不同时,根据K个信号产生的K-1个时间间隔将产生一系列的第一时间间隔和第二时间间隔,可以从多个不同的第一时间间隔中选取至少1个成为第一时间间隔组,同样的,也可以从多个不同的第二时间间隔中选取至少1个成为第二时间间隔组,例如,K=5时,5个信号中产生第一时间间隔t0、t2,以及第二时间间隔t1、t3,此时,可以取t0、t2作为第一时间间隔组,取t1、t3作为第二时间间隔组,本实施例并不限制第一时间间隔组以及第二时间间隔组中时间间隔的个数,至少有一个即可,通过这样的方式可以确定第一时间间隔组和/或第二时间间隔组,便于对时间间隔进行分类处理。

步骤S105:若第一时间间隔与第二时间间隔满足预设关系,则根据所述第一时间间隔组中的至少一个第一时间间隔和/或所述第二时间间隔组中的至少一个第二时间间隔确定当前数据传输的时间参数;

步骤S105中,根据所述第一时间间隔组中的至少一个第一时间间隔和/或所述第二时间间隔组中的至少一个第二时间间隔,具体为:根据第一时间间隔组中的至少两个第一时间间隔确定当前数据传输的时间参数,根据第二时间间隔组中的至少两个第二时间间隔确定当前数据传输的时间参数,也可根据第一时间间隔组中的至少一个第一时间间隔和第二时间间隔组中的至少一个第二时间间隔共同确定当前数据传输的时间参数,且第一时间间隔和第二时间间隔不相邻

在本实施例中,在确定的第一时间间隔组和第二时间间隔组中,当第i个信号与第i-1个信号之间的第一时间间隔与第i个信号与第i+1个信号之间的第二时间间隔均满足预设关系时,可以判定K个信号为有效的握手信号,此时,根据第一时间间隔组,或根据第二时间间隔组,或根据第一时间间隔组以及第二时间间隔组,按照与数据发送端预先约定的时间参数生成规则,确定当前数据传输的时间参数,其中,预先约定的时间参数生成规则在保证每个数据比特编码方式唯一的前提下,可以选择任意种类的方式进行时间参数的确定;

例如,当K=5时,5个信号中相邻两个之间共会产生4个时间间隔,当i=2时,第一时间间隔为第一个信号与第二个信号开始时刻之间的时间间隔,标记为t0,第二时间间隔为第二个信号与第三个信号开始时刻之间的时间间隔,标记为t1;当i=4时,第一时间间隔为第三个信号与第四个信号开始时刻之间的时间间隔,标记为t2,第二时间间隔为第四个信号与第5个信号开始时刻之间的时间间隔,标记为t3;以此为例,下面对根据所述第一时间间隔组中的至少一个第一时间间隔和/或所述第二时间间隔组中的至少一个第二时间间隔确定当前数据传输的时间参数的方式做详细描述。

作为本实施例的一种可选实施方式,选取t0和t2作为第一时间间隔组,根据第一时间间隔组确定当前数据传输的时间参数,时间参数包括第一时间参数etu和第二时间参数pdt,etu和pdt由t0和t2唯一表示,etu和pdt的值可根据t0和t2的值通过任意计算方式获得,示例性的,etu和pdt可采用以下任意一种计算方式获得,当然,并不限于以下计算方式:

etu=t0,pdt=(t0-t2)/5;

etu=t0+t2,pdt=(t0+t2)/10;

etu=t0+t2/2,pdt=(t0-t2)/5;

etu=t2,pdt=(t0-t2)/15;

........

作为本实施例的另一种可选实施方式,选取t0作为第一时间间隔组,根据第一时间间隔组确定当前数据传输的时间参数,时间参数包括第一时间参数etu和第二时间参数pdt,etu和pdt由t0唯一表示,etu和pdt的值可根据t0的值通过任意计算方式获得,示例性的,etu和pdt可采用以下任意一种计算方式获得,当然,并不限于以下计算方式:

etu=t0,pdt=t0/5;

etu=2*t0,pdt=t0/10;

etu=t0/2,pdt=t0/5;

etu=t0/3,pdt=t0/15;

........

作为本实施例的另一种可选实施方式,选取t1和t3作为第二时间间隔组,根据第二时间间隔组确定当前数据传输的时间参数,时间参数包括第一时间参数etu和第二时间参数pdt,etu和pdt由t1和t3唯一表示,etu和pdt的值可根据t1和t3的值通过任意计算方式获得,示例性的,etu和pdt可采用以下任意一种计算方式获得,当然,并不限于以下计算方式:

etu=t1,pdt=(t1-t3)/5;

etu=t1+t3,pdt=(t1+t3)/10;

etu=t1+t3/2,pdt=(t1-t3)/5;

etu=t3,pdt=(t1-t3)/15;

........

作为本实施例的另一种可选实施方式,选取t1作为第二时间间隔组,根据第二时间间隔组确定当前数据传输的时间参数,时间参数包括第一时间参数etu和第二时间参数pdt,etu和pdt由t1唯一表示,etu和pdt的值可根据t1的值通过任意计算方式获得,示例性的,etu和pdt可采用以下任意一种计算方式获得,当然,并不限于以下计算方式:

etu=t1,pdt=t1/5;

etu=2*t1,pdt=t1/10;

etu=t1/2,pdt=t1/5;

etu=t1/3,pdt=t1/15;

........

作为本实施例的另一种可选实施方式,选取t0作为第一时间间隔组,选取t3作为第一时间间隔组,根据第一时间间隔组和第二时间间隔组确定当前数据传输的时间参数,时间参数包括第一时间参数etu和第二时间参数pdt,etu和pdt由t0和t3唯一表示,etu和pdt的值可根据t0和t3的值通过任意计算方式获得,示例性的,etu和pdt可采用以下任意一种计算方式获得,当然,并不限于以下计算方式:

etu=t0,pdt=t3/5;

etu=2*t0,pdt=t3/10;

etu=t0/2,pdt=t3/5;

etu=t0/3,pdt=t3/15;

etu=t0+t3,pdt=t0+t3/5;

etu=t0/3+t3,pdt=t0+t3/15;

........

同样地,当K=7时,7个信号相邻两个之间共会产生6个时间间隔,当i=2时,第一时间间隔为第一个信号与第二个信号开始时刻之间的时间间隔,标记为t0,第二时间间隔为第二个信号与第三个信号开始时刻之间的时间间隔,标记为t1;当i=4时,第一时间间隔为第三个信号与第四个信号开始时刻之间的时间间隔,标记为t2,第二时间间隔为第四个信号与第五个信号开始时刻之间的时间间隔,标记为t3;当i=6时,第一时间间隔为第五个信号与第六个信号开始时刻之间的时间间隔,标记为t4,第二时间间隔为第六个信号与第七个信号开始时刻之间的时间间隔,标记为t5;此时,可选取t0、t2和t4作为第一时间间隔组,也可选取t1、t3和t5作为第二时间间隔组,根据第一时间间隔组中的至少两个第一时间间隔确定当前数据传输的时间参数,根据第二时间间隔组中的至少两个第二时间间隔确定当前数据传输的时间参数,也可根据第一时间间隔组中的至少一个第一时间间隔和第二时间间隔组中的至少一个第二时间间隔共同确定当前数据传输的时间参数,且第一时间间隔和第二时间间隔不相邻,时间参数etu和pdt的获取方式并不唯一,可采用不同的计算方式通过第一时间间隔组和/或第二时间间隔组任意获取,具体获取方式可参考K=5时的方案,在此不再赘述;

当K=3时,3个信号中相邻两个之间共会产生2个时间间隔,当i=2时,第一时间间隔为第一个信号与第二个信号开始时刻之间的时间间隔,标记为t0,第二时间间隔为第二个信号与第三个信号开始时刻之间的时间间隔,标记为t1;以此为例,下面对根据所述第一时间间隔组中的至少一个第一时间间隔和/或所述第二时间间隔组中的至少一个第二时间间隔确定当前数据传输的时间参数的方式做详细描述,

作为本实施例的另一种可选实施方式,选取t0作为第一时间间隔组,根据第一时间间隔组确定当前数据传输的时间参数,时间参数包括第一时间参数etu和第二时间参数pdt,etu和pdt由t0唯一表示,etu和pdt的值可根据t0的值通过任意计算方式获得,示例性的,etu和pdt可采用以下任意一种计算方式获得,当然,并不限于以下计算方式:

etu=t0,pdt=t0/5;

etu=2*t0,pdt=t0/10;

etu=t0/2,pdt=t0/5;

etu=t0/3,pdt=t0/15;

........

作为本实施例的另一种可选实施方式,选取t1作为第二时间间隔组,根据第二时间间隔组确定当前数据传输的时间参数,时间参数包括第一时间参数etu和第二时间参数pdt,etu和pdt由t1唯一表示,etu和pdt的值可根据t1的值通过任意计算方式获得,示例性的,etu和pdt可采用以下任意一种计算方式获得,当然,并不限于以下计算方式:

etu=t1,pdt=t1/5;

etu=2*t1,pdt=t1/10;

etu=t1/2,pdt=t1/5;

etu=t1/3,pdt=t1/15;

........

本实施例中上述确定当前数据传输的时间参数的具体实施方式仅为示例性实施方式,本发明并不排除其他时间参数生成规则以根据第一时间间隔组中的至少两个第一时间间隔,或根据第二时间间隔组中的至少两个第二时间间隔,或根据第一时间间隔组中的至少一个第一时间间隔以及第二时间间隔组中的至少一个第二时间间隔,确定当前数据传输的时间参数的实施方式。

本实施例通过第一时间间隔组和/或第二时间间隔组来确定时间参数etu和pdt,从而保证每次数据传输时,发送端与接收端对etu和pdt的取值保持一致,保证了每次数据传输的稳定性与准确性,由于每次数据传输之前接收端都会根据发送端发送的握手信息重新确定时间参数etu和pdt的值,避免了频率差异因多个字符的连续加收而造成误差累计,有效防止当发送时钟和接收时间参数差异太大时,引起接收端采样错位,造成接收错误,通讯效率降低的问题。

作为本实施例一种可选的实施方式,若第一时间间隔与第二时间间隔满足预设关系不满足上述预设关系,则继续执行接收握手信号的步骤,即返回步骤S101。

步骤S106:按照时间参数接收数据。

具体地,步骤S106按照握手信号确定的时间参数接收数据的实现方式,请参照实施例2中数据接收方法的具体流程。

此外,在按照时间参数接收数据之后,还包括:按照时间参数进行数据发送,请参照实施例4中数据发送方法的具体流程。

本实施例提供的数据传输方法通过每次接收数据之前根据握手信息重新确定时间参数,保证发送端和接收端的时间参数始终保持一致,保证数据传输的稳定性与准确性;信号采用脉冲信号进行传输,便于与噪声信号进行区分;通过检测每个信号触发的上升沿或下降沿,可以容易地获取每个信号的起始时刻,从而准确迅速地获得相邻两个信号起始时刻之间的时间间隔,根据获取到的时间间隔判断信号间的时间间隔是否满足预设关系,判断接收到的信号是否为有效的握手信号,使得判断过程准确迅速,且成功率高,根据第一时间间隔和/或第二时间间隔确定第一时间间隔组和/或第二时间间隔组,并通过第一时间间隔组和/或第二时间间隔组来确定时间参数etu和pdt,从而保证每次数据传输时,发送端与接收端对etu和pdt的取值保持一致,保证了每次数据传输的稳定性与准确性,由于每次数据传输之前接收端都会根据发送端发送的握手信息重新确定时间参数etu和pdt的值,避免了频率差异因多个字符的连续加收而造成误差累计,有效防止当发送时钟和接收时间参数差异太大时,引起接收端采样错位,造成接收错误,通讯效率降低的技术问题。

实施例2

本实施例提供了一种数据接收方法,图2是基于本实施例1中图1所示的数据传输的一种可选的按照握手信号确定的时间参数接收数据的流程图。

如图2所示,该按照握手信号确定的时间参数接收数据包括以下步骤:

步骤S201,接收到X个信号,确定X个信号中每相邻两个信号的起始时刻之间的时间间隔,得到X-1个时间间隔,其中,X为正整数,且X>1。

在本实施例的一个可选实施方式中,接收X个信号可以是检测到X次低电平脉冲,也可以是检测到X次高电平脉冲。该低电平脉冲/高电平脉冲可以采用方波、正弦波、三角波等可区分高低电平脉冲的波形表示,在此不作限制。优选为检测到的是低电平脉冲,即发送端可以在为接收端提供高电平的情况下,产生低电平脉冲,采用这种方式,在发送端与接收端通信时,接收端可使用发送端提供的高电平作为电源,为接收端的耗电器件提供电能,例如,接收端可以利用发送端提供的高电平进行充电,或者接收端内部不设置电源,而直接使用发送端的高电平作为电源,采用该方法的设备,在进行信息交互时,可使用同一根线同时完成供电和信息接收,减小了设备体积和制造成本。

在本实施例的一个可选实施方式中,在步骤S201之前,还包括步骤S201a,接收到K个信号,检测K个信号之间是否满足预设关系,K≥2且K为整数。由于只有相邻的两个信号之间才会产生一个时间间隔,因此,应当至少接收两个握手信号,以得到至少一个时间间隔。接收端可通过判断K个信号之间是否满足预设关系判断该K个信号是否为握手信号。接收端接收握手信号,可根据该握手信号判断数据传输的开始位置,提高数据传输效率。

可选地,在步骤S201a中,可以检测K个信号之间的时间间隔,判断第一时间间隔与第二时间间隔之间是否满足预设关系,其中,第一时间间隔为第i个信号的开始时刻与第i-1个信号的开始时刻之间的时间间隔,第二时间间隔为第i个信号的开始时刻与第i+1个信号的开始时刻之间的时间间隔,i=2,4,……,2j,j=(K-1)/2,K≥3且K为奇数;若第一时间间隔与第二时间间隔满足预设关系,执行接收X个信号的步骤,即确定接收到的K个信号为握手信号,K个信号之后的信号为数据传输信号,其中,K的取值可以是预先预定的。进一步的,若第一时间间隔与第二时间间隔不满足预设关系,继续检测后续的K个信号之间的时间间隔,判断后续的K个信号的第一时间间隔与第二时间间隔之间是否满足预设关系直至检测到符合预设关系的K个信号,即在没有检测到握手信号的情况下,接收端持续检测握手信号,直到检测到握手信号才开始接收数据,从而可以避免发送端的误操作的情况下向接收端发送信号的情形,同时还可以判断数据的开始。进一步地,第一时间间隔与第二时间间隔之间满足的预设关系可以是任意发送端与接收端预先约定的关系,如第二时间间隔是第一时间间隔的二倍。接收端可通过接收到的数据是否满足预设关系来判断接收到信号是否为握手信号。作为一种可选的实施方式,预设关系可以为t1=a*t0且t3=a*t2;或者,t1=(a+b)*t0且t3=(a+b)*t2;或者,t1=(c*a+b)*t0且t3=(c*a+b)*t2,其中,a、b、c为≥1的自然数,例如,a=2,该预设关系可以是多种,此处不再赘述。

进一步地,步骤S201a中接收的K个信号还可以携带时间参数,则在实施例1的方案中,可以根据K个信号确定时间参数。可选地,可以先确定第一时间间隔组与第二时间间隔组,其中,第一时间间隔组包括j个第一时间间隔,第二时间间隔组包括j个第二时间间隔,然后根据第一时间间隔组与第二时间间隔组确定时间参数。例如,如果发送端发送的5个握手信号,第一时间间隔t1=etu,第二时间间隔t2=etu+pdt,则接收端根据第一时间间隔和第二时间间隔可以确定时间参数etu和pdt的取值。通过K个信号确定时间参数,可克服接收端的理论时间参数与实际时间参数不一致的情况,保障数据传输的准确性。

与传输数据的信号相似,接收端可以在检测到K次低电平脉冲的情况下,确认接收到K个信号。或者,也可以是检测到K次高电平脉冲,确认接收到K个信号。该低电平/高电平脉冲可以采用方波、正弦波等方式实现。优选采用检测到低电平脉冲,即发送端向接收端提供高电平,在需要发送K个信号时,产生K次低电平脉冲,这样,在发送端与接收端通信时,接收端可使用发送端提供的高电平作为电源,或者接收端内部不设置电源,而直接使用发送端的高电平作为电源,采用该方法的设备,在进行信息交互时,可使用同一根线同时完成供电和信息接收,减小了设备体积和制造成本。

在本实施例的一个可选实施方式中,接收到X个信号包括:接收Z个信号,去除Z个信号中的干扰,得到X个信号,其中Z≥X。

步骤S202,根据实施例1中的方案确定的当前数据传输的时间参数,获取X-1个时间间隔中每连续S个时间间隔中单个时间间隔对应的数值,得到S个时间间隔传输的数值,数值为N比特数据包含的2N个不同数值中的一个,其中,在S>1的情况下,S个时间间隔相同,X和S均为正整数,且S≤X-1,N≥1。即在X-1个时间间隔中,在S>1的情况下,每S个连续时间间隔相同,其中单个时间间隔对应的N比特数据的数值即为该S个时间间隔传输的数值。如,接收到7个信号,获取到6个时间间隔,其中3个连续的时间间隔是相同的,即发送端采用了多个相同的时间间隔表示了N比特数据的数值,得到3个时间间隔中单个时间间隔对应的N比特数据,进一步得到3个时间间隔传输的数值,在S=1的情况下,得到1个时间间隔传输的数值。

作为本发明实施例的一个可选实施方式,根据实施例1中的方案确定的当前数据传输的时间参数,获取X-1个时间间隔中每连续S个时间间隔中单个时间间隔对应的数值,得到S个时间间隔传输的数值,可以采用多种计算方式来计算得到单个时间间隔对应的数值,例如可以采用:预先确定或者协商好的计算方法数值m的时间间隔=etu+m*pdt的得到时间间隔对应的数值,例如接收到的一个时间间隔,则根据etu和pdt来计算得到m的数值。例如当m=1时,如果预先设定或者协商的每组数据为1比特,则该数值为1,如果每组数据为2比特,则该数值为01,如果每组数据为3比特,则该数值为001,每组数据为4或者以上比特时,得到数值的方式相同,在此不再赘述。

根据第一时间参数etu与第二时间参数pdt,按照与数据发送端预先约定的编解码规则,获取N比特数据包含的2N个不同数值与时间间隔的对应关系,预先约定的编解码规则可以为能够保证不同数值的N个数据比特对应唯一时间间隔的任意方式,示例性地:

当N=1时,不同数值的N个数据比特包括:0、1,此时,

0=etu,1=etu+pdt,且etu≠etu+pdt,或,

0=2etu,1=etu+2pdt,且2etu≠etu+2pdt,

……

当N=2时,不同数值的2比特包括:00、01、10、11,此时,

00=etu,01=etu+pdt,10=etu+2pdt,11=etu+3pdt,且etu≠etu+pdt≠etu+2pdt≠etu+3pdt,或,

00=2etu,01=etu+2pdt,10=etu+2.5pdt,11=1.3etu+3pdt,

且2etu≠etu+2pdt≠etu+2.5pdt≠1.3etu+3pdt,

……

同样地,当N=3时,不同数值的N个数据比特包括:000、001、010、011、100、101、110、111,此时,根据第一时间参数etu与第二时间参数pdt,按照与数据发送端预先约定的编解码规则,得到N比特数据包含的2N个不同数值对应的时间间隔,预先约定的编解码规则可参照上述示例,在此不再赘述,

按照与数据发送端预先约定的方式,根据第一时间参数etu和第二时间参数pdt得到N比特数据包含的2N个不同数值对应的时间间隔,其中,不同数值对应的时间间隔不同,从而区分接收到的不同的时间间隔所对应的不同数据比特,实现通过接收到的时间间隔来获取发送端发送的数据。

作为本发明实施例的一个可选实施方式,根据确定的当前数据传输的时间参数,获取X-1个时间间隔中每连续S个时间间隔中单个时间间隔对应的数值,得到S个时间间隔传输的数值,数值为N比特数据包含的2N个不同数值中的一个,其中,在S>1的情况下,S个时间间隔相同,X和S均为正整数,且S≤X-1,N≥1可以理解为:

根据确定的当前数据传输的时间参数,获取X-1个时间间隔中每连续S个时间间隔中单个时间间隔对应的比特串,得到S个时间间隔传输的比特串,其中,S个时间间隔传输的数值为单个时间间隔对应的比特串,在S>1的情况下,S个时间间隔相同,S为正整数,且S≤X-1。例如当X=2,S=1时,只具有一个时间间隔,获取该时间间隔对应的比特串;当X为3或者以上,S=1时,具有多个时间间隔,获取每个时间间隔对应的比特串;当X=3,S=2时,具有两个时间间隔,这两个时间间隔相同,且该时间间隔对应一个比特串,这两个时间间隔表示该一个时间间隔对应的比特串;当X为5或者以上时,S=2时,具有四个时间间隔,前两个连续的时间间隔中的一个时间间隔对应一个比特串,后两个连续的时间间隔中的一个时间间隔对应另一个比特串,即前两个时间间隔表示一个比特串,后两个时间间隔表示另一个比特串。当然,以上举例只是示例性的,只要可以得到S个时间间隔传输的比特串的方式均应属于本发明的保护范围。

在本实施例的一个可选实施方式中,在步骤S202的在获取X-1个时间间隔中第一个连续S个时间间隔传输的数值之前,还可以包括步骤S202’,按照时间参数获取N比特数据包含的2N个不同数值与时间间隔的对应关系,其中,不同数值对应的时间间隔不同,N≥1,其中,采用上述预先计算N比特数据包含的2N不同数值与时间间隔的方式确定接收到的时间间隔的数据比特,可进一步减少接收到数据后的解码时间。作为本发明实施例的一个可选实施方式,按照时间参数获取N比特数据包含的2N个不同数值与时间间隔的对应关系,其中,不同数值对应的时间间隔不同,N≥1可以理解为:按照时间参数获取2N个长度为N的比特串中各个比特串与时间间隔的对应关系,其中,2N个所述比特串互不相同,且不同所述比特串对应的时间间隔不同,N≥1。

在本实施例的一个可选实施方式中,N比特数据包含的2N个不同数值,可以理解为:例如,N=1时,1比特数据,其包含21个不同数值,分别为0,1;N=2时,2比特数据,其包含22个不同数值,分别为00,01,10,11。按照时间参数获取N比特数据包含的2N个不同数值与时间间隔的对应关系可以理解为:例如,当N=1时,按照时间参数获取0对应的时间间隔,按照时间参数获取1对应的时间间隔;当N=2时,按照时间参数获取00对应的时间间隔,按照时间参数获取01对应的时间间隔,按照时间参数获取10对应的时间间隔,按照时间参数获取11对应的时间间隔。当然,当N为其他值时,与上述理解方式相同,在此不再赘述。

可选地,数据的接收端可采用与数据的发送端预先设置或者协商确定的计算方法计算该数据比特的时间间隔,如当N=n,发送数据比特m的时间间隔的计算方法为:数值m对应的时间间隔=etu+m*pdt(其中,0≤m≤2n-1,etu为第一时间参数,pdt为第二时间参数,举例来说etu=10μs,pdt=30μs),即数值11对应的时间间隔计算方法可以为10μs+3*30μs=100μs,通过该可选实施方式可以计算出数值对应的时间间隔。当然,本发明也可以采用其他预先协商的计算方法确定时间间隔,本实施对此不做具体限制。通过预先协商的计算方法计算得出该数据比特的时间间隔,可保证数据传输的可扩展性,即不论N的取值是多少,发送端和接收端均可计算得出数据比特的时间间隔。之后,接收端可以按照计算出的时间间隔来与接收到的时间间隔进行比对,从而直接确定该时间间隔对应的数值,提高确定数据的效率。

作为本发明实施例的另一个可选实施方式,数据的接收端也可采用与数据的发送端预先协商并存储的列表来确定该数值对应的时间间隔,采用查找列表的方式确定该数值对应的时间间隔,提高得到该数值对应的时间间隔的效率。

在本实施例的一个可选实施方式中,X-1=n*S,n≥1且n为整数,采用这种可选实施方式,X个信号刚好可以传输n*S个数据比特,而不会出现多余的信号导致无法解码的问题。

在本实施例的一个可选实施方式中,在数据传输过程中,还可以更换时间参数,即在步骤S202之后,还可以包括步骤S203:按照预设规则,将当前使用的时间参数替换为新的时间参数,将新的时间参数作为当前数据传输的时间参数,接收到X个信号,确定X个信号中每相邻两个信号的起始时刻之间的时间间隔,得到X-1个时间间隔,然后使用当前数据传输的时间参数,获取X-1个时间间隔中每连续S个时间间隔中单个时间间隔对应的数值,得到S个时间间隔传输的数值,S个时间间隔传输的数值为单个时间间隔对应的数值,数值为N比特数据包含的2N个不同数值中的一个,其中,在S>1的情况下,S个时间间隔相同。在本实施方案中,新的时间参数的确定可以通过发送端和接收端的协商完成,也可以通过发送端和接收端查找预先存储的时间参数表完成,如在发送某种类型数据时查表确定该类型的数据应该使用的时间参数。发送端的时间参数是可以变化的,可以匹配不同数据处理能力的接收端,或匹配不同类型的数据,可进一步提高数据处理的效率。

在本实施例的一个可选实施方式中,在步骤S202完成接收最后一个数据之后,发送端还可以发送A个结束信号(A≥1且为整数),而接收端还可接收A个结束信号,结束信号可以与握手信号相同,也可以是其他特定格式的信号,通过该结束信号,接收端可判断数据是否接收结束。

在本实施例的一个可选实施方式中,在步骤S202完成接收最后一个数据之后,或在完成接收最后一个数据之后,接收A个结束信号之前,接收端还可接收发送端发送的校验数据,通过该校验数据,数据接收端可判断接收数据是否完整正确。校验数据包括通过MAC校验、奇偶校验、取和校验等校验方式计算出的校验数据。

由上述本发明实施例提供的技术方案可以看出,接收端可以根据接收波形的时间间隔确定接收波形的数据比特,可以仅使用两线完成数据的接收,适用在电子设备中时,可以有效减小电子设备的体积。

下面以待接收的比特串为0011100100,N=2,对本发明实施例提供的数据接收方法进行的简单举例说明:

实施例1的方案中,确定当前数据传输的时间参数,可选的,可确定出两个时间参数,第一时间参数etu和第二时间参数pdt,其中etu=10μs,pdt=30μs,在本发明实施例中,时间参数为数据发送占用的时间长度。时间参数的个数与N并不存在对应关系,仅与发送端协商一致即可,本实施例并不对时间参数的具体个数作限制,只要能表达出数据比特的数值对应的时间间隔即可。

步骤S201中,接收到6个信号,确定6个信号中每相邻两个信号的起始时刻之间的时间间隔,得到5个时间间隔etu、etu+3pdt、etu+2pdt、etu+pdt、etu。

步骤S202中,获取上述5个时间间隔分别对应的2比特数据,本实施例中,可以根据与数据的发送端预先协商的计算方法m=etu+m*pdt的得到时间间隔对应的数值,如接收到的一个100μs的时间间隔,则可得到m=3,即该时间间隔传输的数值为11。也可以在本步骤之前按照时间参数获取N比特数据包含的2N个不同数值与时间间隔的对应关系。如,在N=2时,按照时间参数获取2比特数据包含的4个不同数值与时间间隔的对应关系,即00=etu,01=etu+pdt,10=etu+2pdt,11=etu+3pdt,即如接收到100μs的时间间隔,可以直接确定该时间间隔传输的数值为11。最终完成比特串0011100100的接收。

在本实施例中,根据发送端的发送策略不同,接收端可以接收到一次时间间隔表示一组数据,如仅接收到一次etu的时间间隔表示00,数据传输速度快,也可以接收到多次相同的时间间隔表示一组数据,如接收到三次etu的时间间隔表示00,数据传输精确度高,可防止时间间隔丢失造成的误判。

下面以待接收的比特串为0011100100,N=1,进行本发明中数据发送方法的简单举例说明:

实施例1的方案中,确定当前数据传输的时间参数,可选的,可确定出两个时间参数,第一时间参数etu和第二时间参数pdt,其中etu=10μs,pdt=30μs。时间参数的个数与N并不存在对应关系,本实施例并不对时间参数的具体个数作限制,只要能表达出数据比特的数值对应的时间间隔即可。

步骤S201中,接收到11个信号,确定11个信号中每相邻两个信号的起始时刻之间的时间间隔,得到10个时间间隔etu、etu、pdt、pdt、pdt、etu、etu、pdt、etu、etu;

步骤S202,获取上述10个时间间隔分别对应的1比特数据,得到etu时间间隔传输的数值0,得到etu时间间隔传输的数值0,得到pdt时间间隔传输的数值1,得到pdt时间间隔传输的数值1……得到etu数据间隔传输的数值0,最终完成比特串0011100100的接收。

在本实施例中,根据发送端的发送策略不同,接收端可以接收到一次时间间隔表示1比特数据,如仅接收到一次etu的时间间隔表示数值0,数据传输速度快,也可以接收到多次相同的时间间隔表示1比特数据,如接收到三次etu的时间间隔表示数值0,数据传输精确度高,可防止时间间隔丢失造成的误判。

下面以待接收的比特串为0011100100,N=3,对本发明实施例提供的数据接收方法进行的简单举例说明:

实施例1的方案中,确定当前传输的时间参数,可选的,可确定出两个时间参数,第一时间参数etu和第二时间参数pdt,其中etu=10μs,pdt=30μs,在本发明实施例中,时间参数为数据发送占用的时间长度。时间参数的个数与N并不存在对应关系,仅与发送端协商一致即可,本实施例并不对时间参数的具体个数作限制,只要能表达出数据比特的数值对应的时间间隔即可。

步骤S201中,接收到5个信号,确定5个信号中每相邻两个信号的起始时刻之间的时间间隔,得到4个时间间隔etu、etu+3pdt、etu+4pdt、etu+4pdt。

步骤S202,获取上述4个时间间隔分别对应的2比特数据,本实施例中,可以根据与数据的发送端预先协商的计算方法m=etu+m*pdt的得到时间间隔对应的数值,如接收到的一个100μs的时间间隔,则可得到m=3,即该组数据为101。也可以在本步骤之前按照时间参数获取N比特数据包含的2N个不同数值与时间间隔的对应关系。如,在N=3时,按照时间参数获取3比特数据包含的8个不同数值与时间间隔的对应关系,即000=etu,001=etu+pdt,010=etu+2pdt,011=etu+3pdt,100=etu+4pdt,101=etu+5pdt,110=etu+6pdt,111=etu+7pdt,即如接收到100μs的时间间隔,可以直接确定该数据比特为101。最终根据与数据发送端预先协商的数据位数,删除补零位,完成比特串0011100100的接收。

在本实施例中,根据发送端的发送策略不同,接收端可以接收到一次时间间隔表示一组数据,如仅接收到一次etu的时间间隔表示000,数据传输速度快,也可以接收到多次相同的时间间隔表示一组数据,如接收到三次etu的时间间隔表示000,数据传输精确度高,可防止时间间隔丢失造成的误判。当N≥4时,可参照N=2或N=3时的数据接收方法,接收数据,在此不再赘述。

实施例3

如图3所示,本实施例提供一种数据传输方法,为达到上述目的,本发明的技术方案具体是这样实现的:

步骤S301:确定时间参数;

作为本实施例中一种可选的实施方式,时间参数可以包括第一时间参数和/或第二时间参数,为了便于说明,本实施例中将第一时间参数记为etu,将第二时间参数记为pdt,第一时间参数etu和第二时间参数pdt均代表一段时间值,例如etu=0.1秒,pdt=0.01秒,该值由数据发送端与接收端协商确定,利用该时间参数可以确定发送握手信号的时间间隔,接收端可以根据接收到的握手信号确定,当然,可以只有一个时间参数,也可以有多个时间参数,本实施例中为例便于描述,仅以2个时间参数为例,利用2个时间参数确定第一时间间隔组和第二时间间隔组,但并不排除多个时间参数的情况。

步骤S302:根据所述时间参数确定第一时间间隔组与第二时间间隔组;

其中,第一时间间隔组包括j个第一时间间隔,第二时间间隔组包括j个第二时间间隔;作为本实施例中一种可选的实施方式,第一时间间隔是指在步骤S202中发送K个握手信号时,第i个信号的开始时刻与第i-1个信号的开始时刻之间的时间间隔,记做Ti-1,i,第二时间间隔是指发送K个握手信号时,第i个信号的开始时刻与第i+1个信号的开始时刻之间的时间间隔,记做Ti,i+1,其中,i=2,4,……,2j,j=(K-1)/2,K≥3且K为奇数。

在本实施例中,需要说明的是,首先,第一时间间隔组中的第一时间间隔Ti-1,i与第二时间间隔组中的第二时间间隔Ti,i+1满足一定的预设关系,通过该预设关系可以保证握手信号的有效性,以使接收端在接收到该握手信号后,可以根据第一时间间隔Ti-1,i和第二时间间隔Ti,i+1的预设关系,判断出该握手信号是用于指示开始接收数据的信号;其次,第一时间间隔组中的各个第一时间间隔Ti-1,i与第一时间参数etu和/或第二时间参数pdt满足一定的预设关系,以使得接收端在接收到该握手信号后,可以根据相同的预设关系通过接收到的多个第一时间间隔计算得到第一时间参数etu和/或第二时间参数pdt,以使得接收端可以根据第一时间参数etu和/或第二时间参数pdt计算得到传输的时间间隔对应的比特数据。

在本实施例中,第一时间间隔组中的第一时间间隔Ti-1,i与第二时间间隔组中的第二时间间隔Ti,i+1满足一定的预设关系可以包括很多种,而第一时间间隔组中的各个第一时间间隔Ti-1,i与第一时间参数etu和/或第二时间参数pdt满足一定的预设关系也包括多种,下面,以示例性的方式做出详细解释。

作为本实施例的一种可选实施方式,以K=5为例,5个信号中每相邻两个之间共会产生4个时间间隔,当i=2时,第一时间间隔T1,2为第一个信号与第二个信号开始时刻之间的时间间隔,标记为t0,第二时间间隔T2,3为第二个信号与第三个信号开始时刻之间的时间间隔,标记为t1;当i=4时,第一时间间隔T3,4为第三个信号与第四个信号开始时刻之间的时间间隔,标记为t2,第二时间间隔T4,5为第四个信号与第5个信号开始时刻之间的时间间隔,标记为t3。此时,t0、t2为第一时间间隔组,取t1、t3为第二时间间隔组,第一时间间隔与第二时间间隔之间满足预设关系即指,t0与t1之间,以及t2与t3之间同时满足预设关系,该预设关系可以根据技术人员的经验确定,或者根据实际运行时的参数确定。作为一种可选的实施方式,预设关系可以为t1=a*t0且t3=a*t2;或者,t1=(a+b)*t0且t3=(a+b)*t2;或者,t1=(c*a+b)*t0且t3=(c*a+b)*t2,其中,a、b、c为≥1的自然数,例如,a=2,该预设关系可以是多种,此处不再赘述。

下面,以第一时间间隔组的第一时间间隔t0和t2为例,对第一时间间隔组中的各个第一时间间隔Ti-1,i t0、t2与第一时间参数etu和/或第二时间参数pdt满足一定的预设关系,进行详细说明:

第一时间间隔t0和t2,根据第一时间参数etu或第二时间参数pdt中的一个通过预设的时间参数生成规则生成,以etu为例,t0和t2可采用以下任意一种计算方式获得,当然,预设的时间参数生成规则并不限于以下计算方式:

t0=a*etu;

t2=x*a*etu;

其中,a为≥1的自然数,x为有理数,因此,接收端可以通过相同的预设的时间参数生成规则利用t0与t2可以计算出etu。

或者,第一时间间隔t0和t2,根据第一时间参数etu和第二时间参数pdt通过预设的时间参数生成规则生成,t0和t2可采用以下任意一种计算方式获得,当然,预设的时间参数生成规则并不限于以下计算方式:

t0=a*etu+b*pdt;

t2=x*a*etu+b*pdt;

其中,a、b为≥1的自然数,x为有理数,因此,接收端可以通过相同的预设的时间参数生成规则利用t0与t2可以计算出etu和pdt。

或者,第一时间间隔t0和t2,根据第一时间参数etu和第二时间参数pdt通过预设的时间参数生成规则生成,t0和t2可采用以下任意一种计算方式获得,当然,预设的时间参数生成规则并不限于以下计算方式:

t0=a*etu+b*pdt;

t2=a*etu+x*b*pdt;

其中,a、b为≥1的自然数,x为有理数,因此,接收端可以通过相同的预设的时间参数生成规则利用t0与t2可以计算出etu和pdt。

同样地,当K=7时,7个信号相邻两个之间共会产生6个时间间隔,当i=2时,第一时间间隔T1,2为第一个信号与第二个信号开始时刻之间的时间间隔,标记为t0,第二时间间隔T2,3为第二个信号与第三个信号开始时刻之间的时间间隔,标记为t1;当i=4时,第一时间间隔T3,4为第三个信号与第四个信号开始时刻之间的时间间隔,标记为t2,第二时间间隔T4,5为第四个信号与第五个信号开始时刻之间的时间间隔,标记为t3;当i=6时,第一时间间隔T5,6为第五个信号与第六个信号开始时刻之间的时间间隔,标记为t4,第二时间间隔T6,7为第六个信号与第七个信号开始时刻之间的时间间隔,标记为t5;此时,t0、t2和t4为第一时间间隔组,t1、t3和t5为第二时间间隔组,第二时间间隔组的t1、t3和t5与第一时间间隔组的t0、t2和t4分别满足预设关系,即t0与t1之间、t2与t3之间,以及t4与t5之间同时满足预设关系,根据第一时间参数etu和/或第二时间参数pdt通过预设的时间参数生成规则来确定第一时间间隔组的第一时间间隔t0、t2和t4的值,通过预设的时间参数生成规则可采用不同的方式,例如,第一时间间隔t0、t2和t4,根据第一时间参数etu或第二时间参数pdt中的一个通过预设的时间参数生成规则生成,以etu为例,t0、t2和t4可采用以下任意一种计算方式获得,当然,预设的时间参数生成规则并不限于以下计算方式:

t0=a*etu;

t2=x*a*etu;

t4=2x*a*etu;

其中,a为≥1的自然数,x为有理数,因此,接收端可以通过相同的预设的时间参数生成规则利用t0、t2、t4可以计算出etu。

或者,第一时间间隔t0、t2和t4,根据第一时间参数etu和第二时间参数pdt通过预设的时间参数生成规则生成,t0、t2、t4可采用以下任意一种计算方式获得,当然,预设的时间参数生成规则并不限于以下计算方式:

t0=a*etu+b*pdt;

t2=x*a*etu+b*pdt;

t4=2x*a*etu+b*pdt;

其中,a、b为≥1的自然数,x为有理数,因此,接收端可以通过相同的预设的时间参数生成规则利用t0、t2、t4可以计算出etu和pdt。

或者,第一时间间隔t0、t2和t4,根据第一时间参数etu和第二时间参数pdt通过预设的时间参数生成规则生成,t0、t2和t4可采用以下任意一种计算方式获得,当然,预设的时间参数生成规则并不限于以下计算方式:

t0=a*etu+b*pdt;

t2=a*etu+x*b*pdt;

t4=a*etu+2x*b*pdt;

其中,a、b为≥1的自然数,x为有理数,因此,接收端可以通过相同的预设的时间参数生成规则利用t0、t2、t4可以计算出etu和pdt。

本实施例中上述确定当前数据传输的第一时间间隔组和第二时间间隔组的具体实施方式仅为示例性实施方式,本发明并不排除其他时间参数生成规则以根据第一时间参数etu和/或第二时间参数pdt确定第一时间间隔组的第一时间间隔的实施方式,也不排除其他第一时间间隔与第二时间间隔的预设关系。

本实施例通过时间参数etu和/或pdt来确定第一时间间隔组,从而保证每次数据传输时,发送端与接收端对etu和pdt的取值保持一致,保证了每次数据传输的稳定性与准确性,由于每次数据传输之前发送端都会发送的握手信息重新确定时间参数etu和pdt的值,避免了频率差异因多个字符的连续加收而造成误差累计,有效防止当发送时钟和接收时间参数差异太大时,引起接收端采样错位,造成接收错误,通讯效率降低的问题。

步骤S303:产生并发送K个握手信号;

作为本实施例一种可选的实施方式,在具体实施时,产生并发送K个握手信号包括:根据第一时间间隔组与第二时间间隔组产生并发送K个握手信号;其中,K个握手信号中的第一时间间隔与第二时间间隔之间满足上述预设关系,可以参照步骤S201中对第一时间间隔与第二时间间隔需满足的预设关系的描述。

在本实施例中,K为预先设定值,K≥3且K为奇数,信号可以为脉冲信号,即接收到的是高电平脉冲信号(上升沿信号),或者是低电平脉冲信号(下降沿信号),脉冲信号可以为方波、正弦波、三角波或其他不规则波形,也可以是上述不同波形的组合。

在本实施例中,产生并发送K个信号,包括以下方式至少之一:

方式一:产生并发送K次低电平脉冲;

在该方式中,发送端在连续高电平中触发K次低电平脉冲,例如,在持续触发高电平第一时间间隔后,触发1次低电平脉冲,然后又恢复触发高电平的状态,在经过第二时间间隔后,又触发1次低电平脉冲,以这样的方式可以连续产生K次低电平脉冲,第一时间间隔可以为第i个信号的开始时刻与第i-1个信号的开始时刻之间的时间间隔,第二时间间隔可以为第i个信号的开始时刻与第i+1个信号的开始时刻之间的时间间隔,其中,i=2,4,……,2j,j=(K-1)/2,K≥3且K为奇数。

示例性的,当K=5时,5个信号中每相邻两个之间共会产生4个时间间隔,当i=2时,第一时间间隔为第一个信号与第二个信号开始时刻之间的时间间隔,标记为t0,第二时间间隔为第二个信号与第三个信号开始时刻之间的时间间隔,标记为t1;当i=4时,第一时间间隔为第三个信号与第四个信号开始时刻之间的时间间隔,标记为t2,第二时间间隔为第四个信号与第5个信号开始时刻之间的时间间隔,标记为t3,发送端在连续高电平中触发5次低电平脉冲,包括:在持续触发高电平一段时间后,触发第1次低电平脉冲,然后又恢复触发高电平的状态,在经过t0后,触发第2次低电平脉冲,然后又恢复触发高电平的状态,在经过t1后,触发第3次低电平脉冲,然后又恢复触发高电平的状态,在经过t2后,触发第4次低电平脉冲,然后又恢复触发高电平的状态,在经过t3后,触发第5次低电平脉冲,以这样的方式可以连续产生5次低电平脉冲,且,第一时间间隔与第二时间间隔满足预设关系,例如,t1=a*t0且t3=a*t2;或者,t1=(a+b)*t0且t3=(a+b)*t2;或者,t1=(c*a+b)*t0且t3=(c*a+b)*t2,其中,a、b、c为≥1的自然数,例如,a=2,该预设关系可以是多种,此处不再赘述,形成有效的握手信号;

方式二:产生并发送K次高电平脉冲;

在该方式中,发送端在连续低电平中触发K次高电平脉冲,例如,在持续触发低电平第一时间间隔后,触发1次高电平脉冲,然后又恢复触发低电平的状态,在经过第二时间间隔后,又触发1次高电平脉冲,以这样的方式可以连续产生K次高电平脉冲,第一时间间隔可以为第i个信号的开始时刻与第i-1个信号的开始时刻之间的时间间隔,第二时间间隔可以为第i个信号的开始时刻与第i+1个信号的开始时刻之间的时间间隔,其中,i=2,4,……,2j,j=(K-1)/2,K≥3且K为奇数。

示例性的,当K=5时,5个信号中每相邻两个之间共会产生4个时间间隔,当i=2时,第一时间间隔为第一个信号与第二个信号开始时刻之间的时间间隔,标记为t0,第二时间间隔为第二个信号与第三个信号开始时刻之间的时间间隔,标记为t1;当i=4时,第一时间间隔为第三个信号与第四个信号开始时刻之间的时间间隔,标记为t2,第二时间间隔为第四个信号与第5个信号开始时刻之间的时间间隔,标记为t3,发送端在连续低电平中触发5次高电平脉冲,包括:在持续触发低电平一段时间后,触发第1次高电平脉冲,然后又恢复触发低电平的状态,在经过t0后,触发第2次高电平脉冲,然后又恢复触发低电平的状态,在经过t1后,触发第3次高电平脉冲,然后又恢复触发低电平的状态,在经过t2后,触发第4次高电平脉冲,然后又恢复触发低电平的状态,在经过t3后,触发第5次高电平脉冲,以这样的方式可以连续产生5次高电平脉冲,且,第一时间间隔与第二时间间隔满足预设关系,例如,t1=a*t0且t3=a*t2;或者,t1=(a+b)*t0且t3=(a+b)*t2;或者,t1=(c*a+b)*t0且t3=(c*a+b)*t2,其中,a、b、c为≥1的自然数,例如,a=2,该预设关系可以是多种,此处不再赘述,形成有效的握手信号;

在上述方式中,K个信号属于跳变信号,且跳变幅度明显,便于与噪声信号进行区分。

此外,在所述产生并发送K个握手信号之后,本实施例提供的方法还包括:按照根据第一时间参数etu与第二时间参数pdt发送数据的步骤,具体请参见实施例4中描述的数据发送方法。

实施例4

本实施例提供了一种数据发送方法,图4是基于本实施例1中图1和实施例3中图3所示的数据传输方法的一种可选的数据发送方法的流程图。如图4所示,该数据发送方法按照确定的时间参数进行数据发送,包括以下步骤:

步骤S401,按照时间参数获取N比特数据包含的2N个不同数值与时间间隔的对应关系,其中,不同数值对应的时间间隔不同,N≥1。

在步骤S401中,该时间参数即为实施例1以及实施例3中确定的时间参数,具体包括第一时间参数etu和第二时间参数pdt。作为本实施例的一个可选实施方式,按照时间参数获取N比特数据包含的2N个不同数值与时间间隔的对应关系,其中,不同数值对应的时间间隔不同,N≥1还可以理解为:

获取2N个长度为N的比特串中各个比特串与时间间隔的对应关系,其中,2N个所述比特串互不相同,且不同所述比特串对应的时间间隔不同,N≥1。例如当N=1时,2个长度为1的比特串中各个比特串分别为0和1,当N=2时,4个长度为2的比特串中各个比特串分别为:00、01、10和11,当N=3或者以上时,参照N=2,在此不再赘述。

在本实施例的一个可选实施方式中,N比特数据包含的2N个不同数值,可以理解为:例如,N=1时,1比特数据,其包含21个不同数值,分别为0,1;N=2时,2比特数据,其包含22个不同数值,分别为00,01,10,11。按照时间参数获取N比特数据包含的2N个不同数值与时间间隔的对应关系可以理解为:例如,当N=1时,按照时间参数获取0对应的时间间隔,按照时间参数获取1对应的时间间隔;当N=2时,按照时间参数获取00对应的时间间隔,按照时间参数获取01对应的时间间隔,按照时间参数获取10对应的时间间隔,按照时间参数获取11对应的时间间隔。当然,当N为其他值时,与上述理解方式相同,在此不再赘述。

在本实施例的一个可选实施方式中,数据的发送端可采用与数据的接收端预先协商确定的计算方法计算该数值对应的时间间隔,如当N=n时,发送数值m对应的时间间隔的计算方法可以为:数值m对应的时间间隔=etu+m*pdt(其中,0≤m≤2n-1,etu为第一时间参数,pdt为第二时间参数,举例来说etu=10μs,pdt=30μs),即数值11对应的时间间隔计算方法可以为10μs+3*30μs=100μs,通过该可选实施方式可以计算出数值对应的时间间隔。当然,本发明也可以采用其他预先协商的计算方法确定时间间隔,本发明对此不做限制。通过预先协商的计算方法计算得出该数值对应的时间间隔,可保证数据传输的可扩展性,即不论N的取值是多少,发送端和接收端均可计算得出不同数值与时间间隔的对应关系。

具体地,根据第一时间参数etu与第二时间参数pdt,按照与数据接收端预先约定的编解码规则,获取N比特数据包含的2N个不同数值与时间间隔的对应关系,预先约定的编解码规则可以为能够保证不同数值的N个数据比特对应唯一时间间隔的任意方式,示例性地:

当N=1时,不同数值的N个数据比特包括:0、1,此时,

0=etu,1=etu+pdt,且etu≠etu+pdt,或,

0=2etu,1=etu+2pdt,且2etu≠etu+2pdt,

……

当N=2时,不同数值的N个数据比特包括:00、01、10、11,此时,

00=etu,01=etu+pdt,10=etu+2pdt,11=etu+3pdt,且etu≠etu+pdt≠etu+2pdt≠etu+3pdt,或,

00=2etu,01=etu+2pdt,10=etu+2.5pdt,11=1.3etu+3pdt,

且2etu≠etu+2pdt≠etu+2.5pdt≠1.3etu+3pdt,

……

同样地,当N=3时,不同数值的N个数据比特包括:000、001、010、011、100、101、110、111,此时,根据第一时间参数etu与第二时间参数pdt,按照与数据接收端预先约定的编解码规则,得到N比特数据包含的2N个不同数值对应的时间间隔,预先约定的编解码规则可参照上述示例,在此不再赘述,

作为本发明实施例的另一个可选实施方式,数据的发送端也可采用与数据的接收端预先协商并存储的列表来确定该数值对应的时间间隔,采用查找列表的方式确定该数值对应的时间间隔,可提高得到该数值对应的时间间隔的效率。

作为本发明实施例的另一个可选实施方式,数据的发送端采用与数据的接收端预先协商确定的计算方法计算该数值对应的时间间隔之后,数据的发送端查找预先存储的列表来判断该计算得到的数值对应的时间间隔是否属于数据的接收端的接收范围。采用计算得到数值对应的时间间隔之后进一步查找列表的方式得到数值对应的时间间隔,可在保证接收端可正常接收的前提下提高数据传输的扩展性。

步骤S402,获取当前待发送的数据比特串。

在本发明的一个可选实施方式中,数据的发送端可以自行生成当前待发送的数据比特串,也可以从其他装置接收当前待发送的数据比特串,本发明并不局限于当前待发送的数据比特串的获取方式,只要最终可以获取当前待发送的数据比特串的方式均应属于本发明的保护范围。

作为本发明的一个可选实施方式,数据的发送端可以作为一个转接装置,其可以将其他装置(以下称为第一终端)与数据的接收端的通信进行转接,此时,数据的发送端通过如下方式获取当前待发送的数据比特串:步骤S402a,通过第一接口接收第一数据;步骤S402b,根据第一接口支持的协议对第一数据进行解码,获得待发送的第一数据比特串。数据的发送端作为转接装置时,可以具有两个通信接口,例如第一接口和第二接口,第一接口为与第一终端进行通信的接口,第二接口为与数据的接收端进行通信的接口,第一接口可以是现有的通用接口,包括无线和有线接口,例如USB接口、音频接口、串口、蓝牙、wifi、NFC等接口,通过该第一接口可以连接到第一终端,以接收从第一终端发送来的第一数据。第一终端可以是手机、电脑、PAD等设备,该第一数据可以是手机、电脑、PAD端需要传输的数据。同时,第一接口根据其接口类型的不同,可以利用自身支持的协议对接收到的第一数据进行解码,例如,第一接口可以根据USB协议、音频协议、串口协议、蓝牙协议、wifi协议、NFC协议等对第一数据进行解码,获得第一数据对应的数据比特串,该数据比特串为待发送的第一数据比特串(即当前待发送的数据比特串)。第二接口可以是连接到电子支付设备(即数据的接收端)的接口,通过该第二接口将数据比特发送至电子支付设备。该第二接口可以是一个两线接口;该电子支付设备可以实现USBkey功能、OTP功能以及智能卡功能等。将本发明的数据的发送端作为转接装置,通过该第一接口进行数据转换,可以实现将终端发送过来的数据转换成适合与数据的接收端进行通信的数据,实现不同接口之间的转换,扩大了本发明的数据的发送端的使用范围。当数据的发送端作为一个转接装置时,通过第一接口获取到当前待发送的数据比特串,并以本发明记载的数据发送方法通过第二接口将待发送的数据比特串进行发送即可。

步骤S403,将数据比特串进行分组,每组数据为N比特。

在本实施例中,可选地,步骤S402和步骤S403也可以在步骤S401之前的任意时刻执行,只要在数据发送前获取数据比特串并分组即可。另外,数据的发送端可以在每次发送数据之前均执行一次实施例3中确定时间参数的步骤和步骤S401,或者,数据的发送端也可以先执行实施例3中确定时间参数的步骤和步骤S401,后续每次发送数据,都使用步骤S401获取N比特数据包含的2N个不同数值与时间间隔的对应关系,以对待发送的数据进行编码,或者,也可以设置一个有效期限,在该有效期限内发送数据,均使用步骤S401获取N比特数据包含的2N个不同数值与时间间隔的对应关系,以对待发送的数据进行编码。或者,也可以按照事件触发的方式,每接收到一次事件触发,例如,用户输入当前数据传输的时间参数,计算一次N比特数据包含的2N个不同数值与时间间隔的对应关系。具体本实施例不作限定。

作为本发明的一个可选实施方式,将数据比特串进行分组,每组数据为N比特可以采用多种方式进行分组,可以采用每组包括1比特的方式进行分组,也可以采用每组包括2比特的方式进行分组,当数据比特串包括单数时,由于无法按照2比特进行完全分组,可以对数据比特串进行补0后再进行分组,此时,数据的发送端和数据的接收端预先设定或者协商好补0的方式,当从数据的高位开始发送数据比特串时,在比特串的末位补0,当从数据的低位开始发送数据比特串时,在比特串的高位补0。当然,每组包括3比特及以上的情况可以参照每组包括2比特的方式进行分组,在此不再赘述。

步骤S404,根据获取的所述对应关系,以每组数据的数值对应的时间间隔表示该组数据的方式发送该组数据。

在本实施例中,每组数据的数值可以对应一个时间间隔,也可以对应多个相同的时间间隔。例如,参照图2,一组数据中包含2比特,该组数据的数值可以为00、01、10和11,当该组数据的数值为00时,可以以1个时间间隔表示数值00,此时该1个时间间隔对应的时间长度可以为etu,即该组数据00的表达方式可以为1个例如10μs的时间间隔,该组数据为00时,也可以5个时间间隔表示数值00,此时该5个时间间隔中每个时间间隔的时间长度可以为etu,即该组数据00的表达方式可以为5个时间间隔相同的信号,每个时间间隔为10μs的时间间隔。采用每组数据的数值对应一个时间间隔,数据传输速度快,效率高。采用每组数据的数值对应多个时间间隔,可准确判断该时间间隔对应的数值,防止数据传输过程中的丢失时间间隔导致的错误。

在本实施例的一个可选实施方式中,对于每组数据,在发送该组数据时,可以产生并发送M个信号,其中,每个信号的开始时刻与相邻的上一个信号的开始时刻的时间间隔为该组数据的数值对应的时间间隔,M≥1且M为自然数。采用信号的方式产生的时间间隔,有着易于检测和稳定性高的效果。

可选地,可以按照时间间隔产生M次低电平脉冲的方式产生M个信号,也可以是按照时间间隔产生M次高电平脉冲的方式产生M个信号。该低电平脉冲/高电平脉冲可以采用方波、正弦波、三角波等可区分高低电平脉冲的波形表示,在此不作限制。优选采用按照时间间隔产生低电平脉冲,在发送端与接收端通信时,发送端可使用高电平为接收端进行供电,通过低电平脉冲的方式传输信息。采用该方法的设备,在进行信息交互时,可使用同一根线同时完成供电和信息发送,减小了设备体积和制造成本。

在本实施例的一个可选实施方式中,在步骤S404之后,为了满足当前数据传输的速率,还可以更换时间参数,即在步骤S404之后还包括:可以按照预设规则,将当前使用的时间参数替换为新的时间参数,将新的时间参数作为当前数据传输的时间参数;按照当前数据传输的时间参数更新对应关系;在后续的数据发送过程中,利用更新后的对应关系进行数据传输。在本实施方案中,新的时间参数的确定可以通过发送端和接收端的协商完成,也可以通过发送端和接收端查找预先存储的时间参数表完成,如在发送某种类型数据时查表确定该类型的数据应该使用的时间参数。发送端的时间参数是可以变化的,可以匹配不同数据处理能力的接收端,或匹配不同类型的数据,可进一步提高数据处理的效率。

在本实施例的一个可选实施方式中,步骤S404中完成发送最后一组数据之后,还可包括:发送校验数据,通过该校验数据,数据接收端可判断接收数据是否完整正确。校验数据包括但不限于通过MAC校验、奇偶校验、取和校验等校验方式计算出的校验数据。

在本实施例的一个可选实施方式中,步骤S404中完成发送最后一组数据比特之后,或步骤S404中完成发送最后一组数据之后,在发送校验数据之前,还可包括:发送A个结束信号(A≥1且为整数),结束信号可以与握手信号相同,也可以不同,通过该结束信号,接收端可判断数据比特是否接收结束。

由上述本发明实施例提供的技术方案可以看出,发送端可以根据发送波形的时间间隔表示发送波形的数据,可以仅使用两线完成数据的发送,适用在电子设备中时,可以有效减小电子设备的体积。

下面以待发送的比特串为0011100100,N=2,对本发明实施例提供的数据发送方法进行简单举例说明:

实施例1和实施例3中,确定当前传输的时间参数,可选的,可确定出两个时间参数,第一时间参数etu和第二时间参数pdt,其中etu=10μs,pdt=30μs,在本发明实施例中,时间参数为数据发送占用的时间长度。时间参数的个数与N并不存在对应关系,仅与接收端一致即可,本实施例并不对时间参数的具体个数作限制,只要能表达出数据比特的数值对应的时间间隔即可。

步骤S401中,按照时间参数获取N比特数据包含的2N个不同数值与时间间隔的对应关系。如,在N=2时,按照时间参数获取2比特数据包含的4个不同数值与时间间隔的对应关系,即可以为00=etu,01=etu+pdt,10=etu+2pdt,11=etu+3pdt,在本发明中,可以采用时间参数的多种组合形式表达2比特数据的数值对应的时间间隔,并不局限于此。

步骤S402中,获取当前待发送的数据比特串0011100100;

步骤S403中,将数据比特串0011100100进行分组,每组数据为2比特,即:0011100100;

步骤S404中,根据获取的对应关系,以每组数据的数值对应的时间间隔表示该组数据的方式发送该组数据。在本实施例中,每组数据的数值可以对应一个时间间隔,也可以对应多个相同的时间间隔,如00可以对应一个etu的时间间隔(例如10μs),并在一个信号后以该时间间隔发送另一个信号,这样形成的etu的时长表示数值00;当然,00也可以对应三个etu的时间间隔(例如每个时间间隔为10μs),并在一个信号后以etu的时间间隔连续发送三个信号,接收端只有接收到这样相同的三个时长才会认为接收到了数值00。在使用多个相同的时间间隔表示每组数据比特时,时间间隔的个数发送端和接收端一致即可,具体本实施例不作限制。

本实施例中,可以按照数据比特串的顺序以etu的时间间隔表示发送数值00,etu+3pdt的时间间隔表示发送数值11,etu+2pdt的时间间隔表示发送数值10,etu+pdt的时间间隔表示发送数值01,etu的时间间隔表示发送数值00。以每组数据的数值对应一个时间间隔为例,发送数据比特串0011100100的波形如图5所示,通过各个信号之间的时间间隔,完成该数据比特串的发送。

下面以待发送的比特串为0011100100,N=1,对本发明实施例提供的数据发送方法进行简单举例说明:

实施例1和实施例3中,确定当前传输的时间参数,可选的,可确定出两个时间参数,第一时间参数etu和第二时间参数pdt,其中etu=10μs,pdt=30μs。时间参数的个数与N并不存在对应关系,本实施例并不对时间参数的具体个数作限制,只要能表达出数据比特的数值对应的时间间隔即可。

步骤S401中,按照时间参数获取N比特数据包含的2N个不同数值与时间间隔的对应关系。如,在N=1时,按照时间参数获取1比特数据包含的2个不同数值与时间间隔的对应关系,即可以是,0=etu,1=pdt,在本发明中,可以采用时间参数的多种组合形式表达1比特数据的数值对应的时间间隔,并不局限于此。

步骤S402中,获取当前待发送的数据比特串0011100100;

步骤S403中,将数据比特串0011100100进行分组,每组数据包含1比特,即:0 0 1 1 1 0 0 1 0 0;本步骤也可省略。

步骤S404中,根据获取的对应关系,以每组数据的数值对应的时间间隔表示该组数据的方式发送该组数据。在本实施例中,每组数据的数值可以对应一个时间间隔,也可以对应多个相同的时间间隔,如0可以对应一个etu的时间间隔(例如10μs),并在一个信号后以该时间间隔发送另一个信号,这样形成的etu的时长表示数值0;当然,0也可以对应三个etu的时间间隔(例如每个时间间隔为10μs),并在一个信号后以etu的时间间隔连续发送三个信号,接收端只有接收到这样相同的三个时长才会认为接收到了数值0。

本实施例中,可以按照数据比特串的顺序发送每组数据,即各个信号的时间间隔分别为etu的时间间隔,etu的时间间隔,pdt的时间间隔,pdt的时间间隔,pdt的时间间隔,etu的时间间隔,etu的时间间隔,pdt的时间间隔,etu的时间间隔,etu的时间间隔。以每组数据的数值对应一个时间间隔为例,发送数据比特串0011100100的波形如图6所示,通过各个信号之间的时间间隔,完成该数据比特串的发送。

下面以待发送的比特串为0011100100,N=3,对本发明实施例提供的数据发送方法进行简单举例说明:

实施例1和实施例3中,确定当前传输的时间参数,可选的,可确定出两个时间参数,第一时间参数etu和第二时间参数pdt,其中etu=10μs,pdt=30μs。时间参数的个数与N并不存在对应关系,本实施例并不对时间参数的具体个数作限制,只要能表达出数值对应的时间间隔即可。

步骤S401中,按照时间参数获取N比特数据包含的2N个不同数值与时间间隔的对应关系。如,在N=3时,按照时间参数获取3比特数据包含的8个不同数值与时间间隔的对应关系,例如,000=etu,001=etu+pdt,010=etu+2pdt,011=etu+3pdt,100=etu+4pdt,101=etu+5pdt,110=etu+6pdt,111=etu+7pdt,在本发明中,可以采用时间参数的多种组合形式表达3比特数据的数值对应的时间间隔,并不局限于此。

步骤S402中,获取当前待发送的数据比特串0011100100;

步骤S403中,将数据比特串0011100100进行分组,每组数据为3比特,在本实施例中,当获取的数据比特串不是每组包含的比特数的整数倍时,对数据比特串的进行补零操作,当数据比特串的发送顺序为从低位到高位发送,则高位补零分组为:000 011 100 100,当数据比特串的发送顺序为从高位至低位发送,则低位补零分组为001 110 010 000。

步骤S404中,根据获取的对应关系,以每组数据的数值对应的时间间隔表示该组数据的方式发送该组数据。在本实施例中,每组数据的数值可以对应一个时间间隔,也可以对应多个相同的时间间隔。

本实施例中,如按照数据比特串的从低位至高位的顺序发送每组数据比特,即发送etu+4pdt的时间间隔的信号,etu+4pdt的时间间隔的信号,etu+3pdt的时间间隔的信号,etu的时间间隔的信号。以每组数据的数值对应一个时间间隔为例,发送数据比特串0011100100的波形如图7所示,通过各个信号之间的时间间隔,完成该数据比特串的发送。当然,如果从高位只低位的顺序发送每组数据比特,只需要在低位补零即可,数据发送的方式采用与低位至高位的类似,只是采用从高位开始的数值对应的时间间隔依次发送信号,在此不再赘述。

当N≥4时,可参照N=2或N=3时的数据发送方法,发送数据。

当N=1.5时,可参照N=2时的数据发送方法,发送数据,不同之处在于:

使用至少2个时间间隔对应3比特数据中的数值,即当N的取值为非整数时,可使用多个时间间隔对应B比特数据中的不同数值,其中,B是N的整数倍,B为正整数。

实施例5

本实施例提供一种数据处理设备,如图8所示,该数据处理设备包括:接收模块、判断模块、时间处理模块和数据处理模块,其中,

接收模块,用于接收K个信号;

K为预先设定值,K≥3且K为奇数,例如预先设定K=5,那么当接收模块累计接收到5个信号时,则判断模块、时间处理模块和数据处理模块对接收到的5个信号进行处理,本实施例提供的数据处理设备可以通过该K个信号之间的时间间隔的关系判断出是否可以开始接收数据,即,如果满足预设关系在K个信号之后开始接收数据,可以将该K个信号视为指示开始接收数据的握手信号;其中,信号可以为脉冲信号,即接收到的是高电平脉冲信号(上升沿信号),或者是低电平脉冲信号(下降沿信号),脉冲信号可以为方波、正弦波、三角波或其他不规则波形,也可以是上述不同波形的组合。

在本实施例中,接收模块,用于接收K个信号,包括以下方式至少之一:

方式一:接收模块检测到K次低电平脉冲;

在该方式中,接收模块可以检测到连续高电平中的K次低电平脉冲,例如,在接收模块检测到高电平一段时间后,检测到1次低电平脉冲,然后又恢复检测到高电平的状态,在经过一段时间后,又检测到1次低电平脉冲,接收模块以这样的方式可以连续检测到K次低电平脉冲;

方式二:接收模块检测到K次高电平脉冲;

在该方式中,接收模块可以检测到连续低电平中的K次高电平脉冲,例如,在接收模块检测到低电平一段时间后,检测到1次高电平脉冲,然后又恢复检测到低电平的状态,在经过一段时间后,又检测到1次高电平脉冲,接收模块以这样的方式可以连续检测到K次高电平脉冲;

在上述方式中,K个信号属于跳变信号,且跳变幅度明显,便于与噪声信号进行区分。

判断模块,用于检测K个信号中每相邻两个之间的时间间隔,

在本实施例中,当接收模块连续接收到K个信号后,判断模块检测K个信号中每相邻两个信号之间的时间间隔,可选地,当K个信号为连续高电平中的K个低电平信号时,判断模块确定第p个低电平信号的起始时刻至第p+1个低电平信号的起始时刻之间的时长为第p个和第p+1个信号之间的时间间隔;同样地,当K个信号为连续低电平中的K个高电平信号时,判断模块确定第p个高电平信号的起始时刻至第p+1个高电平信号的起始时刻之间的时长为第p个和第p+1个信号之间的时间间隔;其中,1≤p≤K-1,且p为自然数;作为一种可选的实施方式,判断模块通过检测每个脉冲信号的起始时刻,从而准确迅速地获得相邻两个信号起始时刻之间的时间间隔。

判断模块,还用于判断第一时间间隔与第二时间间隔之间是否满足预设关系,

作为本实施例一种可选的实施方式,第一时间间隔可以为第i个信号的开始时刻与第i-1个信号的开始时刻之间的时间间隔,第二时间间隔可以为第i个信号的开始时刻与第i+1个信号的开始时刻之间的时间间隔,其中,i=2,4,……,2j,j=(K-1)/2,K≥3且K为奇数;示例性的,当K=5时,5个信号中每相邻两个之间共会产生4个时间间隔,当i=2时,第一时间间隔为第一个信号与第二个信号开始时刻之间的时间间隔,标记为t0,第二时间间隔为第二个信号与第三个信号开始时刻之间的时间间隔,标记为t1;当i=4时,第一时间间隔为第三个信号与第四个信号开始时刻之间的时间间隔,标记为t2,第二时间间隔为第四个信号与第5个信号开始时刻之间的时间间隔,标记为t3。判断第一时间间隔与第二时间间隔之间是否满足预设关系即指,判断t0与t1之间,以及t2与t3之间是否同时满足预设关系,该预设关系可以根据技术人员的经验确定,或者根据实际运行时的参数确定,只要保证满足这样的预设关系,就可以确定该K个信号为指示开始接收数据的握手信号。作为一种可选的实施方式,预设关系可以为t1=a*t0且t3=a*t2;或者,t1=(a+b)*t0且t3=(a+b)*t2;或者,t1=(c*a+b)*t0且t3=(c*a+b)*t2,其中,a、b、c为≥1的自然数,例如,a=2,该预设关系可以是多种,此处不再赘述;当判断模块判定第一时间间隔与第二时间间隔满足预设关系时,即可判定K个信号为有效的握手信号。

时间处理模块,用于确定第一时间间隔组和/或第二时间间隔组,第一时间间隔组包括j个第一时间间隔,第二时间间隔组包括j个第二时间间隔,j=(K-1)/2,K≥3且K为奇数;

当i取值不同时,时间处理模块根据K个信号产生的K-1个时间间隔将产生一系列的第一时间间隔和第二时间间隔,时间处理模块可以从多个不同的第一时间间隔中选取至少1个成为第一时间间隔组,同样的,时间处理模块也可以从多个不同的第二时间间隔中选取至少1个成为第二时间间隔组,例如,K=5时,5个信号中产生第一时间间隔t0、t2,以及第二时间间隔t1、t3,此时,时间处理模块可以取t0、t2作为第一时间间隔组,取t1、t3作为第二时间间隔组,本实施例并不限制第一时间间隔组以及第二时间间隔组中时间间隔的个数,均为j个,至少有一个即可,时间处理模块通过这样的方式可以确定第一时间间隔组和/或第二时间间隔组,便于对时间间隔进行分类处理。

若第一时间间隔与第二时间间隔满足预设关系,时间处理模块则根据第一时间间隔组中的至少一个第一时间间隔和/或所述第二时间间隔组中的至少一个第二时间间隔确定当前数据传输的时间参数;

其中,时间处理模块则根据第一时间间隔组中的至少一个第一时间间隔和/或所述第二时间间隔组中的至少一个第二时间间隔确定当前数据传输的时间参数,具体为:时间处理模块根据第一时间间隔组中的至少两个第一时间间隔,或根据第二时间间隔组中的至少两个第二时间间隔,或根据第一时间间隔组中的至少一个第一时间间隔以及第二时间间隔组中的至少一个第二时间间隔,按照与数据发送端预先约定的时间参数生成规则,且第一时间间隔和第二时间间隔不相邻。

在本实施例中,在确定的第一时间间隔组和第二时间间隔组中,当第i个信号与第i-1个信号之间的第一时间间隔与第i个信号与第i+1个信号之间的第二时间间隔均满足预设关系时,可以判定K个信号为有效的握手信号,此时,时间处理模块根据第一时间间隔组中的至少两个第一时间间隔,或根据第二时间间隔组中的至少两个第二时间间隔,或根据第一时间间隔组中的至少一个第一时间间隔以及第二时间间隔组中的至少一个第二时间间隔,按照与数据发送端预先约定的时间参数生成规则,且第一时间间隔和第二时间间隔不相邻,确定当前数据传输的时间参数,其中,预先约定的时间参数生成规则在保证每个数据比特编码方式唯一的前提下,可以选择任意种类的方式进行时间参数的确定;

例如,当K=5时,5个信号中相邻两个之间共会产生4个时间间隔,当i=2时,第一时间间隔为第一个信号与第二个信号开始时刻之间的时间间隔,标记为t0,第二时间间隔为第二个信号与第三个信号开始时刻之间的时间间隔,标记为t1;当i=4时,第一时间间隔为第三个信号与第四个信号开始时刻之间的时间间隔,标记为t2,第二时间间隔为第四个信号与第5个信号开始时刻之间的时间间隔,标记为t3;以此为例,下面对根据第一时间间隔组中的至少一个第一时间间隔和/或所述第二时间间隔组中的至少一个第二时间间隔确定当前数据传输的时间参数的方式做详细描述。

作为本实施例的一种可选实施方式,时间处理模块选取t0和t2作为第一时间间隔组,根据第一时间间隔组确定当前数据传输的时间参数,时间参数包括第一时间参数etu和第二时间参数pdt,etu和pdt由t0和t2唯一表示,etu和pdt的值可根据t0和t2的值通过任意计算方式获得,示例性的,etu和pdt可采用以下任意一种计算方式获得,当然,并不限于以下计算方式:

etu=t0,pdt=(t0-t2)/5;

etu=t0+t2,pdt=(t0+t2)/10;

etu=t0+t2/2,pdt=(t0-t2)/5;

etu=t2,pdt=(t0-t2)/15;

........

作为本实施例的另一种可选实施方式,时间处理模块选取t0作为第一时间间隔组,根据第一时间间隔组确定当前数据传输的时间参数,时间参数包括第一时间参数etu和第二时间参数pdt,etu和pdt由t0唯一表示,etu和pdt的值可根据t0的值通过任意计算方式获得,示例性的,etu和pdt可采用以下任意一种计算方式获得,当然,并不限于以下计算方式:

etu=t0,pdt=t0/5;

etu=2*t0,pdt=t0/10;

etu=t0/2,pdt=t0/5;

etu=t0/3,pdt=t0/15;

........

作为本实施例的另一种可选实施方式,时间处理模块选取t1和t3作为第二时间间隔组,根据第二时间间隔组确定当前数据传输的时间参数,时间参数包括第一时间参数etu和第二时间参数pdt,etu和pdt由t1和t3唯一表示,etu和pdt的值可根据t1和t3的值通过任意计算方式获得,示例性的,etu和pdt可采用以下任意一种计算方式获得,当然,并不限于以下计算方式:

etu=t1,pdt=(t1-t3)/5;

etu=t1+t3,pdt=(t1+t3)/10;

etu=t1+t3/2,pdt=(t1-t3)/5;

etu=t3,pdt=(t1-t3)/15;

........

作为本实施例的另一种可选实施方式,时间处理模块选取t1作为第二时间间隔组,根据第二时间间隔组确定当前数据传输的时间参数,时间参数包括第一时间参数etu和第二时间参数pdt,etu和pdt由t1唯一表示,etu和pdt的值可根据t1的值通过任意计算方式获得,示例性的,etu和pdt可采用以下任意一种计算方式获得,当然,并不限于以下计算方式:

etu=t1,pdt=t1/5;

etu=2*t1,pdt=t1/10;

etu=t1/2,pdt=t1/5;

etu=t1/3,pdt=t1/15;

........

当K=3时,3个信号中相邻两个之间共会产生2个时间间隔,当i=2时,第一时间间隔为第一个信号与第二个信号开始时刻之间的时间间隔,标记为t0,第二时间间隔为第二个信号与第三个信号开始时刻之间的时间间隔,标记为t1;以此为例,下面对根据所述第一时间间隔组中的至少一个第一时间间隔和/或所述第二时间间隔组中的至少一个第二时间间隔确定当前数据传输的时间参数的方式做详细描述,

作为本实施例的另一种可选实施方式,选取t0作为第一时间间隔组,根据第一时间间隔组确定当前数据传输的时间参数,时间参数包括第一时间参数etu和第二时间参数pdt,etu和pdt由t0唯一表示,etu和pdt的值可根据t0的值通过任意计算方式获得,示例性的,etu和pdt可采用以下任意一种计算方式获得,当然,并不限于以下计算方式:

etu=t0,pdt=t0/5;

etu=2*t0,pdt=t0/10;

etu=t0/2,pdt=t0/5;

etu=t0/3,pdt=t0/15;

........

作为本实施例的另一种可选实施方式,选取t1作为第二时间间隔组,根据第二时间间隔组确定当前数据传输的时间参数,时间参数包括第一时间参数etu和第二时间参数pdt,etu和pdt由t1唯一表示,etu和pdt的值可根据t1的值通过任意计算方式获得,示例性的,etu和pdt可采用以下任意一种计算方式获得,当然,并不限于以下计算方式:

etu=t1,pdt=t1/5;

etu=2*t1,pdt=t1/10;

etu=t1/2,pdt=t1/5;

etu=t1/3,pdt=t1/15;

........

同样地,当K=7时,7个信号相邻两个之间共会产生6个时间间隔,当i=2时,第一时间间隔为第一个信号与第二个信号开始时刻之间的时间间隔,标记为t0,第二时间间隔为第二个信号与第三个信号开始时刻之间的时间间隔,标记为t1;当i=4时,第一时间间隔为第三个信号与第四个信号开始时刻之间的时间间隔,标记为t2,第二时间间隔为第四个信号与第五个信号开始时刻之间的时间间隔,标记为t3;当i=6时,第一时间间隔为第五个信号与第六个信号开始时刻之间的时间间隔,标记为t5,第二时间间隔为第六个信号与第七个信号开始时刻之间的时间间隔,标记为t6;此时,时间处理模块可选取t0、t2和t5作为第一时间间隔组,也可选取t1、t3和t6作为第二时间间隔组,时间处理模块根据第一时间间隔组中的至少两个第一时间间隔确定当前数据传输的时间参数,根据第二时间间隔组中的至少两个第二时间间隔确定当前数据传输的时间参数,也可根据第一时间间隔组中的至少一个第一时间间隔和第二时间间隔组中的至少一个第二时间间隔共同确定当前数据传输的时间参数,且第一时间间隔和第二时间间隔不相邻,时间参数etu和pdt的获取方式并不唯一,时间处理模块可采用不同的计算方式通过第一时间间隔组和/或第二时间间隔组任意获取,具体获取方式可参考K=5时的方案,在此不再赘述;

当K=3时,3个信号中相邻两个之间共会产生2个时间间隔,当i=2时,第一时间间隔为第一个信号与第二个信号开始时刻之间的时间间隔,标记为t0,第二时间间隔为第二个信号与第三个信号开始时刻之间的时间间隔,标记为t1;以此为例,下面对根据所述第一时间间隔组中的至少一个第一时间间隔和/或所述第二时间间隔组中的至少一个第二时间间隔确定当前数据传输的时间参数的方式做详细描述,

作为本实施例的另一种可选实施方式,选取t0作为第一时间间隔组,根据第一时间间隔组确定当前数据传输的时间参数,时间参数包括第一时间参数etu和第二时间参数pdt,etu和pdt由t0唯一表示,etu和pdt的值可根据t0的值通过任意计算方式获得,示例性的,etu和pdt可采用以下任意一种计算方式获得,当然,并不限于以下计算方式:

etu=t0,pdt=t0/5;

etu=2*t0,pdt=t0/10;

etu=t0/2,pdt=t0/5;

etu=t0/3,pdt=t0/15;

...

作为本实施例的另一种可选实施方式,选取t1作为第二时间间隔组,根据第二时间间隔组确定当前数据传输的时间参数,时间参数包括第一时间参数etu和第二时间参数pdt,etu和pdt由t1唯一表示,etu和pdt的值可根据t1的值通过任意计算方式获得,示例性的,etu和pdt可采用以下任意一种计算方式获得,当然,并不限于以下计算方式:

etu=t1,pdt=t1/5;

etu=2*t1,pdt=t1/10;

etu=t1/2,pdt=t1/5;

etu=t1/3,pdt=t1/15;

........

本实施例中上述确定当前数据传输的时间参数的具体实施方式仅为示例性实施方式,本发明并不排除其他时间参数生成规则以根据第一时间间隔组中的至少两个第一时间间隔,或根据第二时间间隔组中的至少两个第二时间间隔,或根据第一时间间隔组中的至少一个第一时间间隔以及第二时间间隔组中的至少一个第二时间间隔,确定当前数据传输的时间参数的实施方式。

本实施例中时间处理模块通过第一时间间隔组和/或第二时间间隔组来确定时间参数etu和pdt,从而保证每次数据传输时,发送端与接收端对etu和pdt的取值保持一致,保证了每次数据传输的稳定性与准确性,由于每次数据传输之前接收端都会根据发送端发送的握手信息重新确定时间参数etu和pdt的值,避免了频率差异因多个字符的连续加收而造成误差累计,有效防止当发送时钟和接收时间参数差异太大时,引起接收端采样错位,造成接收错误,通讯效率降低的问题。

作为本实施例一种可选的实施方式,若第一时间间隔与第二时间间隔满足预设关系不满足上述预设关系,则指示接收模块继续接收握手信号。

数据处理模块,用于按照时间参数接收数据;

作为本实施例一种可选的实施方式,接收模块,还用于接收X个信号,确定X个信号中每相邻两个信号的起始时刻之间的时间间隔,得到X-1个时间间隔,其中,X为正整数,且X>1;数据处理模块,还用于按照时间参数接收这X个信号,具体地,数据处理模块,用于获取X-1个时间间隔中每连续S个时间间隔中单个时间间隔对应的N个数据比特,得到S个时间间隔传输的数据比特,得到的S个时间间隔传输的数据比特为获取的N个数据比特,其中,在S>1的情况下,S个时间间隔相同,其中,X和S均为正整数,且S≤X-1。

作为本实施例一种可选的实施方式,当获取数据接收端可采用与数据发送端预先协商确定的计算方法根据当前数据传输的时间参数确定数据比特,如当前数据接收端与数据发送端预先协商确定的计算方法为,当N=n时,发送数据比特m的时间间隔的计算方法为m=etu+m*pdt(其中,0≤m≤2n-1,etu为第一时间参数,pdt为第二时间参数,etu=10μs,pdt=30μs),即数据比特11的时间间隔计算方法为10μs+3*30μs=100μs。若数据接收装置接收到100μs的时间间隔,可计算出m为3,即该时间间隔对应的数据比特为11。

作为本实施例一种可选的实施方式,数据处理模块根据第一时间参数etu和第二时间参数pdt,按照与数据发送端预先约定的编解码规则,进行数据接收;数据处理模块按照时间参数接收数据包括:按照所述时间参数获取N比特数据包含的2N个不同数值与时间间隔的对应关系,其中,不同数值对应的时间间隔不同,其中,N≥1;

数据处理模块根据第一时间参数etu与第二时间参数pdt,按照与数据发送端预先约定的编解码规则,获取N比特数据包含的2N个不同数值与时间间隔的对应关系,预先约定的编解码规则可以为能够保证不同数值的N个数据比特对应唯一时间间隔的任意方式,示例性地:

当N=1时,不同数值的N个数据比特包括:0、1,此时,

0=etu,1=etu+pdt,且etu≠etu+pdt,或,

0=2etu,1=etu+2pdt,且2etu≠etu+2pdt,

……

当N=2时,不同数值的N个数据比特包括:00、01、10、11,此时,

00=etu,01=etu+pdt,10=etu+2pdt,11=etu+3pdt,且etu≠etu+pdt≠etu+2pdt≠etu+3pdt,或,

00=2etu,01=etu+2pdt,10=etu+2.5pdt,11=1.3etu+3pdt,

且2etu≠etu+2pdt≠etu+2.5pdt≠1.3etu+3pdt,

……

同样地,当N=3时,不同数值的N个数据比特包括:000、001、010、011、100、101、110、111,此时,根据第一时间参数etu与第二时间参数pdt,按照与数据发送端预先约定的编解码规则,得到N比特数据包含的2N个不同数值对应的时间间隔,预先约定的编解码规则可参照上述示例,在此不再赘述。

数据处理模块按照与数据发送端预先约定的方式,根据第一时间参数etu和第二时间参数pdt得到N比特数据包含的2N个不同数值对应的时间间隔,其中,不同数值对应的时间间隔不同,从而区分接收到的不同的时间间隔所对应的不同数据比特,实现通过接收到的时间间隔来获取发送端发送的数据。

在本实施例的一个可选实施方式中,时间处理模块,还用于在数据处理模块获取传输的数据之前,按照时间参数得到不同数值的N比特对应的时间间隔,其中,不同数值的N比特对应的时间间隔不同,N≥1;

可选地,数据接收端可采用与数据发送端预先协商确定的计算方法计算该数据比特的时间间隔,如当N=n,发送数据比特m的时间间隔的计算方法为m=etu+m*pdt(其中,0≤m≤2n-1,etu为第一时间参数,pdt为第二时间参数,etu=10μs,pdt=30μs),即数据比特11的时间间隔计算方法为10μs+3*30μs=100μs,也可以采用其他预先协商的计算方法确定时间间隔,本实施对此不做具体限制。通过预先协商的计算方法计算得出该数据比特的时间间隔,可保证数据传输的可扩展性,即不论N的取值是多少,数据发送端和数据接收端均可计算得出数据比特的时间间隔。

作为本发明实施例的另一个可选实施方式。数据接收端也可采用与数据发送端预先存储的列表来确定该数据比特的时间间隔,数据处理模块可以采用查找列表的方式确定该数据比特的时间间隔,可提高得到数据比特时间间隔的效率。

在本实施例的一个可选实施方式中,X-1=n*S,n≥1且n为整数,采用这种可选实施方式,X个信号刚好可以传输n*S个数据比特,而不会出现多余的信号导致无法解码的问题。

在本实施例的一个可选实施方式中,如图9所示,数据处理设备还包括时间参数更新模块,可以用于更换时间参数,即按照预设规则,将当前使用的时间参数替换为新的时间参数,将新的时间参数作为当前数据传输的时间参数;数据处理模块,还用于根据重新获取的不同数值的N比特对应的时间间隔对接收到的X个信号进行解码,即按照当前使用的时间参数,获取X-1个时间间隔中每连续S个时间间隔中单个时间间隔对应的N比特,得到S个时间间隔传输的数据比特,得到的S个时间间隔传输的数据比特为获取的N比特。在本实施方案中,新的时间参数的确定可以通过数据发送端和数据接收端的协商完成,也可以通过数据发送端和数据接收端查找预先存储的时间参数表完成,如在发送某种类型数据时查表确定该类型的数据应该使用的时间参数。数据发送端的时间参数是可以变化的,可以匹配不同数据处理能力的数据接收装置,或匹配不同类型的数据,可进一步提高数据处理的效率。

在本实施例的一个可选实施方式中,在接收模块,还用于在完成接收最后一个数据比特之后,还可以接收A个结束信号(Z≥1且为整数),结束信号可以与握手信号相同,也可以是其他特定格式的信号,通过该结束信号,数据处理模块可判断数据比特是否接收结束。

在本实施例的一个可选实施方式中,在接收模块,还用于在完成接收最后一个数据比特之后,或完成接收A个结束信号之后,而接收模块,还用于接收校验数据比特,通过该校验数据比特,判断接收数据是否完整正确。校验数据比特包括通过MAC校验、奇偶校验、取和校验等校验方式计算出的校验数据。

在本实施例的一个可选实施方式中,如图9所示,数据处理设备还包括滤波模块,用于接收Z个信号,去除Z个信号中的干扰,得到X个信号并发送至接收模块,其中Z≥X。

由上述本发明实施例提供的技术方案可以看出,数据处理模块可以根据接收波形的时间间隔确定接收波形的数据比特,可以仅使用两线完成数据的接收,适用在电子设备中时,可以有效减小电子设备的体积。

此外,作为本实施例的一种可选实施方式,如图9所示,本实施例中的数据处理设备还包括:数据发送模块,其中,数据发送模块,用于在数据处理模块按照时间参数接收数据之后,按照时间参数进行数据发送;具体地,数据发送模块的具体结构,以及数据发送模块按照时间参数进行数据发送的实现方式,请参照实施例7中图11对数据发送模块的详细描述。

本实施例提供的数据处理模块通过每次接收数据之前根据握手信息重新确定时间参数,保证发送端和接收端的时间参数始终保持一致,保证数据传输的稳定性与准确性;信号采用脉冲信号进行传输,便于与噪声信号进行区分;通过检测每个信号触发的上升沿或下降沿,可以容易地获取每个信号的起始时刻,从而准确迅速地获得相邻两个信号起始时刻之间的时间间隔,根据获取到的时间间隔判断信号间的时间间隔是否满足预设关系,判断接收到的信号是否为有效的握手信号,使得判断过程准确迅速,且成功率高,根据第一时间间隔和/或第二时间间隔确定第一时间间隔组和/或第二时间间隔组,并通过第一时间间隔组和/或第二时间间隔组来确定时间参数etu和pdt,从而保证每次数据传输时,发送端与接收端对etu和pdt的取值保持一致,保证了每次数据传输的稳定性与准确性,由于每次数据传输之前接收端都会根据发送端发送的握手信息重新确定时间参数etu和pdt的值,避免了频率差异因多个字符的连续加收而造成误差累计,有效防止当发送时钟和接收时间参数差异太大时,引起接收端采样错位,造成接收错误,通讯效率降低的技术问题。

实施例6

本实施例提供一种数据处理设备,如图10所示,该数据处理设备包括:第二时间参数模块、第二时间处理模块、第二信号产生发送模块;

其中,所述第二时间参数模块,用于确定时间参数;

作为本实施例中一种可选的实施方式,时间参数可以包括第一时间参数和/或第二时间参数,为了便于说明,本实施例中将第一时间参数记为etu,将第二时间参数记为pdt,第一时间参数etu和第二时间参数pdt均代表一段时间值,例如etu=0.1秒,pdt=0.01秒,该值由数据发送端与接收端协商确定,利用该时间参数可以确定发送握手信号的时间间隔,接收端可以根据接收到的握手信号确定,当然,可以只有一个时间参数,也可以有多个时间参数,本实施例中为例便于描述,仅以2个时间参数为例,利用2个时间参数确定第一时间间隔组和第二时间间隔组,但并不排除多个时间参数的情况。

所述第二时间处理模块,用于根据所述时间参数确定第一时间间隔组与第二时间间隔组,其中,所述第一时间间隔组包括j个第一时间间隔,所述第二时间间隔组包括j个第二时间间隔;

作为本实施例中一种可选的实施方式,第一时间间隔是指在第二信号产生发送模块发送K个握手信号时,第i个信号的开始时刻与第i-1个信号的开始时刻之间的时间间隔,记做Ti-1,i,第二时间间隔是指发送K个握手信号时,第i个信号的开始时刻与第i+1个信号的开始时刻之间的时间间隔,记做Ti,i+1,其中,i=2,4,……,2j,j=(K-1)/2,K≥3且K为奇数。

在本实施例中,需要说明的是,首先,第一时间间隔组中的第一时间间隔Ti-1,i与第二时间间隔组中的第二时间间隔Ti,i+1满足一定的预设关系,通过该预设关系可以保证握手信号的有效性,以使接收端在接收到该握手信号后,可以根据第一时间间隔Ti-1,i和第二时间间隔Ti,i+1的预设关系,判断出该握手信号是用于指示开始接收数据的信号;其次,第一时间间隔组中的各个第一时间间隔Ti-1,i与第一时间参数etu和/或第二时间参数pdt满足一定的预设关系,以使得接收端在接收到该握手信号后,可以根据相同的预设关系通过接收到的多个第一时间间隔计算得到第一时间参数etu和/或第二时间参数pdt,以使得接收端可以根据第一时间参数etu和/或第二时间参数pdt计算得到传输的时间间隔对应的比特数据。

在本实施例中,第一时间间隔组中的第一时间间隔Ti-1,i与第二时间间隔组中的第二时间间隔Ti,i+1满足一定的预设关系可以包括很多种,而第一时间间隔组中的各个第一时间间隔Ti-1,i与第一时间参数etu和/或第二时间参数pdt满足一定的预设关系也包括多种,下面,以示例性的方式做出详细解释。

作为本实施例的一种可选实施方式,以K=5为例,5个信号中每相邻两个之间共会产生4个时间间隔,当i=2时,第一时间间隔T1,2为第一个信号与第二个信号开始时刻之间的时间间隔,标记为t0,第二时间间隔T2,3为第二个信号与第三个信号开始时刻之间的时间间隔,标记为t1;当i=4时,第一时间间隔T3,4为第三个信号与第四个信号开始时刻之间的时间间隔,标记为t2,第二时间间隔T4,5为第四个信号与第5个信号开始时刻之间的时间间隔,标记为t3。此时,t0、t2为第一时间间隔组,取t1、t3为第二时间间隔组,第一时间间隔与第二时间间隔之间满足预设关系即指,t0与t1之间,以及t2与t3之间同时满足预设关系,该预设关系可以根据技术人员的经验确定,或者根据实际运行时的参数确定。作为一种可选的实施方式,预设关系可以为t1=a*t0且t3=a*t2;或者,t1=(a+b)*t0且t3=(a+b)*t2;或者,t1=(c*a+b)*t0且t3=(c*a+b)*t2,其中,a、b、c为≥1的自然数,例如,a=2,该预设关系可以是多种,此处不再赘述。

下面,以第一时间间隔组的第一时间间隔t0和t2为例,对第一时间间隔组中的各个第一时间间隔Ti-1,i t0、t2与第一时间参数etu和/或第二时间参数pdt满足一定的预设关系,进行详细说明:

第一时间间隔t0和t2,根据第一时间参数etu或第二时间参数pdt中的一个通过预设的时间参数生成规则生成,以etu为例,t0和t2可采用以下任意一种计算方式获得,当然,预设的时间参数生成规则并不限于以下计算方式:

t0=a*etu;

t2=x*a*etu;

其中,a为≥1的自然数,x为有理数,因此,接收端可以通过相同的预设的时间参数生成规则利用t0与t2可以计算出etu。

或者,第一时间间隔t0和t2,根据第一时间参数etu和第二时间参数pdt通过预设的时间参数生成规则生成,t0和t2可采用以下任意一种计算方式获得,当然,预设的时间参数生成规则并不限于以下计算方式:

t0=a*etu+b*pdt;

t2=x*a*etu+b*pdt;

其中,a、b为≥1的自然数,x为有理数,因此,接收端可以通过相同的预设的时间参数生成规则利用t0与t2可以计算出etu和pdt。

或者,第一时间间隔t0和t2,根据第一时间参数etu和第二时间参数pdt通过预设的时间参数生成规则生成,t0和t2可采用以下任意一种计算方式获得,当然,预设的时间参数生成规则并不限于以下计算方式:

t0=a*etu+b*pdt;

t2=a*etu+x*b*pdt;

其中,a、b为≥1的自然数,x为有理数,因此,接收端可以通过相同的预设的时间参数生成规则利用t0与t2可以计算出etu和pdt。

同样地,当K=7时,7个信号相邻两个之间共会产生6个时间间隔,当i=2时,第一时间间隔T1,2为第一个信号与第二个信号开始时刻之间的时间间隔,标记为t0,第二时间间隔T2,3为第二个信号与第三个信号开始时刻之间的时间间隔,标记为t1;当i=4时,第一时间间隔T3,4为第三个信号与第四个信号开始时刻之间的时间间隔,标记为t2,第二时间间隔T4,5为第四个信号与第五个信号开始时刻之间的时间间隔,标记为t3;当i=6时,第一时间间隔T5,6为第五个信号与第六个信号开始时刻之间的时间间隔,标记为t4,第二时间间隔T6,7为第六个信号与第七个信号开始时刻之间的时间间隔,标记为t5;此时,t0、t2和t4为第一时间间隔组,t1、t3和t5为第二时间间隔组,第二时间间隔组的t1、t3和t5与第一时间间隔组的t0、t2和t4分别满足预设关系,即t0与t1之间、t2与t3之间,以及t4与t5之间同时满足预设关系,根据第一时间参数etu和/或第二时间参数pdt通过预设的时间参数生成规则来确定第一时间间隔组的第一时间间隔t0、t2和t4的值,通过预设的时间参数生成规则可采用不同的方式,例如,第一时间间隔t0、t2和t4,根据第一时间参数etu或第二时间参数pdt中的一个通过预设的时间参数生成规则生成,以etu为例,t0、t2和t4可采用以下任意一种计算方式获得,当然,预设的时间参数生成规则并不限于以下计算方式:

t0=a*etu;

t2=x*a*etu;

t4=2x*a*etu;

其中,a为≥1的自然数,x为有理数,因此,接收端可以通过相同的预设的时间参数生成规则利用t0、t2、t4可以计算出etu。

或者,第一时间间隔t0、t2和t4,根据第一时间参数etu和第二时间参数pdt通过预设的时间参数生成规则生成,t0、t2、t4可采用以下任意一种计算方式获得,当然,预设的时间参数生成规则并不限于以下计算方式:

t0=a*etu+b*pdt;

t2=x*a*etu+b*pdt;

t4=2x*a*etu+b*pdt;

其中,a、b为≥1的自然数,x为有理数,因此,接收端可以通过相同的预设的时间参数生成规则利用t0、t2、t4可以计算出etu和pdt。

或者,第一时间间隔t0、t2和t4,根据第一时间参数etu和第二时间参数pdt通过预设的时间参数生成规则生成,t0、t2和t4可采用以下任意一种计算方式获得,当然,预设的时间参数生成规则并不限于以下计算方式:

t0=a*etu+b*pdt;

t2=a*etu+x*b*pdt;

t4=a*etu+2x*b*pdt;

其中,a、b为≥1的自然数,x为有理数,因此,接收端可以通过相同的预设的时间参数生成规则利用t0、t2、t4可以计算出etu和pdt。

本实施例中上述确定当前数据传输的第一时间间隔组和第二时间间隔组的具体实施方式仅为示例性实施方式,本发明并不排除其他时间参数生成规则以根据第一时间参数etu和/或第二时间参数pdt确定第一时间间隔组的第一时间间隔的实施方式,也不排除其他第一时间间隔与第二时间间隔的预设关系。

本实施例通过时间参数etu和/或pdt来确定第一时间间隔组,从而保证每次数据传输时,发送端与接收端对etu和pdt的取值保持一致,保证了每次数据传输的稳定性与准确性,由于每次数据传输之前发送端都会发送的握手信息重新确定时间参数etu和pdt的值,避免了频率差异因多个字符的连续加收而造成误差累计,有效防止当发送时钟和接收时间参数差异太大时,引起接收端采样错位,造成接收错误,通讯效率降低的问题。

所述第二信号产生发送模块,用于产生并发送K个握手信号,

作为本实施例一种可选的实施方式,在具体实施时,产生并发送K个握手信号包括:根据第一时间间隔组与第二时间间隔组产生并发送K个握手信号;其中,K个握手信号中的第一时间间隔与第二时间间隔之间满足上述预设关系,可以参照实施例1中对第一时间间隔与第二时间间隔需满足的预设关系的描述。

在本实施例中,K为预先设定值,K≥3且K为奇数,信号可以为脉冲信号,即接收到的是高电平脉冲信号(上升沿信号),或者是低电平脉冲信号(下降沿信号),脉冲信号可以为方波、正弦波、三角波或其他不规则波形,也可以是上述不同波形的组合。

在本实施例中,第二信号产生发送模块产生并发送K个信号,包括以下方式至少之一:

方式一:第二信号产生发送模块产生并发送K次低电平脉冲;

在该方式中,第二信号产生发送模块在连续高电平中触发K次低电平脉冲,例如,第二信号产生发送模块在持续触发高电平第一时间间隔后,触发1次低电平脉冲,然后又恢复触发高电平的状态,在经过第二时间间隔后,又触发1次低电平脉冲,以这样的方式可以连续产生K次低电平脉冲,第一时间间隔可以为第i个信号的开始时刻与第i-1个信号的开始时刻之间的时间间隔,第二时间间隔可以为第i个信号的开始时刻与第i+1个信号的开始时刻之间的时间间隔,其中,i=2,4,……,2j,j=(K-1)/2,K≥3且K为奇数。

示例性的,当K=5时,5个信号中每相邻两个之间共会产生4个时间间隔,当i=2时,第一时间间隔为第一个信号与第二个信号开始时刻之间的时间间隔,标记为t0,第二时间间隔为第二个信号与第三个信号开始时刻之间的时间间隔,标记为t1;当i=4时,第一时间间隔为第三个信号与第四个信号开始时刻之间的时间间隔,标记为t2,第二时间间隔为第四个信号与第5个信号开始时刻之间的时间间隔,标记为t3,第二信号产生发送模块在连续高电平中触发5次低电平脉冲,包括:第二信号产生发送模块在持续触发高电平一段时间后,触发第1次低电平脉冲,然后又恢复触发高电平的状态,在经过t0后,触发第2次低电平脉冲,然后又恢复触发高电平的状态,在经过t1后,触发第3次低电平脉冲,然后又恢复触发高电平的状态,在经过t2后,触发第4次低电平脉冲,然后又恢复触发高电平的状态,在经过t3后,触发第5次低电平脉冲,以这样的方式可以连续产生5次低电平脉冲,且,第一时间间隔与第二时间间隔满足预设关系,例如,t1=a*t0且t3=a*t2;或者,t1=(a+b)*t0且t3=(a+b)*t2;或者,t1=(c*a+b)*t0且t3=(c*a+b)*t2,其中,a、b、c为≥1的自然数,例如,a=2,该预设关系可以是多种,此处不再赘述,形成有效的握手信号;

方式二:第二信号产生发送模块产生并发送K次高电平脉冲;

在该方式中,第二信号产生发送模块在连续低电平中触发K次高电平脉冲,例如,第二信号产生发送模块在持续触发低电平第一时间间隔后,触发1次高电平脉冲,然后又恢复触发低电平的状态,在经过第二时间间隔后,又触发1次高电平脉冲,以这样的方式可以连续产生K次高电平脉冲,第一时间间隔可以为第i个信号的开始时刻与第i-1个信号的开始时刻之间的时间间隔,第二时间间隔可以为第i个信号的开始时刻与第i+1个信号的开始时刻之间的时间间隔,其中,i=2,4,……,2j,j=(K-1)/2,K≥3且K为奇数。

示例性的,当K=5时,5个信号中每相邻两个之间共会产生4个时间间隔,当i=2时,第一时间间隔为第一个信号与第二个信号开始时刻之间的时间间隔,标记为t0,第二时间间隔为第二个信号与第三个信号开始时刻之间的时间间隔,标记为t1;当i=4时,第一时间间隔为第三个信号与第四个信号开始时刻之间的时间间隔,标记为t2,第二时间间隔为第四个信号与第5个信号开始时刻之间的时间间隔,标记为t3,第二信号产生发送模块在连续低电平中触发5次高电平脉冲,包括:第二信号产生发送模块在持续触发低电平一段时间后,触发第1次高电平脉冲,然后又恢复触发低电平的状态,在经过t0后,触发第2次高电平脉冲,然后又恢复触发低电平的状态,在经过t1后,触发第3次高电平脉冲,然后又恢复触发低电平的状态,在经过t2后,触发第4次高电平脉冲,然后又恢复触发低电平的状态,在经过t3后,触发第5次高电平脉冲,以这样的方式可以连续产生5次高电平脉冲,且,第一时间间隔与第二时间间隔满足预设关系,例如,t1=a*t0且t3=a*t2;或者,t1=(a+b)*t0且t3=(a+b)*t2;或者,t1=(c*a+b)*t0且t3=(c*a+b)*t2,其中,a、b、c为≥1的自然数,例如,a=2,该预设关系可以是多种,此处不再赘述,形成有效的握手信号;

在上述方式中,K个信号属于跳变信号,且跳变幅度明显,便于与噪声信号进行区分。

此外,作为本实施例的一种可选实施方式,本实施例中的数据处理设备还包括:数据发送模块,其中,数据发送模块,用于在第二信号产生发送模块产生并发送K个握手信号之后,按照时间参数进行数据发送;具体地,数据发送模块的具体结构,以及数据发送模块按照时间参数进行数据发送的实现方式,请参照实施例7中对数据发送模块的详细描述。

通过每次接收数据之前根据握手信息重新确定时间参数,保证发送端和接收端的时间参数始终保持一致,保证数据传输的稳定性与准确性;信号采用脉冲信号进行传输,便于与噪声信号进行区分;通过检测每个信号触发的上升沿或下降沿,可以容易地获取每个信号的起始时刻,从而准确迅速地获得相邻两个信号起始时刻之间的时间间隔,根据获取到的时间间隔判断信号间的时间间隔是否满足预设关系,判断接收到的信号是否为有效的握手信号,使得判断过程准确迅速,且成功率高,根据第一时间间隔和/或第二时间间隔确定第一时间间隔组和/或第二时间间隔组,并通过第一时间间隔组和/或第二时间间隔组来确定时间参数etu和pdt,从而保证每次数据传输时,发送端与接收端对etu和pdt的取值保持一致,保证了每次数据传输的稳定性与准确性,由于每次数据传输之前接收端都会根据发送端发送的握手信息重新确定时间参数etu和pdt的值,避免了频率差异因多个字符的连续加收而造成误差累计,有效防止当发送时钟和接收时间参数差异太大时,引起接收端采样错位,造成接收错误,通讯效率降低的技术问题。

实施例7

本实施例提供了实施例5以及实施例6中涉及的数据发送模块,图11是本实施例的一种可选的数据发送模块的结构示意图,具体包括:时间间隔获取单元、数据比特串获取单元、发送单元,其中:

时间间隔获取单元,按照所述时间参数获取N比特数据包含的2N个不同数值与时间间隔的对应关系,其中,不同数值对应的时间间隔不同,N≥1。

在本实施例的一个可选实施方式中,N比特数据包含的2N个不同数值,可以理解为:例如,N=1时,1比特数据,其包含21个不同数值,分别为0,1;N=2时,2比特数据,其包含22个不同数值,分别为00,01,10,11。按照时间参数获取N比特数据包含的2N个不同数值与时间间隔的对应关系可以理解为:例如,当N=1时,按照时间参数获取0对应的时间间隔,按照时间参数获取1对应的时间间隔;当N=2时,按照时间参数获取00对应的时间间隔,按照时间参数获取01对应的时间间隔,按照时间参数获取10对应的时间间隔,按照时间参数获取11对应的时间间隔。当然,当N为其他值时,与上述理解方式相同,在此不再赘述。

在本实施例的一个可选实施方式中,数据发送模块的时间间隔获取单元可采用与数据接收端预先协商确定的计算方法计算该数值对应的时间间隔,如当N=n时,发送数值m对应的时间间隔的计算方法可以为:数值m对应的时间间隔=etu+m*pdt(其中,0≤m≤2n-1,etu为第一时间参数,pdt为第二时间参数,举例来说etu=10μs,pdt=30μs),即数值11对应的时间间隔计算方法可以为10μs+3*30μs=100μs,通过该可选实施方式可以计算出数值对应的时间间隔。当然,本发明也可以采用其他预先协商的计算方法确定时间间隔,本发明对此不做限制。通过预先协商的计算方法计算得出该数值对应的时间间隔,可保证数据传输的可扩展性,即不论N的取值是多少,发送端和接收端均可计算得出不同数值与时间间隔的对应关系。

在本实施例的一个可选实施方式中,时间间隔获取单元根据第一时间参数etu与第二时间参数pdt,按照与数据发送端预先约定的编解码规则,获取N比特数据包含的2N个不同数值与时间间隔的对应关系,预先约定的编解码规则可以为能够保证不同数值的N个数据比特对应唯一时间间隔的任意方式,示例性地:

当N=1时,不同数值的N个数据比特包括:0、1,此时,

0=etu,1=etu+pdt,且etu≠etu+pdt,或,

0=2etu,1=etu+2pdt,且2etu≠etu+2pdt,

……

当N=2时,不同数值的N个数据比特包括:00、01、10、11,此时,

00=etu,01=etu+pdt,10=etu+2pdt,11=etu+3pdt,且etu≠etu+pdt≠etu+2pdt≠etu+3pdt,或,

00=2etu,01=etu+2pdt,10=etu+2.5pdt,11=1.3etu+3pdt,

且2etu≠etu+2pdt≠etu+2.5pdt≠1.3etu+3pdt,

……

同样地,当N=3时,不同数值的N个数据比特包括:000、001、010、011、100、101、110、111,此时,根据第一时间参数etu与第二时间参数pdt,时间间隔获取单元按照与数据发送端预先约定的编解码规则,得到N比特数据包含的2N个不同数值对应的时间间隔,预先约定的编解码规则可参照上述示例,在此不再赘述。

作为本发明实施例的另一个可选实施方式,数据发送模块的时间间隔获取单元也可采用与数据接收端预先协商并存储的列表来确定该数值对应的时间间隔,采用查找列表的方式确定该数值对应的时间间隔,可提高得到该数值对应的时间间隔的效率。

作为本发明实施例的另一个可选实施方式,数据发送模块的时间间隔获取单元采用与数据接收端预先协商确定的计算方法计算该数值对应的时间间隔之后,数据发送模块的时间间隔获取单元查找预先存储的列表来判断该计算得到的数值对应的时间间隔是否属于数据接收端的接收范围。采用计算得到数值对应的时间间隔之后进一步查找列表的方式得到数值对应的时间间隔,可在保证数据接收端可正常接收的前提下提高数据传输的扩展性。

数据比特串获取单元,用于获取当前待发送的数据比特串,将所述数据比特串进行分组,每组数据为N比特。

在本发明的一个可选实施方式中,数据比特串获取单元可以自行生成当前待发送的数据比特串,也可以从其他装置或数据处理设备的其他单元接收当前待发送的数据比特串,本发明并不局限于当前待发送的数据比特串的获取方式,只要最终可以获取当前待发送的数据比特串的方式均应属于本发明的保护范围。

作为本发明的一个可选实施方式,数据处理设备可以作为一个转接装置,其可以将其他装置(以下称为第一终端)与数据接收装置的通信进行转接,此时,数据处理设备通过如下方式获取当前待发送的数据比特串:通过第一接口接收第一数据;根据第一接口支持的协议对第一数据进行解码,获得待发送的第一数据比特串。数据处理设备作为转接装置时,可以具有两个通信接口,例如第一接口和第二接口,第一接口为与第一终端进行通信的接口,第二接口为与数据的接收端进行通信的接口,第一接口可以是现有的通用接口,包括无线和有线接口,例如USB接口、音频接口、串口、蓝牙、wifi、NFC等接口,通过该第一接口可以连接到第一终端,以接收从第一终端发送来的第一数据。第一终端可以是手机、电脑、PAD等设备,该第一数据可以是手机、电脑、PAD端需要传输的数据。同时,第一接口根据其接口类型的不同,可以利用自身支持的协议对接收到的第一数据进行解码,例如,第一接口可以根据USB协议、音频协议、串口协议、蓝牙协议、wifi协议、NFC协议等对第一数据进行解码,获得第一数据对应的数据比特串,该数据比特串为待发送的第一数据比特串(即当前待发送的数据比特串)。第二接口可以是连接到电子支付设备(即数据接收装置)的接口,通过该第二接口将数据比特发送至电子支付设备。该第二接口可以是一个两线接口;该电子支付设备可以实现USBkey功能、OTP功能以及智能卡功能等。将本发明的数据发送转至作为转接装置,通过该第一接口进行数据转换,可以实现将终端发送过来的数据转换成适合与数据接收装置进行通信的数据,实现不同接口之间的转换,扩大了本发明的数据发送模块的使用范围。

在本实施例中,可选地,数据比特串获取单元可以任意时刻执行获取数据比特串和分组的操作,只要在发送单元进行数据发送前进行即可。另外,数据的发送端可以在每次发送数据之前均由时间间隔获取单元进行获取的N比特数据包含的2N个不同数值与时间间隔的对应关系操作,或者,数据的发送端也可以先由时间间隔获取单元进行操作,后续每次发送数据,都使用由时间间隔获取单元进行操作获取的N比特数据包含的2N个不同数值与时间间隔的对应关系,以对待发送的数据进行编码,或者,也可以设置一个有效期限,在该有效期限内发送数据,均使用时间间隔获取单元进行操作获取的N比特数据包含的2N个不同数值与时间间隔的对应关系,以对待发送的数据进行编码。或者,也可以按照事件触发的方式,每接收到一次事件触发,例如,用户输入当前数据传输的时间参数,计算一次N比特数据包含的2N个不同数值与时间间隔的对应关系。具体本实施例不作限定。

作为本发明的一个可选实施方式,数据比特串获取单元将数据比特串进行分组,每组数据为N比特可以采用多种方式进行分组,可以采用每组包括1比特的方式进行分组,也可以采用每组包括2比特的方式进行分组,当数据比特串包括单数时,由于无法按照2比特进行完全分组,可以对数据比特串进行补0后再进行分组,此时,数据的发送端和数据的接收端预先设定或者协商好补0的方式,当从数据的高位开始发送数据比特串时,在比特串的末位补0,当从数据的低位开始发送数据比特串时,在比特串的高位补0。当然,每组包括3比特及以上的情况可以参照每组包括2比特的方式进行分组,在此不再赘述。

发送单元,用于根据获取的所述对应关系,以每组数据的数值对应的时间间隔表示该组数据的方式发送该组数据。

在本实施例中,每组数据比特的数值可以对应一个时间间隔,也可以对应多个相同的时间间隔。采用每组数据比特的数值对应多个时间间隔,可准确判断该时间间隔对应的数值,防止数据传输过程中的丢失时间间隔导致的错误。

在本实施例的一个可选实施方式中,对于每组数据比特在发送该组数据比特时,发送单元用于可以产生并发送M个信号,其中,每个信号的开始时刻与相邻的上一个信号的开始时刻的时间间隔为该组数据比特对应的时间间隔,M≥1且M为自然数。采用信号的方式产生的时间间隔,有着易于检测和稳定性高。

可选地,发送单元用于按照时间间隔产生M次低电平脉冲的方式产生M个信号,也可以是按照时间间隔产生M次高电平脉冲的方式产生M个信号。该低电平脉冲/高电平脉冲可以采用方波、正弦波、三角波等可区分高低电平脉冲的波形表示,在此不作限制。优选采用按照时间间隔产生低电平脉冲,在数据发送端与数据接收端通信时,数据发送端可使用高电平为数据接收端进行供电,通过低电平脉冲的方式传输信息。采用该方法的设备,在进行信息交互时,可使用同一根线同时完成供电和信息发送,减小了设备体积和制造成本。

可选地,还可以通过上述K个握手信号之间的时间间隔传输时间参数,使得数据接收端可以根据该K个握手信号获取到该数据处理设备使用的时间参数,进一步确认数据接收端使用的时间参数。具体地,数据发送模块还可以包括握手信号时间间隔确定单元,该单元用于根据时间参数确定第一时间间隔组和/或第二时间间隔组,第一时间间隔组包括j个第一时间间隔,第二时间间隔组包括j个第二时间间隔,其中,j=(K-1)/2,K≥3且K为奇数。

在本实施例的一个可选实施方式中,如图12所示,在本实施例的数据发送模块中,为了满足当前数据传输的速率,还可以包括时间参数更新单元,用于按照预设规则,将当前使用的时间参数替换为新的时间参数,将新的时间参数作为当前数据传输的时间参数;触发时间间隔获取单元按照新的时间参数更新对应关系;时间间隔获取单元,还用于按照所述当前数据传输的时间参数更新所述对应关系;发送单元,还用于利用更新后的对应关系进行数据传输。在本实施方案中,新的时间参数的确定可以通过数据发送端和数据接收端的协商完成,也可以通过数据发送端和数据接收端查找预先存储的时间参数表完成,如在发送某种类型数据时查表确定该类型的数据应该使用的时间参数。数据发送模块的时间参数是可以变化的,可以匹配不同数据处理能力的数据接收装置,或匹配不同类型的数据,可进一步提高数据处理的效率。

在本实施例的一个可选实施方式中,如图12所示,数据发送模块还可以包括校验数据发送单元,在发送单完成发送最后一组数据之后,校验数据发送单元发送校验数据,通过该校验数据,数据接收端可判断接收数据是否完整正确。校验数据包括但不限于通过MAC校验、奇偶校验、取和校验等校验方式计算出的校验数据。

在本实施例的一个可选实施方式中,如图12所示,数据发送模块还可以包括结束信号发送单元,该单元用于在发送单元完成发送最后一组数据之后,或校验数据比特发送单元发送完成校验数据之后,发送A(A≥1且为整数)个结束信号,结束信号可以与握手信号相同,也可以不同,通过该结束信号,数据接收装置可判断数据是否接收结束。

由上述本发明实施例提供的技术方案可以看出,数据处理设备可以根据发送波形的时间间隔表示发送波形的数据比特,可以仅使用两线完成数据的发送,适用在电子设备中时,可以有效减小电子设备的体积。

流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。

应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。

本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。

此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。

上述提到的存储介质可以是只读存储器,磁盘或光盘等。

在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。

尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。本发明的范围由所附权利要求及其等同限定。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1