广播信号发送装置、广播信号接收装置、广播信号发送方法以及广播信号接收方法

文档序号:10694459阅读:568来源:国知局
广播信号发送装置、广播信号接收装置、广播信号发送方法以及广播信号接收方法
【专利摘要】根据本发明的一个实施例的广播信号接收装置可以包括,接收器,用于接收广播信号;解调器,用于通过OFDM(正交频分复用)方案解调接收的广播信号;帧解析器,用于从解调的广播信号解析至少一个信号帧,一个信号帧包括与多个物理路径相对应的服务数据;比特解交织器,用于比特解交织在至少一个信号帧中包括的数据;以及解码器,用于解码被比特解交织的数据。
【专利说明】
广播信号发送装置、广播信号接收装置、广播信号发送方法从 及广播信号接收方法
技术领域
[0001] 本发明设及用于发送广播信号的设备、用于接收广播信号的设备和用于发送和接 收广播信号的方法。
【背景技术】
[0002] 随着模拟广播信号传输终止,正在开发用于发送/接收数字广播信号的各种技术。 数字广播信号可W包括比模拟广播信号更大量的视频/音频数据,并且进一步包括除了视 频/音频数据之外的各种类型的附加数据。

【发明内容】

[0003] 技术问题
[0004] 目P,数字广播系统可W提供皿(高分辨率)图像、多声道音频和各种附加的服务。但 是,用于大量数据传输的数据传输效率、考虑到移动接收设备的发送/接收的网络的鲁棒性 和网络灵活性对于数字广播需要改进。
[0005] 技术方案
[0006] 为了实现目标和其它的优点并且根据本发明的目的,如在此体现和广泛描述的, 一种用于发送广播信号的方法,该方法包括:编码服务数据;比特交织编码的服务数据;构 建包括比特交织的服务数据的至少一个信号帖,其中至少一个信号帖包括多个OFDM符号; 通过OFDM(正交频分复用)方案调制构建的至少一个信号帖中的数据;W及发送具有调制的 数据的广播信号。
[0007] 有益效果
[000引本发明可W根据服务特征处理数据W控制用于每个服务或者服务组件的QoS(服 务质量),从而提供各种广播服务。
[0009] 本发明可W通过经由相同的RF信号带宽发送各种广播服务实现传输灵活性。
[0010] 本发明可W使用ΜΙΜΟ系统提升数据传输效率并且提高广播信号的发送/接收的鲁 棒性。
[0011] 根据本发明,可W提供广播信号发送和接收方法W及装置,其甚至能够与移动接 收设备或者在室内环境下没有错误地接收数字广播信号。
【附图说明】
[0012] 附图被包括W提供对本发明进一步的理解,并且被合并和构成本申请书的一部 分,附图图示本发明的实施例,并且与该说明书一起可W用作解释本发明的原理。在附图 中:
[0013] 图1图示根据本发明的实施例发送用于未来的广播服务的广播信号的装置的结 构。
[0014] 图2图示根据本发明的一个实施例的输入格式化块。
[0015] 图3图示根据本发明的另一个实施例的输入格式化块。
[0016] 图4图示根据本发明的另一个实施例的输入格式化块。
[0017]图5图示根据本发明的实施例的BICM块。
[0018] 图6图示根据本发明的另一个实施例的BICM块。
[0019] 图7图示根据本发明的一个实施例的帖构建块。
[0020] 图8图示根据本发明的实施例的OFDM生成块。
[0021] 图9图示根据本发明的实施例接收用于未来的广播服务的广播信号的装置的结 构。
[0022] 图10图示根据本发明的实施例的帖结构。
[0023] 图11图示根据本发明的实施例的帖的信令分层结构。
[0024] 图12图示根据本发明的实施例的前导信令数据。
[0025] 图13图示根据本发明的实施例的化S1数据。
[0026] 图14图示根据本发明的实施例的化S2数据。
[0027] 图15图示根据本发明的另一个实施例的化S2数据。
[0028] 图16图示根据本发明的实施例的帖的逻辑结构。
[0029] 图17图示根据本发明的实施例的化S映射。
[0030] 图18图示根据本发明的实施例的EAC映射。
[0031] 图19图示根据本发明的实施例的FIC映射。
[0032] 图20图示根据本发明的实施例的DP的类型。
[0033] 图21图示根据本发明的实施例的DP映射。
[0034] 图22图示根据本发明的实施例的FEC结构。
[0035] 图23图示根据本发明的实施例的比特交织。
[0036] 图24图示根据本发明的实施例的信元字(cell-word)解复用。
[0037] 图25图示根据本发明的实施例的时间交织。
[0038] 图26图示根据本发明的实施例的扭曲的行列块交织器的基本操作。
[0039] 图27图示根据本发明的另一实施例的扭曲的行列块交织器的操作。
[0040] 图28图示根据本发明的实施例的扭曲的行列块交织器的对角线方式读取图案。
[0041] 图29图示根据本发明的实施例的来自于每个交织阵列的被交织的XFECBL0CK。
[0042] 图30是图示根据本发明的实施例的比特交织器的框图。
[0043] 图31是图示根据本发明的实施例的在QCB交织和块交织之间的关系的框图。
[0044] 图32是图示根据本发明的实施例的块交织参数的表。
[0045] 图33是图示根据本发明的实施例的块交织的写入操作的概念图。
[0046] 图34是图示根据本发明的实施例的块交织的读取操作的概念图。
[0047] 图35是图示根据本发明的实施例的比特解交织器的框图。
[0048] 图36是图示根据本发明的另一实施例的比特交织器的框图。
[0049] 图37是图示根据本发明的实施例的块交织器的概念图。
[0050] 图38是图示根据本发明的另一实施例的块交织器的写入操作的概念图。
[0051] 图39是图示根据本发明的另一实施例的块交织的读取操作的概念图。
[0052] 图40是图示根据本发明的实施例的置换顺序的概念图。
[0053] 图41是图示根据本发明的另一实施例的组内交织参数的表。
[0054] 图42是图示在NUC-256的情况下组内交织的写入操作的概念图。
[0055] 图43是图示根据本发明的实施例的块交织的读取操作的概念图。
[0056] 图44是图示根据本发明的实施例的剩余的QC块的概念图。
[0057] 图45是图示根据本发明的实施例的剩余的QC块的写入操作的概念图。
[0058] 图46是图示根据本发明的实施例的剩余的QC块的概念图。
[0059] 图47是当在不同的方向中执行块交织的写入操作时存储器容量中的不同。
[0060] 图48是图示根据本发明的实施例的比特交织器存储器的概念图。
[0061] 图49是图示根据本发明的另一实施例的置换顺序的概念图。
[0062] 图50是图示根据本发明的实施例的用于接收广播信号的方法的流程图。
[0063] 图51示出图示根据本发明的实施例的用于码长度16200的各个码率和调制类型的 置换顺序的表。
[0064] 图52至图55示出图示根据本发明的实施例的用于码长度64800的各个码率和调制 类型的置换顺序的表。
[0065] 图56至图59示出图示根据本发明的实施例的用于码长度64800的各个码率和调制 类型的置换顺序的表。
[0066] 图60示出图示根据本发明的另一实施例的用于码长度16200的各个码率和调制类 型的置换顺序的表。
[0067] 图61示出图示根据本发明的另一实施例的用于码长度16200的各个码率和调制类 型的置换顺序的表。
[0068] 图62示出图示根据本发明的另一实施例的用于码长度16200的各个码率和调制类 型的置换顺序的表。
[0069] 图63至图69示出图示根据本发明的另一实施例的用于码长度64800的各个码率和 调制类型的置换顺序的表。
[0070] 图70至图73示出图示根据本发明的另一实施例的用于码长度64800的各个码率和 调制类型的置换顺序的表。
【具体实施方式】
[0071] 现在将详细地介绍本发明的优选实施例,其示例在附图中图示。详细说明将在下 面参考附图给出,其旨在解释本发明的示例性实施例,而不是仅示出可W根据本发明实现 的实施例。W下的详细说明包括特定的细节W便对本发明提供深入理解。但是,对于本领域 技术人员来说显而易见,实践本发明可W无需运些特定的细节。
[0072] 虽然在本发明中使用的大多数术语已经从在本领域广泛地使用的常规术语中选 择,但是某些术语已经由
【申请人】任意地选择,并且其含义在W下的描述中根据需要详细说 明。因此,本发明应该基于该术语所期望的含义理解,而不是其简单的名称或者含义理解。
[0073] 本发明提供用于发送和接收供未来的广播服务的广播信号的装置和方法。根据本 发明的实施例的未来的广播服务包括陆地广播服务、移动广播服务、UHDTV服务等。
[0074] 根据本发明的实施例的用于发送的设备和方法可W被归类成用于陆地广播服务 的基本简档、用于移动广播服务的手持式简档W及用于UHDTV附图的高级简档。在运样的情 况下,基本简档能够被用作用于陆地广播服务和移动广播服务两者的简档。即,基本简档能 够被用于定义包括移动简档的简档的概念。根据设计者的意图能够对此进行改变。
[0075] 本发明提供用于发送和接收供未来的广播服务的广播信号的设备和方法。根据本 发明的实施例的未来的广播服务包括陆地广播服务、移动广播服务、UHDTV服务等。本发明 可W根据一个实施例经由非ΜΙΜΟ(多输入多输出)或者ΜΙΜΟ处理用于未来的广播服务的广 播信号。根据本发明的实施例的非ΜΙΜΟ方案可W包括MIS0(多输入单输出)、SIS0(单输入单 输出)方案等。
[0076] 虽然在下文中为了描述方便起见,MIS0或者ΜΙΜΟ使用两个天线,但是本发明可适 用于使用两个或更多个天线的系统。
[0077] 本发明可W定义Ξ个物理层(PL)简档(profile)(基础、手持和高级简档)每个被 优化W最小化接收器复杂度,同时获得对于特定使用情形所需的性能。物理层(PHY)简档是 相应的接收器将实施的所有配置的子集。
[0078] Ξ个PHY简档共享大部分功能块,但是,在特定的模块和/或参数方面略微地不同。 另外的PHY简档可W在未来限定。对于系统演进,未来的属性还可W经由未来的扩展帖 (FE巧在单个RF信道中与现有的简档复用。每个PHY简档的细节在下面描述。
[0079] 1.基础简档
[0080] 基础简档表示对于通常连接到屋顶天线的固定的接收设备的主要使用情形。基础 简档还包括能够运输到一个场所,但是属于相对固定接收类别的便携式设备。基础简档的 使用可W通过某些改进的实施被扩展到手持设备或者甚至车辆,但是,对于基础简档接收 器操作不预期那些使用情况。
[0081 ]接收的目标SNR范围是从大约10到20dB,其包括现有的广播系统(例如,ATSC A/ 53)的15地SNR接收能力。接收器复杂度和功耗不像在电池操作的手持设备一样严重,手持 设备将使用手持简档。用于基础简档的关键系统参数在W下的表1中列出。
[0082] 表 1
[0083] [表1]
[0084]
[0085] 2.手持简档
[0086] 手持简档设计成在W电池电源操作的手持和车载设备中使用。该设备可行人 或者车辆速度移动。功耗和接收器复杂度对于手持简档的设备的实施是非常重要的。手持 简档的目标SNR范围大约是0至10地,但是,当意欲用于较深的室内接收时,可W配置为达到 低于〇地。
[0087] 除了低的SNR能力之外,由接收器移动性所引起的多普勒效应的适应性是手持简 档最重要的性能品质。用于手持简档的关键系统参数在W下的表2中列出。
[0088] 表 2
[0089] [表 2]
[0090]
[0091] ~~3.高级简档 '
'
[0092] 高级简档W更大的实施复杂度为代价提供最高的信道容量。该简档需要使用ΜΙΜΟ 发送和接收,并且UHDTV服务是对该简档特别设计的目标使用情形。提高的容量还可W用于 允许在给定带宽提高服务数目,例如,多个SDTV或者皿TV服务。
[0093] 高级简档的目标SNR范围大约是20至30地。ΜΙΜΟ传输可W最初地使用现有的楠圆 极化传输设备,并且在未来扩展到全功率横向极化传输。用于高级简档的关键系统参数在 W下的表3中列出。
[0094] 表 3
[0095] [表 3]
[0096]
'[0097]~在运样的情况下,基础简档能够被用作用于陆地广播服务和移动广播服务两者的I 简档。即,基础简档能够被用于定义包括移动简档的简档的概念。而且,高级简档能够被划 分成用于具有ΜΙΜΟ的基础简档的高级简档和用于具有ΜΙΜΟ的手持简档的高级简档。此外, 根据设计者的意图能够改变Ξ种简档。
[0098] 下面的术语和定义可W应用于本发明。根据设计能够改变下面的术语和定义。
[0099] 辅助流:承载对于尚未定义的调制和编码的数据的信元的序列,其可W被用于未 来扩展或者通过广播公司或者网络运营商要求
[0100] 基本数据管道:承载服务信令数据的数据管道
[0101] 基带帖(或者BBFRAME):形成对一个FEC编码过程(BCH和LDPC编码)的输入的肺ch 比特的集合
[0102] 信元:通过OFDM传输的一个载波承载的调制值
[0103] 被编码的块:PL^数据的LDPC编码的块或者化S2数据的LDPC编码的块中的一个
[0104] 数据管道:承载服务数据或者相关元数据的物理层中的逻辑信道,其可W承载一 个或者多个服务或者服务组件。
[01化]数据管道单元:用于在帖中将数据信元分配给DP的基本单位。
[0106]数据符号:在帖中不是前导符号的OFDM符号(帖信令符号和帖边缘符号被包括在 数据符号中)
[0107] DP_ID:此化k特字段唯一地识别在通过SYSTME_ID识别的系统内的DP
[0108] 哑信元:承载被用于填充不被用于化S信令、DP或者辅助流的剩余的容量的伪随机 值的信元
[0109] 紧急警告信道:承载EAS信息数据的帖的部分
[0110] 帖:W前导开始并且W帖边缘符号结束的物理层时隙
[0111] 帖重复单元:属于包括FET的相同或者不同的物理层简档的帖的集合,其在超帖中 被重复八次
[0112] 快速信息信道:在承载服务和相对应的基本DP之间的映射信息的帖中的逻辑信道
[0113] FECBL0CK: DP数据的LDPC编码的比特的集合
[0114] FFT大小:被用于特定模式的标称的FFT大小,等于在基础时段T的周期中表达的活 跃符号时段Ts
[0115] 帖信令符号:在FFT大小、保护间隔W及被分散的导频图案的某个组合中,在帖的 开始处使用的具有较高的导频密度的OFDM符号,其承载化S数据的一部分
[0116] 帖边缘符号:在FFT大小、保护间隔W及被分散的导频图案的某个组合中,在帖的 末端处使用的具有较高的导频密度的OFDM符号
[0117] 帖组:在超帖中具有相同的PHY简档类型的所有帖的集合。
[0118] 未来扩展帖:能够被用于未来扩展的在超帖内的物理层时隙,W前导开始
[0119] 化化recast UTB系统:提出的物理层广播系统,其输入是一个或者多个Μ阳G2-TS 或者IP或者一般流,并且其输出是RF信号
[0120] 输入流:用于通过系统被传递给终端用户的服务的全体的数据的流。
[0121] 正常数据符号:排除帖信令和帖边缘符号的数据符号
[0122] PHY简档:相对应的接收器应实现的所有配置的子集
[0123] 化S:由化S1和化S2组成的物理层信令数据
[0124] PLS1:在具有固定的大小、编码和调制的FSS符号中承载的化S数据的第一集合,其 承载关于系统的基本信息W及解码化S2所需要的参数
[0125] 注意:?1^別数据在帖组的持续时间内保持恒定。
[0126] PLS2:在FSS符号中发送的化S数据的第二集合,其承载关于系统和DP的更多详细 PLS数据
[0127] 化S2动态数据:可W动态地逐帖改变的化S2数据
[0128] 化S2静态数据:在帖组的持续时间内保持静态的化S2数据
[0129] 前导信令数据:通过前导符号承载并且被用于识别系统的基本模式的信令数据
[0130] 前导符号:承载基本化縫义据并且位于帖的开始的固定长度的导频符号
[0131] 注意:前导符号主要被用于快速初始带扫描W检测系统信号、其时序、频率偏移、 W及FFT大小。
[0132] 保留W便未来使用:本文档没有定义但是可W在未来定义
[0133] 超帖:八个帖重复单元的集合
[0134] 时间交织块(??块):在其中执行时间交织的信元的集合,与时间交织器存储器的 一个使用相对应
[0135] ΤΙ组:在其上执行用于特定DP的动态容量分配的单元,由整数组成,动态地改变 XFECBL0CK的数目。
[0136] 注意:TI组可W被直接地映射到一个帖或者可W被映射到多个帖。其可W包含一 个或者多个TI块。
[0137] 类型1DP:其中所有的DPWTDM方式被映射到帖的帖的DP [013引类型2DP:其中所有的DPWFDM方式被映射到帖的帖的DP
[0139] XFECBL0CK:承载一个LDPC FECBL0CK的所有比特的化ell个信元的集合
[0140] 图1图示根据本发明的实施例用于发送供未来的广播服务的广播信号装置的结 构。
[0141] 根据本发明的实施例用于发送供未来的广播服务的广播信号的设备可W包括输 入格式化块l〇〇〇、BICM(比特交织编码和调制)块1010、帖构建块1020、(FDM(正交频分复用) 产生块1030和信令产生块1040。将给出用于发送广播信号装置的每个模块的操作的描述。
[0142] IP流/分组和MPEG2-TS是主要输入格式,其它的流类型被作为常规流处理。除了运 些数据输入之外,管理信息被输入W控制用于每个输入流的相应的带宽的调度和分配。一 个或者多个TS流、IP流和/或常规流被同时允许输入。
[0143] 输入格式化块1000能够解复用每个输入流为一个或者多个数据管道,对其中的每 一个应用单独的编码和调制。数据管道(DP)是用于鲁棒控制的基本单位,从而影响服务质 量(QoS)。一个或者多个服务或者服务组件可W由单个DP承载。稍后将描述输入格式化块 1000的操作细节。
[0144] 数据管道是在承载服务数据或者相关的元数据的物理层中的逻辑信道,其可W承 载一个或者多个服务或者服务组件。
[0145] 此外,数据管道单元:在帖中用于分配数据信元给DP的基本单位。
[0146] 在BICM块1010中,奇偶校验数据被增加用于纠错,并且编码的比特流被映射为复 数值星座符号。该符号跨越用于相应的DP的特定交织深度被交织。对于高级简档,在BICM块 1010中执行ΜΙΜΟ编码,并且另外的数据路径被添加在输出端用于ΜΙΜΟ传输。稍后将描述 BICM块1010的操作细节。
[0147] 帖构建块1020可W将输入DP的数据信元映射为在帖内的OFDM符号。在映射之后, 频率交织用于频率域分集,特别地,用于抗击频率选择性衰落信道。稍后将描述帖构建块 1020的操作细节。
[0148] 在每个帖的开始处插入前导之后,(FDM产生块1030可W应用具有循环前缀作为保 护间隔的常规的OFDM调制。对于天线空间分集,分布式MIS0方案遍及发射器被应用。此外, 峰值对平均功率降低(PAPR)方案在时间域中执行。对于灵活的网络规划,运个建议提供一 组不同的FFT大小、保护间隔长度和相应的导频图案。稍后将描述OFDM产生块1030的操作细 T。
[0149] 信令产生块1040能够创建用于每个功能块操作的物理层信令信息。该信令信息也 被发送使得感兴趣的服务在接收器侧被适当地恢复。稍后将描述信令产生块1040的操作细 T。
[0150] 图2、3和4图示根据本发明的实施例的输入格式化块1000。将给出每个图的描述。
[0151] 图2图示根据本发明的一个实施例的输入格式化块。图2示出当输入信号是单个输 入流时的输入格式化模块。
[0152] 在图2中图示的输入格式化块对应于参考图1描述的输入格式化块1000的实施例。
[0153] 到物理层的输入可W由一个或者多个数据流组成。每个数据流由一个DP承载。模 式适配模块将输入数据流限制(slice)为基带帖(BBF)的数据字段。系统支持Ξ种类型的输 入数据流:MPEG2-TS、互联网协议(IP)和常规流(GSKMPEG2-TS特征为固定长度(188字节) 分组,第一字节是同步字节(0x47) JP流由如在IP分组报头内用信号传送的可变长度IP数 据报分组组成。系统对于IP流支持IPv4和IPv6两者。GS可W由在封装分组报头内用信号传 送的可变长度分组或者固定长度分组组成。
[0154] (a)示出用于信号DP的模式适配块2000和流适配2010,并且(b)示出用于产生和处 理化S数据的化S产生块2020和化S加扰器2030。将给出每个块的操作的描述。
[01巧]输入流分割器将输入TS、IP、GS流分割为多个服务或者服务组件(音频、视频等) 流。模式适配模块2010由CRC编码器、BB(基带)帖限制器,和BB帖报头插入块组成。
[0156] CRC编码器在用户分组(UP)级别提供用于错误检测的Ξ种类型的CRC编码,即, CRC-8XRC-16和CRC-32。计算的CRC字节附加在UP之后。CRC-8用于TS流并且CRC-32用于IP 流。如果GS流不提供CRC编码,则将应用所建议的CRC编码。
[0157] BB帖限制器将输入映射到内部逻辑比特格式。首先接收的比特被定义为是MSBdBB 帖限制器分配等于可用数据字段容量的输入比特的数目。为了分配等于BBF有效载荷的输 入比特的数目,UP分组流被限制为适合BBF的数据字段。
[0158] BB帖报头插入模块可W将2个字节的固定长度BB巧良头插入在BB帖的前面。BB巧良 头由STUFFI (1比特)、SYNCD (13比特)和RFU (2比特)组成。除了固定的2字节BB巧良头之外, BBF还可W在2字节日日巧自头的末端具有扩展字段(1或者3字节)。
[0159] 流适配2010由填充插入块和BB加扰器组成。
[0160] 填充插入块能够将填充字段插入到BB帖的有效载荷中。如果到流适配的输入数据 足够填充BB帖,则STUFFI被设置为"0",并且BBF没有填充字段。否则,STUFFI被设置为"Γ, 并且填充字段被紧挨在BB巧良头之后插入。填充字段包括两个字节的填充字段报头和可变 大小的填充数据。
[0161] BB加扰器加扰完成的BBF用于能量扩散。加扰序列与BBF同步。加扰序列由反馈移 位寄存器产生。
[0162] PLS产生块2020可W产生物理层信令(PLS)数据。PLS对接收器提供接入物理层DP 的手段。PLS数据由化S1数据和化S2数据组成。
[0163] 化S1数据是在具有固定大小的帖中在FSS符号中承载、编码和调制的第一组化S数 据,其承载有关解码化S2数据需要的系统和参数的基本信息。PLS1数据提供包括允许化S2 数据的接收和解码所需要的参数的基本传输参数。此外,PLS1数据在帖组的持续时间保持 不变。
[0164] 化S2数据是在FSS符号中发送的第二组化S数据,其承载有关系统和DP的更加详细 的化S数据。PLS2包含对接收器解码期望的DP提供足够的信息的参数。PLS2信令进一步由两 种类型的参数,PLS2静态数据(PLS2-STAT数据)和化S2动态数据(PLS2-DYN数据)组成。PLS2 静态数据是在帖组持续时间保持静态的化S2数据,并且化S2动态数据是可W逐帖动态变化 的化S2数据。
[0165] 稍后将描述化縫义据的细节。
[0166] PLS加扰器2030可W加扰所产生的化縫义据用于能量扩散。
[0167] W上描述的块可W被省略,或者由具有类似或者相同功能的块替换。
[0168] 图3图示根据本发明的另一个实施例的输入格式化块。
[0169] 在图3中图示的输入格式化块对应于参考图1描述的输入格式化块1000的实施例。
[0170] 图3示出当输入信号对应于多个输入流时,输入格式化块的模式适配块。
[0171] 用于处理多个输入流的输入格式化块的模式适配块可W独立地处理多个输入流。
[0172] 参考图3,用于分别处理多个输入流的模式适配块可W包括输入流分割器3000、输 入流同步器3010、补偿延迟块3020、空分组删除块3030、报头压缩块3040、CRC编码器3050、 BB帖限制器(slicer)3060和BB报头插入块3070。将给出模式适配块的每个块的描述。
[0173] CRC编码器3050、BB帖限制器3060和BB报头插入块3070的操作对应于参考图2描述 的CRC编码器、BB帖限制器和BB报头插入块的操作,并且因此,其描述被省略。
[0174] 输入流分割器3000可W将输入TS、IP、GS流分割为多个服务或者服务组件(音频、 视频等)流。
[0175] 输入流同步器3010可W称为ISSYJSSY可W对于任何输入数据格式提供适宜的手 段W保证恒定比特率(CBR)和恒定端到端传输延迟。ISSY始终用于承载TS的多个DP的情形, 并且选择性地用于承载GS流的多个DP。
[0176] 补偿延迟块3020可W在ISSY信息的插入之后延迟分割TS分组流,W允许TS分组重 新组合机制而无需在接收器中额外的存储器。
[0177] 空分组删除块3030仅用于TS输入流情形。一些TS输入流或者分割的TS流可W具有 大量的空分组存在,W便在CBR TS流中提供VBR(可变比特速率)服务。在运种情况下,为了 避免不必要的传输开销,空分组可W被识别并且不被发送。在接收器中,通过参考在传输中 插入的删除的空分组(DNP)计数器,去除的空分组可W重新插入在它们最初的精确的位置 中,从而,保证恒定比特速率,并且避免对时间戳(PCR)更新的需要。
[0178] 报头压缩块3040可W提供分组报头压缩W提高用于TS或者IP输入流的传输效率。 因为接收器可W具有有关报头的某个部分的先验信息,所W运个已知的信息可W在发射器 中被删除。
[0179] 对于传输流,接收器具有有关同步字节配置(0x47)和分组长度(188字节)的先验 信息。如果输入TS流承载仅具有一个PID的内容,即,仅用于一个服务组件(视频、音频等)或 者服务子组件(SVC基本层、SVC增强层、MVC基本视图或者MVC相关的视图),则TS分组报头压 缩可W(选择性地)应用于传输流。如果输入流是IP流,则选择性地使用IP分组报头压缩。
[0180] W上描述的模块可W被省略,或者由具有类似或者相同功能的块替换。
[0181] 图4图示根据本发明的另一个实施例的输入格式化块。
[0182] 在图4中图示的输入格式化模块对应于参考图1描述的输入格式化块1000的实施 例。
[0183] 图4图示当输入信号对应于多个输入流时,输入格式化模块的流适配模块。
[0184] 参考图4,用于分别处理多个输入流的模式适配模块可W包括调度器4000、1-帖延 迟块4010、填充插入块4020、带内信令4030、BB帖加扰器4040、PLS产生块4050和化巧日扰器 4060。将给出流适配模块的每个块的描述。
[01化]填充插入块4020、BB帖加扰器4040、PLS产生块4050和化巧日扰器4060的操作对应 于参考图2描述的填充插入块、BB加扰器、PLS产生块和化巧日扰器的操作,并且因此,其描述 被省略。
[0186] 调度器4000可W从每个DP的阳CBL0CK(阳C块)的量确定跨越整个帖的整体信元分 配。包括对于化S、EAC和FIC的分配,调度器产生化S2-DYN数据的值,其被作为在该帖的FSS 中的化S信元或者带内信令发送。稍后将描述FECBL0CK、EAC和FIC的细节。
[0187] 1-帖延迟块4010可W通过一个传输帖延迟输入数据,使得有关下一个帖的调度信 息可W经由用于带内信令信息的当前帖发送W被插入DP中。
[0188] 带内信令4030可W将化S2数据的未延迟部分插入到帖的DP中。
[0189] W上描述的块可W被省略,或者由具有类似或者相同功能的块替换。
[0190] 图5图示根据本发明的实施例的BICM块。
[0191] 在图5中图示的BICM块对应于参考图1描述的BICM块1010的实施例。
[0192] 如上所述,根据本发明的实施例用于发送供未来的广播服务的广播信号的设备可 W提供陆地广播服务、移动广播服务、UHDTV服务等。
[0193] 由于QoS(服务质量)取决于由根据本发明的实施例的用于发送供未来的广播服务 的广播信号的设备提供的服务特征,因此对应于相应服务的数据需要经由不同的方案处 理。因此,根据本发明的实施例的BICM块可W通过将SIS0、MIS0和ΜΙΜΟ方案独立地应用于分 别对应于数据路径的数据管道,独立地处理对其输入的DP。因此,根据本发明的实施例的用 于发送供未来的广播服务的广播信号的设备能够控制经由每个DP发送的每个服务或者服 务组件的QoS。
[0194] (a)示出由基础简档和手持简档共享的BICM块,并且(b)示出高级简档的BICM模 块。
[01M]由基础简档和手持简档共享的BICM块和高级简档的BICM块能够包括用于处理每 个DP的多个处理块。
[0196] 将给出用于基础简档和手持简档的BICM块和用于高级简档的BICM块的每个处理 模块的描述。
[0197] 用于基础简档和手持简档的BICM块的处理块5000可W包括数据FEC编码器5010、 比特交织器5020、星座映射器5030、SSD(信号空间分集)编码块5040和时间交织器5050。
[019引数据FEC编码器5010能够使用外编码(BCH)和内编码化DPC)对输入BBF执行FEC编 码,W产生FECBL0CK过程。外编码(BCH)是可选择的编码方法。稍后将描述数据FEC编码器 5010的操作细节。
[0199] 比特交织器5020可WWLDPC编码和调制方案的组合交织数据阳C编码器5010的输 出W实现优化的性能,同时提供有效地可执行的结构。稍后将描述比特交织器5020的操作 细节。
[0200] 星座映射器5030 可 W 使用 QPSK、QAM-16、不均匀 QAM(NUQ-64、NUQ-256、NUQ-1024), 或者不均匀星座(^〇16、^(:-64、抓(:-256、^(:-1024),在基础和手持简档中调制来自比特 交织器5020的每个信元字(cell word),或者在高级简档中来自信元字解复用器5010-1的 信元字,W给出功率标准化的星座点el。该星座映射仅适用于DP。注意到,QAM-16和NUQ是正 方形的形状,而NUC具有任意形状。当每个星座转动90度的任意倍数时,转动的星座精确地 与其原始的一个重叠。运个"旋转感"对称属性使实和虚分量的容量和平均功率彼此相等。 对于每个码率,NUQ和NUC两者被具体地限定,并且使用的特定的一个由在化S2数据中归档 的参数DP_MOD用信号传送。
[0201] SSD编码块5040可二维(2D)、Ξ维(3D)和四维(4D)预编码信元W提高在困难 的衰落条件之下的接收鲁棒性。
[0202 ] 时间交织器5050可W在DP级别操作。时间交织(TI)的参数可W对于每个DP不同地 设置。稍后将描述时间交织器5050的操作细节。
[0203] 用于高级简档的BICM块的处理块5000-1可W包括数据阳C编码器、比特交织器、星 座映射器,和时间交织器。但是,不同于处理块5000,处理模块5000-1进一步包括信元字解 复用器5010-1和ΜΙΜΟ编码模块5020-1。
[0204] 此外,在处理块5000-1中的数据FEC编码器、比特交织器、星座映射器,和时间交织 器的操作对应于描述的数据FEC编码器5010、比特交织器5020、星座映射器5030,和时间交 织器5050的操作,并且因此,其描述被省略。
[0205] 信元字解复用器5010-1用于高级简档的DPW将单个信元字流划分为用于ΜΙΜΟ处 理的双信元字流。稍后将描述信元字解复用器5010-1操作的细节。
[0206] ΜΙΜΟ编码模块5020-1可W使用ΜΙΜΟ编码方案处理信元字解复用器5010-1的输出。 ΜΙΜΟ编码方案对于广播信号传输被优化。ΜΙΜΟ技术是获得性能提高的期望方式,但是,其取 决于信道特征。尤其对于广播,信道的强的L0S分量或者在由不同的信号传播特征所引起的 两个天线之间的接收信号功率的差别使得难W从ΜΙΜΟ得到性能增益。所提出的ΜΙΜΟ编码方 案使用ΜΙΜΟ输出信号的一个的基于旋转的预编码和相位随机化克服运个问题。
[0207] ΜΙΜΟ编码意欲用于在发射器和接收器两者处需要至少两个天线的2Χ2ΜΙΜ0系统。 在该建议下定义两个ΜΙΜΟ编码模式:全速率空间复用(FR-SM)和全速率全分集空间复用 (FR抑-SM) dFR-SM编码W在接收器侧处相对小的复杂度增加提供性能提高,而FR抑-SM编码 W在接收器侧处巨大的复杂度增加提供性能提高和附加分集增益。所提出的ΜΙΜΟ编码方案 没有对天线极性配置进行限制。
[0208] ΜΙΜΟ处理对于高级简档帖是需要的,其指的是由ΜΙΜΟ编码器处理在高级简档帖中 的所有DPdMIMO处理在DP级别适用。星座映射器对输出NUQ(el,i和e2,i)被馈送给ΜΙΜΟ编码 器的输入。配对的ΜΙΜΟ编码器输出(gl,i和g2,i)由其相应的ΤΧ天线的相同的载波k和OFDM 符号1发送。
[0209] W上描述的模块可W被省略或者由具有类似或者相同功能的模块替换。
[0210]图6图示根据本发明的另一个实施例的BICM块。
[0211] 在图6中图示的BICM块对应于参考图1描述的BICM块1010的实施例。
[0212] 图6图示用于保护物理层信令(化S)、紧急警告信道化AC)和快速信息信道(FIC)的 BICM块。EAC是承载EAS信息数据的帖的部分,并且FIC是在承载在服务和相应的基础DP之间 的映射信息的帖中的逻辑信道。稍后将描述EAC和FIC的细节。
[0213] 参考图6,用于保护PLS、EAC和FIC的BICM块可W包括PLS FEC编码器6000、比特交 织器6010和星座映射器6020。
[0214] 此外,PLS FEC编码器6000可W包括加扰器、BCH编码/零插入块、LDPC编码块和 LDPC奇偶穿孔块。将给出BICM块的每个块的描述。
[0215] PLS FEC编码器6000可W编码加扰的PLS 1/2数据、EAC和FIC区段。
[0216] 加扰器可从在日細编码W及缩短和穿孔LDPC编码之前加扰PLSl数据和PLS2数据。
[0217] BCH编码/零插入块可W使用用于化S保护的缩短的BCH码,对加扰的化S 1/2数据 执行外编码,并且在BCH编码之后插入零比特。仅对于化S1数据,零插入的输出比特可W在 LDPC编码之前转置。
[0218] U)PC编码块可W使用U)PC码来编码BCH编码/零插入块的输出。为了产生完整的编 码模块,Cldpc、奇偶校验比特、Pldpc从每个零插入的化S信息块II化C被系统编码,并且附 在其之后。
[0219] 数学公式1
[0220] [数学式。
[0221]
[0222] 用于化S1和化S2的LDPC编码参数如W下的表4。
[022;3]表 4
[0224] [表 4]
[0225]
[0。6] LDPC奇偶穿孔块可W对化S1数据和化S 2数据执行穿孔。
[0227] 当缩短被应用于化S1数据保护时,一些LDPC奇偶校验比特在LDPC编码之后被穿 孔。此外,对于化S2数据保护,PLS2的LDPC奇偶校验比特在LDPC编码之后被穿孔。不发送运 些被穿孔的比特。
[0228] 比特交织器6010可W交织每个被缩短和被穿孔的化S1数据和化S2数据。
[02巧]星座映射器6020可W将比特交织的化S 1数据和化S2数据映射到星座上。
[0230] W上描述的块可W被省略或者由具有类似或者相同功能的块替换。
[0231] 图7图示根据本发明的一个实施例的帖构建块。
[0232] 在图7中图示的帖构建块对应于参考图1描述的帖构建块1020的实施例。
[0233] 参考图7,帖构建块可W包括延迟补偿块7000、信元映射器7010和频率交织器 7020。将给出帖构建块的每个块的描述。
[0234] 延迟补偿块7000可W调整在数据管道和相应的化S数据之间的时序W确保它们在 发射器端共时(co-timed)。通过解决由输入格式化块和BICM块所引起的数据管道的延迟, PL縫义据被延迟与数据管道相同的量。BICM块的延迟主要是由于时间交织器5050。带内信令 数据承载下一个TI组的信息,使得它们承载要用信号传送的DP前面的一个帖。据此,延迟补 偿块延迟带内信令数据。
[02巧]信元映射器7010可W将化5、64(:少1(:、0?、辅助流和哑信元映射到在该帖中的0抑1 符号的活动载波。信元映射器7010的基本功能是,如果有的话,将对于DP、PLS信元、W及 EAC/FIC信元中的每一个由TI产生的数据信元映射到与帖内的OFDM符号内的每一个相对应 的活动OFDM信元。服务信令数据(诸如PSK程序特定信息VSI)能够被单独地收集并且通过 数据管道发送。信元映射器根据由调度器产生的动态信息和帖结构的配置操作。稍后将描 述该帖的细节。
[0236] 频率交织器7020可W随机地交织从信元映射器7010接收的数据信元W提供频率 分集。此外,频率交织器7020可W使用不同的交织种子顺序,对由两个按次序的OFDM符号组 成的特有的OFDM符号对进行操作,W得到在单个帖中最大的交织增益。
[0237] W上描述的块可W被省略或者由具有类似或者相同功能的块替换。
[023引图8图示根据本发明的实施例的(FDM产生块。
[0239] 在图8中图示的(FDM产生块对应于参考图1描述的(FDM产生块1030的实施例。
[0240] OFDM产生块通过由帖构建块产生的信元调制(FDM载波,插入导频,并且产生用于 传输的时间域信号。此外,运个块随后插入保护间隔,并且应用PAPR(峰均功率比)减少处理 W产生最终的RF信号。
[0241] 参考图8, OFDM生成块可W包括导频和保留音插入块8000、2D-eSFN编码块8010、 IFFT(快速傅里叶逆变换)块8020、PAI^减少块8030、保护间隔插入块8040、前导插入模块 8050、其它的系统插入块8060和DAC块8070。将给出帖构建块的每个块的描述。
[0242] 导频和保留音插入块8000可W插入导频和保留音。
[0243] 在OFDM符号内的各种信元被W称为导频的参考信息调制,其具有在接收器中先前 已知的发送值。导频信元的信息由散布导频、连续导频、边缘导频、FSS(帖信令符号)导频和 FES(帖边缘符号)导频组成。每个导频根据导频类型和导频图案W特定的提升功率水平被 发送。导频信息的值是从参考序列中推导出的,其是一系列的值,其一个用于在任何给定符 号上的每个被发送的载波。导频可W用于帖同步、频率同步、时间同步、信道估计和传输模 式识别,并且还可用于跟随相位噪声。
[0244] 从参考序列中提取的参考信息在除了帖的前导、FSS和FES之外的每个符号中在散 布的导频信元中被发送。连续的导频插入在帖的每个符号中。连续的导频的编号和位置取 决于FFT大小和散布的导频图案两者。边缘载波是在除前导符号之外的每个符号中的边缘 导频。它们被插入W便允许频率内插直至频谱的边缘。FSS导频被插入在FSS中,并且FES导 频被插入在FES中。它们被插入W便允许时间内插直至帖的边缘。
[0245] 根据本发明的实施例的系统支持SFN网络,运里分布式MIS0方案被选择性地用于 支持非常鲁棒传输模式。2D-eSFN是使用多个TX天线的分布式MIS0方案,其每个在SFN网络 中位于不同的发射器位置。
[0246] 2D-eSFN编码块8010可W处理2D-eSFN处理W使从多个发射器发送的信号的相位 失真,W便在SFN配置中创建时间和频率分集两者。因此,可W减轻由于低的平坦衰落或者 对于长时间的深衰落引起的突发错误。
[0247] IFFT块8020可W使用(FDM调制方案调制来自2D-eS!^编码块8010的输出。在没有 指定为导频(或者保留音)的数据符号中的任何信元承载来自频率交织器的数据信元的一 个。该信元被映射到OFDM载波。
[024引PAPR减少块8030可W使用在时间域中的各种PAPR减少算法对输入信号执行PAPR 减少。
[0249] 保护间隔插入块8040可W插入保护间隔,并且前导插入块8050可W在该信号的前 面插入前导。稍后将描述前导的结构的细节。另一个系统插入块8060可W在时间域中复用 多个广播发送/接收系统的信号,使得提供广播服务的两个或更多个不同的广播发送/接收 系统的数据可W在相同的RF信号带宽中同时发送。在运种情况下,两个或更多个不同的广 播发送/接收系统指的是提供不同广播服务的系统。不同广播服务可W指的是陆地广播服 务、移动广播服务等。与相应的广播服务相关的数据可W经由不同的帖发送。
[0250] DAC块8070可W将输入数字信号转换为模拟信号,并且输出该模拟信号。从DAC块 7800输出的信号可W根据物理层简档经由多个输出天线发送。根据本发明的实施例的Τχ天 线可W具有垂直或者水平极性。
[0251] W上描述的块可W被省略或者根据设计由具有类似或者相同功能的块替换。
[0252] 图9图示根据本发明的实施例的用于接收供未来的广播服务的广播信号装置的结 构。
[0253] 根据本发明的实施例的用于接收供未来的广播服务的广播信号的设备可W对应 于参考图1描述的用于发送供未来的广播服务的广播信号的设备。
[0254] 根据本发明的实施例的用于接收供未来的广播服务的广播信号的设备可W包括 同步和解调模块9000、帖解析模块9010、解映射和解码模块9020、输出处理器9030和信令解 码模块9040。将给出用于接收广播信号装置的每个模块的操作的描述。
[0255] 同步和解调模块9000可W经由m个Rx天线接收输入信号,相对于与用于接收广播 信号的设备相对应的系统执行信号检测和同步,并且执行与由用于发送广播信号装置执行 的过程相反过程相对应的解调。
[0256] 帖解析模块9010可W解析输入信号帖,并且提取经由其发送由用户选择的服务的 数据。如果用于发送广播信号的设备执行交织,则帖解析模块9010可W执行与交织的相反 过程相对应的解交织。在运种情况下,需要提取的信号和数据的位置可W通过解码从信令 解码模块9040输出的数据获得,W恢复由用于发送广播信号的设备产生的调度信息。
[0257] 解映射和解码模块9020可W将输入信号转换为比特域数据,并且然后根据需要对 其解交织。解映射和解码模块9020可W对于为了传输效率应用的映射执行解映射,并且经 由解码校正在传输信道上产生的错误。在运种情况下,解映射和解码模块9020可W获得为 解映射所必需的传输参数,并且通过解码从信令解码模块9040输出的数据进行解码。
[0258] 输出处理器9030可W执行由用于发送广播信号的设备应用W改善传输效率的各 种压缩/信号处理过程的相反过程。在运种情况下,输出处理器9030可W从信令解码模块 9040输出的数据中获得必要的控制信息。输出处理器8300的输出对应于输入到用于发送广 播信号装置的信号,并且可W是MPEG-TS、IP流(v4或者v6)和常规流。
[0259] 信令解码模块9040可W从由同步和解调模块9000解调的信号中获得化S信息。如 上所述,帖解析模块9010、解映射和解码模块9020和输出处理器9030可W使用从信令解码 模块9040输出的数据执行其功能。
[0260] 图10图示根据本发明的一个实施例的帖结构。
[0261] 图10示出帖类型的示例配置和在超帖中的FRU,(a)示出根据本发明的实施例的超 帖,(b)示出根据本发明的实施例的FRU(帖重复单元),(c)示出在FRU中的可变PHY简档的 帖,W及(d)示出帖的结构。
[0262] 超帖可W由八个FRU组成。FRU是用于帖的TDM的基本复用单元,并且在超帖中被重 复八次。
[0263] 在FRU中的每个帖属于PHY简档(基础、手持、高级)中的一个或者FEF。在FRU中帖的 最大允许数目是四个,并且给定的PHY简档可W在FRU(例如,基础、手持、高级)中出现从零 次到四次的任何次数。如果需要的话,PHY简档定义可W使用在前导中PHY_PR0FILE的保留 的值扩展。
[0264] FEF部分被插入在FRU的末端,如果包括的话。当FEF包括在FRU中时,在超帖中FEF 的最小数是8。不推荐F邸部分相互邻近。
[0265] -个帖被进一步划分为许多的OFDM符号和前导。如(d)所示,帖包括前导、一个或 多个帖信令符号(FSS)、普通数据符号和帖边缘符号(FES)。
[0266] 前导是允许快速化turecast UTB系统信号检测并且提供一组用于信号的有效发 送和接收的基本传输参数的特殊符号。稍后将描述前导的详细说明。
[0267] FSS的主要目的是承载化S数据。为了快速同步和信道估计W及因此的化S数据的 快速解码,FSS具有比普通数据符号更加密集的导频图案。FES具有与FSS严格相同的导频, 其允许在FES内的仅频率内插,W及对于紧邻FES之前的符号的时间内插而无需外推。
[0268] 图11图示根据本发明的实施例的帖的信令分层结构。
[0269] 图11图示信令分层结构,其被分割为Ξ个主要部分:前导信令数据11000、化S1数 据11010和化S2数据11020。由在每个帖中的前导符号承载的前导的目的是表示该帖的传输 类型和基本传输参数。PLS1允许接收器访问和解码化S2数据,其包含访问感兴趣的DP的参 数。PLS2在每个帖中承载,并且被划分为两个主要部分:PLS2-STAT数据和化S2-DYN数据。必 要时,在化S2数据的静态和动态部分之后是填充。
[0270] 图12图示根据本发明的实施例的前导信令数据。
[0271] 前导信令数据承载需要允许接收器访问化S数据和跟踪在帖结构内DP的21比特信 息。前导信令数据的细节如下:
[0272] PHY_PR0FILE:该3比特字段指示当前帖的PHY简档类型。不同的PHY简档类型的映 射在W下的表5中给出。
[0273] 表 5
[0274] [表 5]
[0275]
[0276] FFT_SIZE:该2比特字段指示在帖组内当前帖的FFT大小,如在W下的表6中描述 的。
[0277]表 6 [027引[表 6] |:02 巧]_
[0280] GI_FRACTI0N:该3比特字段指示在当前超帖中的保护间隔分数值,如在W下的表7 中描述的。
[0281] 表7
[0282] [表 7]
[0283]
[0284] ~EAC_FLAG:该1比特字段指示在当前
帖中是否提供EAC。如果该字段被设置为"Γ, 则在当前帖中提供紧急警告服务化AS)。如果该字段被设置为"0",在当前帖中没有承载 EAS。该字段可W在超帖内动态地切换。
[0285] PIL0T_M0DE:该1比特字段指示对于当前帖组中的当前帖导频图案是移动模式还 是固定模式。如果该字段被设置为"0",则使用移动导频图案。如果该字段被设置为"Γ,则 使用固定导频图案。
[0286] PAPR_FLAG:该1比特字段指示对于当前帖组中的当前帖是否使用PAPR减少。如果 该字段被设置为值"Γ,则音保留被用于PAPR减少。如果该字段被设置为"0",则不使用PAPR 减少。
[0287] FRU_C0NFIGURE:该3比特字段指示存在于当前超帖之中的帖重复单元(FRU)的PHY 简档类型配置。在当前超帖中的所有前导中,在该字段中识别在当前超帖中传送的所有简 档类型。3比特字段对于每个简档具有不同的定义,如W下的表8所示。
[028引 表8
[0289][表 8]
[0290]
[0291] RESERVED:运个7比特字段保留供将来使用。
[0292] 图13图示根据本发明的实施例的化S1数据。
[0293] 化S1数据提供包括允许化S2的接收和解码所需的参数的基本传输参数。如W上提 及的,PLS1数据对于一个帖组的整个持续时间保持不变。PLS1数据的信令字段的详细定义 如下:
[0294] PREAMBLE_DATA:该20比特字段是除去EAC_FLAG的前导信令数据的副本。
[0巧日]NUM_FRAME_F抓:该2比特字段指示每F抓的帖的数目。
[0296] PAYL0AD_TYPE:该3比特字段指示在帖组中承载的有效载荷数据的格式。PAYL0AD_ TYPE如表9所示用信号传送。
[0297] 表 9 [029引[表 9] rn9QQl
[0300] NUM_FSS:该2比特字段指示在当前帖中FSS符号的数目。
[0301] SYSTEM_VERSION:该8比特字段指示所发送的信号格式的版本。SYSTEM_VERSION被 划分为两个4比特字段,其是主要版本和次要版本。
[0302] 主要版本:SYSTEM_VERSION字段的MSB四比特字节表示主要版本信息。在主要版本 字段中的变化表示非后向兼容的变化。缺省值是"0000"。对于在运个标准下描述的版本,该 值被设置为%000"。
[0303] 次要版本:SYSTEM_VERSION字段的LSB四比特字节表示次要版本信息。在次要版本 字段中的变化是后向兼容的。
[0304 ] C E L L _ ID :运是在A T S C网络中唯一地识别地理小区的16比特字段。取决于每 化化recast UTB系统使用的频率的数目,ATSC小区覆盖区可W由一个或多个频率组成。如 果CELL_ID的值不是已知的或者未指定的,则该字段被设置为"0"。
[0305] 肥TW0RK_ID:运是唯一地识别当前的ATSC网络的16比特字段。
[0306] SYSTEM_ID:运个16比特字段唯一地识别在ATSC网络内的化turecast UTB系统。 化turecast UTB系统是陆地广播系统,其输入是一个或多个输入流巧5、1?、65),并且其输 出是RF信号。如果有的话,Futurecast UTB系统承载一个或多个PHY简档和FEF。相同的 化化recast UTB系统可W承载不同的输入流,并且在不同的地理区中使用不同的RF频率, 允许本地服务插入。帖结构和调度在一个位置中被控制,并且对于在化turecast UTB系统 内的所有传输是相同的。一个或多个化化recast UTB系统可W具有相同的SYSTEM_ID含义, 即,它们所有具有相同的物理层结构和配置。
[0307] 随后的环路由 FRU_PHY_PR0FILE、FRU_FRAME_LENGTH、FRU_G1_FRACTI0N 和 RESERV抓组成,其用于表示FRU配置和每个帖类型的长度。环路大小是固定的,使得四个PHY 简档(包括FEF)在FRU内被用信号传送。如果NUM_FRAME_FRU小于4,则未使用的字段用零填 充。
[030引FW_PW_PR0FILE:运个3比特字段表示相关的FRU的第α+1)α是环索引)个帖的 ΡΗΥ简档类型。运个字段使用如表8所示相同的信令格式。
[0309] FRU_FRAME_LENGTH:运个2比特字段表示相关联的F抓的第(i + 1)个帖的长度。与 FRU_GI_FRACTION-起使用FRU_FRAME_LENGTH,可W获得帖持续时间的精确值。
[0310] FRU_GI_FRACTION:运个3比特字段表示相关联的FRU的第(i+1)个帖的保护间隔分 数值。FRU_GI_FRACTI0咐財屆表7被用信号传送。
[0311] RESERVED:运个4比特字段保留供将来使用。
[0312] W下的字段提供用于解码化S2数据的参数。
[0313] PLS2_FEC_TY阳:运个2比特字段表示由化S2保护使用的FEC类型。FEC类型根据表 10被用信号传送。稍后将描述LDP邱马的细节。
[0314]表10 [0;31 引巧 10]
[0316]
[0317] 化S2_M0D:运个3比特字段表示由化S2使用的调制类型。调制类型根据表11被用信 号传送。
[031引表11
[0319] [表山
[0320]

[0321] PLS2_SIZE_CKX:运个15比特字段表示Ctotal_partial_block,用于在当前帖组 中承载的化S2的全编码块的聚集的大小(指定为QAM信元的数目)。运个值在当前帖组的整 个持续时间期间是恒定的。
[0322] PLS2_STAT_SIZE_BIT:运个14比特字段W比特表示用于当前帖组的化S2-STAT的 大小。运个值在当前帖组的整个持续时间期间是恒定的。
[0323] 化S2_DYN_SIZE_BU :运个14比特字段W比特表示用于当前帖组的化S2-DYN的大 小。运个值在当前帖组的整个持续时间期间是恒定的。
[0324] PLS2_REP_FLAG:运个1比特标记表示是否在当前帖组中使用化S2重复模式。当运 个字段被设置为值"Γ时,PLS2重复模式被激活。当运个字段被设置为值"0"时,PLS2重复模 式被禁用。
[0325] 化S2_REP_SIZE_CE化:当使用化S2重复时,运个15比特字段表示Ctotal_partial_ block,用于在当前帖组的每个帖中承载的化S2的部分编码块的聚集的大小(指定为QAM信 元的数目)。如果不使用重复,则运个字段的值等于0。运个值在当前帖组的整个持续时间期 间是恒定的。
[0326] 化S2_WXT_FEC_TY阳:运个2比特字段表示用于在下一个帖组的每个帖中承载的 化S2的FEC类型。FEC类型根据表10被用信号传送。
[0327] 化S2_WXT_M0D:运个3比特字段表示用于在下一个帖组的每个帖中承载的化S2的 调制类型。调制类型根据表11被用信号传送。
[032引化S2_WXT_REP_FLAG:运个1比特标记表示是否在下一个帖组中使用化S2重复模 式。当运个字段被设置为值"Γ时,PLS2重复模式被激活。当运个字段被设置为值"0"时, 化S2重复模式被禁用。
[03巧]化52_肥乂1'_1?61^_5126_(:化^当使用化52重复时,运个15比特字段表示(:扣1曰1_ 化ll_block,用于在下一个帖组的每个帖中承载的化S2的全编码块的聚集的大小(指定为 QAM信元的数目)。如果在下一个帖组中不使用重复,则运个字段的值等于0。运个值在当前 帖组的整个持续时间期间是恒定的。
[0330] 化S2_WXT_REP_STAT_S I ZE_B 口 :运个14比特字段W比特表示用于下一个帖组的 化S2-STAT的大小。运个值在当前帖组中是恒定的。
[0331] 化S2_WXT_REP_DYN_SIZE_Bn :运个14比特字段W比特表示用于下一个帖组的 化S2-DYN的大小。运个值在当前帖组中是恒定的。
[0332] 化S2_AP_M0DE:运个2比特字段表示是否在当前帖组中为化S2提供附加的奇偶校 验。运个值在当前帖组的整个持续时间期间是恒定的。W下的表12给出运个字段的值。当运 个字段被设置为"00"时,对于在当前帖组中的化S2不使用另外的奇偶校验。
[0333] 表12
[0334] [表 12]
[0336] 化S2_AP_SIZE_祀化:运个15比特字段表示化S2的附加的奇偶校验比特的大小(指 定为QAM信元的数目)。运个值在当前帖组的整个持续时间期间是恒定的。
[0337] 化S2_WXT_AP_M0DE:运个化k特字段表示是否在下一个帖组的每个帖中为化S2信 令提供附加的奇偶校验。运个值在当前帖组的整个持续时间期间是恒定的。表12定义运个 字段的值。
[033引化S2JCXT_AP_SIZE_(ELL:运个15比特字段表示在下一个帖组的每个帖中化S2的 附加的奇偶校验比特的大小(指定为QAM信元的数目)。运个值在当前帖组的整个持续时间 期间是恒定的。
[0339] RESERVED:运个32比特字段被保留供将来使用。
[0340] CRC_32:3化k特错误检测码,其应用于整个化S1信令。
[0%1]图14图示根据本发明的实施例的化S2数据。
[0%2]图14图示化S2数据的化S2-STAT数据。PLS2-STAT数据在帖组内是相同的,而化S2- DYN数据提供对于当前帖特定的信息。
[0343] 化S2-STAT数据的字段的细节如下:
[0344] FIC_FLAG:运个1比特字段表示是否在当前帖组中使用FIC。如果运个字段被设置 为"Γ,则在当前帖中提供FIC。如果运个字段被设置为"0",则在当前帖中不承载FIC。运个 值在当前帖组的整个持续时间期间是恒定的。
[0345] AUX_FLAG:运个1比特字段表示是否在当前帖组中使用辅助流。如果运个字段被设 置为"Γ,则在当前帖中提供辅助流。如果运个字段被设置为"0",在当前帖中不承载辅助 流。运个值在当前帖组的整个持续时间期间是恒定的。
[0346] NUM_DP:运个6比特字段表示在当前帖内承载的DP的数目。运个字段的值从1到64 的范围,并且DP的数目是NUM_DP+1。
[CX347] DP_ID:运个化k特字段唯一地识别在PHY简档内的DP。
[0%引DP_TYPE:运个化k特字段表示DP的类型。运些根据W下的表13用信号传送。
[0349]表13 [03加][表13]
[0351]
[0巧2] DP_GR0UP_ID:运个8比特字段识别当前DP与其相关联的DP组。运可W由接收器使 用W访问与特定服务有关的服务组件的DP,其将具有相同的DP_GR0UP_ID。
[0巧3] BASE_DP_ID:运个6比特字段表示承载在管理层中使用的服务信令数据(诸如, PSI/SI)的DP。由BASE_DP_ID表示的DP可w或者是随同服务数据一起承载服务信令数据的 普通DP,或者仅承载服务信令数据的专用DP。
[0354] DP_FEC_TYPE :运个2比特字段表示由相关联的DP使用的FEC类型。FEC类型根据W 下的表14被用信号传送。
[0355] 表14
[0356] [表 14]
[0357]
[035引DP_C0D:运个4比特字段表示由相关联的DP使用的码率。码率根据W下的表15被用 信号传送。
[0;359]表 15 [03側[表1引 [0361]
[0362] DP_M0D:运个4比特字段表示由相关联的DP使用的调制。调制根据W下的表16被用 信号传送。
[0363] 表16
[0364] [表 16]
[03 化]

[0366] DP_SSD_FLAG:运个1比特字段表示是否在相关联的DP中使用SSD模式。如果运个字 段被设置为值"Γ,则使用SSD。如果运个字段被设置为值"0",则不使用SSD。
[0367] 只有在PHY_PR0F ILE等于"01 0-时,其表示高级简档,出现W下的字段:
[036引 DP_MIM0:运个3比特字段表示哪个类型的ΜΙΜΟ编码过程被应用于相关联的DP。 ΜΙΜΟ编码过程的类型根据表17用信号传送。
[0369] 表17
[0370] [表 17] Γ03711
[0372] DP_TI_TYPE:运个1比特字段表示时间交织的类型。值"0-表示一个ΤΙ组对应于一 个帖,并且包含一个或多个TI块。值"Γ表示一个TI组承载在一个W上的帖中,并且仅包含 一个TI块。
[0373] DP_T LLENGTH:运个2比特字段(允许值仅是1、2、4、8)的使用通过在DP_T I_TYPE字 段内的值集合确定如下:
[0374] 如果DP_TI_TYPE被设置为值"Γ,则运个字段表示PI,每个TI组映射到的帖的数 目,并且每个TI组存在一个TI块(NTI = 1)。被允许的具有2比特字段的PI值被在W下的表18 中定义。
[0375] 如果DP_TI_TYI^被设置为值"0",则运个字段表示每个TI组的TI块NTI的数目,并 且每个帖(PI = 1)存在一个TI组。具有化k特字段的允许的PI值被在W下的表18中定义。
[0376] 表18
[0377] [表 18]
[037引
[0379] DP_FRAME_INTERVAL:运个2比特字段表示在用于相关联的DP的帖组内的帖间隔 (11醒?),并且允许的值是1、2、4、8(相应的2比特字段分别地是%0"、"01"、"10"或者"11")。 对于该帖组的每个帖不会出现的DP,运个字段的值等于在连续的帖之间的间隔。例如,如果 DP出现在帖1、5、9、13等上,则运个字段被设置为"4"。对于在每个帖中出现的DP,运个字段 被设置为"Γ。
[0380] DP_TI_BYPASS:运个1比特字段确定时间交织器5050的可用性。如果对于DP没有使 用时间交织,则其被设置为"Γ。而如果使用时间交织,则其被设置为"0"。
[0381] DP_FIRST_FRAME_IDX:运个5比特字段表示当前DP存在其中的超帖的第一帖的索 引 cDP_FIRST_FRAME_IDX的值从0到31的范围。
[0382] DP_NUM_BLOCK_MAX:运个10比特字段表示用于运个DP的DP_NUM_BL0CKS的最大值。 运个字段的值具有与DP_NUM_BL0CKS相同的范围。
[0383] DP_PAYLOAD_TYPE:运个2比特字段表示由给定的DP承载的有效载荷数据的类型。 DP_PAYLOAD_TYPE根据W下的表19被用信号传送。
[0384] 表19 [03财[表 19]
[0386]
[0387] DP_INBAND_M0DE:运个2比特字段表示是否当前DP承载带内信令信息。带内信令类 型根据W下的表20被用信号传送。
[038引 表20
[0389] [表 20]
[0390]
[0391] DP_PR0T0C0L_TY阳:运个2比特字段表示由给定的DP承载的有效载荷的协议类型。 当选择输入有效载荷类型时,其根据W下的表21被用信号传送。
[0392] 表21
[0393] [表 21]
[0394]
[0395] DP_CRC_M0DE:运个化k特字段表示在输入格式化块中是否使
[0396] 用CRC编码。CR对莫式根据W下的表22被用信号传送。
[0397] 表22 [039引[表 22]
[0399]
[0400] DNP_M0DE:运个2比特字段表示当DP_PAYL0AD_TY阳被设置为TSrOtf')时由相关联 的DP使用的空分组删除模式。DNP_M0DE根据W下的表23被用信号传送。如果DP_PA化0AD_ TY阳不是TSrOtf'),则DNP_M0DE被设置为值%沪。
[0401] 表23
[040^ [表 23]
[040;3]
[0404] ISSY_M0DE:运个2比特字段表示当DP_PA化0AD_TYPE被设置为TSrOO")时由相关 联的DP使用的ISSY模式。I SSY_M0DE根据W下的表24被用信号传送。如果DP_PA化0AD_TYPE 不是TSrOtf'),则ISSY_M0DE被设置为值%沪。
[0405] 表24
[0406] [表 24]
[0407]

[040引 HC_MODE_TS:运个2比特字段表示当DP_PAYLOAD_TYPE被设置为Tsroo")时由相关 联的DP使用的TS报头压缩模式。HC_M0DE_TS根据W下的表25被用信号传送。
[0409] 表25
[0410] [表 25]
[0411]
[0412] W_MWE_IP:运个2比特字段表示当DP_PAYLOAD_TYPE被设置为ΙΡΓΟΓ )时的IP报 头压缩模式。HC_M0DE_IP根据W下的表26被用信号传送。
[0413] 表26
[0414] [表 26]
[0415]
[0416] PID:运个13比特字段表示当DP_PAYL0AD_TY阳被设置为TSrOO"),并且HC_M0DE_ TS被设置为%Γ或者"10"时,用于TS报头压缩的PID编号。
[0417] RESERVED:运个化k特字段保留供将来使用。
[0418] 只有在FIC_FLAG等于"Γ时出现W下的字段:
[0419] FIC_VERSI0N:运个8比特字段表示FIC的版本号。
[0420] FI C_LENGTH_BYTE:运个13比特字段W字节表示FIC的长度。
[0421] RESERVED:运个化k特字段保留供将来使用。
[0422] 只有在AUX_FLAG等于"Γ时出现W下的字段:
[0423] NUM_AUX:运个4比特字段表示辅助流的数目。零表示不使用辅助流。
[0424] AUX_C0NFIG_RFU:运个8比特字段被保留供将来使用。
[04巧]AUX_STREAM_TYPE:运个4比特被保留供将来使用,用于表示当前辅助流的类型。 [04%] AUX_PRIVATE_C0NFIG:运个28比特字段被保留供将来用于用信号传送辅助流。
[0427] 图15图示根据本发明的另一个实施例的化S2数据。
[0428] 图15图示化S2数据的化S2-DYN数据。PLS2-DYN数据的值可W在一个帖组的持续时 间期间变化,而字段的大小保持恒定。
[04巧]化S2-DYN数据的字段细节如下:
[0430] FRAME_INDEX:运个5比特字段表示在超帖内当前帖的帖索引。该超帖的第一帖的 索引被设置为"ο"。
[0431] ^S_CHANGE_COUT邸:运个4比特字段表示配置将变化的前方超帖的数目。配置中 具有变化的下一个超帖由在运个字段内用信号传送的值表示。如果运个字段被设置为值 "0000",则运意味着预知没有调度的变化:例如,值"Γ表示在下一个超帖中存在变化。
[0432] FIC_CHANGE_COUNTER:运个4比特字段表示其中配置(即,FIC的内容)将变化的前 方超帖的数目。配置中具有变化的下一个超帖由在运个字段内用信号传送的值表示。如果 运个字段被设置为值%000",则运意味着预知没有调度的变化:例如,值%00Γ表示在下一 个超帖中存在变化。
[0433] RESERVED:运个16比特字段被保留供将来使用。
[0434] 在NUM_DP上的环路中出现W下的字段,其描述与在当前帖中承载的DP相关联的参 数。
[0435] DP_ID:运个化k特字段唯一地表示在PHY简档内的DP。
[0436] Dt START:运个15比特(或者13比特)字段使用DPU寻址方案表示第一个DP的开始 位置。DP_START字段根据如W下的表27所示的PHY简档和FFT大小具有不同长度。
[0437] 表 27
[0438] [表 27]
[0439]
[0440] DP_NUM_BLOCK:运个10比特字段表示在用于当前DP的当前的TI组中FEC块的数目。 DP_NUM_BLOCK的值从0到1023的范围。
[0441 ] RESERVED:运个化k特字段保留供将来使用。
[0442] W下的字段表示与EAC相关联的FIC参数。
[0443] EAC_FLAG:运个1比特字段表示在当前帖中EAC的存在。运个比特在前导中是与 EAC_FLAG相同的值。
[0444] EAS_WAKE_UP_VERSION_NUM:运个化k特字段表示唤醒指示的版本号。
[0445] 如果EAC_FLAG字段等于"Γ,随后的12比特被分配用于EAC_LENGTH_BYTE字段。如 果EAC_FLAG字段等于"0-,则随后的12比特被分配用于EAC_COUNT邸。
[0446] EAC_LENGTH_BYTE:运个12比特字段W字节表示EAC的长度。
[0447] EAC_COUNT邸:运个12比特字段表示在EA巧氏达的帖之前帖的数目。
[044引只有在AUX_FLAG字段等于"Γ时出现W下的字段:
[0449] AUX_PRIVATE_DYN:运个48比特字段被保留供将来用于用信号传送辅助流。运个字 段的含义取决于在可配置的化S2-STAT中AUX_STREAM_TYPE的值。
[0450] CRC_32:3化k特错误检测码,其被应用于整个化S2。
[0451] 图16图示根据本发明的实施例的帖的逻辑结构。
[0452] 如W上提及的,?1^5、64(:^1(:、0?、辅助流和哑信元被映射到在帖中0抑1符号的活 动载波。PLS1和化S2被首先被映射到一个或多个FSS。然后,在化S字段之后,EAC信元,如果 有的话,被直接地映射,接下来是FIC信元,如果有的话。在化S或者EAC、FIC之后,接下来DP 被映射,如果有的话。首先跟随类型1DP,并且接下来类型2DP。稍后将描述DP的类型细节。在 一些情况下,DP可W承载用于EAS的一些特定的数据或者服务信令数据。如果有的话,辅助 流跟随DP,其后跟随哑信元。根据W上提及的顺序,即,化5、64(:少1(:、0?、辅助流和哑数据信 元将它们映射在一起,精确地填充在该帖中的信元容量。
[0453] 图17图示根据本发明的实施例的化S映射。
[0454] PLS信元被映射到FSS的活动载波。取决于由化S占据的信元的数目,一个或多个符 号被指定为FSS,并且FSS的数目NFSS由在化S1中的NUM_FSS用信号传送。FSS是用于承载化S 信元的特殊符号。由于鲁棒性和延迟在PLS中是重要的问题,所WFSS具有允许快速同步的 高密度导频和在FSS内的仅频率内插。
[0455] PLS信元如在图17中的示例所示W自顶向下方式被映射到NFSS FSS的活动载波。 化S1化S1单元被W单元索引的递增顺序首先从第一 FSS的第一单元映射。化S2单元直接地 跟随在化S1的最后的信元之后,并且继续向下映射,直到第一 FSS的最后的信元索引为止。 如果需要的化S信元的总数超过一个FSS的活动载波的数目,则映射进行到下一个FSS,并且 W与第一 FSS严格相同的方式继续。
[0456] 在化S映射完成之后,接下来承载DP。如果EAC、FIC或者两者存在于当前帖中,则它 们被放置在化S和"普通"DP之间。
[0457] 图18图示根据本发明的实施例的EAC映射。
[045引EAC是用于承载EAS消息的专用信道,并且链接到用于EAS的DP。提供了 EAS支持,但 是,EAC本身可能或者可W不必存在于每个帖中。如果有的话,EAC紧挨着化S2单元之后映 射。除了化S信元W外,EAC不在FIC、DP、辅助流或者哑信元的任何一个之前。映射EAC信元的 过程与化S完全相同。
[0459] EAC信元被W如在图18的示例所示的信元索引的递增顺序从化S2的下一个信元映 射。取决于EAS消息大小,EAC信元可W占据几个符号,如图18所示。
[0460] EAC信元紧跟在化S2的最后的信元之后,并且继续向下映射,直到最后的FSS的最 后的信元索引为止。如果需要的EAC信元的总数超过最后的FSS的剩余的活动载波的数目, 则映射进行到下一个符号,并且W与FSS完全相同的方式继续。在运种情况下,用于映射的 下一个符号是普通数据符号,其具有比FSS更加有效的载波。
[0461] 在EAC映射完成之后,如果任何一个存在,则FIC被接下来承载。如果FIC不被发送 (如在化S2字段中用信号传送),则DP紧跟在EAC的最后信元之后。
[0462] 图19图示根据本发明的实施例的FIC映射
[0463] (a)示出不具有EAC的FIC信元的示例映射,W及(b)示出具有EAC的FIC信元的示例 映射。
[0464] FIC是用于承载交叉层信息W允许快速服务获得和信道扫描的专用信道。运个信 息主要包括在DP和每个广播器的服务之间的信道捆绑信息。为了快速扫描,接收器可W解 码FIC并获得信息,诸如,广播器ID、服务编号,和BASE_DP_ID。为了快速服务获得,除了FIC 之外,基础DP可W使用BASE_DP_ID解码。除其承载的内容W外,基础DP被W与普通DP完全相 同的方式编码和映射到帖。因此,对于基础DP不需要另外的描述。FIC数据在管理层中产生 和消耗。FIC数据的内容在管理层规范中描述。
[0465] FIC数据是可选的,并且FIC的使用由在化S2的静态部分中的FIC_FLAG参数用信号 传送。如果使用FIC,则FIC_FLAG被设置为?',并且用于FIC的信令字段在化S2的静态部分 中被定义。在运个字段中用信号传送的是FIC_VERSI0N和FIC_LENGTH_BYTEdFIC使用与化S2 相同的调制、编码和时间交织参数。FIC共享相同的信令参数,诸如化S2_M0D和化S2JEC。如 果有的话,FIC数据紧挨着化S2或者EAC之后被映射。FIC没有被任何普通DP、辅助流或者哑 信元引导。映射FIC信元的方法与EAC的完全相同,也与化S的相同。
[0466] 在化S之后不具有EAC,FIC信元被W如在(a)中的示例所示的信元索引的递增顺序 从化S2的下一个单元映射。取决于FIC数据大小,FIC信元可W被映射在几个符号上,如(b) 所示。
[0467] FIC信元紧跟在化S2的最后的信元之后,并且继续向下映射,直到最后的FSS的最 后的信元索引为止。如果需要的FIC信元的总数超过最后的FSS的剩余的活动载波的数目, 则映射进行到下一个符号,并且W与FSS完全相同的方式继续。在运种情况下,用于映射的 下一个符号是普通数据符号,其具有比FSS更加活跃的载波。
[0468] 如果EAS消息在当前帖中被发送,则EAC在FIC之前,并且FIC信元被W如(b)所示的 信元索引的递增顺序从EAC的下一个单元映射。
[0469] 在FIC映射完成之后,一个或多个DP被映射,之后是辅助流,如果有的话,W及哑信 J L· 〇
[0470] 图20图示根据本发明的实施例的DP的类型。
[0471 ] (a)示出类型1DP和(b)示出类型2DP。
[0472] 在先前的信道,即,化S、EAC和FIC被映射之后,DP的信元被映射。根据映射方法DP 被分类为两种类型中的一个:
[0473] 类型1DP:DP通过TDM映射
[0474] 类型2DP:DP通过抑Μ映射
[0475] DP的类型由在化S2的静态部分中的DP_TYPE字段表示。图20图示类型1DP和类型 2DP的映射顺序。类型1DP被W信元索引的递增顺序首先映射,然后,在达到最后的信元索引 之后,符号索引被增加1。在下一个符号内,DP继续W从p = 0开始的信元索引的递增顺序映 射。利用在一个帖中共同地映射的DP的数目,类型1DP的每个在时间上被分组,类似于DP的 TDM复用。
[0476] 类型2DP被W符号索引的递增顺序首先映射,然后,在达到该帖的最后的OFDM符号 之后,信元索引增加1,并且符号索引回朔到第一可用的符号,然后从该符号索引增加。在一 个帖中一起映射DP的数目之后,类型2DP的每个被W频率分组在一起,类似于DP的FDM复用。
[0477] 如果需要的话,类型1DP和类型2DP在帖中可W同时存在,有一个限制:类型1DP始 终在类型2DP之前。承载类型1和类型2DP的OFDM信元的总数不能超过可用于DP传输的OFDM 信元的总数。
[0478] 数学公式2
[0479] [数学式2]
[0480] Ddpi+Ddp2^Ddp
[0481 ]运里DDPl是由类型IDP占据的OFDM信元的数目,孤P2是由类型2DP占据的信元的数 目。由于化S、EAC、FIC都W与类型1DP相同的方式映射,所W它们全部遵循"类型1映射规 则"。因此,总的说来,类型1映射始终在类型2映射之前。
[0482] 图21图示根据本发明的实施例的DP映射。
[0483] (a)示出寻址用于映射类型1DP的OFDM信元,并且(b)示出寻址用于供类型2DP映射 的OFDM信元。
[0484] 用于映射类型1DP(0,…,DDP1-1)的OFDM信元的寻址限定用于类型1DP的活跃数据 信元。寻址方案限定来自用于类型1DP的每个的T1的信元被分配给活跃数据信元的顺序。其 也用于在化S2的动态部分中用信号传送DP的位置。
[0485] 在不具有EAC和FIC的情况下,地址0指的是在最后的FSS中紧跟承载化S的最后信 元的信元。如果EAC被发送,并且FIC没有在相应的帖中,则地址0指的是紧跟承载EAC的最后 信元的信元。如果FIC在相应的帖中被发送,则地址时旨的是紧跟承载FIC的最后的信元的信 元。用于类型1DP的地址0可W考虑如(a)所示的两个不同情形计算。在(a)的示例中,PLS、 EAC和FIC假设为全部发送。对EAC和FIC的二者之一或者两者被省略情形的扩展是明确的。 如在(a)的左侧所示在映射所有信元直到FIC之后,如果在FSS中存在剩余的信元。
[0486] 用于映射类型2DP(0,…,孤P2-1)的(FDM信元的寻址被限定用于类型2DP的活跃数 据信元。寻址方案限定来自用于类型2DP的每个的TI的信元被分配给活跃数据信元的顺序。 其也用于在化S2的动态部分中用信号传送DP的位置。
[0487] 如(b)所示的Ξ个略微地不同的情形是可允许的。对于在(b)的左侧上示出的第一 情形,在最后的FSS中的信元可用于类型2DP映射。对于在中间示出的第二情形,FIC占据普 通符号的信元,但是,在该符号上FIC信元的数目不大于CFSS。除了在该符号上映射的FIC信 元的数目超过CFSS之外,在(b)右侧上示出的第Ξ情形与第二情形相同。
[048引对类型1DP在类型2DP之前情形的扩展是简单的,因为化S、EAC和FIC遵循与类型 1DP相同的"类型1映射规卯Γ。
[0489] 数据管道单元(DPU)是用于在帖将数据信元分配给DP的基本单元。
[0490] DPU被定义为用于将DP定位于帖中的信令单元。信元映射器7010可W映射对于各 个DP通过TI产生的信元。时间交织器5050输出一系列的TI块并且各个TI块包括继而由一组 信元组成的可变数目的X阳CBLOCKdXFE邸LOCK中的信元的数目化ells取决于阳CBL0CK大小 Nldpc和每个星座符号的被发送的比特的数目。DPU被定义为在给定的PHY简档中支持的在 XFECBL0CK中的信元的数目化ells的所有可能的值中的最大的余数。W信元计的DPU的长度 被定义为LDPU。因为各个PHY简档支持FECBL0CK大小和每个星座符号的最大不同数目的比 特的组合,所W基于PHY简档定义LDPU。
[0491] 图22图示根据本发明的实施例的FEC结构。
[0492] 图22图示在比特交织之前根据本发明的实施例的FEC结构。如W上提及的,数据 FEC编码器可W使用外编码(B畑)和内编码化DPC)对输入的BBF执行FEC编码,W产生 阳CBL0CK过程。图示的阳C结构对应于FECBL0CK。此外,阳CBL0CK和阳C结构具有对应于LDPC 码字长度的相同的值。
[0493] BCH编码应用于每个BBF化b油比特),然后LDPC编码应用于BCH编码的BBF化Idpc比 特= Nbch比特),如在图22中图示的。
[0494] Nldpc 的值或者是 64800 比特(长 FECBLOCK)或者 16200 比特(短 FECBLOCK)。
[0495] W下的表28和表29分别示出用于长FECBLOCK和短FECBLOCK的FEC编码参数。
[0496] 表28
[0497] [表 28]
[0498]
[0499] 表 29 [0 如 0][表 29]
[ο如 1 ]
[ο如2] BCH编码和LDPC编码的操作细节如下:
[0如3] 12-纠错BCH码用于BBF的外编码。用于短FECBL0CK和长阳CBL0CK的BCH生成多项式 通过所有多项式相乘在一起获得。
[0如4] LDPC码用于编码外BCH编码的输出。为了产生完整的B1化c(FECBL0CK),Pl化C(奇 偶校验比特)从每个II化c(BCH编码的BBF)被系统编码,并且附加到II化C。完整的B1化C (FECBL0CK)表示为如下的数学公式。
[0如日]数学公式3 [0506][数学式3]
[0如 7]
[0如引用于长FECBL0CK和短FECBL0CK的参数分别在W上的表28和29中给出。
[0如9] 计算用于长FECBL0CK的N1化C-K1化C奇偶校验比特的详细过程如下:
[0510] 1)初始化奇偶校验比特,
[051。 数学公式4
[051^ [数学式4]
[0513]
[0514] 2)在奇偶校验矩阵的地址的第一行中指定的奇偶校验比特地址处累加第一信息 比特iO。稍后将描述奇偶校验矩阵的地址的细节。例如,对于速率13/15:
[051引数学公式5 [0516][数学式引
[化23] 3)对于接下来的359个信息比特,is,s = l、2、…359,使用W下的数学公式在奇偶 校验位地址处累加 is。
[化24] 数学公式6 邮2引[数学式6]
[0526] {x+(s mod 360) XQidpc}mod(化dpc-Kidpc)
[化27]运里X表示对应于第一比特iO的奇偶校验比特累加器的地址,并且Q1化c是在奇偶 校验矩阵的地址中指定的码率相关的常数。继续该示例,对于速率13/15,Q1化c = 24,因此, 对于信息比特η,执行W下的操作:
[化2引数学公式7 [0529][数学式7]
[0536] 4)对于第361个信息比特i360,在奇偶校验矩阵的地址的第二行中给出奇偶校验 比特累加器的地址。W类似的方式,使用表达式6获得用于W下的359信息比特is的奇偶校 验比特累加器的地址,s = 361、362、…719,运里X表示对应于信息比特i360的奇偶校验比特 累加器的地址,即,在奇偶校验矩阵的地址的第二行中的条目。
[化37] 5) W类似的方式,对于360个新的信息比特的每个组,从奇偶校验矩阵的地址的新 行用于找到奇偶校验比特累加器的地址。
[0538]在所有信息比特用尽之后,最后的奇偶校验比特如下获得:
[0539] 6) W i = 1开始顺序地执行W下的操作。
[0540] 数学公式8
[0541 ] 「数学式引
[0542]
[0543] 运里pi的最后的内容,i = 0,l,. . .,Nldpc-Kldpc-l,等于奇偶校验比特pi。
[0544] 表30
[0545] [表 30] Γη.ΜΑ?
[0547]~除了 W表31替换表30,并且W用于短FECBL0CK的奇偶校验矩阵的地址替换用于长 FECBL0CK的奇偶校验矩阵的地址之外,用于短FECBL0CK的运个LDPC编码过程是根据用于长 阳CBL0CK的LDPC编码过程。
[化4引 表31
[0549] [表 31]
[0550]
?〇55?图23图示根据本发明的实施例的比特交织。
[0552] LDPC编码器的输出被比特交织,其由奇偶交织、之后的准循环块(QCB)交织和组内 交织组成。
[0553] (a)示出准循环块(QCB)交织,并且(b)示出组内交织。
[0巧4] FECBL0CK可W被奇偶交织。在奇偶交织的输出处,LDPC码字由在长阳CBL0CK中180 个相邻的QC块和在短FECBLOCK中45个相邻的QC块组成。在长或者短FECBLOCK中的每个QC块 由360比特组成。奇偶交织的LDPC码字通过QCB交织来交织。QCB交织的单位是QC块。在奇偶 交织的输出处的QC块通过如在图23中图示的QCB交织重排列,运里根据FECBLOCK长度, 化ells = 6480〇Aimod或者16200/rimocLQCB交织图案是对调制类型和LDPC码率的每个组合 唯一的。
[0555]在QCB交织之后,组内交织根据调制类型和阶(nmod)执行,其在W下的表32中限 定。也限定用于一个组内的QC块的数目NQCB_IG。
[化56] 表32 [0 巧 7][表 32]
[055引
[0559] 组内交织过程WQCB交织输出的NQCB_IG QC块执行。组内交织具有使用360列和 NQCB_IG行写入和读取组内的比特的过程。在写入操作中,来自QCB交织输出的比特是行式 写入。读取操作是列式执行的,W从每个行读出m比特,运里对于NUC,m等于1,并且对于NUQ, m等于2。
[0560] 图24图示根据本发明的实施例的信元字解复用。
[0561 ] 图24(a)示出对于8和12bpcu ΜΙΜΟ的信元字解复用,和(b)示出对于lObpcu ΜΙΜΟ 的信元字解复用。
[0562] 比特交织输出的每个信元字(。0,1,。1,1,...,巧111〇(1-1,1)被解复用为如(曰)所示 的(dl,0,m,dl,l,m. . .dl ,rimod-l ,m)和(d2,0,m,d2,1 ,m. . . ,d2,rimod-l ,m),其描述用于一 个XFECBLOCK的信元字解复用过程。
[0563] 对于使用不同类型的NUQ用于ΜΙΜΟ编码的10个bpcu ΜΙΜΟ情形,用于NUQ-1024的比 特交织器被重新使用。比特交织器输出的每个信元字((3〇,1,(:1,1...,〇9,1)被解复用为 (dl ,0,m,dl, 1 ,m. . .dl ,3,m)和(d2,0,m,d 2,1 ,m. . .d2,3,m),如(b)所示。
[0564] 图25图示根据本发明的实施例的时间交织。
[0565] (a)至(C)示出TI模式的示例。
[0566] 时间交织器在DP级别操作。时间交织(TI)的参数可W对于每个DP不同地设置。
[0567] 在化S2-STAT数据的部分中出现的W下参数配置TI:
[056引 DP_TI_TY阳(允许的值:0或者1):表示TI模式;"0"表示每个TI组具有多个TI块(一 个W上的TI块)的模式。在运种情况下,一个TI组被直接映射到一个帖(无帖间交织)。"1"表 示每个TI组仅具有一个TI模块的模式。在运种情况下,TI块可W在一个W上的帖上扩展(帖 间交织)。
[0569] DP_TI_LENGTH:如果DP_TI_TY阳="0",则运个参数是每个ΤΙ组的ΤΙ块的数目NTI。 对于DP_TI_TYPE= ?',运个参数是从一个ΤΙ组扩展的帖ΡΙ的数目。
[0570] DP_NUM_BLOCK_MAX(允许的值:0至 1023):表示每个 TI 组 XFECBL0CK的最大数。
[0571 ] DP_FRAME_INTERVAL(允许的值:1、2、4、8):表示在承载给定的PHY简档的相同的DP 的两个连续的帖之间的帖IJUMP的数目。
[0572] DP_TI_BYPASS(允许的值:0或者1):如果对于DP没有使用时间交织,贝岐个参数被 设置为"Γ。如果使用时间交织,则其被设置为"0"。
[0573] 另外,来自化S2-DYN数据的参数DP_NUM_BL0CK用于表示由DP的一个TI组承载的 XFECBL0CK的数目。
[0574] 当对于DP没有使用时间交织时,不考虑随后的TI组、时间交织操作,和TI模式。但 是,将仍然需要来自调度器用于动态配置信息的延迟补偿块。在每个DP中,从SSD/MIM0编码 接收的X阳CBL0CK被分组为TI组。即,每个TI组是整数个XFE邸LOCK的集合,并且将包含动态 可变数目的X阳CBL0CK。在索引η的TI组中的X阳CBL0CK的数目由化化0 cK_Gr〇啡(η)表示,并 且在化S2-DYN数据中作为DP_NUM_BL0CK用信号传送。注意到Ν油LocK_Group(n)可W从最小 值0到其最大的值是1023的最大值化化ocK_Group_MAX(对应于DP_NUM_BLOCK_MAX)变化。
[0575] 每个TI组或者直接映射到一个帖上或者在PI个帖上扩展。每个TI组也被划分为一 个W上的TI模块(NTI),运里每个TI块对应于时间交织器存储器的一个使用。在TI组内的TI 块可W包含略微不同数目的X阳CBL0CK。如果TI组被划分为多个TI块,则其被直接映射到仅 一个帖。如W下的表33所示,存在对于时间交织的Ξ个选项(除了跳过时间交织的额外的选 项之外)。
[0576] 表33
[0577] [表 33]
[057引
[化79] 在每个DP中,TI存储器存储输入的XFEC化0CK(来自SSD/MIM0编码块的输出的 XFECBL0CK)。假设输入XFECBL0CK被限定为:
[化 80]
[0581 ] 运里dn. S. r. q是在第η个TI组的第S个TI块中的第r个XFECBL0CK的第q个信元,并 且表不SSD和ΜΙΜΟ编码的输出如下:
[0582]
[0583] 此外,假设来自时间交织器的输出的XFECBL0CK被限定为:
[化 84]
[0585] 运里hn,s,i是在第η个ΤΙ组的第S个ΤΙ块中的第i个输出单元(对于i = 0,..., NxBL0CK_TI(n,S) XNcelh-l)。
[0586] 典型地,时间交织器也将起在帖建立过程之前用于DP数据的缓存器的作用。运是 通过用于每个DP的两个存储库实现的。第一TI块被写入第一存储库。第二TI块被写入第二 存储库,同时第一存储库正在被读取等。
[0587] TI是扭曲的两列块交织器。对于第η个TI组的第S个TI块,TI存储器的行数化等于 信元化ells的数目,即,化=化ells,同时列数化等于数目化化0CK_TI(n,s)。
[0588] 图26图示根据本发明的实施例的被扭曲的行-列块交织器的基本操作。
[0589] 图26(a)示出在时间交织器中的写入操作,并且图26(b)示出时间交织器中的读取 操作。第一XFE邸L0CKW列方式写入到TI存储器的第一列,并且第二XFE邸LOCK被写入到下 一列等等,如在(a)中所示。然而,在交织阵列中,信元W对角线方式被读出。在从第一行(沿 着W最左边的列开始的行向右巧Ij最后一行的对角线方式的读取期间,化个信元被读出,如 在(b)中所示。详细地,假定zn,s,i(i = 0, . . .,NtN。)作为要被顺序地读取的TI存储器单元位 置,通过计算如下的表达式的行索引化,S,i、列索引Cn,S,iW及被关联的扭曲参数化,S,i 执行W运样的校正阵列的读取过程。
[0590] 表达式9
[0591] [表达式9]
[0592]
[0593] 其中SsMft是用于对角线方式读取过程的公共移位值,不论Nxbl日CK_Ti(n,s)如何, 并且如W下表达式,通过在化S2-STAT中给出的Nxblock_ti (η,S)来确定。
[0594] 表达式10
[0595] [表达式 10]
[0598] 结果,通过作为Ζη, S, i = NrCn, S, i+Rn, S, i的坐标计算要被读出的信元位置。
[0599] 图27图示根据本发明的另一实施例的被扭曲的行-列块交织器的操作。
[0600] 更加具体地,图27图示用于各个TI组的TI存储器的交织阵列,包括当Nxbl日CK_Ti(0, 0) = 3、Nxblock_ti (1,0) = 6、Nxblock ΤΙ (2,0) = 5时的虚拟XFECBL0CK。
[OW] 可变数目NxBL日CK_TI(n,S ) =Nr将会小于或者等于沪XBL日CK_TI_MAX。因此,为了实现在接 收器侧处的单个存储器解交织,不论Nxblqck_ti (η,S)如何,通过将虚拟X阳CBL0CK插入到TI存 储器用于在被扭曲的行-列块交织器中使用的交织阵列被设置为NrXNc = NcellsX NxBLCCK_TIJMAX的大小,并且如下面的表达式完成读取过程。
[0602] 数学公式11
[0603] [表达式11]
[0604]
[0605] ΤΙ组的数目被设置为3。通过DP_TI_TY阳='0'、DP_FRAME_INTERVAL= ' Γ,W及 DP_TI_LENGTH= ' Γ,即,NTI = 1、IJUMP = 1、W及PI = 1,在化S2-STAT数据中用信号传送时 间交织器的选项。每个ΤΙ组的其每一个具有Ncells = 30的XFEC化OCK的数目分别通过 化化 0CK_T I (0,0) = 3、N油 L0CK_T I (1,0) = 6、N油 L0CK_T I (2,0) = 5在化 S2-DYN 数据中用信 号传送。通过化化〇CK_Groyp_MAx,在化S-STAT数据中用信号传送X阳CBL0CK的最大数目,运 导致抽化泌_咏0巧,-站特/ 」"=WxBLO'CK __ΤΙ_MAX =巧 Ο
[0606] 图28图示根据本发明的实施例的被扭曲的行-列块的对角线方式的读取图案。
[0607] 更加具体地,图28示出来自于具有沪皿日(;1(_11_證=7并且53111打=(7-1)/2 = 3的参 数的各个交织阵列的对角线方式的读取图案。注意,在如上面的伪代码示出的读取过程中, 如果¥1>斯6113扼61(?_口(11,3),则¥1的值被跳过并且使用下一个计算的¥1的值。
[060引图29图示根据本发明的实施例的用于各个交织阵列的被交织的XFECBL0CK。
[0609] 图29图示来自于具有N'xbl日ck_ti_max = 7并且SsMft = 3的参数的各个交织阵列的被 交织的 XFECBL0CK。
[0610] 在下文中将会描述根据本发明的实施例的比特交织器5020。
[0611] 根据本发明的实施例的比特交织器5020可W位于FEC编码器5010和星座映射器 5030之间,并且考虑到接收器的LDPC解码可W将比特(被LDPC编码和输出)连接到星座映射 器5030的具有不同可靠性的比特位置。
[0612] 根据本发明的实施例的比特交织器5020可W使用奇偶交织、QCB交织、W及组内交 织交织输入比特,如在图23中所示。
[0613] 如上所述,可W为LDPC码和调制方案优化根据本发明的比特交织器5020。因此,本 发明提出用于组合LDPC码字长度是64K或者1服的情况与调制方案(QPSK、NUC-16、NUC-64、 NUC-256、NUQK)的比特交织,并且也提出用于比特交织的参数。
[0614] 图30是图示根据本发明的实施例的比特交织器的框图。
[0615] 在图30中示出的比特交织器可W是上述比特交织器5020的一个示例。根据本发明 的实施例的比特交织器可W包括奇偶交织块30000、QCB交织块30100、W及块交织块30200。 根据本发明的实施例的QCB交织块30100也可W被称为组式块。根据设计者的意图可W改变 此定义。
[0616] 下面将会描述上述块的详细描述。
[0617] 奇偶交织块30000可W执行交织使得与来自于DPC编码的比特当中的奇偶部分相 对应的一些比特(FEC块的奇偶比特)能够形成QC(准循环)状的块或者组。即,奇偶交织块 30000执行奇偶交织,将奇偶比特交织成QC格式,通过组合与LDPC QC大小相对应的比特构 造 QC块,并且输出结果QC块。在图23中示出奇偶交织块30000的输出方案。
[061引 QCB交织块30100可W执行如在图23中所示的QCB交织。即,如在图23中所示,如果 从奇偶交织块3000产生的数个QC块被输入,贝化CB交织块30100可W根据交织图案或者交织 序列交织QC块。根据本发明的实施例的比特交织图案或者比特交织顺序可W被称为置换顺 序或者置换序列。另外,根据本发明的实施例的术语"QC块"可W被称为组。然而,根据设计 者的意图可W改变此定义。根据各个LDPC码率和各个调制类型的组合根据本发明的实施例 的置换顺序可W被唯一地定义。另外,即使当根据本发明的实施例的比特交织器执行各种 块交织方案时,本发明能够根据置换顺序输出相同的比特序列,不论块交织方案如何。
[0619] 根据本发明,具有64800的LDPC块可W是由180( = 64800/360)个QC块组成,并且具 有16200的长度的LDPC块可W是由45个QC块组成。根据设计者的意图可W改变此定义。
[0620] 块交织块30200可W接收根据上述置换顺序输出的比特,并且然后可W执行块交 织。根据本发明的实施例的块交织可W包括写入操作和读取操作。
[0621] 图31是图示根据本发明的实施例的在QCB交织和块交织之间的关系的框图。
[0622] 如在图31中所示,QCB交织器可W通过将置换顺序应用于各个输入QC块执行交织。 其后,块交织器可W接收被交织的比特,并且然后可W执行块交织。
[0623] 图32是图示根据本发明的实施例的块交织参数的表。
[0624] 在图32中示出的表可W指示根据调制类型的调制阶。调制阶可W指示根据调制类 型组成一个符号的比特的数目。如在图31中所示,根据实施例的块交织器可W使用调制阶 执行块交织,并且在下文中将会给出其详细描述。
[0625] 图33是图示根据本发明的实施例的块交织的写入操作的概念图。
[0626] 参考图33,根据实施例的块交织器可W在QCB交织的完成之后接收输出比特(zO, zl···),并且可W根据比特的输入顺序在块交织器的行方向中写入相对应的比特。在运样的 情况下,根据本发明的实施例的块交织器可W包括具有(调制阶xsso x I货式j个比特)的大 小的块和具有个比特)的大小的块。在本发明中,NQCB是QC块的数目。
[0627] 首先,根据本发明的实施例的块交织器可W在与调制阶大小相对应的行中顺序地 写入输入比特。如果在与调制阶大小相对应的所有行中写入比特,则根据本发明的实施例 的块交织器可W在最后的行中写入剩余的比特。如在图33的下部分中所示,可W通过 鄉X (%厂恥,表示剩余的比特的数目。
[0628] 图34是图示根据本发明的实施例的块交织的读取操作的概念图。
[0629] 根据本发明的实施例的块交织器可W在如上所述的行方向中写入输入比特,并且 可W然后在列方向中读取写入的比特。
[0630] 目P,根据实施例的块交织器可W从第一写入的比特的开始位置处在列方向中顺序 地读取比特。因此,每当在列方向中读取比特一次,要被映射到一个符号的比特序列可W被 顺序地输出。在被写入i
弓的比特大小相对应的列中的比特已经被读取之后, 根据本发明的实施例的块交织器可W在写入操作期间在行方向中读取/输出剩余的比特。
[0631] 图35是图示根据本发明的实施例的比特解交织器的框图。
[0632] 根据本发明的实施例的比特交织器可W执行上述比特交织器的相反过程。
[0633] 通过信元/时间解交织器块,可W按照在交织之前获取的符号的顺序记录通过信 道已经处理的符号。其后,解调器可W计算构成符号的相应的比特的LLR(对数似然比)值。
[0634] 其后,根据本发明的实施例的比特交织器可按照在交织之前获取的最初的比 特的顺序能够重建输入的化R值的方式执行解交织。在运样的情况下,比特交织器可W执行 作为在上面提及的比特交织器的相反过程的块解交织和QCB解交织。然而,当接收器基于W QC格式改变的LDPC比特执行解码时,可W省略与奇偶交织的相反过程相对应的奇偶解交 织。另外,块交织和QCB解交织可W对应于在图30至图34中示出的比特交织的读取和写入操 作的相反过程。
[0635] 根据设计者的意图可W删除上述块,或者可W被替换成具有相同或者相似功能的 其它块。
[0636] 图36是图示根据本发明的另一实施例的块交织器的框图。
[0637] 更加详细地,图36的实施例图示,当QC块交织的置换顺序被存储在接收器的ROM中 时,通过ROM共享LDPC存储器和比特交织存储器。在运样的情况下,不需要使用用于比特交 织器的附加的存储器。
[0638] 图36的上部分示出包括在图35中描述的比特交织的接收器操作。图36的下部分示 出用于当LDPC解码器和存储器被共享时将交织置换顺序存储在LDPC存储器中的过程。
[0639] 更加详细地,根据本发明的实施例的接收器可W将通过解调器接收的化R值存储 在寄存器中使得化R值能够被用作LDPC解码的"先验化R"。在运样的情况下,可W根据置换 顺序和调制类型确定必要的寄存器的数目。更加详细地,在NUC-256星座的情况下,8个QC块 被收集W组成NUC-256符号,使得需要与(360个比特X 8)相对应的寄存器。其后,接收器可 W通过被存储在ROM中的置换顺序识别LDPC的哪一个QC块对应于相应的比特。然后,根据本 发明的实施例的接收器可W使用此信息并且可W通过CN更新来更新LLR值。为了使用更新 的化R值作为下一次迭代的"先验化r,更新的化R值可W被再次存储在APP LLR存储器中。 在图36中示出的控制器可W提供对上述信息存储过程的整体控制。通过上述过程的迭代, 可W执行LDPC解码,并且可W仅使用LDPC存储器执行比特解交织。
[0640] 根据设计者的意图可W删除上述块,或者可W被替换成具有相同或者相似功能的 其它块。
[0641] 在下文中将会描述根据本发明的另一实施例的比特交织器。
[0642] 图37是图示根据本发明的实施例的块交织器的概念图。
[0643] 参考图37(a),在块交织器的列方向中写入在QCB交织的完成之后生成的QC块的比 特。如果一列被填充有比特,则在下一列中写入比特。其后,块交织器可W在行方向中读取 比特。
[0644] 参考图37(b),在块交织器的行方向中写入QC块的比特,并且然后与QC块相对应的 360个比特被写入之后,在行方向中的下一个行中重新接入下一个QC块的比特。其后,块交 织器可w在列方向中读取比特。在列方向中通过块交织器读取和输出的比特可w被称为单 组。
[0645] 图38是图示根据本发明的另一实施例的块交织器的写入操作的概念图。
[0646] 图38是图示在图33和图38(a)中示出的块交织器的写入操作的另一示例的概念 图。
[0647] 根据实施例的块交织器可W在QCB交织的完成之后接收输出比特(z0,zl…),并且 可W根据相对应的比特的输入顺序在块交织器的列方向中写入相对应的比特。在运样的情 况下,根据实施例的块交织器可W包括具有
比特X调制阶)的大小的块和具 有<
t比特)的大小的块。在本发明中,NQCB是QC块的数目。
[0648] 首先,根据本发明的实施例的比特交织器可W在与调制阶大小相对应的列中顺序 地写入输入比特。如果在与调制阶大小相对应的所有列中写入比特,则根据本发明的实施 例的块交织器可W在最后的行中写入剩余的比特。
[0649] 如在图38的下部分中所示,通过
巧W表示剩余的比特的数目。
[0650] 图39是图示根据本发明的另一实施例的块交织的读取操作的概念图。
[0651] 图39是图示根据在图34中示出的块交织器的读取操作的另一示例的概念图。根据 本发明的实施例的块交织器可W在如上所述的列方向中写入输入比特,并且然后可W在行 方向中读取写入的比特。
[0652] 目P,根据实施例的块交织器可W从第一写入的比特的开始位置处在列方向中顺序 地读取比特。因此,每当在列方向中读取比特一次,要被映射到一个符号的比特序列可W被 顺序地输出。在被写入到与调制阶大小相对应的列中的比特已经被读取之后,根据本发明 的实施例的块交织器可W在写入操作期间在行方向中读取/输出剩余的比特。
[0653] 如上所述,虽然比特交织器使用相同的置换顺序,但是根据在块交织器的读取操 作和写入操作之间的不同W不同的方式输出比特。
[0654] 在下文中将会详细地描述W不论在块交织器的写入操作和读取操作之间的差异 如何输出的比特序列彼此相同的方式的QCB块的置换顺序。
[0655] 图40是图示根据本发明的实施例的置换顺序的概念图。
[0656] 图40的置换顺序包括16个QC块和4的调制阶。另外,如果剩余的QC块不存在,则调 制阶是零。
[0657] 图40(a)是图示被应用于图37(b)的块交织器的置换顺序和块交织操作的概念图。 在附图的上部分中示出的置换顺序的数字可W指示QC块的数目。即,如果通过{1 0 9 14 7 6 5 13 3 11 2 15 4 12 7 8}表示置换顺序,则在列方向中顺序地写入单独的QC块(在行 方向中写入被包含在QC块的比特)。更加详细地,根据置换顺序,在第一列中写入QC块#1。然 后,在列方向中QC块#0和QC块#9…可W被顺序地写入。
[065引其后,块交织器可W在行方向中读取和输出写入的比特。在运样的情况下,要被映 射到第一符号的4个比特可W是由QC块#1的第一比特、QC块#9的第一块、W及QC块#14的第 一比特组成。
[0659]图40(b)是图示用于在图39中示出的块交织器中的使用的置换顺序和块交织操作 的概念图,使得置换顺序和块交织器被配置成输出与图40(a)的相同的比特单位。
[0660] 如果通过{1 7 3 4 0 6 11 12 9 5 2 7 14 13 15 8}表示在附图的上部分中示 出的置换顺序,则根据置换顺序在列方向中可W顺序地写入单独的QC块。更加详细地,根据 置换顺序,在第一列中写入QC块#1。然后,在列方向中QC块#7和QC块#3……可W被顺序地写 入。
[0661] 其后,块交织器可W在行方向中读取和输出写入的比特。在运样的情况下,要被映 射到第一符号的4个比特可W是由QC块#1的第一比特、QC块#0的第一比特、QC块#9的第一 块、QC块#14的第一比特组成。因此,根据实施例的块交织器可W输出与在图40(a)中相同的 比特序列,不论在块交织器的写入操作和读取操作之间的差异如何。
[0662] 在下文中将会描述根据本发明的另一实施例的比特交织器。具体地,在下文中将 会详细地描述用于当比特交织器执行组内交织时处理剩余的QC块的方法。通过被包含在比 特交织器中的组内交织器可W执行根据本发明的实施例的组内交织器。组内交织器可W被 称为块交织器。根据设计者的意图可W改变此定义。另外,组内交织器可与上述块交织 器相同的方式接收从QC块交织器产生的QC块的比特,并且可与上述块交织器相同的方 式执行写入操作和读取操作。
[0663] 图41是图示根据本发明的另一实施例的组内交织参数的表。
[0664] 更加详细地,在图41中示出的表可W指示根据调制类型的调制阶和与其中将会执 行组内交织器的一个内部组相对应的QC块的数目。根据本发明的另一实施例的比特交织器 可W使用通过NUQ(非均匀QAM)和NUC(非均匀星座)拥有的可靠性的对称特性确定需要构造 内部组的QC块的数目。
[0665] 根据本发明,在NUQ或者QAM模式下,调制阶的1/2可W被设置为被包含在内部组中 的QC块的数目。在NU对莫式期间,QC块的数目可W与调制阶相同。在NUQ模式的情况下,与I或 者Q轴相对应的比特具有相同的比特级性能,使得仅与调制阶的一半相对应的符号比特具 有不同的比特级性能。
[0666] 换言之,在NUC-256的情况下,根据在图41中示出的表组合8个QC块,使得一个内部 组被形成。如果LDPC码字长度是64800,则总共180(( =64800/360)个QC块可W被生成,使得 通过将180个QC块除W8生成22个内部组。在运样的情况下,虽然176个QC块能够构造22个内 部组,但是剩余的4个QC块可W是没有被包含在内部组中的被保留的QC块(或者剩余的QC 块)。
[0667] 在具有16200的LDPC块的情况下,45( = 16200/360)个QC块被生成,使得通过将45 个QC块除W8生成5个内部组。在运样的情况下,虽然40个QC块能够构造5个内部组,但是剩 余的5个QC块可W是没有被包含在内部组中的被保留的QC块(或者剩余的QC块)。在下文中 将会详细地描述用于处理剩余的QC块的方法。
[066引图42是图示在NUC-256的组内交织的写入操作的概念图。
[0669] 参考图42,根据在图37(b)中示出的块交织器操作在行方向中写入QC块的比特,与 QC块相对应的360个比特被写入,并且在行方向中的下一个行中写入下一个QC块的比特。
[0670] 根据本发明的实施例的块交织器可W在QCB交织的完成之后接收输出的比特,并 且可W根据比特的输入顺序在块交织器的行方向中写入与各个QC块相对应的比特。在运样 的情况下,根据本发明的实施例的块交织器可W包括其数目与调制阶相同的多个行和多个 列。在运样的情况下,一列的大小与对应于QC块大小的360个比特相同。NQCB可W指示QC块 的数目。因此,如在附图中所图示,根据本发明的实施例的块交织器可W在各自的行中顺序 地写入输入比特。
[0671] 图43是图示根据本发明的实施例的块交织器的读取操作的概念图。
[0672] 根据本发明的实施例的块交织器可W在如上所述的行方向中写入输入比特,并且 然后可W在列方向中读取写入的比特。
[0673] 目P,根据本发明的实施例的块交织器可W从第一写入的比特的开始位置开始在列 方向中顺序地读取比特。因此,每当在列方向中比特被读取一次,要被映射到一个符号的比 特序列可W被顺序地输出。
[0674] 图44是图示根据本发明的实施例的剩余的QC块的概念图。
[0675] 如上所述,如果与各个内部组相对应的QC块被编组,则可能存在没有被包含在任 何内部组中的剩余的QC块。在下文中将会描述在图44中示出的表和块。
[0676] 在附图的上部分中示出的表可W指示根据各个码率和调制的剩余的QC块的数目。 在附图的下部分中示出的块可W指示在N U C - 2 5 6的情况下的剩余的Q C块的块交织的内部 组。
[0677] 在NUC-256的情况下,根据在图41中示出的表组合8个QC块,使得一个内部组被形 成。如果LDPC码率长度是16200,则总共45 ( = 16200/360)个QC块可W被生成,使得通过将45 个QC块除W 8,5个内部组被生成。在运样的情况下,虽然176个QC块能够构造22个内部组,但 是剩余的5个QC块可W是剩余的QC块(或者剩余的QC块)。在运样的情况下,虽然在没有块交 织的情况下剩余的QC块的比特可W立即被映射到符号,应注意的是,必要时剩余的QC块的 比特可W被块交织并且然后被输出。根据设计者的意图可W改变此定义。
[0678] 在下文中将会描述要被应用于剩余的QC块的块交织。
[0679] 图45是图示根据本发明的实施例的剩余的QC块的写入操作的概念图。
[0680] 根据本发明的实施例的块交织器可W根据输入顺序在块交织器的行方向中写入 剩余的QC块的比特。在运样的情况下,根据本发明的实施例的块交织器可W包括具有(调制 杉
、比特)的大小的块。因此,如果在第一行中写入所有的比特,则在第二行 中写入输入的比特。W运样的方式,剩余的QC块的所有比特能够被写入。
[0681] 图46是图示根据本发明的实施例的剩余的QC块的概念图。
[0682] 参考图46,根据本发明的实施例的块交织器可W在列方向中读取已经在行方向中 写入的比特。
[0683] 目P,根据本发明的实施例的块交织器可W从第一写入的比特的开始位置开始在列 方向中顺序地读取比特。因此,每当在列方向中比特被读取一次,要被映射到一个符号的比 特序列可W被顺序地输出。上述操作与在图34中示出的块交织器的写入操作相同。另外,如 在图37中所示,如果根据本发明的实施例的块交织器的写入操作的方向被改变,则可能出 现在块交织的存储器容量的不同(即,在存储器使用容量的量中的不同)。
[0684] 图47是当在不同的方向中执行块交织的写入操作时的存储器容量的不同。
[0685] 更加详细地,图47(a)图示在图37(a)中示出的块交织器操作的存储器容量,并且 图47(b)图示在图37(b)中示出的块交织器的存储器容量。
[0686] 图47(a)示出当块交织器在列方向中写入QC块比特并且在行方向中读取QC块比特 时产生的存储器容量(存储器使用容量)。如果块交织器在延伸到第Ξ列的最小范围内写入 比特,并且然后在第四列中写入比特,则块交织器可W在行方向中读取比特。因此,颜色处 理的列的最小量的比特必须被存储在存储器中。
[0687] 图47(b)示出当块交织器在行方向中读取QC块并且在列方向中读取QC块比特时生 成的存储器容量(存储器使用容量)。虽然被延伸到第二列的最小范围被填充有比特,但是 块交织器可W在列方向中读取比特。因此,颜色处理的列的最小量的比特可W被存储在存 储器中。
[068引因此,假定调制阶被设置为4并且LDPC码率长度是64800,对于图47(a)的示例性情 况需要存储"3(列的数目)x 45(QC块的数目)x 360个比特"的存储器。相反地,对于图47(b) 的其它情况需要能够存储"(调制阶X 360个比特)x 2(列的数目Γ的存储器。图47(b)的存 储器大小可W对应于图47(a)的存储器大小的8/135(大约6%),使得在存储器使用方面能 够识别图47(b)的存储器效率高于图47(a)的存储器效率。
[0689] 图48是图示根据本发明的实施例的比特交织器存储器的概念图。
[0690] 参考图48,图47(b)的块交织器能够使用采用管线结构具有"(360X调制阶)x 2"的 大小的存储器(Ml,M2)执行块交织。
[0691] 如上所述,虽然被延伸到块交织器的第二列的最小范围被完全地填充有比特,但 是块交织器可W在列方向中读取比特。因此,颜色处理的列的最小量的比特必须被存储在 存储器中。如能够从附图的上部分中看到的,块交织器的第一列被定义为A区域,块交织器 的第二列被定义为B区域,并且块交织器的第Ξ列被定义为C区域。
[0692] 附图的下部分图示当A区域、B区域W及C区域的块交织动作被执行时在时间轴上 使用存储器(Ml,肥)。
[0693] 根据本发明的实施例的块交织器可W在存储器Ml中写入与A区域相对应的比特, 并且可W读取被存储在存储器Ml中的比特,使得其能够执行A区域的块交织。同时,根据本 发明的实施例的块交织器可W在存储器M2中存储与B区域相对应的比特。因此,当根据本发 明的实施例的块交织器丢失与被存储在存储器Ml中的A区域相对应的比特时(在A区域的块 交织期间),块交织器可W在没有丢失与B区域相对应的比特的情况下执行块交织。根据本 发明的实施例的块交织器也可与如上所述相同的方式执行C区域的块交织。
[0694] 如上所述,虽然比特交织器使用相同的置换顺序,但是根据在块交织器的读取操 作和写入操作之间的不同可W改变输出比特。
[0695] 在下文中将会描述根据本发明的另一实施例的另一置换顺序,其被配置成输出相 同的比特序列,不论块交织器的读取操作和写入操作之间的差异如何。
[0696] 图49是图示根据本发明的另一实施例的置换顺序的概念图。
[0697] 图49的置换顺序包括16个QC块和4的调制阶。另外,如果剩余的QC块不存在,则调 制阶是零。
[0698] 图49(a)是图示被应用于图47(a)的块交织器的置换顺序的块交织操作的概念图。 在附图的上部分中示出的置换顺序的数字可W指示QC块的数目。即,如果通过{1 7 3 4 0 6 11 12 9 5 2 7 14 13 15 8}表示置换顺序,则在列方向中顺序地写入单独的QC块。更加 详细地,根据置换顺序,在第一列中写入QC块#1。然后,在列方向中可W顺序地写入QC块#7 和QC块#3……。
[0699] 其后,块交织器可W在行方向中读取和输出被写入的比特。在运样的情况下,要被 映射到第一符号的4个比特可W是由QC块#1的第一比特、QC块#0的第一比特、QC块#9的第一 块、W及QC块#14的第一比特组成。
[0700] 图49(b)是图示在图47(b)中示出的对于块交织器中使用的置换顺序和块交织操 作的概念图,使得置换顺序和块交织器被配置成输出与图47(b)的相同的比特单元。
[0701] 如果通过{1 0 9 14 7 6 5 13 3 11 2 15 4 12 7 8}表示在附图的上部分中示 出的置换顺序,则在列方向中可W顺序地写入单独的QC块(然而,被包含在QC块中的比特被 写入行方向中)。更加详细地,根据置换顺序,在第一列中写入QC块#1。然后,在列方向中可 W顺序地写入QC块#0和QC块#9。
[0702] 其后,块交织器可W在列方向中读取和输出写入的比特。在运样的情况下,要被映 射到第一符号的4个比特可W是由QC块#1、QC块#0的第一比特、QC块#9的第一块、W及9(:块# 14的第一比特组成。因此,根据本发明的实施例的块交织器可W输出如在图49(a)中的相同 的比特序列,不论在块交织器的写入操作和读取操作之间的差异如何。
[0703] 根据本发明的实施例的比特交织器可W根据码率和调制类型的组合使用来自于 上述块交织实施例当中的至少一个块交织实施例,并且可W根据设计者的意图改变此定 义。
[0704] 图50是图示根据本发明的实施例的用于发送广播信号的方法的流程图。
[0705] 根据本发明的实施例的用于发送广播信号的装置,或者在用于发送广播信号的装 置中的BICM块,或者FEC编码器能够编码服务数据(S50000)。如上所述,服务数据对应于物 理路径的数目,并且物理路径是承载服务数据或相关元数据的物理层中的逻辑信道,其可 W承载一个或多个服务或者服务组件,并且标题能够根据设计者的意图被改变。根据本发 明的实施例的物理路径等同于上述DP。编码的详细过程如图1至29中所述。
[0706] 根据本发明的实施例的用于发送广播信号的装置或者用于发送广播信号的装置 中的BICM块或者比特交织器能够比特交织编码的服务数据(S50100)。根据本发明的实施例 的用于发送广播信号的装置或者用于发送广播信号的装置中的BICM块或者比特交织器能 够执行交织编码的服务数据的奇偶比特W分离成多个组,通过使用置换顺序组式交织分离 的多个组,并且块交织该交织的多个组。而且,基于调制类型和码率确定置换顺序。该步骤 的详细过程如图30至49和51至73所述。
[0707] 然后,根据本发明的实施例的用于发送广播信号的装置或者帖构建块能够构建包 括比特交织的服务数据的至少一个信号帖(S50200)。该步骤的详细过程如图1至29所述。
[0708] 随后,根据本发明的实施例的用于发送广播信号的装置或者在用于发送广播信号 的装置中的OFDM生成块能够通过使用OFDM(正交频分复用)方案调制构建的至少一个信号 帖中的数据(S50300),并且根据本发明的实施例的用于发送广播信号的装置或者OFDM生成 块或者发射器能够发送就有调制的数据的广播信号(S50400)。该步骤的详细过程如图1至 29所述。
[0709] 在此,将会描述根据码字长度、调制类型W及码率指示比特交织图案的比特交织 图案表。如上所述,通过使用置换顺序能够执行根据本发明的实施例的组式交织。为了调制 和LDPC码率的各个组合优化相对应的组式交织。
[0710] 至少一个置换顺序对应于根据本发明的实施例的各个码率。因此,在本发明中,具 有至少一个置换顺序的码率能够被表达为13/15(1 )、13/15(2)。
[0711] 根据本发明的实施例的比特交织器5020能够执行组式交织奇偶交织的LDPC码字 (或者奇偶交织的LDPC编码的比特或者奇偶交织的LDPC编码的数据)。组式交织的输入和输 出能够被表示为下面的表达式12。
[071^ [表达式12]
[0713] Yj = X.(j) 0^j<Ng roup
[0714] 其中Yj表示被组式交织的第j个比特组(QC块)并且3i(j)表示用于组式交织的置换 顺序。X表示输入比特组(QC块)。
[0715] 在下文中将会描述示出用于码字长度16200和64800的各个码率的置换顺序的表。
[0716] 图51示出根据本发明的实施例的用于码字长度16200的各个码率和调制类型的置 换顺序的表。
[0717] 更加详细地,图51示出被应用于在图37至图40中描述的比特交织的置换顺序的 表。
[0718] 表的第一行(上部分)示出码率和各个调制类型的组合。如在图51中所示,该表示 出当码长度是16200时,与各个码率和调制类型QPSK、NUC 16、NUC 64W及NUC 256相对应的 置换顺序。
[0719] LDPC编码的输出能够被划分成45个QC块并且各个QC块可W被表示为0-44的数字。 因此,当LDPC码字长度是16200时,0-359个比特能够对应于第0个QC块,并且360-719个比特 能够对应于第一个QC块。
[0720] 第一列和其它的示出在组式交织的输入和输出之间的关系。更加详细地,左列(第 一列)示出来自于组式交织的QC块的输出顺序。在列中的数字意指被组式交织的QC块(第j 个比特组,Yj)的编号。属于码率和各个调制类型相对应的组合的列示出组式交织的输入顺 序。列中的数字意指输入QC块(第n(j)个比特组)的编号。
[0721] 图52至图55示出根据本发明的实施例的用于码长度64800的各个码率和调制类型 的置换顺序的表。
[0722] 更加详细地,图52至图55示出被应用于在图37至图40中描述的比特交织的置换顺 序的表。
[0723] 表的第一行(上部分)示出码率和各个调制类型的组合。如在图52至图55中所示, 该表示出当码长度是64800时,与各个码率和调制类型NUC 16和NUC 64相对应的置换顺序。
[0724] LDPC编码的输出能够被划分成180个QC块并且各个QC块可W被表示为0-179的数 字。因此,当LDPC码字长度是64800时,0-359个比特能够对应于第0个QC块,并且360-719个 比特能够对应于第一个QC块。
[0725] 第一列和其它的示出在组式交织的输入和输出之间的关系。更加详细地,左列(第 一列)示出来自于组式交织的QC块的输出顺序。在列中的数字意指被组式交织的QC块(第j 个比特组,Yj)的编号。属于码率和各个调制类型相对应的组合的列示出组式交织的输入顺 序。列中的数字意指输入QC块(第n(j)个比特组)的编号。
[0726] 图56至图59示出根据本发明的实施例的用于码长度64800的各个码率和调制类型 的置换顺序的表。
[0727]更加详细地,图56至图59示出被应用于在图37至图40中描述的比特交织的置换顺 序的表。该表的详情在上面被描述并且因此其描述被省略。
[07%]图60示出根据本发明的另一实施例的用于码长度16200的各个码率和调制类型的 置换顺序的表。
[0729] 更加详细地,图60示出被应用于图41至图49中描述的比特交织的置换顺序的表。
[0730] 表的第一行(上部分)示出码率和各个调制类型的组合。如在图60中所示,该表示 出当码长度是16200时,与各个码率和调制类型QPSK和QAM 16相对应的置换顺序。
[0731] 图61示出根据本发明的另一实施例的用于码长度16200的各个码率和调制类型的 置换顺序的表。
[0732] 更加详细地,图61示出被应用于在图41至图49中描述的比特交织的置换顺序的 表。
[0733] 表的第一行(上部分)示出码率和调制类型的组合。如在图61中所示,该表示出当 码长度是16200时与各个码率和调制类型QAM 64相对应的置换顺序。详情在上面被描述并 且因此其描述被省略。表的详情在上面被描述并且因此其描述被省略。
[0734] 图62示出根据本发明的另一实施例的用于码长度16200的各个码率和调制类型的 置换顺序的表。
[0735] 更加详细地,图62示出被应用于在图41至图49中描述的比特交织的置换顺序的 表。
[0736] 表的第一行(上部分)示出码率和调制类型的组合。如在图62中所示,该表示出当 码长度是16200时与各个码率和调制类型QAM 256相对应的置换顺序。详情在上面被描述并 且因此其描述被省略。表的详情在上面被描述并且因此其描述被省略。
[0737] 图63至图69示出根据本发明的另一实施例的用于码长度64800的各个码率和调制 类型的置换顺序的表。
[0738] 更加详细地,图63至图69示出被应用于在图41至图49中描述的比特交织的置换顺 序的表。
[0739] 表的第一行(上部分)示出码率和调制类型的组合。如在图63至图69中所示,该表 示出当码长度是64800时与各个码率和调制类型QPSK、QAM 16相对应的置换顺序。详情在上 面被描述并且因此其描述被省略。表的详情在上面被描述并且因此其描述被省略。
[0740] 图70至图73示出根据本发明的另一实施例的用于码长度64800的各个码率和调制 类型的置换顺序的表。
[0741] 更加详细地,图70至图73示出被应用于在图41至图49中描述的比特交织的置换顺 序的表。
[0742] 表的第一行(上部分)示出码率和调制类型的组合。如在图70至图73中所示,该表 示出当码长度是64800时与各个码率和调制类型QAM 64、QAM 256、QAM 1024相对应的置换 顺序。详情在上面被描述并且因此其描述被省略。
[0743] 本领域技术人员将会理解,在不脱离本发明的精神或者范围的情况下能够在本发 明中进行各种修改和变化。因此,其意在本发明覆盖本发明的修改和变化,只要它们落在所 附权利要求及其等效的范围内。
[0744] 在本说明书中提及设备和方法发明两者,并且设备和方法发明两者的描述可W互 补地适用于彼此。
[0745] 根据本发明的实施例的模块、单元或者块是执行被存储在存储器(或者存储单元) 中的一系列指令的处理器/硬件。能够在硬件/处理器中/通过硬件/处理器操作在上面描述 的实施例中的步骤或者方法。另外,本发明的方法可W被实现为可W被写入在处理器可读 记录介质上的代码并且因此,根据本发明的实施例的装置中设置的处理器读取。
[0746] 发明的模式
[0747] 已经在执行本发明的最佳模式中描述了各种实施例。
[074引工业实用性
[0749] 本发明可应用于一系列广播信号提供领域。
[0750] 本领域基于人员将理解,在不背离本法米的精神和范围的情况下能够在本发明中 左侧各种修改和变化。因此,意图是本发明涵盖该发明的修改和变化,只要它们落入随附权 利要求及其等同物的范围内。
【主权项】
1. 一种用于接收广播信号的方法,所述方法包括: 接收广播信号; 通过OFDM(正交频分复用)方案解调所述接收的广播信号; 从所述解调的广播信号解析至少一个信号帧,其中所述至少一个信号帧包括与多个物 理路径相对应的服务数据; 比特解交织在所述被解析的至少一个信号帧中的所述服务数据;以及 解码所述被比特解交织的服务数据。2. 根据权利要求1所述的方法,其中,所述比特解交织包括使用根据码率和调制类型确 定的置换顺序。3. -种用于接收广播信号的装置,所述装置包括: 接收器,所述接收器接收所述广播信号; 解调器,所述解调器通过OFDM(正交频分复用)方案解调所述接收的广播信号; 解析器,所述解析器从所述解调的广播信号解析至少一个信号帧,其中所述至少一个 信号帧包括与多个物理路径相对应的服务数据; 比特解交织器,所述比特交织器比特解交织在所述被解析的至少一个信号帧中的所述 服务数据;以及 解码器,所述解码器解码所述被比特解交织的服务数据。4. 根据权利要求3所述的装置,其中,所述比特解交织包括使用根据码率和调制类型确 定的置换顺序。
【文档编号】H04L1/00GK106063175SQ201580009801
【公开日】2016年10月26日
【申请日】2015年8月25日
【发明人】徐镛学, 文相喆, 辛钟雄, 高祐奭, 洪性龙
【申请人】Lg电子株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1