基于双通信设备的智能网桥加速方法及系统与流程

文档序号:17988529发布日期:2019-06-22 00:35阅读:257来源:国知局
基于双通信设备的智能网桥加速方法及系统与流程

本发明涉及通信技术领域,特别涉及一种基于双通信设备的智能网桥加速方法及系统。



背景技术:

随着互联网技术的不断发展进步,在线互动应用已经成为千万用户所必不可少的学习、娱乐甚至是工作的方式之一。根据不完全统计,为了方便在家中的学习以及娱乐生活,大约超过70%的用户将客户端安装在只有wifi网络的家庭设备中。由于在线互动依赖网络传输,因此,当wifi网络质量较差时,会直接影响在线应用的互动效果。而在实际的应用中,不少用户都遇到过因wifi网络卡顿而无法顺利完成在线互动的情况,这给用户带来了较差的体验,而同时也给服务商造成了较大的损失,因此,如何实现稳定、实时的网络传输成为一个急待解决的问题。



技术实现要素:

本发明提供一种基于双通信设备的智能网桥加速方法及系统,旨在实现稳定、实时的数据传输,防止因wifi质量不佳所导致的线路卡顿问题。

本发明提供了一种基于双通信设备的智能网桥加速方法,所述基于双通信设备的智能网桥加速方法包括:

监测到在线互动应用在家庭客户端发起链接时,截获数据链接,并将数据包转发至同局域网内的双通信设备中;

基于所述双通信设备,获取目标链路,利用wifi作为主路径进行数据收发操作,同时启用wifi传输质量监测机制;

利用启用的所述wifi传输质量监测机制,监测到wifi数据收发异常时,启动移动数据网补包策略,利用移动数据网络作为辅路径进行数据收发,并在监测到wifi数据收发恢复正常时,停止辅路径的数据收发操作,继续利用wifi作为主路径执行数据收发操作,并继续进行wifi质量监测。

进一步地,所述将数据包转发至同局域网内的双通信设备之前,还包括:

监测并确认所述双通信设备与运行家庭客户端的家庭设备之间的数据传输方式均无异常;

其中,所述数据传输方式包括:wifi传输和移动数据网络传输。

进一步地,所述启用wifi传输质量监测机制,以及,继续进行wifi质量监测,包括:

基于线性模型的短期传输流量预测wifi传输质量,并基于短期传输流量的预测结果,对wifi进行流量异常监测;

其中,基于线性模型的短期传输流量预测wifi传输质量,包括:

假设要滞后n个时间单位的历史数据,那么采用时间序列模型构建的流量预测模型为:

xt=atxt-1+at-2xt-2+…+at-nxt-n+εt+bt-1εt-1+bt-2εt-2+…+bt-mεt-m;

其中,xt是在t时刻的链路上的流量,xt-1是链路在t-1时刻的流量,以此类推,xt-n是在t-n时刻的链路的流量;εn是随机扰动,满足均值为0;标准差为σ的正态分布;εt-1,εt-2,…,εt-m均是均值为0,方差为σ的随机扰动;模型的系数at,at-1,at-2,…,at-n,bt-1,bt-2,…,bt-m是采用历史数据进行极大似然估计法得到;

利用构建的所述时间序列模型,提前h步进行链路的流量预测;

采用预测的数据与历史数据同时构建线性模型:

y=xβ+∈;

此模型中,y是链路流量值,变量x是(n+h-p+1)×p矩阵,β是p×1向量,∈∈n(0,σ2i),β是p×1向量且β=[β0β1…βp-1];在构建该模型时,历史数据以长度为p的滑动窗口依次获取,假设数据有(n+h)个,则以p为滑动窗口获得数据片段一共有(n+h-p+1)个;

矩阵x实际上是(n+h-p+1)×p的矩阵,则利用最小二乘法可得到β向量:

β=(xtx)-1xty;

使用β向量,即可计算出y的估计值:

这里h=x(xtx)-1xt

其中,h矩阵表示投影矩阵,定义为x矩阵中第i个数据片段的杠杆值,这个值越大,表示数据偏离正常范围越大;

计算t时刻数据片段的库克距离dt为:

其中,表示去掉数据片段t后得到的模型的值,e是模型的平均平方误差向量,dt也可以通过如下表达式计算获得:

利用一定时间内的历史数据,判断链路的流量变化方向;

根据dt的数值大小以及链路的流量变化方向,识别出wifi链路流量发生异常的概率大于预设阈值时,执行切换准备操作,即准备从wifi网络链路切换至移动数据网络链路。

进一步地,所述将数据包发送至同局域网内的双通信设备中,包括:

查找历史记录,根据所述历史记录,选择对应的双通信设备;若历史记录中不存在已使用过的双通信设备,则自动匹配并添加与当前所述在线互动应用相匹配的双通信设备。

进一步地,所述查找历史记录,根据所述历史记录,选择对应的双通信设备,包括:

查找历史记录,若历史记录中存在已使用过的双通信设备,则识别已使用过的双通信设备的数量;

若所述历史记录中已使用过的所述双通信设备只有一个,则直接选择已使用过的所述双通信设备;

若所述历史记录中已使用过的所述双通信设备有多个,则显示历史记录中已使用过的所有双通信设备,供用户选择,根据用户触发的选择指令,选取对应的双通信设备;

或者,参照历史记录中已使用过的所有双通信设备的优先级,选取优先级最高的双通信设备;

或者,根据历史记录,判断历史记录中所有双通信设备对应的移动网络通信质量的优劣,选取移动网络通信质量最优的双通信设备。

进一步地,所述启用wifi传输质量监测机制包括:

利用传输函数w1(t)表示局域网内wifi通信方式的数据传输,利用传输函数w2(t)表示同局域网内移动数据网络的数据传输;

假设wifi传输路径和移动数据传输路径的双路径输入脉冲函数为δ(t),将输出结果ci(t)与所述输入脉冲函数δ(t)和所述传输函数w1(t)、w2(t)的卷积结果进行作差,得到一致性因子ηi:

式中,i=1表示wifi通信方式,i=2表示移动数据通信方式;

若ηi=0,则表示wifi和移动数据网络这两种通信方式无异常;

若ηi≠0,则表示wifi和移动数据网络这两种通信方式存在异常;

检测通信方式无异常时,将获取到的目标链路记做m(t),实时监测wifi传输质量并记做z(t);

将实时监测到的wifi传输质量z(t)与预设传输质量阈值z0进行比较;

当所述z(t)大于或者等于z0时,判断wifi传输路径数据收发正常;

当所述z(t)小于z0时,判断wifi传输路径数据收发异常。

进一步地,所述基于双通信设备的智能网桥加速方法还包括:

根据用户的操作习惯进行数据预判,并存储预判数据作为预传输数据;其中:

获取当前状态的目标链路m(t),建立概念树模型,计算用户可能有的第i种后续操作情况的目标链路mi(t)与所述当前状态的目标链路m(t)的相似度si:

式中:si(m(t),mi(t))为第i种后续情况的目标链路mi(t)与当前状态的目标链路m(t)的相似程度,weight(b)为最佳匹配的权重,a为b的匹配数,rji为第i种后续情况的目标链路mi(t)与当前状态的目标链路m(t)的第j个匹配参数所对应的权重,计算rji的值如下:

式中:1表示m(t)与mi(t)在概念树中的最短路径长度,h表示m(t)与mi(t)在概念树中最近的相同上层概念在树中的高度,μ和ε是用于调节l和h在相似度计算中的影响度因子,且μ和ε均大于或者等于0;

计算得出相似度之后,再进行归一化处理得到第i种后续情况的目标链路的权重ui:

式中:n为用户可能有的n种后续操作情况的目标链路;

利用贪心算法greedyknapsack(d,h,ui,pi,x),得出最优解下的i值,从而判定用户的下一步操作,并存储预判数据以达到加速的稳定性;式中:d内存容量,pi为第i种后续情况在使用过程中所占内存的大小,x为装入内存的目标链路的数据个数。

进一步地,所述基于双通信设备的智能网桥加速方法还包括:

将基于双通信设备从双通道数据传输路径发出的数据,汇聚到智能网络加速器的服务端,再由加速器的服务端将数据转发至目标服务器;

其中,所述双通道数据传输路径包括:利用wifi作为主路径进行数据收发的传输路径,以及利用移动数据网络作为辅路径进行数据收发的传输路径。

对应于以上所提供的一种基于双通信设备的智能网桥加速方法,本发明还提供了一种基于双通信设备的智能网桥加速系统,所述系统包括安装了智能网络加速器的家庭设备和双通信设备,所述家庭设备和双通信设备处于同一局域网内,且二者通信连接;其中:

所述智能网络加速器监测到在线互动应用在家庭客户端发起链接时,截获数据链接,并将数据包转发至同局域网内的双通信设备中;

基于所述双通信设备,所述智能网络加速器获取目标链路,利用wifi作为主路径进行数据收发操作,同时启用wifi传输质量监测机制;

所述智能网络加速器利用启用的所述wifi传输质量监测机制,监测到wifi数据收发异常时,所述双通信设备启动移动数据网补包策略,利用移动数据网络作为辅路径进行数据收发,并在所述智能网络加速器监测到wifi数据收发恢复正常时,所述双通信设备停止辅路径的数据收发操作,由所述智能网络加速器继续利用wifi作为主路径执行数据收发操作,并继续进行wifi质量监测。

进一步地,所述双通信设备与运行家庭客户端的家庭设备之间的数据传输方式均无异常;

其中,所述数据传输方式包括:wifi传输和移动数据网络传输。

进一步地,所述智能网络加速器启用wifi传输质量监测机制,以及,继续进行wifi质量监测,包括:

基于线性模型的短期传输流量预测wifi传输质量,并基于短期传输流量的预测结果,对wifi进行流量异常监测;

其中,基于线性模型的短期传输流量预测wifi传输质量,包括:

假设要滞后n个时间单位的历史数据,那么采用时间序列模型构建的流量预测模型为:

xt=atxt-1+at-2xt-2+…+at-nxt-n+εt+bt-1εt-1+bt-2εt-2+…+bt-mεt-m;

其中,xt是在t时刻的链路上的流量,xt-1是链路在t-1时刻的流量,以此类推,xt-n是在t-n时刻的链路的流量;εn是随机扰动,满足均值为0;标准差为σ的正态分布;εt-1,εt-2,...,εt-m均是均值为0,方差为σ的随机扰动;模型的系数at,at-1,at-2,...,at-n,bt-1,bt-2,...,bt-m是采用历史数据进行极大似然估计法得到;

利用构建的所述时间序列模型,提前h步进行链路的流量预测;

采用预测的数据与历史数据同时构建线性模型:

y=xβ+∈;

此模型中,y是链路流量值,变量x是(n+h-p+1)×p矩阵,β是p×1向量,∈∈n(0,σ2i),β是p×1向量且β=[β0β1...βp-1];在构建该模型时,历史数据以长度为p的滑动窗口依次获取,假设数据有(n+h)个,则以p为滑动窗口获得数据片段一共有(n+h-p+1)个;

矩阵x实际上是(n+h-p+1)×p的矩阵,则利用最小二乘法可得到β向量:

β=(xtx)-1xty;

使用β向量,即可计算出y的估计值:

这里h=x(xtx)-1xt

其中,h矩阵表示投影矩阵,定义为x矩阵中第i个数据片段的杠杆值,这个值越大,表示数据偏离正常范围越大;

计算t时刻数据片段的库克距离dt为:

其中,表示去掉数据片段t后得到的模型的值,e是模型的平均平方误差向量,dt也可以通过如下表达式计算获得:

利用一定时间内的历史数据,判断链路的流量变化方向;

根据dt的数值大小以及链路的流量变化方向,识别出wifi链路流量发生异常的概率大于预设阈值时,执行切换准备操作,即准备从wifi网络链路切换至移动数据网络链路。

进一步地,所述智能网络加速器启用wifi传输质量监测机制包括:

利用传输函数w1(t)表示局域网内wifi通信方式的数据传输,利用传输函数w2(t)表示同局域网内移动数据网络的数据传输;

假设wifi传输路径和移动数据传输路径的双路径输入脉冲函数为δ(t),将输出结果ci(t)与所述输入脉冲函数δ(t)和所述传输函数w1(t)、w2(t)的卷积结果进行作差,得到一致性因子ηi:

式中,i=1表示wifi通信方式,i=2表示移动数据通信方式;

若ηi=0,则表示wifi和移动数据网络这两种通信方式无异常;

若ηi≠0,则表示wifi和移动数据网络这两种通信方式存在异常;

检测通信方式无异常时,将获取到的目标链路记做m(t),实时监测wifi传输质量并记做z(t);

将实时监测到的wifi传输质量z(t)与预设传输质量阈值z0进行比较;

当所述z(t)大于或者等于z0时,判断wifi传输路径数据收发正常;

当所述z(t)小于z0时,判断wifi传输路径数据收发异常。

进一步地,所述智能网络加速器将基于所述双通信设备从双通道数据传输路径发出的数据,汇聚到所述智能网络加速器的服务端,再由加速器的服务端将数据转发至目标服务器;

其中,所述双通道数据传输路径包括:利用wifi作为主路径进行数据收发的传输路径,以及利用移动数据网络作为辅路径进行数据收发的传输路径。

本发明一种基于双通信设备的智能网桥加速方法及系统可以达到如下有益效果:

通过监测到在线互动应用在家庭客户端发起链接时,截获数据链接,并将数据包转发至同局域网内的双通信设备中;基于所述双通信设备,获取目标链路,利用wifi作为主路径进行数据收发操作,同时启用wifi传输质量监测机制;利用启用的所述wifi传输质量监测机制,监测到wifi数据收发异常时,启动移动数据网补包策略,利用移动数据网络作为辅路径进行数据收发,并在监测到wifi数据收发恢复正常时,停止辅路径的数据收发操作,继续利用wifi作为主路径执行数据收发操作,并继续进行wifi质量监测;解决了因wifi质量不佳所导致的线路卡顿问题,实现了稳定、实时的数据传输,提高了数据的传输质量,对用户侧来讲,提高了用户体验,对服务商侧来讲,降低了因wifi质量不佳带来的损失。

本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所指出的内容来实现和获得。

下面通过附图和实施例,对本发明的技术方案做进一步描述。

附图说明

附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:

图1是本发明基于双通信设备的智能网桥加速方法的一种实施方式的流程示意图;

图2是本发明基于双通信设备的智能网桥加速方法的一种实施方式的应用场景拓扑图;

图3是本发明基于双通信设备的智能网桥加速系统的一种实施方式的功能模块示意图。

具体实施方式

以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。

本发明提供了一种基于双通信设备的智能网桥加速方法及系统,旨在实现稳定、实时的数据传输,防止因wifi质量不佳所导致的线路卡顿问题。本发明的下述实施例中仅以家庭这一具体的应用场景为例,来描述本技术方案的实现过程;当然,本方案还可以应用在除了家庭这一具体场景之外的其他任意适应的局域网场景中,本实施例不进行一一穷举和赘述。

在家庭这一具体的应用场景中,针对安装在线互动应用的家庭设备中,客户端开启时,引入智能网桥的加速方法,由对应的加速器截获数据链接并发送到同局域网内同时带有wifi和移动数据网的移动设备(即本发明实施例中所描述的“双通信设备”)中,再由加速器利用双路径智能算法进行数据的收发,以实现稳定、实时的在线互动效果。

图1是本发明基于双通信设备的智能网桥加速方法的一种实施方式的流程示意图,如图1所示,本发明一种基于双通信设备的智能网桥加速方法可以实施为如下描述的步骤s10-s30:

步骤s10、监测到在线互动应用在家庭客户端发起链接时,截获数据链接,并将数据包转发至同局域网内的双通信设备中;

本发明实施例中,在同一个家庭局域网中,选取双通信设备作为数据转发节点,并保证家庭设备与该数据转发节点即双通信设备之间的内网传输无异常。当监测到用户在家庭设备侧启动在线应用时,加速器截获到目标链接,并将该目标链接对应的数据包通过内网转发至双通信设备的一端。

步骤s20、基于所述双通信设备,获取目标链路,利用wifi作为主路径进行数据收发操作,同时启用wifi传输质量监测机制;

步骤s30、利用启用的所述wifi传输质量监测机制,监测到wifi数据收发异常时,启动移动数据网补包策略,利用移动数据网络作为辅路径进行数据收发,并在监测到wifi数据收发恢复正常时,停止辅路径的数据收发操作,继续利用wifi作为主路径执行数据收发操作,并继续进行wifi质量监测。

双通信设备侧接收到加速器转发的目标链接对应的数据包时,利用双路径智能加速算法,一方面以wifi路径为主路径,通过wifi转发数据,另一方面,启用wifi传输质量监测机制,对wifi的传输质量进行监测,当监测到wifi数据收发异常时,启动移动数据网补包策略,利用移动数据网络作为辅路径进行数据收发,保证数据传输的稳定性和实时性。当监测到wifi传输数据收发恢复正常时,停止辅路径的数据收发操作,继续利用wifi作为主路径执行数据收发操作,同时继续进行wifi传输质量的监测。重复执行上述步骤s10-s30,直至目标加速应用停止运行。本发明实施例中,所述移动数据网络的传输方式包括但不限于:3g、4g和5g。

进一步地,在本发明一实施例中,在选取双通信设备作为数据转发节点并正式启动双通信设备的智能网桥加速方法,将截获的数据链接对应的数据包转发至同一局域网内的双通信设备之前,需要监测并确认作为双通信设备的终端,与运行家庭客户端的家庭设备之间的数据传输均无异常;该数据传输方式包括:wifi传输和移动数据网络传输。

进一步地,在本发明一实施例中,在执行双通信设备的双路径智能网桥加速方案时,针对运行在线互动应用的家庭客户端与双通信设备之间的配对问题,当监测到在线互动应用在家庭客户端发起链接时,截获数据链接,并将数据包转发至同局域网内的双通信设备中时,可以查找历史配对记录,根据对应的历史记录,选择对应的双通信设备。

进一步地,在查找历史记录中,若历史记录中存在已使用过的双通信设备,则识别已使用过的双通信设备的数量;若所述历史记录中已使用过的所述双通信设备只有一个,则直接选择已使用过的所述双通信设备;若所述历史记录中已使用过的所述双通信设备有多个,则按照预设选取策略,选择对应的双通信设备。比如,针对历史记录中已使用过的双通信设备有多个的情况,显示历史记录中已使用过的所有双通信设备,供用户选择,根据用户触发的选择指令,选取对应的双通信设备;或者,参照历史记录中已使用过的所有双通信设备的优先级,选取优先级最高的双通设备;或者,根据历史记录,判断历史记录中所有双通信设备对应的移动网络通信质量的优劣,选取移动网络通信质量最优的双通信设备;或者,根据历史记录,判断历史记录中当前空闲的双通信设备,进而从当前空闲的双通信设备中进一步选取等策略。本发明实施例中,针对历史记录中已使用过的双通信设备有多个的情况,可以根据具体的应用场景和对应的硬件配置来设置双通信设备的选取策略,本发明实施例对上述选取策略的具体内容不进行限制和一一穷举。

本发明实施例中,针对历史记录中不存在已使用过的双通信设备的情况,则系统自动匹配并添加与当前所述在线互动应用相匹配的双通信设备,以便基于该双通信设备执行双路径智能加速方案。

进一步地,在本发明一实施例中,针对服务器侧的数据处理,系统将基于双通信设备从双通道数据传输路径发出的数据,汇聚到智能网络加速器的服务端,再由智能加速器的服务端将数据转发至目标服务器。其中,本发明实施例中描述的双通道数据传输路径包括:利用wifi作为主路径进行数据收发的传输路径,以及利用移动数据网络作为辅路径进行数据收发的传输路径。

基于图1所述实施例的描述,在一具体的应用场景中,如图2所示,图2是本发明基于双通信设备的智能网桥加速方法的一种实施方式的应用场景拓扑图;图2所述实施例中,在采用本发明基于双通信设备的智能网桥加速方法之前,家庭局域网内在线应用对应的数据传输仅依赖于单条wifi链路,当wifi通信质量不佳时,图2a中的a段传输路径受到影响,导致数据交互受到影响,从而对用户侧来讲,最直观的感受就是出现交互卡顿的问题,这种情况既对用户体验造成了极大影响,也对服务运营商带来了一定程度上的损失,但这种情况在单靠wifi这一条传输路径的情况下,是无法完全避免的。

在图2b对应的实施例中,配置对应的加速器,利用“局域网+双通信设备+双路径智能加速算法”构建一个智能加速网桥,在同一个局域网内,选取双通信设备作为数据转发节点,并保证家庭设备和数据转发节点即该双通信设备之间的内网传输无异常;当用户在家庭设备侧启动在线应用时,此时迅游加速器截获到目标链接,并将此链接数据通过内网转发至双通信设备一端,即图2b中的内网传输;双通信设备侧,收到转发的链接数据后,利用双路径智能加速算法,一方面以wifi路径为主路径,通过wifi转发数据(即图2b中的a段传输主路径);另一方面,对wifi质量进行监测,当wifi传输异常时,启动移动数据网补包策略,此时利用移动数据网络保证数据传输的稳定性和实时性(即图2b中的a段传输辅路径);迅游加速器从双通信通道发出的数据,汇聚到迅游服务端,然后由迅游服务端将数据转发至目标服务器(如图2b中的b段传输主辅路径c-s段及s-s段)。

本发明实施例中,迅游加速器双路径智能加速算法的原理描述如下:首先,确认双通信设备的wifi与移动数据网络(比如4g)的通信方式无异常;获取到目标链路后,利用wifi作为主路径进行数据收发;启用wifi传输质量监测机制;监测到wifi数据收发异常,启用移动网路(辅路径)进行数据收发;wifi质量好转,停止辅路径的传输工作,通过wifi主路径进行数据传输,并继续进行wifi质量的检测;重复上述过程,直至目标加速应用停止。

本发明基于双通信设备的智能网桥加速方法,通过监测到在线互动应用在家庭客户端发起链接时,截获数据链接,并将数据包转发至同局域网内的双通信设备中;基于所述双通信设备,获取目标链路,利用wifi作为主路径进行数据收发操作,同时启用wifi传输质量监测机制;利用启用的所述wifi传输质量监测机制,监测到wifi数据收发异常时,启动移动数据网补包策略,利用移动数据网络作为辅路径进行数据收发,并在监测到wifi数据收发恢复正常时,停止辅路径的数据收发操作,继续利用wifi作为主路径执行数据收发操作;解决了因wifi质量不佳所导致的线路卡顿问题,实现了稳定、实时的数据传输,提高了数据的传输质量,对用户侧来讲,提高了用户体验,对服务商侧来讲,降低了因wifi质量不佳带来的损失。

进一步地,本发明基于双通信设备的智能网桥加速方法中,本发明的关键问题是如何监测wifi的传输质量。传输质量的突然下降一般伴随传输流量的突然降低。本发明提出一种新颖的wifi传输质量监测算法,通过此算法可以在很短的时间内预测wifi的传输,并能预先准备wifi与移动数据网络的数据链路的切换,从而提高了链路切换效率,使得链路切换更平稳流畅。在一个实施例中,本发明提供的传输质量监测算法分为两个部分:第一部分是基于线性模型的短期传输流量预测,第二部分是流量异常监测;其中,第二部分的流量异常监测用到了第一部分的预测结果。

针对传输质量监测的第一部分,短期传输流量预测方法采用时间序列模型。假设要滞后n个时间单位的历史数据,那么构建流量预测模型为:

xt=atxt-1+at-2xt-2+…+at-nxt-n+εt+bt-1εt-1+bt-2εt-2+…+bt-mεt-m;

在以上模型中,xt是在t时刻的链路上的流量,xt-1是链路在t-1时刻的流量,以此类推,xt-n是在t-n时刻的链路的流量;εn是随机扰动,满足均值为0;标准差为σ的正态分布;εt-1,εt-2,…,εt-m均是均值为0,方差为σ的随机扰动;模型的系数at,at-1,at-2,…,at-n,bt-1,bt-2,…,bt-m是采用历史数据进行极大似然估计法得到。

利用此模型可以进行提前h步的流量预测,例如,在一个具体的应用场景中,设置h=5,也就是提前5步预测。一般情况下,传输质量的异常监测只涉及到很短的时间区间,如果时间间隔很长,传输质量的异常监测则会变得没有意义。在本发明中,异常监测时间的间隔可设为1秒,也就是每隔一秒采样一次链路流量数据。预测用历史数据的滞后时间为10秒,也就是说只用到滞后10秒的流量数据进行链路流量预测。在实际实现中,时间间隔的长短可以根据实际需要调整,以便让系统的流量预测达到最优的水平。

本发明的第二部分,流量异常监测采用计算库克距离的方法得到。首先根据第一部分的短期流量预测方法构建流量预测模型,然后利用已经有的流量数据进行提前h步预测。预测步长h在实际中需要明确流量数据采样时间间隔单位,并不是越大越好,当然这样的参数需要调优,在本发明的一个实施例中取h=10。使用预测的数据与历史数据同时构建线性模型:

y=xβ+∈;

此模型中,y是链路流量值,变量x是(n+h-p+1)×p矩阵,β是p×1向量,∈∈n(0,σ2i),β是p×1向量且β=[β0β1...βp-1]。

在构建该模型时,历史数据以长度为p的滑动窗口依次获取。假设数据有(n+h)个,则以p为滑动窗口获得数据片段一共有(n+h-p+1)个。

例设n=5,h=1,p=2时,一共可以获得5个数据段,每个数据段包括2个数据值。那么,矩阵x实际上是(n+h-p+1)×p的矩阵。利用最小二乘法可得到β向量的具体值:

β=(xtx)-1xty;

使用β向量,即可计算出y的估计值:

这里h=x(xtx)-1xt

其中,h矩阵表示投影矩阵,也被称为帽子矩阵。定义为x矩阵中第i个数据片段(也就是矩阵的第i行)的杠杆值,这个值越大,表示数据偏离正常范围越大。因为历史数据有n个,同时加上了预测的h个数据,所以主要目标是对预测的h个数据组成的数据段进行异常监测。

本发明的监测方法是计算数据片段的距离值,具体而言,是计算t时刻时候的数据片段的库克距离dt为:

其中,表示去掉数据片段t后得到的模型的值,e是模型的平均平方误差向量,那么dt实际上表示的是去掉第t个数据片段后计算得到的距离。这个值越大,表示数据片段是异常数据片段的概率较大,一般这个值与1比较,大于1的时候表示数据片段包括异常数据,也就是说wifi链路流量有很大的概率出现异常,需要切换链路。dt也可以通过如下表达式计算获得:

仅仅计算距离值dt不足以判断是否链路出现问题,因为流量数据突然增加也会使得dt的值增加。为此,需要进一步判断链路流量的变化方向,即是增加还是减少。为此,利用一定时间内的历史数据,经过学习获取判断链路流量变化方向的模型。这个模型是一种概率模型,具体而言,按照某种间隔从历史流量数据中采样获得流量值序列,假设下一次流量变化仅与上一次的流量值有关,概率转移类似于马尔可夫模型,但有所不同。

给出三个变量描述流量变化模型,第一个变量是a,表示是否有流量变化;第二个变量是d,表示流量变化的方向;第三个变量是v,表示流量的值。当发生流量变化的时候a=1,如果没有发生流量变化a=0。当流量变化是增加的时候,d=1,当流量变化减少的时候d=-1。那么在某时刻t,流量变化的值就是yt=atdtvt。假设流量变化过程是一阶马尔可夫过程,那么可以计算得到yt的概率仅与(t-1)时刻获得信息ft-1有关,即:

p(yt|ft-1)=p(atdtvt|ft-1);

展开p(yt|ft-1)=p(atdtvt|ft-1)得到:

p(yt|ft-1)=p(atdtvt|ft-1)=p(at|ft-1)p(dt|at,ft-1)p(vt|at,dt,ft-1);

因此,求p(yt|ft-1)最终分解为三部分:p(at|ft-1),p(dt|at,ft-1)与p(vt|at,dt,ft-1),下面给分别出求这三种概率的方法。ft-1表示滞后一个时间单位的已有的信息总和,在本方法中实际就是在t-1时刻的链路流量变化方向与变化量。

定义yt=p(at|ft-1),对应的logit函数为假设此函数满足线性关系:

通过逻辑回归拟合即可得到参数β0与β1。那么可以求解p(at)为:

因为链路流量要么发生变化,要么不发生变化。定义

xt=p(dt=1|at=1,ft-1),那么它的logit函数为:

假设此函数满足线性关系:

则通过逻辑回归拟合即可得到参数α0与α1;那么可以求解p(dt|at-1,ft-1)为:

因为链路流量要么发生变化,要么不发生变化,所以:

p(dt=0|at=1,ft-1)=1-p(dt=1|at=1,ft-1)。

对于p(dt=0|at=0,ft-1)与p(dt=1|at=0,ft-1)的概率定义恒等于0,因为如果没有流量变化也就谈不上变化方向了。

下面给出求解p(vt|at,dt,ft-1)的方法。定义p(vt|at,dt,ft-1)当dt=-1的时候定义为:

其中,μ是链路流量的均值,σ是一段间隔内的链路流量的标准差,at-1表示t-1时刻的链路流量是否发生变化,dt-1表示在t-1时刻的流量变化方向,vt-1表示在t时刻的链路流量值;at表示t时刻的链路流量是否发生变化,dt表示在t时刻的流量变化方向,vt表示在t时刻的链路流量值。这样综合p(at|ft-1),p(dt|at,ft-1)与p(vt|at,dt,ft-1)分别得到了求解,最终得到p(yt|ft-1)为:

在本发明实施例中,当dt=1的时候表示流量增加,那么链路流量出现异常的概率较低;当dt=-1的时候表示流量降低,那么链路流量出现异常的概率较高。

综合距离计算与概率计算,判断在t时刻时候链路是否发生异常的链路流量异常值计算公式可以表示为:

st=dt×p(atdtvt|ft-1);

其中,dt是t时刻链路流量数据片段的库克距离,p(atdtvt|ft-1)是在t时刻的链路流量的变化概率。

计算提前h=5步的流量异常值s1、s2、s3、s4与s5,计算平均值当s>δ的时候,表示wifi链路流量发生异常的概率很大,需要及时准备好链路的切换。在实际中参数δ需要根据实际情况定,比如取δ=0.2。当应用正在运行的时候,经过计算得到的wifi链路流量发生异常的概率较大的时候,系统快速准备好从wifi网络链路切换到移动数据网络链路。

本发明实施例描述的上述wifi传输质量监测方法使用了线性模型预测链路流量,并使用逻辑回归方法计算链路流量变化概率,所用的方法便于实现;且这种实现方式使用滑动窗口方法快速处理数据,使得在发生数据传输异常时可以提前预先准备从wi-fi网络的数据链路切换到移动数据网络的数据链路,提高了效率与响应速度,从而改善了用户体验。

进一步地,本发明基于双通信设备的智能网桥加速方法中,所述启用wifi传输质量监测机制,判断wifi传输路径数据收发是否正常可以实施为:

利用传输函数w1(t)表示局域网内wifi通信方式的数据传输,利用传输函数w2(t)表示同局域网内移动数据网络的数据传输;

假设wifi传输路径和移动数据传输路径的双路径输入脉冲函数为δ(t),将输出结果ci(t)与所述输入脉冲函数δ(t)和所述传输函数w1(t)、w2(t)的卷积结果进行作差,得到一致性因子ηi;其中,i=1表示wifi通信方式,i=2表示移动数据通信方式;

若ηi=0,则表示wifi和移动数据网络这两种通信方式无异常;

若ηi≠0,则表示wifi和移动数据网络这两种通信方式存在异常;

检测通信方式无异常时,将获取到的目标链路记做m(t),实时监测wifi传输质量并记做z(t);

将实时监测到的wifi传输质量z(t)与预设传输质量阈值z0进行比较;

当所述z(t)大于或者等于z0时,判断wifi传输路径数据收发正常;

当所述z(t)小于z0时,判断wifi传输路径数据收发异常。

进一步地,在一个实施例中,本发明基于双通信设备的智能网桥加速方法还可以根据用户的操作习惯进行数据预判,并存储预判数据作为预传输数据;其中:

获取当前状态的目标链路m(t),建立概念树模型,计算用户可能有的第i种后续操作情况的目标链路mi(t)与所述当前状态的目标链路m(t)的相似度si:

式中:si(m(t),mi(t))为第i种后续情况的目标链路mi(t)与当前状态的目标链路m(t)的相似程度,weight(b)为最佳匹配的权重,a为b的匹配数,rji为第i种后续情况的目标链路mi(t)与当前状态的目标链路m(t)的第j个匹配参数所对应的权重,计算rji的值如下:

式中:1表示m(t)与mi(t)在概念树中的最短路径长度,h表示m(t)与mi(t)在概念树中最近的相同上层概念在树中的高度,μ和ε是用于调节l和h在相似度计算中的影响度因子,且μ和ε均大于或者等于0;

计算得出相似度之后,再进行归一化处理得到第i种后续情况的目标链路的权重ui:

式中:n为用户可能有的n种后续操作情况的目标链路;

利用贪心算法greedyknapsack(d,h,ui,pi,x),得出最优解下的i值,从而判定用户的下一步操作,并存储预判数据以达到加速的稳定性;式中:d内存容量,pi为第i种后续情况在使用过程中所占内存的大小,x为装入内存的目标链路的数据个数。

在一个具体的应用场景中,对于wifi与移动通信方式比如4g通信方式来说,可以用两个传输函数表示,即利用传输函数w1(t)表示局域网内wifi通信方式的数据传输,利用传输函数w2(t)表示同局域网内移动数据网络的数据传输。首先判断wifi与移动通信方式这两种通信方式无异常,对双路径输入脉冲函数δ(t),假设wifi传输路径和移动数据传输路径的双路径输入脉冲函数为δ(t),将输出结果ci(t)与所述输入脉冲函数δ(t)和所述传输函数w1(t)、w2(t)的卷积结果进行作差,得到一致性因子ηi:

式中,i=1表示wifi通信方式,i=2表示移动数据通信方式;

当ηi=0,则wifi和移动数据网络这两种通信方式无异常;当ηi≠0,则wifi和移动数据网络这两种通信方式存在异常。

检测通信方式无异常时,将获取到的目标链路记做m(t),实时监测wifi传输质量并记做z(t);设定传输质量的判断阈值即预设传输质量阈值z0;将实时监测到的wifi传输质量z(t)与预设传输质量阈值z0进行比较;当所述z(t)大于或者等于z0时,判断wifi传输路径数据收发正常;当所述z(t)小于z0时,判断wifi传输路径数据收发异常。根据这个特点可以借助单位阶跃函数ε(a),当a≥0时,ε(a)=1,当a<0时,ε(a)=0,进行对上述问题的判定,异常情况下启动移动网路(辅路径)进行数据收发,当质量好转时,转变为wifi数据收发,则依据上述条件终端接收到的信号y(t)的表达式如下:

y(t)=conv(δ(τ),(w1(t-τ)ε(z(t)-z0)+w2(t-τ)ε(z0-z(t))));

其中,conv求卷积,而传统的终端接收到的信号y0(t)表达式为:

y0(t)=conv(δ(τ),w1(t-τ)ε(z(t)-z0));

可以通过比较看出y(t)-y0(t)>>0,即远远大于0,由此则体现出了迅游加速器的快速性和可靠性。对于传输数据来说,信号会随着传输的距离进行衰减,即传输函数会随着距离的长短而发生变化,以下为信号的衰减函数los:

los=32.44+201gd+201gf;

其中,los是传播损耗,单位为db;d是距离,单位是km;f是工作频率,单位是mhz。

考虑到衰减因素,可以在双通信的基础上对信号的衰减增添一个修补函数δ(los),使其与传输函数相结合,得到最终的终端接收到的信号yz的表达式如下:

yz=conv(δ(τ),((w1(t-τ)+δ(los))ε(z(t)-z0)+(w2(t-τ)+δ(los))ε(z0-z(t))));

以此达到对信号衰减的修补作用。

进一步地,为了使用户能更好更快的体验,可以根据用户的操作习惯进行预判,存储预判的数据作为预传输的数据。

具体操作为:获取到目标链路m(t),然后统计用户可能有的n种后续操作情况的目标链路,内存容量d,以及第i种后续情况的目标链路mi(t)与当前状态的目标链路的相似度xi和第i种后续情况在使用过程中所占内存的大小pi,然后根据相似度确定第i种后续情况的权重ui,然后利用贪心算法来预判用户的下一步操作,从而达到使用的流畅性。

计算相似度可以根据km算法建立概念树的模型,首先得到第i种后续情况的目标链路mi(t)与当前状态的目标链路m(t)的最佳匹配权重b,最佳匹配的权重即为两个目标链数的相似程度。得到:

其中,si(m(t),mi(t))为第i种后续情况的目标链路mi(t)与当前状态的目标链路m(t)的相似程度,weight(b)为最佳匹配的权重,a为b的匹配数,rji为第i种后续情况的目标链路mi(t)与当前状态的目标链路m(t)的第j个匹配参数所对应的权重,计算rji的值如下:

式中:1表示m(t)与mi(t)在概念树中的最短路径长度,h表示m(t)与mi(t)在概念树中最近的相同上层概念在树中的高度,μ和ε是用于调节l和h在相似度计算中的影响度因子,且μ和ε均大于或者等于0;

计算得出相似度之后,再进行归一化处理得到第i种后续情况的目标链路的权重ui:

式中,d内存容量,pi为第i种后续情况在使用过程中所占内存的大小,x为装入内存的目标链路的数据个数,n为用户可能有的n种后续操作情况的目标链路。

然后利用贪心算法greedyknapsack(d,h,ui,pi,x),得出最优解下的i值,从而判定用户的下一步操作,以达到加速的稳定性。

基于图1、图2实施例的描述,如图3所示,图3是本发明基于双通信设备的智能网桥加速系统的一种实施方式的功能模块示意图;本发明基于双通信设备的智能网桥加速系统包括安装了智能网络加速器的双通信设备100和家庭设备中的智能网络加速器200,所述双通信设备100和家庭设备中的智能网络加速器200处于同一局域网内,且二者通信连接;本发明实施例中所描述的智能网络加速器200均为部署在家庭设备中的智能的网络加速器;其中:

所述智能网络加速器200监测到在线互动应用在家庭客户端发起链接时,截获数据链接,并将数据包转发至同局域网内的双通信设备100中;

基于所述双通信设备100,所述智能网络加速器200获取目标链路,利用wifi作为主路径进行数据收发操作,同时启用wifi传输质量监测机制;

所述智能网络加速器200利用启用的所述wifi传输质量监测机制,监测到wifi数据收发异常时,所述双通信设备100启动移动数据网补包策略,利用移动数据网络作为辅路径进行数据收发,并在所述智能网络加速器200监测到wifi数据收发恢复正常时,所述双通信设备100停止辅路径的数据收发操作,由所述智能网络加速器200继续利用wifi作为主路径执行数据收发操作。

进一步地,在一个实施例中,所述双通信设备100与运行家庭客户端的家庭设备之间的数据传输方式均无异常;

其中,所述数据传输方式包括:wifi传输和移动数据网络传输。

进一步地,在一个实施例中,所述智能网络加速器200将基于所述双通信设备100从双通道数据传输路径发出的数据,汇聚到所述智能网络加速器200的服务端,再由所述智能网络加速器200的服务端将数据转发至目标服务器;

其中,所述双通道数据传输路径包括:利用wifi作为主路径进行数据收发的传输路径,以及利用移动数据网络作为辅路径进行数据收发的传输路径。

进一步地,在一个实施例中,所述智能网络加速器200启用wifi传输质量监测机制,以及,继续进行wifi质量监测,包括:

基于线性模型的短期传输流量预测wifi传输质量,并基于短期传输流量的预测结果,对wifi进行流量异常监测;

其中,基于线性模型的短期传输流量预测wifi传输质量,包括:

假设要滞后n个时间单位的历史数据,那么采用时间序列模型构建的流量预测模型为:

xt=atxt-1+at-2xt-2+…+at-nxt-n+εt+bt-1εt-1+bt-2εt-2+…+bt-mεt-m;

其中,xt是在t时刻的链路上的流量,xt-1是链路在t-1时刻的流量,以此类推,xt-n是在t-n时刻的链路的流量;εn是随机扰动,满足均值为0;标准差为σ的正态分布;εt-1,εt-2,…,εt-m均是均值为0,方差为σ的随机扰动;模型的系数at,at-1,at-2,…,at-n,bt-1,bt-2,…,bt-m是采用历史数据进行极大似然估计法得到;

利用构建的所述时间序列模型,提前h步进行链路的流量预测;

采用预测的数据与历史数据同时构建线性模型:

y=xβ+∈;

此模型中,y是链路流量值,变量x是(n+h-p+1)×p矩阵,β是p×1向量,∈∈n(0,σ2i),β是p×1向量且β=[β0β1…βp-1];在构建该模型时,历史数据以长度为p的滑动窗口依次获取,假设数据有(n+h)个,则以p为滑动窗口获得数据片段一共有(n+h-p+1)个;

矩阵x实际上是(n+h-p+1)×p的矩阵,则利用最小二乘法可得到β向量:

β=(xtx)-1xty;

使用β向量,即可计算出y的估计值:

这里h=x(xtx)-1xt

其中,h矩阵表示投影矩阵,定义为x矩阵中第i个数据片段的杠杆值,这个值越大,表示数据偏离正常范围越大;

计算t时刻数据片段的库克距离dt为:

其中,表示去掉数据片段t后得到的模型的值,e是模型的平均平方误差向量,dt也可以通过如下表达式计算获得:

利用一定时间内的历史数据,判断链路的流量变化方向;

根据dt的数值大小以及链路的流量变化方向,识别出wifi链路流量发生异常的概率大于预设阈值时,执行切换准备操作,即准备从wifi网络链路切换至移动数据网络链路。

进一步地,在一个实施例中,所述智能网络加速器200启用wifi传输质量监测机制包括:

利用传输函数w1(t)表示局域网内wifi通信方式的数据传输,利用传输函数w2(t)表示同局域网内移动数据网络的数据传输;

假设wifi传输路径和移动数据传输路径的双路径输入脉冲函数为δ(t),将输出结果ci(t)与所述输入脉冲函数δ(t)和所述传输函数w1(t)、w2(t)的卷积结果进行作差,得到一致性因子ηi:

式中,i=1表示wifi通信方式,i=2表示移动数据通信方式;

若ηi=0,则表示wifi和移动数据网络这两种通信方式无异常;

若ηi≠0,则表示wifi和移动数据网络这两种通信方式存在异常;

检测通信方式无异常时,将获取到的目标链路记做m(t),实时监测wifi传输质量并记做z(t);

将实时监测到的wifi传输质量z(t)与预设传输质量阈值z0进行比较;

当所述z(t)大于或者等于z0时,判断wifi传输路径数据收发正常;

当所述z(t)小于z0时,判断wifi传输路径数据收发异常。

进一步地,在一个实施例中,所述智能网络加速器200根据用户的操作习惯进行数据预判,并存储预判数据作为预传输数据;其中:

获取当前状态的目标链路m(t),建立概念树模型,计算用户可能有的第i种后续操作情况的目标链路mi(t)与所述当前状态的目标链路m(t)的相似度si:

式中:si(m(t),mi(t))为第i种后续情况的目标链路mi(t)与当前状态的目标链路m(t)的相似程度,weight(b)为最佳匹配的权重,a为b的匹配数,rji为第i种后续情况的目标链路mi(t)与当前状态的目标链路m(t)的第j个匹配参数所对应的权重,计算rji的值如下:

式中:1表示m(t)与mi(t)在概念树中的最短路径长度,h表示m(t)与mi(t)在概念树中最近的相同上层概念在树中的高度,μ和ε是用于调节l和h在相似度计算中的影响度因子,且μ和ε均大于或者等于0;

计算得出相似度之后,再进行归一化处理得到第i种后续情况的目标链路的权重ui:

式中:n为用户可能有的n种后续操作情况的目标链路;

利用贪心算法greedyknapsack(d,h,ui,pi,x),得出最优解下的i值,从而判定用户的下一步操作,并存储预判数据以达到加速的稳定性;式中:d内存容量,pi为第i种后续情况在使用过程中所占内存的大小,x为装入内存的目标链路的数据个数。

本发明基于双通信设备的智能网桥加速系统,包括双通信设备和智能网络加速器,所述双通信设备和智能网络加速器处于同一局域网内,且二者通信连接;其中:所述智能网络加速器监测到在线互动应用在家庭客户端发起链接时,截获数据链接,并将数据包转发至同局域网内的双通信设备中;基于所述双通信设备,所述智能网络加速器获取目标链路,利用wifi作为主路径进行数据收发操作,同时启用wifi传输质量监测机制;所述智能网络加速器利用启用的所述wifi传输质量监测机制,监测到wifi数据收发异常时,所述双通信设备启动移动数据网补包策略,利用移动数据网络作为辅路径进行数据收发,并在所述智能网络加速器监测到wifi数据收发恢复正常时,所述双通信设备停止辅路径的数据收发操作,由所述智能网络加速器继续利用wifi作为主路径执行数据收发操作;解决了因wifi质量不佳所导致的线路卡顿问题,实现了稳定、实时的数据传输,提高了数据的传输质量,对用户侧来讲,提高了用户体验,对服务商侧来讲,降低了因wifi质量不佳带来的损失。

本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。

本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。

这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。

这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1