应用于保密通信的受控Genesio-Tesi系统与Finance系统广义同步方法与流程

文档序号:16671476发布日期:2019-01-18 23:36阅读:177来源:国知局
应用于保密通信的受控Genesio-Tesi系统与Finance系统广义同步方法与流程

本发明属于可应用于保密通信的混沌同步技术领域,尤其涉及一种实现以finance混沌系统为驱动系统,以单输入的受控genesio-tesi系统为响应系统的混沌同步方法。



背景技术:

混沌运动是非线性学科领域的分支,但其涉及的范围已大大超出传统的非线性学科领域界限,发展成为综合性的、交叉性的、跨领域的学科分支,很大的拓宽了人们认识非线性科学的视域,对非线性科学的认识更加深刻。

混沌也被应用于激光保密通信。一个典型的应用是混沌调制。混沌调制是1992年halle、hasler等提出的解决秘密通信中复杂的问题的一种办法,基本思想是将原始信号与一个混沌信号调制在一起进行发送;而接收器进行解调,根据混沌信号分离出原始信号;对第三方由于其不知晓该混沌信号的动态特性,因此无法解密。混沌激光保密通信的优点有:1)它是硬件加密。用收、发激光器的结构参数作为密钥,避免了算法加密的安全隐患;2)加解密的速度很快,因为它靠的是激光器的响应速度;3)由于靠激光器输出的混沌波形来隐藏信息,而不再是单光子,传输距离长;4)与现行的光纤通信系统兼容,可便利地移植现有光纤通信技术中放大、波分复用等所有技术。2005年,欧盟在第五届科技框架计划occult项目的资助下,德、法、英等七国研究者在雅典城120km的城域网中在的速率下实现了通信速率1gb/s的混沌激光保密通信。2010年,欧盟第六届科技框架计划picasso项目完成了外腔反馈混沌半导体激光器的光子集成,并在法国贝桑松100km的城域网中完成了10gb/s的混沌保密通信实验。

如此产生一个问题,对于发射机和接收机,必须有几乎一致的混沌信号,这需要有混沌同步技术来实现。混沌同步是指两个混沌系统的不同运行轨迹,随着时间的变化,同时收敛到相同的值,这两个系统的运行轨迹始终保持一致.混沌同步研究工作可以分为以下几种同步类型(参见顾葆华.混沌系统的几种同步控制方法及其应用研究,南京理工大学博士学位论文.2009.):

1)完全同步(completesynchronization)是驱动系统和响应系统的运行轨迹完全一致,是混沌同步研究的基础。

2)广义同步(generalizedsynchronization)是驱动系统和响应系统输出的运行轨迹保持函数关系,广义同步是完全同步和投影同步的推广。

3)相位同步(phasesynchronization)是两个耦合的混沌系统能进入一个中间区域,能够保持系统运行轨迹相位的同步。

4)滞后同步(lagsynchronization)是两混沌系统的轨迹存在一个时间延迟的同步,比相位同步要求严格,比完全同步要求宽松。

5)投影同步(projectivesynchronization)是两个混沌系统保持比例关系,即频率相同,幅值保持比例关系,投影同步是完全同步的延伸。

6)组合同步(combinationsynchronization)是两个驱动系统的加权组合与响应系统同步,组合同步是完全同步和投影同步的推广。

7)复合同步(compoundsynchronization)是三个驱动系统的复合系统与响应系统同步。

除此之外,还有反同步,是指两个混沌系统的状态变量其运行轨迹频率相同、振幅相同、方向相反,即两个混沌系统的状态变量和为0的同步情况;类似地还有反相同步、部分同步等同步现象。这些同步方法均是在激光保密通信中有实用价值的技术。



技术实现要素:

为了克服已有混沌同步方法的控制品质较低的不足,本发明提供一种应用于保密通信的受控genesio-tesi系统与finance系统的广义混沌同步方法,以finance混沌系统为驱动系统,以单输入的受控genesio-tesi系统为响应系统,利用状态空间转换的方法设计一种混沌同步算法,实现广义同步,控制品质较高。

本发明解决其技术问题所采用的技术方案是:

一种应用于保密通信的受控genesio-tesi系统与finance系统广义同步方法,包括以下步骤:

1)广义混沌同步问题描述

驱动系统为finance系统,形式如下:

其中ξ=(ξ1,ξ2,ξ3)t是状态变量,α、β和γ为实数;

以受控genesio-tesi系统为响应系统,形式如下:

其中x=(x1,x2,x3)t是状态变量,a、b、c和l为已知实数参数,满足α-l=β>0并且l,同时a、b、c、l以及将在下文的状态变换中引入的实数参数k之间满足关系

故可根据给定的驱动系统参数β,调整确定a、b、c、l和k;

实现的广义混沌同步目标是:响应系统(2)在与驱动系统(1)初值分别为x(t0)和ξ(t0),响应系统中施加状态反馈

u=u(x,ξ,t)(4)

其中t表示时间,ξ、x相空间分别作用状态变换

η=s(ξ),y=t(x),(5)

要求响应系统与驱动系统的轨迹能趋于一致,即

这里||·||代表空间中向量的2-范数;

2)驱动系统的状态变换

对驱动系统(1)作状态变换ζ=(ζ1,ζ2,ζ3)t=ζ(ξ)

并在该状态下写出系统

再作如下状态变换η=s(ξ)=η(ζ(ξ))其中η=(η1,η2,η3)t

在全局范围内有此状态变换的逆变换ξ=s-1(η)为

以η为状态,系统表示为

3)响应系统的状态变换

对响应系统(2)作如下状态变换y=t(x)其中y=(y1,y2,y3)t

所以,这是一个线性变换,mt为3阶方阵,此线性变换的逆变换为

以y为状态,系统表示为

上述系统中如果满足式(3),则系统(11)简化为

4)广义同步

现在考虑系统(15)与系统(11)的同步问题,令二者状态差为e=η-y=(e1,e2,e3)t,则

设计反馈

系统表示为

对于上述系统的子系统

可以根据线性系统的经典方法设计如下控制器:

该控制器下系统(19)将在的有限时间控制内,即t1时刻实现e2(t1)=e3(t1)=0,设计一种控制器从t0时刻开始,经有限时间实现e2(t1)=e3(t1)=0,并保证此过程中控制量有连续的一阶导数并过渡到0;首先,设计预想的e2(t)为

其中p(t)为一元多项式,由于要求t1时刻到达系统(19)的原点以及u1在t>t0范围内有连续的一阶导数,这意味着e2(t)在t1时有连续的三阶导数,实际上e2(t)和其一、二、三阶导数再t1时刻为保证连续均只能为0,即

再考虑系统(19)的t0时刻应满足

由于式(22)和式(23)共给出6个条件,所以p(t0)应为5次多项式,再利用式(22)得

其中c0和c1为待定系数,利用式(23)的第1个式子得到

再由式(23)的第2个式子

整理得到

该e2(t)满足式(22)和式(23)的各项要求,那么

以及

明显e2(t1)=e3(t1)=u1(t1)=0;

在时间t1之后,系统(18)的第一个方程成为此方程明显是大范围渐进稳定的,从而系统(18)大范围渐进稳定,说明系统(11)与系统(15)在此控制律下实现同步。

进一步,所述步骤4)中,回到系统(1)与系统(2)的广义同步问题,验证此广义同步是否可以实现,过程为:

||s(ξ(t))-t(x(t))||=||η(t)-y(t)||(30)

显然在式(17)和式(29)所决定的控制律u下于是

上式说明广义同步的要求式(6)满足。

再进一步,所述方法还包括以下步骤:

5)根据广义同步的要求,当响应系统的输入设定为

其中参数t1可用于调节广义同步实现的快慢,驱动系统和响应系统相空间的状态变换分别设定为

其中k和l为满足以下式子

的实数,在上述设定下,驱动系统(1)与响应系统(2)实现广义同步。

本发明的有益效果主要表现在:第一,利用基于状态空间转换的控制方法,从深层次揭示了finance混沌系统与genesio-tesi混沌系统的内在关联性和统一性;第二,提出一种直接设计渐进稳定轨迹的技术,其中也包含了一种提高有限时间控制器光滑度的方法,相对于普遍采用的设计lyapunov函数的控制方法(见洪亦光,陈代展.非线性系统分析与控制.北京,科学出版社,2005.),有利于提高控制品质;第三,采用单输入的同步,控制器简单易于电路实现;第四,通过改变参数t1-t0,可调节广义同步实现的快慢。

附图说明

图1是finance混沌系统即驱动系统的3维相图,其参数α=0.001、β=0.2、γ=1.1,初值为ξ1(t0)=0.2,ξ2(t0)=-3.6,ξ3(t0)=0.2;

图2是响应系统的3维相图,其参数a=-19.3、b=1.1、c=1、k=5、l=-19.5,初值为x1(t0)=1,x2(t0)=1,x3(t0)=1;

图3是误差系统的渐进稳定,其初值为e1(t0)=17.1,e2(t0)=-0.8,e3(t0)=-0.5202;

图4是控制量u1,其中参数设置如下:t1-t0=1,即有限时间控制的时长为1秒。

具体实施方式

下面结合附图对本发明作进一步描述。

参照图1~图4,一种应用于保密通信的受控genesio-tesi系统与finance系统广义同步方法,包括以下步骤:

1)广义混沌同步问题描述

广义混沌同步技术涉及的驱动系统为finance系统,虽然该系统的建立依照了利率、投资和经济增长之间的机理关系,但由于其混沌运动特性也可服务于保密通信,成为保密通信技术的一环。该系统有两种互相可转换的形式(如何转换见文献chaoma,xingyuanwang.hopfbifurcationandtopologicalhorseshoeofanovelfinancechaoticsystem.communicationsnonlinearscienceandnumericalsimulation.2012,17:721–730),人们发现其具有混沌现象,此系统也被验证可以电路实现,finance系统的具体形式可表为:

其中ξ=(ξ1,ξ2,ξ3)t是状态变量,α、β和γ为实数;此系统中已知实数参数α、β和γ在一定范围时,例如α=0.001、β=0.2和γ=1.1时系统呈现混沌特性;

genesio-tesi系统于1980年由t.shimizu和n.moriok被提出,人们发现其具有混沌现象,此系统也被验证可以电路实现。以受控genesio-tesi系统为响应系统,其具体形式如下:

其中x=(x1,x2,x3)t是状态变量,a、b、c和l为已知实数参数,满足α-l=β>0并且l,同时a、b、c、l以及状态变换中引入的实数参数k之间满足关系

故可根据给定的驱动系统参数β,调整确定合适的a、b、c、l和k。如果输入u为0,当a、b和c选取合适的参数,比如a=0.44、b=1.1、c=1情况下,系统呈现混沌特性;

广义混沌同步的定义有多种,本技术要实现的广义混沌同步目标是:响应系统(2)在与驱动系统(1)初值分别为x(t0)和ξ(t0),响应系统中施加状态反馈

u=u(x,ξ,t)(4)

其中t表示时间,ξ、x相空间分别作用状态变换

η=s(ξ),y=t(x),(5)

要求响应系统与驱动系统的轨迹能趋于一致,即

这里||·||代表空间中向量的2-范数;

2)驱动系统的状态变换

对驱动系统(1)作状态变换ζ=(ζ1,ζ2,ζ3)t=ζ(ξ)

并在该状态下写出系统

再作如下状态变换η=s(ξ)=η(ζ(ξ))其中η=(η1,η2,η3)t

在全局范围内有此状态变换的逆变换ξ=s-1(η)为

以η为状态,系统表示为

3)响应系统的状态变换

对响应系统(2)作如下状态变换y=t(x)其中y=(y1,y2,y3)t

所以,这是一个线性变换,mt为3阶方阵,此线性变换的逆变换为

以y为状态,系统表示为

上述系统中如果满足式(3),则系统(11)简化为

上述系统的前2个方程在形式于驱动系统的等价形式(11)已实现一致。另式(3)的来由,所以可先确定b、β和γ参数,利用方程组(3)联立a-l=β,直接解出a、k和l。例如,对于β=0.2,b=1.1、c=1的情况,可得出实数解a=-19.3、k=5以及l=-19.5;

4)广义同步

现在考虑系统(15)与系统(11)的同步问题,令二者状态差为e=η-y=(e1,e2,e3)t,则

设计反馈

系统表示为

对于上述系统的子系统

可以根据线性系统的经典方法设计如下控制器(见旺纳姆.线性多变量控制:一种几何方法.北京,科学出版社,1984.)

该控制器下系统(19)将在的有限时间控制内,即t1时刻实现e2(t1)=e3(t1)=0,但是该控制器的控制量在t1时刻仍然不为0,很容易控制过量,有一定缺陷,为此,设计一种控制器从t0时刻开始,经有限时间实现e2(t1)=e3(t1)=0,并保证此过程中控制量有连续的一阶导数并过渡到0;首先,设计预想的e2(t)为

其中p(t)为一元多项式,由于要求t1时刻到达系统(19)的原点以及u1在t>t0范围内有连续的一阶导数,这意味着e2(t)在t1时有连续的三阶导数,实际上e2(t)和其一、二、三阶导数再t1时刻为保证连续均只能为0,即

再考虑系统(19)的t0时刻应满足

由于式(22)和式(23)共给出6个条件,所以p(t0)应为5次多项式,再利用式(22)得

其中c0和c1为待定系数,利用式(23)的第1个式子得到

再由式(23)的第2个式子

整理得到

该e2(t)满足式(22)和式(23)的各项要求,那么

以及

明显e2(t1)=e3(t1)=u1(t1)=0;

在时间t1之后,系统(18)的第一个方程成为此方程明显是大范围渐进稳定的,从而系统(18)大范围渐进稳定,说明系统(11)与系统(15)在此控制律下实现同步。

回到系统(1)与系统(2)的广义同步问题,验证此广义同步是否可以实现,过程为:

||s(ξ(t))-t(x(t))||=||η(t)-y(t)||(30)

显然在式(17)和式(29)所决定的控制律u下于是

上式说明广义同步的要求式(6)满足。

5)根据广义同步的要求,当响应系统的输入设定为

其中参数t1可用于调节广义同步实现的快慢,驱动系统和响应系统相空间的状态变换分别设定为

其中k和l为满足以下式子

的实数,在上述设定下,驱动系统(1)与响应系统(2)实现广义同步。

为验证本广义同步技术,利用matlab软件仿真了finance混沌系统即驱动系统(1)的3维相图(见图1);仿真了响应系统即受控genesio-tesi系统(2)的3维相图,其中控制器u的设定遵循了式(32)(见图2);仿真了误差系统(18)及其控制量,其中控制器u1也遵循式(32)(见图3和图4)。

图1~图3中的初值是有关联的。图1中ξ状态下驱动系统的初值经过状态变换(9)后成为η状态下的初值,图2中x状态下响应系统的初值经过状态变换(12)后成为y状态下的初值,η状态下的初值减y状态下的初值得到误差系统e状态下的初值。

图1与图2相图形态上有一定程度相似,但不完全一致,这是由于二者为广义同步,只有经过状态变换才能成为渐进的轨迹。

图3误差系统能渐进稳定到原点,但轨迹有一处具有较光滑过渡的转折,这是由于采用了有限时间控制,至转折处也就是t1时刻附近e2和e3已经到达0。转折处之后,误差系统的控制量归0,而e1依靠误差系统本身的动态特性趋向0,所以存在转折是合理的。控制量u1在t1处有连续一阶导数(见图4),但无二阶导数;如果设计控制量u1在t1处仅连续但无一阶导数,t1处光滑度将下降,好处是此时不必要求相应地e2(t)多项式的阶次降低,控制器能较简单。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1