光纤通信的方法和供此方法使用的终端装置和系统的制作方法

文档序号:7582602阅读:145来源:国知局
专利名称:光纤通信的方法和供此方法使用的终端装置和系统的制作方法
技术领域
本发明通常涉及在光纤通信中色散和非线性的补偿,特别涉及一种远距离传输中能补偿色散和非线性的光纤通信方法以及供此方法使用的终端装置和系统。
由于近来低损耗石英光纤的发展,使用这种光纤作为传输线的各种光纤通信系统得到了实际的应用。这种光纤本身具有非常宽的频带。然而,光纤的传输能力实际上受到系统结构的限制。最重要的限制是由于存在于光纤中的色散引起的波形畸变。此外,例如,光信号在光纤中衰减的速率约为0.2dB/km。由于衰减而损失的光信号典型的例子是采用如掺饵光纤放大器(EDFA)这样的光学放大器来补偿。EDFA具有的增益带宽在1.55μm之内,该带宽石英光纤的损耗最低。
通常简单地称作色散是一种光纤中光信号随光信号波长(频率)变化的函数的群速度分散现象。例如,在标准单模光纤中,在波长小于1.3μm的范围内,较长波长的光信号比较短波长的光信号传播快,这种结果色散通常称作正常色散。这种情况下的色散(单位为ps/nm/km)呈负值。相反,在波长大于1.3μm的范围内,较短波长的光信号比较长波长的光信号传播快,这种结果色散通常称作异常色散。这种情况下的色散(单位为ps/nm/km)呈正值。
近几年来,由于使用EDFA,接收的光纤非线性具有与增加光信号功率相结合引起了人们的注意。限制传输能力的最重要的非线性是存在于光纤中的光克尔效应。这种光克尔效应是一种光纤的折射率随着光信号的功率和密度而变化的现象。
折射率的变化调制光纤中光信号传播的相位,结果产生改变信号频谱的频率线性调频脉冲(chirping)。这种现象称作自-相(self-phase)调制(SPM)。也有这种可能由于SMP改变光谱进一步使色散引起的波形失真变大。
如此,随着传输距离的增加,色散和光克尔效应把波形失真传给光信号。因此,在确保传输质量的同时通过光纤进行远距离传输就必须控制、补偿或排除色散和非线性。
因此本发明的一个目的是提供一种光纤通信的方法,该方法可补偿色散和非线性以便远距离传输,还提供一种供此方法使用的终端装置和系统。
依照本发明的一个方面,提供一种光纤通信的方法。首先,提供一种具有可变光功率的光信号输出到光纤传输线的装置。其次,将通过光纤传输线传输的光信号转换成电信号。第三,检测电信号波形衰减(degradation)的参数(如比特误码率或眼孔张开度(eyeopening))。最后,根据检测到的参数控制输出到光纤传输线的光信号的光功率以便改善电信号的波形衰减。
通常,存在于用作光纤传输线的光纤中的光纤的非线性或非线性是由输出到光纤中的光信号的光功率决定的。在本发明方法中,光信号的光功率根据光纤传输线的状态而变化,如用作光纤传输线的光纤的种类,由此控制光纤的非线性。所以,通过补偿色散和非线性在确保传输质量的同时允许远距离传输。
依照本发明的另一方面,提供一种系统,该系统包括第一和第二终端装置以及连接第一和第二终端装置的光纤传输线。第一终端装置包括一个将可变光功率的光信号输出到光纤传输线的光发射器。第二终端装置包括一个光接收器,该光接收器将通过光纤传输线传输的光信号转换成电信号,还包括一个检测电信号波形失真参数的监控单元和用于第一终端装置检测参数传输监控信息的装置。第一终端装置还包括一个根据监控信息控制光功率的控制单元,以改善电信号的波形衰减。
依照本发明的再一方面,提供一种终端装置,该终端装置包括一个将具有可变光功率的光信号输出到光传输线的光发射器;用于检测涉及通过光纤传输线所传输的光信号的波形失真参数的接收监控信息的装置;和根据监控信息控制光功率的装置,以改善光信号的波形失真。
本发明以上和其它的目的、特征和优点以及了解它们的方法将变得更加明显,研究以下的说明书和附加的权利要求以及参考附图所表示的本发明的优选的实施例可更好地理解本发明。


图1表示本发明系统的基本配置框图;图2表示光学色散特性的曲线图;图3A至3C是说明在使用DSF(移位色散光纤)的情况下传输距离的线图;图4A和4B是说明DSF传输特性的框图;图5A至5C是说明在使用SMF(单模光纤)的情况下传输距离的框图;图6表示适用于本发明的光纤放大器的优选的实施例的框图;图7表示监控单元的优选的实施例的框图;图8表示图7中的监控单元的O/E转换器的优选的实施例的框图;图9表示本发明系统的优选实施例的框图;图10表示本发明系统的另一优选实施例的框图;图11表示对图10的系统中发送特定监控信息的一个修改框图;和图12表示图10(图11)系统中控制流程的流程图。
现将参考附图详细描述本发明的一些优选的实施例。在所有的图中,同一参考符号表示同一部分。
图1表示本发明系统的基本配置框图。此系统包括第一终端装置2、第二终端装置4和连接第一和第二终端装置2和4的光纤传输线6。
第一终端装置2包括一个从它的第一末端6A将具有可变光功率的光信号输出到光纤传输线6的光发射器8、和用于根据提供的控制信号CS控制由光发射器8的光信号功率输出。
第二终端装置4包括一个将通过光纤传输线6传输的光信号转换成电信号的光接收器12、和一个检测来自于光接收器12的电信号的波形失真参数的监控单元14。第二终端装置4还包括一个传输检测第一终端装置2参数的监视信息传输装置16。
第一终端装置2还包括一个接收来自于第二终端装置4的监控信息的接收单元18。根据监控信息接收单元18产生控制信号CS以提供给控制单元10,这样改善了从光接收器12输出的电信号的波形失真。例如,接收单元18产生控制信号CS使从光接收器12输出的电信号的比特误差减小或从光接收器12输出的电信号的信号眼孔张开变大。
使用光纤传输线6、另一光纤传输线(图1中未示出)、或电路或无线电来进行从传输单元16到接收单元18的监控信息的传输。
图2表示用于光纤传输线6的光纤的色散特性图。在图2中,纵轴表示色散(ps/nm/km),横轴表示波长(μm)。
通常单模光纤(SMF)用作光纤传输线6,SMF的零色散波长约为1.3μm。在这样的情况下,由于光信号的波长比零色散的波长长,色散在异常的色散区,所以为正值。相反地,由于光信号的波长比零色散波长短,色散在正常的色散区内,所以为负值。如果使用SMF作为光纤传输线6,光信号的波长设在1.55μm(如1.50~1.60μm)可在SMF中获得最低损耗。因此,光信号的色散总是落在异常的色散区。
在使用移位色散光纤(DSF)作为光纤传输线6情况下,DSF的零色散波长约为1.55μm。还是在这种情况下,由于光信号的波长比零色散波长长,色散落在异常的色散区,所以为正值。相反地,由于光信号的波长比零色散波长短,色散落在正常的范围内,所以为负值。因为DSF的波长在1.55μm时的损耗最低,故光信号的波长就设在1.55μm。因此,DSF的色散是否落在异常的色散区或正常的色散区取决于光信号的实际波长和DSF的零色散波长之间的比较。
下面描述使用DSF和SMF作为光纤传输线6的情况下可传输的距离。
所提到的图3A表示图1系统在使用DSF作为光纤传输线6的一个重要部分。在这种情况下,第一终端装置2中的光发射器8包括一个将输入的电信号转换成光信号的E/O转换器(电/光转换器)20、和一个用于将E/O转换器20输出的光信号放大的可变增益22。光学放大器22的增益通过控制单元10(见图1)来调节,借此改变输出到光纤传输线6光信号的光功率。另外,为了提高接收器的灵敏度,又在第二终端装置4中作为前置放大器提供光放大器24。光学放大器24光连接在光纤传输线6的第二末端6B和光接收器12(或O/E转换器(光/电转换器)之间。
所提到的图4A和4B分别表示在异常色散区和正常色散区的DSF的传输特性。在此应注意的事实是在异常色散区的光信号获得一红-移位线性调频脉冲,在正常色散区的光信号获得一蓝移线性调频脉冲,通过SPM具有大的光功率的光信号所获得的线性调频脉冲总是蓝移线性调频脉冲。获得蓝移的线性调频脉冲的光信号比获得红-移位线性调频脉冲的光信号容易。因此,在此假定光学放大器8输出的光信号是红-移位线性调频脉冲。
在图4A和4B中,纵轴表示在光接收器12中的补偿信号波形信号眼孔张开,横轴表示传输距离。
如果从光学放大器输出的光信号的光功率相对小,光纤传输线6的非线性可以忽略。因此,在异常色散区,在光学放大器8中获得的红-移位线性调频脉冲和在光纤传输线6中获得的红-移位线性调频脉冲是结合在一起的,参考图4A中的符号(a)可见通过信号眼孔打开距离变得比波形衰变的限制WDL比较短的小。相反地,在正常色散区,在光学放大器8中获得的红-移位线性调频脉冲和在光纤传输线6中获得的蓝-移位线性调频脉冲通过减少波形压缩的影响或光信号的脉冲宽度而相互抵消,参考图4B中的符号(d)可见传输距离相对长。
如果从光学放大器8中输出的光信号的光功率相对大的话,光纤传输线6中的非线性不能忽略。考虑到光纤传输线6的损耗,SPM的蓝移线性调频脉冲在光纤传输线6的第一末端6A(如一个长10km的部分)的附近是很明显的。更特别的是,要是从光学放大器8中输出的光信号的光功率相对较大,在光学放大器8和光纤传输线6中获得的红-移位线性调频脉冲以及由于SPM的蓝移线性调频脉冲在异常色散区相互抵消,参考图4A中的符号(b)可见传输距离相对长。相反,在正常色散区,由于色散的蓝移线性调频脉冲和由于SPM的蓝移线性调频脉冲是相互结合的,参考图4B的符号(c)可见传输距离相对短。
图3B和3C分别表示由图4A和4B转换而来的光功率和距离之间的关系。必须考虑所接收信号作为传输限制因数的SN区域。在图3B和3C中,SN区域用符号SNL来表示。又,在图3B和3C中符号WDL’相当于图4A和4B中的波形衰变区域WDL。
分别在图3B和3C左侧区域的SNL和WDL’,允许固定传输能力的传输。例如,如果从光学放大器8输出的光信号的光功率的可变范围设定为ΔP,在图3B中通过WDL’在异常色散区中设定为传输距离L1,而在图3C中通过WDL’和SNL在正常的色散区设定为传输距离L2。也就是说,在图3A的系统中,光学放大器22的增益通过从光发射器8输出的光信号的光功率来调节,因此获得了远距离传输色散和非线性补偿的最佳状态。
在现有技术中,从光发射器输出的光输出功率的范围大多数固定地用于所设计的系统,该系统考虑了在此范围内光功率的变化。因此,传输距离L3通过最差的条件来确定(或限制)。相反,通过本发明方法来控制或调节从光发射器8输出的光信号的光功率,根据光纤传输线6的状态总是能获得好的传输质量,因此获得了远距离传输。
与图3A所示的系统不同的是,图5A所示的系统的特征在于SMF采用了光纤传输线6。SMF用作光纤传输线6时的零色散波长约为1.3μm,以前提到的从光发射器8输出的光信号的光功率的波长在1.55μm,所以所获得的仅仅为异常的色散区。由于SMF色散在1.55μm波段相对较大,色散补偿光纤(DCF)26和28用于此系统以补偿光纤传输线6的色散。DCF26在光学上连接E/O转换器20和光学放大器22,而DCF28在光学上连接光学放大器24和O/E转换器12。可通过DCFs26和28中的任一个来进行光纤传输线6的色散补偿。
具有色散的光纤的绝对值比用于DCFs26和28中的SMF的色散的绝对值要大得多,以便消除损耗。DCF的色散在正常的色散区,因此进行色散补偿。
图5B和5C分别对应于图4A和3B。如果采用DCFs26和28,这些光纤引起的色散是恒定的。因此,在每一种情况下,从光学放大器8输出的光信号的光功率是大或小,见图5B存在所获得信号眼孔打开的最大值的最佳值。因此,如果光功率小,传输距离被限制在比WDL低的信号眼孔打开的较低的距离(e)和比WDL低的信号眼孔打开的较高的距离(f)之间的范围内。如果光功率大,传输距离被限制在比WDL低的信号眼孔打开的较低的距离(g)(e<g)和比WDL低的信号眼孔打开的较高的距离(h)(f<h)之间的范围内。
因此,图5A所示的系统中所获得的固定的传输性能的状态由相对于图5C所示的SNL左侧的WDL线WDL(#1)和WDL(#2)来决定。例如,如果从光学放大器8输出的光信号的光功率的可变范围设定为ΔP,参考图5C的符号L4传输距离在一个相对宽的范围内。
在现有技术中,光发射器的光输出功率大多数固定地用于在此范围内的变化的光功率。因此,传输距离范围L5通过最差的条件来决定(或限制)。相反,通过本发明方法来控制或调节从光学放大器8输出的光信号的光功率,根据光纤传输线6的状态总是获得很好的传输质量,因此获得了远距离传输或宽的传输距离范围。
图6表示适合于本发明的光学放大器的优选实施例的框图。这种光学放大器可用作光学放大器22(后置放大器)、光学放大器24(前置放大器)、或包括下文描述的光学中继器的光学放大器。图6所示的光学放大器包括输入端口30,该端口提供放大的光信号,输出放大光信号的输出端口32,以及在输入端口30和输出端口32之间沿主要光通道提供的放大单元34和光耦合器36。
放大单元34包括一个从输入端口30提供光信号的光学放大介质,和激励光学放大介质的激励单元,以便光学放大介质提供一个增益给光信号。如果通过减少激光二极管相反端面的反射率获得的半导体芯片用作光学放大介质,激励单元通过电流源供给注入电流到半导体芯片。在这种情况下,根据注入电流确定的一个增益提供给光信号。
在此优选的实施例中,掺铒光纤(EDF)38用作光学放大介质,适用于波长为1.55μm的光信号。EDF38具有在光学上与输入端口30连接的第一末端和在光学上与光耦合器36连接的第二末端。激励单元通过激光二极管40作为激励源供给预设波长的激励光给EDF38。例如激励光的波长设定在0.98μm或1.48μm。在光学上通过WDM耦合器(未示出)与EDF38的第一末端连接的激光二极管40,光信号和激励光在EDF38中在同一方向得到传播,借此进行向前激励。如果在光学上通过WDM耦合器(未示出)与EDF38的第二末端来连接激光二极管40,在EDF38的相反方向传播光信号和激励光,借此进行向后激励。在第一WDM耦合器与EDF38的第一末端在光学上通过第一激励源连接进行双向激励,和第二WDM耦合器与EDF38的第二末端在光学上连接第二激励流。
以来自于驱动电路42的驱动电流(DC偏流)供给激光二极管40,以便在EDF38中产生根据驱动电流来确定增益。大多数光信号根据所给定的增益在放大单元34中通过光学耦合器36并从输出端口32中输出而放大。其余的放大光信号通过光学耦合器36作为监控光分出来,监控光提供给象光电二极管这样的光检测器(PD)44。光检测器44输出一个与所接收到的监控光的功率相比较的电压电平信号。大多数情况下,光学耦合器36所分出来的比率不是由所提供的光信号的强度来决定的,所以从输出端口32输出的光信号的光功率是通过光检测器44的输出信号的电压电平来映射的。将从光检测器44输出的输出信号提供给比较器46。比较器46反馈来控制驱动电流以从驱动电路42供给激光二极管40,以便使光检测器44的输出信号的电压电平和参考电压Vref之间的差异变成零或恒定值。
通过采用这样的反馈回路,从输出端口32输出的光信号的光功率能保持在恒定值,该恒定值由参考电压Vref(自动电平控制ALC)来确定。特别在优选的实施例中,控制单元10(见图1)通过参考电压产生的电路48来供给。电路48根据所提供的控制信号CS来产生参考电压Vref。因此,根据控制信号CS可预先确定光学放大器的ALC的目标值。
图7表示图1中的监控单元14的优选实施例的框图。通过光纤传输线6传输的光信号由光学放大器24作为放大器来放大,通过光学耦合器50将放大的光信号分成第一信号波和第二信号波。第一信号波供给第一O/E转换器(光接收器〕12。O/E转换器12根据接收到的信号波再生出一主信号。第二信号波供给包含在监控单元14的第二O/E转换器52。O/E转换器52的输出信号供给误差检测回路54,这样获得了在主信号比特误差率上的误差信息。O/E转换器52提供不同的鉴别电平,信号眼孔打开计算电路56可根据由误差检测回路54所获得的鉴别电平和误差信息计算出信号眼孔打开。这样获得的信号眼孔打开被提供作为信号眼孔打开信息。
所参考的图8表示图7中监控单元14中的O/E转换器52的特殊结构。来自光学耦合器50(见图7)的第二信号波提供给反向偏置的光电二极管57。光电二极管57正极的电位随着由提供给光电二极管57的信号波的调制的光密度或强度的变化而变化,因此正极电位的变化是光电二极管的输出电信号。输出电信号通过均衡放大器58来均衡-放大,均衡-放大的信号提供给鉴别器62。定时再生器60根据均衡放大器58的信号再生一个时钟。鉴别器62在均衡-放大的高电平和低电平之间进行鉴别,以便使来自定时再生器60的定时与所获得的鉴别电平的定时相一致。
用于主信号的O/E转换器12可通过修正图8中的O/E转换器52的配置来获得,在这种情况下鉴别电平提供给鉴别器62变成恒定值。
根据图7的优选实施例,如果所获得主信号是来自于O/E转换器,涉及波形失真的参数(比特误差率或信号眼孔打开)可通过监控单元14来检测。因此,在设定初值之后控制光功率到最佳值可连续在系统的使用状态下形成。
当第一和第二信号波用于图7所示的优选的实施例时,可省略光学耦合器50和O/E转换器52,包括在O/E转换器12中的从均衡放大器输出的输出信号可分成第一和第二信号,第一信号用作主信号的解调,第二信号用作误差检测和信号眼孔打开的计算。这样,O/E转换器12接收的强度能够增加而光学元件的数量可以减少。
图9表示本发明系统优选实施例的框图。在此实施例中,与光纤传输线6不同的光纤传输线64用作从第二终端装置4到第一终端装置2的监控信息的传输。也就是说,光纤传输线6用作第一终端装置2向第二终端装置4定向的后向控制流,而光纤传输线64用作第二终端装置4向第一终端装置2定向的前向控制流。
含有第二终端装置4中的传输单元16输出的监控信息的光信号通过作为后置放大器的光学放大器66放大,从光学放大器66输出的放大的光信号由它的第一末端64A提供给光纤传输线64。从光纤传输线64的第二末端输出的光信号通过作为前置放大器的光学放大器68放大,从光学放大器68输出的放大的光信号提供给第一终端装置2的接收单元18。
传输单元16含有监控信息插入电路70,插入电路70把用于通过监控单元14检测的参数所涉及的监控信息插入到前向控制流线所传输的主信号中,E/O转换器72用于将从电路70输出信号转换成光信号。
含有O/E转换器74的接收单元18用于将通过光学放大器68放大的光信号转换成电信号,监控信息提取电路76用于从O/E转换器74中输出的信号提取监控信息。电路76根据提取出的监控信息产生控制信号CS。
根据图9的系统,在第一终端装置2中从光发射器8输出的光信号的光功率可通过光纤传输线64根据监控信息将其控制在最佳值。下面将更加明确地描述这种控制。
在系统的开始,为了得到允许通过个自的光纤传输线6和64到一定范围的光信号条件,根据光纤传输线6和64(SMF/DSF)的种类以及传输距离设置光信号的入射强度。在图5A所示采用了SMF和DCF的组合的情况下,DCF的色散也已设定。
在下一步骤中,在第一终端装置2中从光发射器8输出的光信号的光功率因为检测到一个涉及波形衰减的参数而改变,该波形衰减通过第二终端装置4的监控单元14来检测。这样,根据误差信息而获得监控信息,以便把所获得的监控信息从传输单元16传输到接收单元18。
在第一终端装置2中,从光发射器8输出的光信号的光功率的最佳值能从光功率的变化和误差信息之间的对应获得。因此,由于获得最佳光功率而产生控制信号CS。照这样,从光发射器8到光纤传输线6所输出的光信号的光功率始终保持在最佳值,这样色散和非线性得到了补偿。
在此优选的实施例中,当光纤传输线6输出的光信号的光功率最优时,光纤传输线64输出的光信号的光功率通过改变终端装置2和4的作用也可以最优化。这种改变在本技术领域很容易做到,在此它的色散可以忽略。
例如,这种光纤的最优化必须在初始阶段进行,该初级阶段的设备是指导入了一条线或是调试。然而,一旦系统处于运行状态,传输条件变得十分固定,所以在光功率的最佳值中大变化的能力是低的。因此,本发明方法可通过人工调节从光发射器8输出的光信号的光功率而不使用图9系统的控制单元10来自动调节。
图10表示本发明系统的另一优选实施例框图。与图1或图9所示的系统相比,图10所示的系统的特征在于沿着光纤传输线6装有许多光学中继器78(#1)到78(#N)(N为大于1的整数)。所提供的光学中继器78(#1)到78(#N)都作为线性中继器。该线性中继器在同样情况下用作放大所接收的光信号的中继器,它区别于再生中继器的是用来进行波形整形等。光中继器78(#1)到78(#N)中的每一个都具有光学放大器80以用于放大所接收的光信号。特别是在这个优选的实施例中,沿光纤传输线64装有许多光中继器82(#1)到82(#N)。光中继器82(#1)到82(#N)中的每一个都具有一个光学放大器84。
下面描述图10系统中的本发明的光纤传输线6的一些特别的应用类型。
在第一应用类型中,每一个放大器80的输出电平(输出光信号的光功率)设定(固定)为一个恒定值。在这种情况下,由于每一个放大器80的高输出电平的非线性的影响基本上是恒定的。因此,根据本发明在第一终端装置2中的从光发射器8输出的光信号的光功率很容易设定在最佳值。参考电平Vref设定在恒定值每一个光学放大器80都可采用图6所示的光学放大器的配置。
在第二应用类型中,光发射器8的输出电平和每一个光学放大器80的输出电平彼此基本上相等。也就是说,光发射器8和每一个光学放大器80的输出电平都根据控制信号CS来调节(见图9)。
在第三应用类型中,光发射器8和光学放大器80的输出电平顺序地从第一终端装置2向第二终端装置4或从第二终端装置4向第一终端装置2来调节。
在第二和第三应用类型中,每一个光学放大器80的输出电平(或增益)都根据控制信号CS来改变。因此,要是图6中的光学放大器用作每一个光学放大器80的话,参考电平Vref根据控制信号CS来调节。
在第二和第三应用类型中,每一个光中继器78(#1)到78(#N)都需要控制信号CS。因此,需要从第一终端装置2到每一个光中继器78(#1)到78(#N)发送包括控制信号CS在内的特殊的监控信息。
图11表示用于在图10系统中发送特殊监控信息的改进形式的框图。在该改进形式中,具有用于转换特殊监控信息(监控信号)的E/O转换器86的第一终端装置2根据控制信号CS产生一个监控光信号。从E/O转换器86输出的监控光信号与涉及从光发射器8通过WDM(波分复用)耦合器88输出的主信号结合在一起。因此,监控光信号的波长与从光发射器8输出的光信号的波长不相同。
数字78代表图10中的每一个光中继器78(#1)到78(#N)。在每一个光中继器78(#1)到78(#N)中,监控光信号通过WDM耦合器90来分离,分离的监控信号通过O/E转换器92转换成监控信号。从O/E转换器92输出的监控信号提供给监控电路(SV)94。监控电路94根据监控信号来调节光学放大器80的输出电平(或增益)。例如,如果图6中的光学放大器用作光学放大器80的话,就根据监控信号来设定参考电平Vref。监控信号提供给监控电路94或在监控电路中通过E/O转换器96将更新的监控信号转换成监控光信号。从E/O转换器96输出的监控光信号提供给WDM耦合器98,通过光学放大器80将监控光信号与光信号结合在一起进行放大。
在第二终端装置4中,通过WDM耦合器100来提取监控光信号,提取的监控光信号通过O/E转换器102转换成监控信号。从O/E转换器102输出的监控信号提供给监控电路104,监控电路104的输出信号与监控单元14的输出信号一起被输入前向控制流。
在进行第三应用类型的情况下,参考图12现将描述图10(图11)所示系统的控制流程。
在步骤112中,在传输线上输入初始信息。例如初始信息包括各种类型的传输线(DSF/SMF/其它)、每一个中继器之间的间隔距离、存在/不存在色散补偿器、在有色散补偿器的情况下是存在色散的。传输线的参数(损耗系数、色散系数、和非线性系数)。
在步骤114中,光发射器8和每一个光学放大器80的输出电平根据输入初始信息来设定,以便使第一终端装置2的光信号以传输质量确定的电平传输到第二终端装置4。
在步骤116中,开始最优检测和启动设置。例如,步骤116通过后向控制流(光纤传输线6)和前向控制流(光纤传输线64)来进行。
在步骤118中,最优检测和对每一后向控制流部分来进行设置,换句话说,光发射器8和光中继器78(#1)到78(#N)设定在同一值。
在步骤120中,确定对所有的线设置是否已经完成。如果确认所有的线还没有完成,返回步骤116开始最优检测和对前向控制流的设置。
例如,当所有的线设置都完成了时,程序进行到步骤122,设置信息记录在第一终端装置2提供的与CPU相连的记忆装置里。
通过图12所示的控制流程顺序地进行从第一终端装置2的上游线到第二终端装置4的设置操作,设置操作也可以以相反的顺序进行。上游线的设置操作也可以类似地进行。
根据上述的对本发明的描述,可以提供一种用于远距离传输的可补偿色散和非线性的光纤通信方法,还提供此方法使用的终端装置和系统。通过上述描述的本发明特别优选的实施例可获得此效果,在此省略其它描述。
本发明不限于上述详细描述的优选的实施例。本发明的范围通过附加的权利要求来限定,通过本发明所作的各种变化和改变都包含在权利要求的范围内。
权利要求
1.一种方法,包括以下步骤(a)提供用于将具有可变光功率的光信号输出到光纤传输线的装置;(b)把通过所述的光纤传输线传输的所述光信号转换成电信号;(c)检测所述的电信号波形衰减所涉及的参数;和(d)根据检测到的参数,控制所述的光功率以使所述的电信号的波形衰减得到改善。
2.根据权利要求1的方法,其中所述的装置由包含在有沿着所述的光纤传输线设置的光中继器中的光学放大器来提供;所述的步骤(d)包括调节所述光学放大器增益的步骤。
3.根据权利要求1的方法,其中所述的装置由与所述光纤传输线的一端连接的光发射器来提供。
4.根据权利要求3的方法,其中所述的光发射器包括用于将输入电信号转换成光信号的电/光转换器和将光信号放大的光学放大器;所述的步骤(d)包括调节光学放大器增益的步骤。
5.根据权利要求1的方法,其中所述的参数为电信号的比特误差率。
6.根据权利要求1的方法,其中参数是上述电信号的眼孔张开度。
7.根据权利要求1的方法,其中所述装置是由与光纤传输线的一端连接的光发射器,且和许多沿所述的光纤传输线设置的每个光中继器中包括的光放大器来提供。
8.根据权利要求7的方法,其中所述的步骤(d)包括满足光发射器的输出功率和所述的光学放大器的输出功率基本上相等这样一个条件的步骤。
9.根据权利要求7的方法,其中所述的步骤(d)包括顺序地调节光发射器和光学放大器输出功率的步骤。
10.一种系统,包括第一和第二终端装置;和与所述第一和第二终端装置连接的光纤传输线;所述的第一终端装置包括用于将具有可变光功率的光信号输出到光纤传输线的光发射器;所述的第二终端装置包括将光纤传输线所传输的光信号转换成电信号的光接收器、检测涉及所述电信号波形衰减参数的监控单元、和将检测参数的监控信息传输到所述的第一终端装置的装置;所述的第一终端装置还包括根据控制监控信息控制光功率以便改善电信号的波形衰减的控制单元。
11.根据权利要求10的系统,其中所述的光发射器包括将输入电信号转换成光信号的电/光转换器,和放大光信号的光学放大器;和所述的控制单元调节光学放大器的增益。
12.根据权利要求10的系统,其中所述的第二终端装置还包括放大待光接收器接收的光信号的光学放大器。
13.根据权利要求10的系统,其中所述的光纤传输线包括具有接近1.55μm零色散波长的色散移位的光纤。
14.根据权利要求10的系统,其中所述的光纤传输线包括具有接近1.3μm零色散波长的单模光纤。
15.根据权利要求14的系统,还包括补偿存在于光纤传输线中的色散的色散补偿光纤。
16.根据权利要求10的系统,还包括与第一和第二终端装置连接的第二光纤传输线;所述的监控信息从第二终端装置通过第二光纤传输线发送到第一终端装置。
17.一种终端装置,包括将具有可变光功率的光信号输出到光纤传输线的光发射器;接收与光纤传输线所传输光信号的波形衰减相关的检测参数的监控信息的装置;和根据所述监控信息来控制所述的光功率的装置,以使光信号的波形衰减得到改善。
全文摘要
本发明涉及一种光纤通信的方法,和供此方法使用的终端装置和系统,本发明的目的是补偿色散和非线性。提供一种将具有可变光功率的光信号输入到光纤传输线的装置。传输线传送的光信号通过光接收器转换成电信号。监控单元检测涉及电信号波形衰变的参数。控制单元控制从此装置输出的光信号的光功率的以使波形衰变得到改善。
文档编号H04B10/18GK1240944SQ9911030
公开日2000年1月12日 申请日期1999年7月8日 优先权日1999年7月8日
发明者津田高至, 山根一雄, 河崎由美子, 冈野悟 申请人:富士通株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1