用于贴身数据和电力传输的系统、设备和方法与流程

文档序号:15886045发布日期:2018-11-09 18:54阅读:279来源:国知局
用于贴身数据和电力传输的系统、设备和方法与流程

本申请要求于2016年2月22日提交的题为“用于贴身数据和电力传输的系统、设备和方法(system,devices,andmethodforon-bodydataandpowertransmission)”的美国临时申请no.62/298,296的权益和优先权,其全部内容通过引用的方式并入本文。

本公开涉及贴身多传感器网络。特别地,本公开涉及在贴身多传感器网络内电力和数据信号的传送。

背景技术

随着半导体器件制造的进步,这种器件变得更小并且更通用。这些器件正在推动不同的新技术领域的发展。一个技术领域即是可穿戴设备。然而,尽管半导体器件本身取得了进步,但是当前的电源状态仍然使半导体器件受到限制。在可穿戴设备领域中,可穿戴设备的形状因子和寿命与机载电源的性能直接相关。可穿戴设备的电源通常以大体积(相对于可穿戴设备的尺寸)、非共形电池(诸如锂离子电池等)的形式出现。电池的尺寸使可穿戴设备的整体形状因子变得庞大、笨重、和/或非共形,这就使可穿戴设备的整体功能受到了限制和约束。

因此,仍然需要开发解决以上相关问题的系统、方法和设备。



技术实现要素:

根据一些实施例,贴身传感器系统包括集线器和至少一个传感器节点。集线器被配置成附接到使用者的表面(例如,皮肤)。集线器还被配置成将电力和/或数据信号传输到表面(并穿过皮肤)并接收通过皮肤传输到表面的电力和/或数据信号。至少一个传感器节点被配置成附接到表面。至少一个传感器节点还被配置成通过表面从集线器接收电力和/或数据信号,并将响应数据信号传输到表面中(并穿过皮肤)。来自集线器的电力为至少一个传感器节点供电,并使至少一个传感器节点产生传感器信息,该传感器信息在响应数据信号内被传送回集线器。

根据一些实施例,公开了一种使贴身传感器网络内的节点同步的方法。该方法包括:通过位于使用者表面(例如,皮肤)上的主集线器将初始化电流脉冲传输到表面中。该方法还包括:通过位于表面上的至少一个传感器节点从表面接收初始化电流脉冲。该方法还包括:在预定延迟之后并响应于的初始化电流脉冲的接收,通过至少一个传感器节点将应答电流脉冲传输到表面中。该方法还包括:通过主集线器检测应答电流脉冲,并通过主集线器将触发电流脉冲传输到表面中。触发电流脉冲包括电力和数据。该方法还包括:通过至少一个传感器节点接收来自表面的触发电流脉冲。电力和数据触发至少一个传感器节点,以开始生成传感器信息。

鉴于参照附图进行的各种实施例的详细描述,本发明的其他方面对于本领域普通技术人员而言将是显而易见的,下面提供其简要的描述。

附图说明

通过以下对示例性实施例的描述并结合地参照附图将更好地理解本发明,其中:

图1是根据本公开的方面的贴身多传感器系统的示意图;

图2是根据本公开的方面的图1的贴身多传感器系统的主集线器和传感器节点的示意图;

图3是根据本公开的方面的传感器节点的电力和数据收发器的详细示意图;

图4是根据本公开的方面的图1的贴身多传感器系统内的电力和数据传输的时序图;

图5a是根据本公开的方面的示例性传感器节点的示意图的底面图;

图5b是根据本公开的方面的图5a的示例性传感器节点的示意图的俯视图;

图6a是根据本发明的方面的放置在使用者身体上的集成主集线器的图;

图6b是根据本公开的方面的图6a的主集线器与使用者身体接触的图;以及

图6c是根据本公开的方面的图6a的主集线器与身体之间的间隙的图。

具体实施方式

尽管本公开包含某些示例性实施例,但是应该理解,本公开不限于那些特定实施例。反之,本发明旨在涵盖可以包括在由所附权利要求进一步限定的本发明的精神和范围内的所有替代形式、变形和等同布置。

本公开涉及一种贴身多传感器网络。网络内的是节点,在此也称为主节点或主集线器。主集线器向网络内的其余节点(在此也称为传感器节点或传感器贴片)提供电力和/或数据。主集线器和传感器节点均能够位于身体上,诸如使用者的身体等(例如,人体或动物体)。传感器节点能够分布在全身并远离主集线器(例如,不物理连接到主集线器)。

主集线器和传感器节点的形状因子均能够使主集线器和传感器节点放置在对象(例如,使用者的身体,诸如使用者的皮肤上)的规则或不规则表面上。例如,主集线器和传感器节点能设置一个或多个粘合表面(例如,压敏粘合剂、永久粘合剂、和/或诸如胶带等可移除粘合剂元素),以便将主集线器和传感器节点附接到使用者身体的表面。根据一些实施例,主集线器和/或一个或多个传感器节点能够(例如,通过粘合剂、拼接件、或钩和环紧固件)耦接到能够穿在身上的衣服、绷带或支架,这些衣服、绷带和支架被配置成将主集线器和/或一个或多个传感器节点定位成与使用者身体的表面接触。根据一些实施例,主集线器和/或一个或多个传感器节点能够通过胶带或紧身衣服、绷带或支架固定在身体表面上。

当耦接到对象表面时,主集线器能够通过对象的表面(诸如通过使用者身体的皮肤等)向传感器节点提供电力和/或数据。传感器节点获取与对象(诸如使用者的身体等)有关的传感器信息,并基于由主集线器通过对象而传输到传感器节点的电力来进行操作。因此,网络基于将使用者身体(例如,人体或动物体)用作传输介质而在节点之间进行的电力和/或数据传输来操作。更具体地,网络将使用者身体的皮肤用作电力和/或数据传输的传输介质。生物组织从5khz至1mhz具有明显的电抗。峰值电抗在50khz处。具有重要生理学意义的生物阻抗位于10khz至100khz之间。超过100khz的话,电抗迅速下降,使得较高的电流被安全地注入人体。可替代地,电抗下降允许以较低的电流使电信号更可靠地通过身体传输。然而,无线信道存在于300khz以上。这些无线信道能够干扰有关信号。因此,100khz至300khz的频带能在最小干扰的情况下用于体内信号传输。然而,根据应用和所用收发器技术(例如,扩频和qam),其他频带能够用于体内信号传输。能够用于体内信号传输的其他频带包括例如5khz至10mhz范围内的频带、包括3mhz至7mhz范围以及13mhz至20mhz范围的2mhz至30mhz范围的频带。

根据本公开的一些构造,传感器节点不需要单独的机载电源。相反,传感器节点从主集线器接收透过使用者身体的皮肤传输的电力。此外,能够在电力信号内传送信号,从而使主集线器既为传感器节点供电又与传感器节点通信。

通过使用者身体传输电力和数据信号减轻了施加在传感器系统上的物理负担(诸如每个传感器节点需要离散的、机载电源(以及通到集线器的信号线)等),并且有助于更流线和舒适的设计。此外,在主集线器作为电源的情况下,因为不需要反复从使用者的身体上取下传感器节点进行充电,所以传感器节点能够更小和/或提供更强大功能(例如,附加的传感器)和持久性。通过使用者身体的皮肤而非通过空气来传输电力和/或数据,与可比较的无线方法相比,网络能利用更低的电力,同时还因不易受到空中传输截断而提供更高级别的安全性。

下面转到附图,图1示出了根据本公开的方面的贴身多传感器系统100。系统100包括主集线器102和多个传感器节点104a-104n(统称为传感器节点104)。然而,尽管被示出并描述为多传感器系统100,但是本发明包括仅具有两个节点(例如,主集线器102和一个传感器节点104)的系统100。

主集线器102将电力和/或数据提供给位于使用者身体106上的传感器节点104。更具体地,主集线器102通过身体106的皮肤106a将电力和数据传输到传感器节点104。响应于来自主集线器102的电力和数据,传感器节点104通过皮肤106a将数据(例如,响应数据)传输回主集线器102。响应数据能够包括来自传感器节点104的一个或多个传感器的传感器信息,这些传感器信息基于从主集线器102接收电力的传感器节点104而产生和/或被收集。传感器信息包括例如:运动信息(例如,加速度)、温度(例如,环境和传感器温度)、与心脏活动相关联的电信号、与肌肉活动相关联的电信号、与皮肤变化相关连接的电位和阻抗的变化、生物电位监测(例如,心电图(ecg)、肌电图(emg)、和脑电图(eeg))、生物阻抗监测(例如,体重指数、应力表征、和汗液量化)、皮电反应信息、和光学调制感测(例如,光电容积描记术和脉搏波速度)。响应数据还能够包括关于传感器节点104的状态的信息,这种状态信息例如包括节点的构造(例如,诸如频率或操作模式等传感器操作参数)。因此,主集线器102将电力提供给传感器节点104,而非提供给例如包括机载离散电源(诸如化学能源(例如电池)等)的传感器节点104。

在一些方面,主集线器102是独立的专用主集线器。在其他方面,主集线器102能够体现在设备、对象和/或物品中。举例而言,而非进行限制,主集线器102能够体现在使用者穿戴的以下设备中,诸如健身跟踪器、智能手表、腕带、珠宝(例如,戒指、耳环、手镯等)、衣物(例如,衬衫、手套、帽子、袜子、裤子等)或防护设备(例如,头盔或身体或肢体垫塞)等,上述设备均接触或靠近使用者的皮肤106a。此外,尽管图1示出使用者为人,但是使用者能够是具有允许传输电力和/或数据的皮肤的任何生物实体。

主集线器102在身体106上的位置能够变化。在一些方面,主集线器102位于身体106的中心,使得外围传感器节点104都与主集线器102相隔大致相同的距离。位于中心的主集线器102的示例性位置包括胸部、背部、腹部、上部躯干等。举例而言,而非进行限制,位于身体106中心的主集线器102能够体现在衣服中。可替代地,主集线器102可能不中心地放置。相反,主集线器102能够位于身体106的端部,例如手腕、脚踝、头等。举例而言,而非进行限制,位于身体106的手腕周围的主集线器102能够体现在智能手表中。主集线器102也能够嵌入(例如,隐藏)其他身体穿戴元素中,诸如腰带、鞋子、帽子、手套、支架(例如,手腕支架、脚踝支架、膝盖支架、胸部支架、颈部支架)等。主集线器102也能够结合到与身体的一部分接触的设备中,诸如座位、手柄(例如,健身车、跑步机、椭圆机、哑铃、健身杆)、或站立平台或搁脚板等。

在一些方面,系统100还包括计算机设备108。计算机设备108能够是与主集线器102通信的任何智能设备,诸如智能电话、平板电脑、笔记本电脑、台式机等。由传感器节点104产生的诸如传感器信息等数据能够作为响应数据传输回主集线器102。响应数据能够从主集线器102传输到计算机设备108,以进行附加处理、分析、存储、和/或传输到附加设备或系统(例如,远离系统100的云、设备或系统)。可替代地,响应数据能够由主集线器102处理,并且处理的响应数据能够被传输到计算机设备108,以进行附加处理、分析、存储、和/或传输到云设备、附加设备或系统。主集线器102与计算机设备108之间的通信能够是有线的或无线的。优选地,主集线器102与计算机设备108之间的通信是基于无线通信协议,诸如例如wi-fi、蓝牙、低功耗蓝牙(bluetoothlowenergy)、zigbee等。然而,在不脱离本公开的概念的情况下,无线通信能够基于包括专用协议的其他协议。

在主集线器102将电力传输给传感器节点104的基础上,传感器节点104不需要内部或机载电源。因此,传感器节点104能够安装在身体106的各种位置上,而不受机载电源的尺寸、重量、和/或不灵活性的限制。这样,系统100便于传感器节点104的操作和放置。此外,传感器节点104能够针对有关特定感测模态进行优化,从而通过获得更好的信号质量、更好的数据收集等来改进传感器节点104。针对每个特定感测模态,能够进一步定制从主集线器102传输到传感器节点104的电力和数据,例如,以特定算法的形式传输数据,以便每个传感器节点104执行。

根据一些实施例,传感器节点104能够包括诸如电池或电容器等用于存储从主集线器102接收的电力的机载电力存储部件。在该构造中,能够存储由传感器节点104从主集线器102接收的电力,以对主集线器102充电或允许替换主集线器102,并且适应短持续时间的电力中断。基于传感器节点104的操作参数(诸如它的操作电力负载等),能够确定电力存储部件的尺寸。

在一些方面,传感器节点104是独立的设备。在其他方面,传感器节点104能够体现在与身体106接触的其它设备、对象、和/或物品中。举例而言,而非进行限制,传感器节点104能够体现在使用者穿戴的以下设备、对象、和/或物品中,诸如腕带、珠宝(例如,戒指、耳环、手镯等)、衣服(例如,衬衫、手套、帽子、袜子、裤子等),上述设备均接触或靠近使用者的皮肤106a。作为另外的示例,传感器节点104能够体现在家具(例如,椅子、凳子、床、沙发等)中。在一些方面,传感器节点104能够体现在于医疗环境(诸如医生办公室、医院等)中用到的对象中。这些具体示例包括检查椅、医院病床等。此外,尽管图1示出使用者为人,但是使用者能够是具有允许传输电力和/或数据的皮肤的任何生物实体。

利用基于皮肤的电力和/或数据传输,主集线器102能够通过从每个传感器节点104传输和接收通信信号所需的时间(也称为飞行时间)来估计身体106上的传感器节点104的位置。飞行时间能够用于近似估算主集线器102与每个传感器节点104之间的距离。能够使用各种方法测量飞行时间。根据一种方法,主集线器102(或传感器节点104)能够发射已知信号,诸如短暂脉冲等。在一些方面,信号或短暂脉冲能包括已知内容,诸如已知宽带频率内容等。当信号或短暂脉冲在身体106上传播时,相位随频率的变化率增加。通过测量信号的变化,并将该变化与原始信号进行比较,主集线器102(或传感器节点104)能够确定传播时间。因为已知电信号通过组织的传播速度,所以传播时间能够与诸如主集线器102与传感器节点104之间、或两个传感器节点104之间的传播距离等的传播距离相关联。因此,基于传播时间,主集线器102(或传感器节点104)能够确定其与另一传感器节点104之间的距离。位置的确定能够基于往返行程(即,从主集线器102到传感器节点104,然后再返回到主集线器102),或者基于单向行程(即,从主集线器102到传感器节点104)。在单向行程的情况下,利用由主集线器102发送的短暂脉冲的信息(例如,已知信号、频率等)能够对传感器节点104进行预编程,以确定传播时间。

如果主集线器102知晓其在身体106上的位置,基于主集线器102与传感器节点104之间的近似距离,主集线器102能够确定传感器节点104在身体106上的位置。利用已知位置,基于传感器节点104的位置和例如与位置相关联的功能和/或传感器模态之间的对应关系,主集线器102能够改变传输到传感器节点104的电力和数据中的一者或两者。在一些方面,基于近似距离的传感器节点位置确定足以确定何时和/或如何改变发送到传感器节点104的电力和/或数据。然而,能够将传感器节点位置的飞行时间确定与附加的位置确定方法(诸如由传感器节点104执行的位置检测算法等)组合,来更准确地估计传感器节点104的位置。

在一些方面,传感器节点104能够被配置成确定其他传感器节点104的位置。主集线器102能够将使传感器节点104传输与位置相关的数据的电力和数据传输到传感器节点104。然后,其他传感器节点104能够接收与位置相关的数据,并回应传感器节点104。该通信配置允许传感器节点104通过数据的传播时间来确定其他传感器节点104的位置。

参考图2,图2示出了根据本公开的方面的图1的主集线器102和传感器节点104的示意图。首先参考主集线器102,主集线器102包括例如电源200、存储器202、用于与传感器节点104通信的电力传输器和数据收发器204、用于与计算机设备108通信的通信接口206和处理器208。

电源200提供主集线器102内的电力,并将电力提供给系统100内的传感器节点104。在任何程度上,主集线器102可以因包括机载电源200而受到限制,主集线器102在身体106上的位置可以不依赖于特定位置。例如,传感器节点104应该位于与传感器模态相关的位置中,而主集线器102能够在不影响感测的情况下远离该位置。因此,主集线器102在系统100内的放置不会因为包括电源200而受到负面影响。此外,电源200能包括各种常规电源,例如,超级电容器或一个或多个可充电或不可充电电池或具有诸如锂离子(li离子)、镍镉(nicd)、镍锌(nizn)、镍-金属氢化物(nimh)、锌和锰(iv)氧化物(zn/mno2)化学等各种电池化学的电池,这里仅举几例。在一些方面,电源200能够是集线器102直接连接或通过例如电源适配器(例如,交流电适配器)连接的电壁插座。在一些方面,电源200能够是收集诸如热能、动能和/或射频能等非电能并将能量转换成电能的部件。然而,电源200能够是本文未具体公开的各种其他电源。

存储器202存储针对主集线器102和传感器节点104的功能的各种指令和算法。存储器202能够是诸如只读存储器(rom)、读写存储器(rwm)、静态和/或动态ram、闪存等的任何类型的常规存储器。在一些方面,从计算机设备108接收的数据能够写入存储器202,用以更新存储在主集线器102上的指令和算法,诸如基于新开发的传感器节点104来更新指令和算法等。并且来自存储器202的数据能够被写入传感器节点104的存储器,以重新配置它们并且例如更新传感器节点104的固件或其他操作指令。

电力传输器和数据收发器204能够被配置成将电力和数据传输到传感器节点104。电力传输器和数据收发器204被配置成利用数据或数据信号(例如,模拟信号)调制电力,以在电力的载波上传输数据。因此,然后传感器节点104能够接收电力和数据,并对其进行解调和/或整流,以使传感器节点104进行操作。更具体地,电力传输器和数据收发器204产生时变电磁波,该电磁波通过身体106传播并最终由传感器节点104接收和整流。电力传输器和数据收发器204能够包括由放大器组成的收发器电路,该放大器的输出驱动耦接到皮肤106a的电极。收发器电路能够包括但不限于以下部件:例如,晶体、lc谐振回路(lctank)振荡器、微机电系统(mems)振荡器、处理器通用输入/输出(gpio:general-purposeinput/output)端口、频率合成器和环形振荡器,以便产生输出。能够通过实时修改放大器的增益来控制功率输出。可以包括可调阻抗匹配网络,使得通过表面介质(例如,皮肤106a)传输最大电力,以确保电磁波最佳地传播。可调阻抗匹配网络可以包括使用诸如但不限于pi匹配(pi-matching)、t匹配(t-matching)和分布式匹配网络等各种技术的各种电容器、电感器和电阻器。

通信接口206能够是与计算机设备108通信的任何传统通信接口,诸如例如基于开放的2.4千兆赫(ghz)和/或5ghz的射频并以wi-fi、医学遥测、蓝牙、低功耗蓝牙、zigbee等无线通信协议为基础的通信接口。然而,如上所述,通信接口206还能够支持与计算机设备108的有线通信。

处理器208控制主集线器102的操作。处理器208可以是包括能够执行程序和算法并执行数据处理的微处理器、微控制器(mcu)等各种类型的处理器。具体地,处理器208执行存储在存储器202中或从计算机设备108传输的一个或多个指令和/或算法,这使主集线器102将电力和数据传输到传感器节点104,接收来自传感器节点104的响应数据,并聚合、处理、分析、和/或存储响应数据。在一些方面,在将响应数据传输到计算机设备108之前,处理器208分析和/或处理来自传感器节点104的诸如传感器信息等响应数据。此外或替代地,例如当计算机设备108与主集线器102主动通信时,处理器208能够仅使主集线器102向计算机设备108传输响应数据。

参考图2的传感器节点104,传感器节点104能够是位置特定的感测平台,其被放置在身体106上的特定位置处以进行特定位置感测。传感器节点104接收从主集线器102传输的电力和数据,以执行感测、算法并与主集线器102进行返回通信。此外,因为传感器节点104从主集线器102接收操作所需的电力,所以传感器节点104不包括用于传感器节点104的整体操作的分立电源,此外传感器节点能够包括诸如电容器甚至小电池等用以在发生临时电力中断时提供电力的电力存储部件。

在一些方面,传感器节点104能够将传感器信息流回主集线器102。这种传感器节点104能够被认为是简单节点。可替代地,传感器节点104在将传感器信息传输到主集线器102之前能够将传感器信息存储在传感器节点104上。更进一步,传感器节点104在将传感器信息传输到主集线器102之前能够可选地处理传感器信息。例如,传感器信息的处理能够包括:平滑数据、分析数据、压缩数据、过滤数据等。这种传感器节点104能够被认为是智能节点。因此,传感器节点104的功能能够变化。

传感器节点104的构造能够根据传感器的特定模态和/或功能而变化。然而,通常,传感器节点104包括处理器210、一个或多个传感器212、以及电力接收器和数据收发器214。

处理器210对由一个或多个传感器212生成和/或收集的传感器信息执行数字信号处理和数据分析。在一些方面,传感器信息的数据分析例如包括执行用于平滑数据、分析数据、压缩数据、过滤数据等的一个或多个处理。在一些方面,处理包括执行一个或多个存储的或(例如,从主集线器102)传输的模式识别算法,以检测数据中的一个或多个预定义模式。然而,在某些情况下,数据或传感器信息(例如,原始数据)能够在没有被处理的情况下流回到主集线器102。相反,例如,数据或传感器信息的处理和/或分析能够能改为仅在主集线器102或计算机设备108处执行。处理器210能够是各种类型的处理器,包括特别是基于从主集线器102传输的较低电力水平而能够执行算法和数据处理的微处理器、mcu等。在一些方面,处理器210能够包括用于存储由传感器节点104执行的一个或多个算法并用于存储从主集线器102传输的信息的存储器。可替代地或者此外,传感器节点104可以包括独立于处理器210的存储器。在一些实施例中,传感器节点104是从节点或哑节点,仅基于与主集线器102的数据通信起作用,并且不包括运行所需的指令、算法或其他数据。可替代地,传感器节点104能够是从主集线器102接收电力和触发信号和/或指令(例如,数据)的智能节点,而且在内部包括必要的指令、算法或数据,用以生成和/或收集传感器数据并将传感器数据和其他信息传输回主集线器102。举例而言,而非进行限制,处理器210能够是ltd的cortex-m系列mcu、texasinstrumentsinc.的msp430mcu等。

一个或多个传感器212对传感器节点104执行感测功能。传感器212能够是具有各种类型的感测模态的各种类型的传感器。根据一些实施例,传感器212包括热通量传感器、加速度计或陀螺仪(例如,运动传感器)、心电图(ecg或ekg)传感器、压力传感器、心率监测器、皮电反应传感器、汗液传感器、无创血压和血氧饱和监测器、计步器、光学传感器、声学传感器、血糖传感器等。然而,在不脱离本公开的精神和范围的情况下,传感器节点104能包括本文中未明确公开的其他传感器。作为一些具体示例,一个或多个传感器212能包括texasinstruments,inc.的ads1191生物电势传感器、analogdevices的adxl362加速度计等。

在一些方面,独立于传感器212的传感器节点104的一个或多个部件能够被认为是传感器。例如,传感器节点104的用于接收电力以及传输并接收数据的部件还能用于感测。具体地,用于接收电力的电触点能被配置成用作皮电传感器、ecg或ekg传感器等。因此,在一些方面,传感器节点104本身可以不包括传感器212,其中传感器节点104自身的部件能够感测皮肤106a和/或身体106的特征和/或特性。

电力接收器和数据收发器214允许传感器节点104接收来自主集线器102的电力,往返于主集线器102接收和传输数据,并且往返于系统100内的其他传感器节点104接收和传输数据。收发器214从接收的信号中提取数据和电力,以便既为传感器节点104供电,又提供用于执行算法并处理由传感器212生成的数据的数据。数据能够包括对传感器节点的指令和/或命令,以及要由传感器节点执行的固件更新和其他程序或算法。如以上针对电力传输器和数据收发器204所述,收发器214基于身体106的皮肤106a的特性起作用。

图3示出了根据本公开的方面的与处理器210组合的收发器214的详细示意图。尽管对收发器214进行了描述,但是如上所述,主集线器102的电力传输器和数据收发器204能包括与收发器214类似的部件,用以传输和接收电力并进行数据传输。在一些方面,收发器214包括一个或多个电触点300、偏置电路302、放大器304、解调器306、模数转换器308、交流驱动电路310、以及电源电路312。

电触点300由导电材料(例如,铜、银、金、铝等)形成,并提供传感器节点104与皮肤106a或传感器节点104之间的接口以及传感器节点104与皮肤106a之间的气隙,用以接收电力并传输和接收数据通信。传感器节点104可以包括一个或多个电触点300。在一些方面,传感器节点104包括四个触点,其中两个触点用于接收,两个触点用于传输。在一些方面,触点300能够是被配置为4线测量电极的四个触点300。

对于传输到皮肤中的交流电,在约300khz及以上的频率下,在离皮肤几毫米处,能够检测到交流电不与信号接触。因此,电触点能够在不与皮肤接触的情况下操作。因此,就上述主集线器102以及传感器节点104而言,电触点300不需要与皮肤紧密接合。然而,在一些方面,配置有不接触皮肤的电触点的主集线器102配备有更高功率的发射器。在不需要直接皮肤接触的情况下,主集线器102能够体现在例如智能手表、健身跟踪器、或由松散地固定到身体106的电源供电的其他设备中,而无需总与皮肤106a直接接触。因此,主集线器102和传感器节点104都能够是装在皮肤上或是非接触安装。对于装在皮肤上的节点,电触点以电阻的形式接合到皮肤。对于非接触式安装的节点,电触点以电容的形式接合到皮肤,其中皮肤到电极的距离小于几毫米,诸如小于或等于约3mm。

如相邻箭头所示,触点300能够电气连接到诸如模拟前端偏置电路等偏置电路302,并与偏置电路302通信。偏置电路302偏置来自主集线器102的或其他传感器节点104的数据通信信号,以供传感器节点104的部件进一步处理。执行处理的其他部件包括例如放大器304,该放大器304放大从主集线器102或其他传感器节点104接收的数据信号。如相邻箭头所示,放大器304能够电气连接到偏置电路302并与偏置电路302通信。其他部件还包括解调器306,该解调器306解调来自主集线器102的电力和数据信号以将数据和电力分离。如相邻箭头所示,解调器306能够电气连接到放大器304并与放大器304通信,用以解调所放大的数据。解调器306与模数转换器308结合将提取的数据数字化,并将数字化的数据转发到处理器210。如相邻箭头所示,解调器306能够直接电气连接到模数转换器308和处理器210,并与模数转换器308和处理器210通信。如双向箭头所示,处理器210将信息传输回解调器306,用以传输到主集线器102。举例而言,而非进行限制,解调器306能够是同步解调器和可配置的模拟滤波器,例如analogdevices,inc.制造的ada2200。此外,虽然在此描述为解调器,但是在一些方面,解调器306能够改为调制解调器。

如相邻箭头所示,解调器306能够电气连接到交流驱动电路310,并与交流驱动电路310通信。交流驱动电路310产生交流脉冲或响应数据,用以与主集线器102通信,并且用以可能地与系统100内的其他传感器节点104通信。交流驱动电路310由处理器210控制,以产生响应于主集线器102的交流脉冲,以及可能地响应于系统100内的其他传感器节点104的交流脉冲。

电源电路312控制传感器节点104处的电力,以基于来自主集线器102的电力而执行算法和数据处理。在一些实施例中,电源电路312包括电容器或类似类型的临时电力存储部件,用以在执行数据或传感器信息的算法和处理期间存储从主集线器102接收的电力。然而,存储在电容器或类似类型的临时电力存储部件中的电力是从主集线器102接收的,而不是最初在电源本身中,诸如在化学能源电源(例如,电池)等中。

尽管能够通过皮肤106a传输电力和数据传输信号,但是可能将噪声引入信号中。一部分由于噪声的原因,信号的时间戳存在一些问题。因此,主集线器102和传感器节点104的上述电路包括用于去除噪声并恢复基础(underling)信号的电路。在一些方面,该电路是锁相环(pll:phaselockloop)。此外,大多数生理传感器每秒产生少于几百字节的数据。约300至1200波特的数据通信足以传输传感器和相应的传感器节点104的实时数据。基于载波频率在约100khz~约300khz之间并且带宽约为30khz的pll的噪声抑制电路能够采用简单的通信方案以1200波特传输数据通信。此外,这种噪声抑制电路还能够检测上述电流脉冲并测量生物阻抗。基于这种配置,能够分配多达约66个信道,并且为每个传感器节点104提供一个信道。

尽管未示出,在一些方面,传感器节点104能够包括用于连接到一个或多个外部传感器或系统100内的其他节点的有线接口。有线接口能够是各种类型的接口,特别是用于连接到使用低功率的部件的接口,诸如i2c接口等。此外,在一些方面,传感器节点104包括提供近场通信(nfc:near-fieldcommunication)能力、或其他类似的低功率、无线通信协议的部件,以便在读取器询问时进行间隔式采样。例如,除了用于从主集线器102接收电力和数据的一个或多个电触点之外,传感器节点104还能够包括用于支持nfc的智能设备(例如,智能手机、平板电脑等)的询问的线圈。

参照图4,图4是根据本公开的方面的包括数据同步的图1的贴身多传感器系统100内的电力和数据传输的时序图。电力和数据的传输依赖于能够穿过身体106的皮肤106a传播的电流,类似于穿过水传播的电流。实际上,电流穿过皮肤106a的传播速度大约是光速的十分之一。此外,身体106上任意两点之间的最长导电路径约为2米。因此,从身体106上的一点到另一点的电信号的信号传播延迟约为70纳秒(ns)。该延迟低于大多数生理传感器对信号正确解译的同步要求。

为了进行同步,主集线器102首先将电流脉冲400a传输到身体106的皮肤106a。电流脉冲400a具有固定持续时间和幅度或幅度模式,并且处于初始同步用的专用频道上。根据一些方面,主集线器102连续地、周期性地、半周期性地、或按需地传输电流脉冲400a,使得新放置在身体106上的传感器节点104能够在系统100内同步。

然后,身体106上的传感器节点104检测电流脉冲400a,如接收的电流脉冲402a-402n(整体而言,接收的电流脉冲402)所示。传感器节点104以小于约1微妙(μs)的延迟来检测电流脉冲400a。然后,传感器节点104在预定的延迟之后传输应答脉冲404a-404n(整体而言,应答脉冲404),以供主集线器102检测,如接收的电流脉冲400b所示。然后,传感器节点104能够进行同步信号获取。具体地,主集线器102传输电力和数据脉冲400c,从而触发同步信号部分406a-406n(整体而言,同步信号部分406)。电流脉冲400c具有固定的持续时间和幅度或幅度模式,并且处于触发用的专用频道处,该专用频道与初始频率初始化信道不同。上面公开的用于执行传感器同步和测量触发的时序和同步方案和系统架构使传感器节点104能够在小于1μs的时间延迟和约1.5毫瓦(mw)的功率水平(低于射频无线通信)下同步。

参考图5a和5b,根据本公开的方面,示出了示例性传感器节点500。举例而言,而非进行限制,传感器节点500可以是由柔性基板和电路构成的共形传感器节点,用以共形附接到使用者的表面(例如,皮肤106a)。传感器节点500被配置成生成与附接有该传感器节点500的使用者相关联的传感器信息。

图5a示出了传感器节点500的底部,图5b示出了传感器节点500的顶部。如图5a所示,传感器节点500包括四个触点502(例如,触点300)。触点502接触使用者的皮肤106a,以往返于皮肤接收并传输诸如电力和/或数据等信号。然而,在一些实施例中,如上所述,在触点502与皮肤106a之间能够存在小的气隙,并且信号能够通过气隙传输。

在一些方面,触点502中的两个触点在传感器节点500的电路内被电气地配置和/或电气地接线以接收电力和/或数据,并且另外两个触点502在传感器节点500的电路内被电气地配置和/或电气地接线以传输电力和/或数据。然而,在一些方面,所有触点502均能够被电气地配置和/或电气地接线以传输并接收电力和/或数据。此外,尽管仅示出了四个触点502,但是触点的数量可以变化。例如,传感器节点500可以具有一个或多个触点502。

如上所述,触点502还可以被传感器节点500使用,以生成传感器信息。例如,传感器节点500可以是皮电传感器。除了接收和传输电力和/或数据之外,触点502中的一个或多个触点还可以被电气地配置和/或电气地接线以生成关于例如生物阻抗的传感器信息。因此,在传感器节点500的情况下,传感器(例如,传感器212)部分地是触点502。

传感器节点500还包括垂直互连访问(via:verticalinterconnectsaccess)组。图5a中具体示出了via组的底部504。via在传感器节点500的电路层之间传输电力和/或数据。例如,via组的底部504电气连接到触点502,以将电力和/或数据从传感器节点500的底部电路层传输到传感器节点500的顶部电路层。

参考图5b,图5b示出了via组的顶部506。via组的顶部506电气连接到传感器节点500的顶部电路层,用以向顶部电路层提供电力和/或数据。关于传感器节点500,传感器节点500包括顶部电路层内的一个或多个部件,用以分析和/或处理由触点502接收的电力和/或数据信号。例如,尽管未示出,但是传感器节点500能够包括位于via的顶部506上方的处理器210和收发器214。处理器210和收发器电气连接到via的顶部506,进而电气连接到触点502。基于处理器210和收发器214被电气连接到触点502,处理器210对电力进行整流,并且收发器对在触点502处接收的数据进行解调。然后,处理器210能够处理要通过触点502和身体106的皮肤106a而传输回主集线器(例如,主集线器102)的传感器信息。在一些方面,传感器节点500还包括接地线508。

根据传感器节点500的构造,能够将传感器节点500放置在身体106的各个位置上。此外,因为传感器节点500不具有机载电源,所以传感器节点500通过接收从主集线器(例如,主集线器102)传输来的电力而接收操作用的电力,其中主集线器位于身体106上但远离(例如,不直接连接)传感器节点500。来自主集线器102的电力与数据一起由一个或多个触点502接收,并且为传感器节点500供电。

参照图6a-6c,根据本公开的方面,示出了主集线器600耦接到使用者的身体106。参照图6a,主集线器600可以例如集成到智能手表中。具体地,主集线器600可以集成到智能手表的腕带中。然而,主集线器600能够集成到上述的任何一个设备中。在主集线器600集成到智能手表中或者集成在智能手表的腕带中的基础上,将主集线器600附接到例如使用者身体106的手腕周围的皮肤106a。

尽管未示出(为了说明方便),主集线器600包括电源(例如,电源200)。电源为主集线器600和智能手表供电,诸如计时功能和智能手表与离体设备(例如,计算机设备108)的通信功能等,离体设备诸如是与智能手表通信的智能手机等。

参照图6b,主集线器600包括触点602。尽管示出了四个触点602,但是主集线器600能具有一个或多个触点。类似于触点502,触点由导电材料(例如,铜、银、金、铝等)制成。通过触点602,主集线器600往来于皮肤106a传输和接收电力和/或数据。触点602可以与皮肤106a接触。可替代地,触点602可以不与皮肤106a接触。例如,根据腕带的松弛程度,触点602可能不总是与皮肤106a接触。

参照图6c,图6c示出了可以位于触点602(图6b)与皮肤106a之间的间隙604。尽管存在间隙604,但是智能手表的较高能量储备允许主集线器600通过气隙604传输电力和/或数据,如上所述。例如,如上所述,在约300khz及以上的频率下,在离皮肤几毫米处,能够检测到交流电不与信号接触。因此,主集线器600能够进行非接触地操作,同时使电力和/或数据传输到皮肤中。

尽管上述公开通常涉及在主集线器102与传感器节点104之间传输电力和数据传输,但是根据一些方面,在主集线器102与传感器节点104之间能够仅传输电力或仅传输数据。例如,对于不需要传输的数据的智能传感器节点104而言,主集线器102能够仅将电力传输到传感器节点104。

根据以上公开的内容,系统100享有优于其他使用者身体上的多传感器系统的益处。例如,系统100能够用于需要多模态感测的应用中,以及用于感测的特定模态可以因使用者而异,或者对于同一使用者可以随着时间变化的应用中。例如,希望去跑步的使用者能够使用系统100并通过针对这些感测模态的每一者进行优化的传感器节点104来记录心率、步态、姿势和出汗率。主集线器102能够聚合来自每个传感器节点104的数据,将数据融合到使用者正在进行的活动的洞察性特征中。此外,使用者能够通过改变使用者身体上的传感器节点104来快速、容易地改变系统的模态。此外,传感器节点104的形状因子能够更小、更少地突出并且更共形,同时仍然享有例如如下益处:由贴身节点(例如,主集线器102)进行的连续数据生成,而非由例如基于离体计算机设备询问传感器节点104而进行的周期性数据生成。

其他实施例在本发明的范围和精神内。例如,由于软件的性质,能够使用软件、硬件、固件、硬接线或这些中的任何组合来实现上述功能。特征实现功能也可以物理地位于各种位置,包括将特征实现功能分布成使功能的各部分在不同的物理位置处实现。

此外,虽然以上描述涉及本发明,但是该描述也可以包括一个以上的发明。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1