具有输出保护的多通道光源电源的制作方法

文档序号:8195398阅读:250来源:国知局
专利名称:具有输出保护的多通道光源电源的制作方法
技术领域
本发明涉及照明,并且更具体地涉及用于照明的电源。
背景技术
美国所使用的某些电源受到美国保险商实验室所发布的安全规定的约束,特别是UL1310 Class 2 (类别2)标准。UL1310标准对被归类为Class 2电源的电源的每个输出的电压、电流和功率进行了限制。即使在单个组件出现故障的情况下,这些限制也必须被满足。有关UL1310 Class 2电源的功率限制例如目前为每个输出通道100瓦。电源的每个通道/输出可以被配置为驱动単独的光源,例如固态光源(即,发光二极管(LED)、有机发光ニ极管(OLED)等)、气体放电灯或白炽灯,等等。这样的电源通常采用两个电压转换级,即前端级和输出级。前端级可以接收输入电压,例如120V的AC电压,并且将所述输入电压转换为经调整的DC输出电压。输出级可以接收前端级的所述DC输出并且使用DC/DC转换器为电源的每个通道提供经调整的DC输出。因此每个级都能够对输出电压、电流和功率进行限制。

发明内容
利用单通道电源,前端级和输出级两者的功率限制可以被设置为小于100瓦,从而这些级互相作为后备。在多通道/输出电源中,当被组合吋,每个输出通道可能能够输送大于100瓦。因此,多通道电源中的前端级的输出功率限制可能需要被设置为高于100瓦,并且无法作为输出级的单个通道中潜在的单个组件故障的后备。可能在多通道/输出电源中出现的影响最大的故障是ー个或多个输出的调整被短路(例如,输出降压稳压器的MOSFET或电感器短路),这可能导致在该单个故障通道上输送最大前端功率的故障输出。如果前端的功率限制小于姆个UL1310的输出的100瓦最大限制,则这在单通道/输出电源方面不太可能成为问题。然而,当该故障通道处于多通道/输出电源中时,这会成为严重的问题,原因在于前端的功率限制可能高于100瓦。在一些已知配置中,通过在每个输出通道上提供附加保护电路系统而解决了单个故障输出通道输送大于100瓦的可能。所述保护电路系统可以监视每个输出通道的电压和电流,并且可以在表示电压、电流或功率的数值之ー过高的情况下关闭该通道和/或整个电源。然而,所述附加保护电路系统需要更多组件以及更多空间,増加了额外的金钱和效率成本。当然,可替换地,电源可以简单地跨其所有通道组合地仅提供100瓦。本发明的实施例提供了ー种在前端级和输出级之间具有保护电路的电源,其中所述输出级包括多个电压转换器电路。每个电压转换器电路向所述电源的每个输出通道提供単独的相关联输出。电流检测电路耦合到所述电压转换器电路并且向控制器电路提供电流检测输出。当通过ー个或多个电压转换器电路的电流超出如所述电流检测输出所表示的预定数值时,所述控制器电路向保护开关提供输出以便将所述前端级的输出与所述电压转换器电路脱离耦合。因此,如果在输出级的任意电压转换器电路中存在短路或其它故障,则所述输出级的所有电压转换器电路都被有效地“关闭”以避免任意输出电源通道上的过高功率(例如,大于100瓦的功率)。在一些实施例中,可能期望减少或消除与电流检测电路相关联的阻抗损失所导致的效率低下。在这样的实施例中,所述电流检测电路可以包括用于提供电流检测输出的电流传感器以及与所述电流传感器并联耦合的旁路开关。为了确定ー个或多个电压转换器电路中是否存在短路,所述旁路开关可以被置于非导通状态以使得表示通过电压转换器电路的电流的电流通过所述电流传感器流动以建立电流检测输出。如果所述电流检测输出超出 预定阈值,则控制器电路向保护开关提供输出以使得前端级的输出与电压转换器电路脱离耦合。如果所述电流检测输出并没有超出预定阈值则控制器电路向保护开关提供输出以将前端级的输出耦合到电压转换器电路并且将所述旁路开关置于导通状态以对电流传感器周围的电流进行分流。在电源电路正常工作以向电压转换器电路提供电流时对电流传感器周围的电流进行分流減少或消除了与电流传感器相关联的阻抗损失所导致的效率低下。这样的电源电路的实施例因此为多通道电源提供了输出保护而不需要电源的每个通道上的附加电路系统。这提供了尺寸、成本、可靠性和效率方面的优势。此外,实施例可以包括电流检测电路,其提供作为电压输出的电流检测输出,因此作为电流检测电路的结果而提供了非常少的额外能量损失。而且,当电压转换器电路通过所述保护开关与前端级脱离耦合时,所述前端级可以进入待机模式,保持低的电源功率消耗。在一个实施例中,提供了ー种具有多个输出通道的光源电源电路。所述光源电源电路包括被配置为接收输入电压并且提供经调整的前端直流(DC)电压的前端电路;多个电压转换器电路,所述多个电压转换器电路中的每个电压转换器电路被配置为接收经调整的前端DC电压并且为所述多个输出通道中相关联的ー个提供単独的相关联DC输出;耦合在所述多个电压转换器电路和前端电路之间的保护开关,所述保护开关具有用来将所述前端DC电压耦合到多个电压转换器电路的导通状态以及用来将所述前端DC电压与多个电压转换器电路脱离耦合的非导通状态;耦合到所述多个电压转换器电路的电流检测电路,所述电流检测电路包括电流传感器以及与所述电流传感器并联耦合的旁路开关,所述旁路开关具有对所述电流传感器周围的电流进行分流的导通状态以及允许电流流过所述电流传感器的非导通状态,由此在所述旁路开关处于非导通状态时,跨电流传感器的电压建立了表示通过所述多个电压转换器电路中的至少ー个电压转换器电路的电流的电流检测输出;和被配置为响应于所述电流检测输出将所述保护开关置于非导通状态的控制器电路。在相关实施例中,所述多个电压转换器电路可以包括多个开关,并且所述控制器电路可以被配置为提供输出以将所述多个开关中的一个开关置于非导通状态,以使得功率不被所述多个开关中的该开关输送到连接到光源电源电路与该开关相关联的输出通道的光源。在另ー个相关实施例中,所述保护开关可以耦合在所述前端电路的低侧输出和所述多个电压转换器电路之间。在另外的相关实施例中,所述多个电压转换器电路可以是多个开关转换器电路,并且所述电流传感器可以包括至少ー个电阻器,所述至少一个电阻器耦合到所述多个开关转换器电路中的每个开关转换器电路以检测通过所述多个开关转换器电路的电流,并且所述电流检测输出可以包括跨所述至少一个电阻器的电压。在另外的相关实施例中,所述保护开关可以包括晶体管,所述晶体管具有耦合到所述控制器的栅极、耦合到所述至少一个电阻器的源扱,以及耦合到所述多个开关转换器电路中的每个开关转换器电路的漏扱。在另外的相关实施例中,所述漏极可以通过电阻器耦合到所述多个开关转换器电路中的每个开关转换器电路的开关部分。在又一个相关实施例中,所述保护开关可以耦合在所述前端电路的高侧输出和所述多个电压转换器电路之间。在另外的相关实施例中,所述电流传感器可以包括耦合在所述前端电路的低侧输出和地之间的至少ー个电阻器,并且所述电流检测输出可以包括跨 所述至少一个电阻器的电压。在再一个相关实施例中,所述多个电压转换器电路中的每个电压转换器电路可以被配置为降压转换器。在另ー个相关实施例中,所述旁路开关可以包括晶体管。在另ー个实施例中,提供了一种多输出通道光源电源电路。所述多输出通道光源电源电路包括被配置为接收输入电压并且提供经调整的前端直流(DC)电压的前端电路;多个电压转换器电路,每个电压转换器电路被配置为降压转换器并且被配置为接收经调整的前端DC电压并且为多个输出通道中相关联的ー个提供単独的相关联DC输出;耦合在所述多个电压转换器电路和前端电路的低侧输出之间的保护开关,所述保护开关具有用来将所述前端DC电压耦合到多个电压转换器电路的导通状态以及用来将所述前端DC电压与多个电压转换器电路脱离耦合的非导通状态;耦合到所述多个电压转换器电路的电流检测电路,所述电流检测电路包括电流传感器以及与所述电流传感器并联耦合的旁路开关,所述旁路开关具有对所述电流传感器周围的电流进行分流的导通状态以及允许电流流过所述电流传感器的非导通状态,由此在所述旁路开关处于非导通状态时,跨电流传感器的电压建立了表示通过至少一个电压转换器电路的电流的电流检测输出;和被配置为提供输出以将所述保护开关置于非导通状态以使得功率不被输送到连接到所述多个输出通道的光源的控制器电路,其中所述控制器电路响应于所述电流检测输出提供所述输出。在相关实施例中,所述保护开关可以包括晶体管,所述晶体管具有耦合到所述控制器的栅极、耦合到至少ー个电阻器的源扱,以及耦合到所述多个电压转换器电路中的每个电压转换器电路的漏扱。在另外的相关实施例中,所述漏极可以通过电阻器耦合到所述多个电压转换器电路中的每个电压转换器电路。在另ー个相关实施例中,所述多个电压转换器电路是多个开关转换器电路,并且所述电流传感器包括耦合到所述多个开关转换器电路中的每个开关转换器电路的至少ー个电阻器。在另ー个相关实施例中,所述旁路开关包括晶体管。在另ー个实施例中,提供了一种针对在多输出通道电源的一个或多个输出通道提供过高功率而进行保护的方法。所述方法包括将旁路开关置于非导通状态,所述旁路开关与电流传感器并联耦合;使得多个电压转换器电路中的每个电压转换器电路无效,以使得所述多个电压转换器电路不用来向连接到一个或多个输出通道的ー个或多个光源提供功率;检测通过所述电流传感器的电流以建立表示通过无效之后的多个电压转换器电路的电流的电流检测输出;确定所述电流检测输出是否超过预定水平;如果所述电流检测输出超过了预定水平,则将前端电路与所述多个电压转换器电路脱离耦合;并且如果所述电流检测输出没有超过预定水平,则将所述旁路开关置于导通状态以对电流传感器周围的电流进行分流,并且启用所述多个电压转换器电路中的每个电压转换器电路,以使得所述多个电压转换器电路用来向连接到一个或多个输出通道的ー个或多个光源提供功率。在相关实施例中,无效可以包括将所述多个电压转换器电路中的每个电压转换器电路的开关部分置于非导通状态。在另ー个相关实施例中,脱离耦合可以包括改变耦合在所述前端电路和多个电压转换器电路之间的保护开关的状态。


这里所公开的以上和其它目标、特征和优势将因为这里所公开的如附图中所图示的特定实施例的以下描述而变得显而易见,在附图中贯穿不同视图,相似的附图标记指代 相同的部分。附图不必依比例绘制,相反是意在强调图示出这里所公开的原理。图I示出了根据这里所公开实施例的电源的框图。图2是根据这里所公开实施例的电源的电路图。图3是根据这里所公开实施例的电源的另ー电路图。图4是根据这里所公开实施例的方法的流程框图。图5示出了根据这里所公开实施例的电流检测电路的框图。图6是根据这里所公开实施例的电源的电路图。图7是根据这里所公开实施例的方法的流程框图。
具体实施例方式图I示出了电源电路100的简化框图。电源电路100包括已知的前端电路102和输出级104。输出级104包括用于对单独的相关联的光源108-1,108-2,. . . 108-N进行驱动的多个电压转换器电路106-1,106-2,. . . 106-N并且包括保护电路110。保护电路110包括保护开关112、控制器电路114和电流检测电路116。前端电路102可以包括用于直接或通过已知的调光器电路(未示出)接收输入电压Vin,并且通过保护电路110向多个电压转换器电路106-1,106-2,. . . 106-N提供经调整的直流(DC)输出D(;eg的已知电路配置。在ー些实施例中,例如,输入电压Vin可以是直接从120V AC/60HZ的线路源提供的交流(AC)输入。然而,所要理解的是,根据这里所描述实施例的系统可以从DC源或其它AC源进行操作,诸如以50-60HZ提供220-240V AC的源,但是并不局限于此。例如,前端电路102可以结合用于接收输入电压Vin的已知整流器电路,已知开关转换器电路,以及用于控制所述开关转换器内的开关的控制器。各种整流器电路配置是本领域已知的。例如,在一些实施例中,整流器电路可以包括已知的ニ极管桥整流器或H桥整流器。开关转换器电路可以从整流器接收经整流的AC输出并且通过保护电路110向多个电压转换器电路106-1,106-2,. . . 106-N提供稳定的经调整的DC输出D(;eg。例如包括降压转换器、升压转换器、降压-升压转换器等在内的各种开关转换器配置都是本领域已知的。这些设备通常包括例如晶体管的开关,其有选择地操作以允许能量被存储在例如电感器的能量存储设备中,并且随后例如使用ー个或多个滤波电容器而被传输至诸如光源的负载。另ー种已知类型的开关转换器包括已知的基于变压器的开关转换器,诸如“回归(flyback)”转换器。在基于变压器的开关转换器中,变压器的初级侧可以耦合到整流器的经整流的AC输出。在变压器的次级侧提供经调整的DC输出电压,所述次级侧与变压器的初级侧电绝缘。用于控制开关转换器的开关的各种控制器是已知的。例如,在开关转换器配置是降压转换器的实施例中,控制器可以是目前可以从美国德克萨斯州达拉斯的德州仪器公司所获得的型号为TPS40050的控制器。开关转换器电路也可以包括已知的功率因数校正(PFC)电路。多个电压转换器电路106-1,106-2,. . . 106-N均可以包括已知的开关转换器电路(这导致了多个开关转换器电路)。如以上所描述的,多个开关转换器电路均可以包括开关(这导致了多个开关)。多个开关转换器电路可以包括用于控制多个开关的已知控制器。所述多个电压转换器电路106-1,106-2,... 106-N均可以接收前端电路102的经调整的DC 输出DCreg并且向相关联的ー个光源108-1,108-2,. . . 108-N提供相关联的DC输出DCtjutl,DCout2, · · · DC0ufflo多个电压转换器电路106-1,106-2,· · · 106-N中的电压转换器电路的每个相关联的DC输出DCtjutl, DCout2, ... DCtjuw在这里可以被称作电源电路100的“通道”或“输出”。相关联的光源108-1,108-2,... 108-N可以包括任意类型的已知光源的任意组合,诸如白炽灯、气体放电灯或固态光源,但是并不局限于此。如果相关联的光源108-1,108-2,. . . 108-N是固态光源,则其可以包括以串联和/或并联配置互连的固态光源(例如,(ー个或多个)LED)的群组。通过多个电压转换器电路106-1,106-2,. . . 106-N中的每个电压转换器电路的电流可以被反馈到电流检测电路116,其可以向控制器电路114提供电流检测输出。在一些实施例中,电流检测电路116可以被配置为ー个或多个电阻器(如图2和3所示),并且电流检测输出可以是表示通过多个电压转换器电路106-1,106-2,. . . 106-N中的ー个或多个电压转换器电路的电流的跨(ー个或多个)电阻器的电压。当电流检测电路116提供了超过预定义阈值的电流检测输出时,控制器电路114就向保护开关112提供输出以将保护开关112的传导状态从前端电路102的输出DCreg被耦合到多个电压转换器电路106-1,106-2,... 106-N的状态(即导通状态)变为前端电路102的输出DCreg与多个电压转换器电路106-1,106-2,· · · 106-N脱离耦合的状态(即非导通状态)。保护开关112可以是具有导通或“闭合”状态以及非导通或“断开”状态的任意组件或组件群组。例如,在一些实施例中,保护开关112可以包括晶体管。当保护开关112处于导通或“闭合”状态时,前端电路102的输出DCreg被耦合到多个电压转换器电路106-1,106-2,. . . 106-N,并且当保护开关处于非导通或“断开”状态时,前端电路102的输出DCreg与多个电压转换器电路106-1,106-2,. . . 106-N脱离耦合。控制器电路114可以是被配置为响应于电流检测电路116的电流检测输出来提供用于改变保护开关112的状态的输出的任意类型的电路。例如,控制器电路114可以是被配置为在电流检测输出超过预定阈值时改变保护开关112的传导状态的微控制器。在多个电压转换器电路106-1,106-2,. . . 106-N被配置为包括多个开关的多个开关转换器的实施例中,控制器电路112也可以被配置为向多个电压转换器电路106-1,106-2,... 106-N中的每个电压转换器电路提供输出以便将多个电压转换器电路106-1,106-2,... 106-N中的多个开关置于非导通或“断开”状态,由此假设多个电压转换器电路106-1,106-2,... 106-N中不存在故障,则没有功率被提供给在多个电压转换器电路106-1,106-2,. . · 106-N的输出处的相关联的光源108-1,108-2,· · · 108-N。例如,控制器电路114可以被配置为使得多个开关转换器中的开关转换器的晶体管开关的栅极驱动无效,以由此关闭开关转换器,使得没有功率被该晶体管开关提供给相关联的光源。利用这种配置,当控制器电路114将电压转换器电路106-1,106-2,. . . 106-N “关闭”时(即,处于非导通/“断开”状态),应当有很小的或没有电流通过多个开关转换器中的多个开关,并且电流检测电路116的电流检测输出应当低于预定阈值以导致保护开关112的传导状态发生变化。然而,例如在多个电压转换器电路106-1,106-2,. . . 106-N中的开关中出现短路时,例如跨其晶体管开关出现短路,电流检测电路116将向控制器电路114提供高于预定阈值的电流检测输出。作为响应,控制器电路114将改变保护开关112 的传导状态以将前端电路102的经调整的DC输出DCreg与多个电压转换器电路106-1,106-2,. . . 106-N脱离耦合。因而在电源电路100中,保护电路110用来针对多个电压转换器电路106-1,106-2,. . . 106-N中可能导致过高功率被提供给ー个或多个相关联的光源108-1,108-2,. . . 108-N的故障进行保护。例如,在一些实施例中,电流检测电路116的组件数值以及在控制器电路114中设置的预定阈值可以被建立为在多个电压转换器电路106-1,106-2,. . . 106-N之一中的故障使得提供给电源电路100的相关联的通道的功率超过100W之前使得前端电路102与多个电压转换器电路106-1,106-2,. . . 106-N脱离耦合,由此提供了与UL1310 class 2标准的兼容性。根据这里所描述实施例的电源(贯穿全文也被称作“电源电路”)可以以各种配置来提供。图2图示了电源电路100a,其包括前端电路102、保护电路IlOa和输出级,所述输出级包括多个电压转换器电路106a-l. . . 106a-N,其中每ー个被配置为提供相关联的输出/通道以便驱动相关联的光源108a-l. . · 108a-N。在图2中,相关联的光源108a-l. . · 108a-N被配置为多个串联连接的发光二极管202。然而,所要理解的是,可以使用用于驱动每个通道上任意类型的光源和/或不同类型的光源的单独输出/通道而并不背离本发明的范围。在固态光源处于相关联的光源108a_l. . . 108a_N之中的实施例中,姆个固态光源可以包括串联、并联耦合的任意数量的固态光源、串联固态光源的并联组合或者单个固态光源。耦合到根据这里所描述实施例的电源电路的ー个输出/通道的固态光源的操作特性和数量可以不同于耦合到另ー个输出/通道的固态光源的操作特性和数量。在图2中,多个电压转换器电路106a_l. . . 106a_N以已知的降压转换器配置来提供。例如,电压转换器电路106-1包括用作开关的金属氧化物场效应晶体管(MOSFET) Q2、开关控制器204-1、电阻器Rl、ニ极管Dl和电感器LI。MOSFET Q2的源极通过电阻器Rl和保护电路IIOa耦合到来自前端电路102的输出DCreg的低侧,并且MOSFET Q2的漏极通过电感器LI和相关联的光源108a-l耦合到来自前端电路102的输出D(;eg的高侧。ニ极管Dl从MOSFET Q2的漏极耦合到来自前端电路102的输出DC,eg的高侧,并且相对于来自前端电路102的输出DCreg的高侧反向偏置。开关控制器204-1耦合到MOSFET Q2的栅极以便提供经脉宽调制(PWM)的栅极驱动信号来以已知的方式断开和闭合MOSFET Q2。例如,在ー些实施例中,开关控制器204-1可以是目前可以从美国德克萨斯州达拉斯的德州仪器公司所获得的型号为TPS40050的控制器。图2所示的多个电压转换器电路106a_l. . . 106a_N中的每个电压转换器电路可以具有相同的降压转换器配置。例如,电压转换器106a-N包括用作开关的金属氧化物场效应晶体管(MESFET) QN、开关控制器204-N、电阻器RN、ニ极管DN和电感器LN。MOSFET QN的源极通过电阻器RN和保护电路IlOa耦合到来自前端电路102的输出DCieg的低侧,并且MOSFET QN的漏极通过电感器LN和相关联的光源108a_N耦合到来自前端电路102的输出DCreg的高侧。ニ极管DN从MOSFET QN的漏极耦合到来自前端电路102的输出DC,eg的高侦牝并且相对于来自前端电路102的输出DC,eg的高侧反向偏置。开关控制器204-N耦合到MOSFET QN的栅极以便提供PWM栅极驱动信号来以已知的方式断开和闭合MOSFET QN。保护电路IlOa包括保护开关112a、电流检测电路116a和控制器电路114a。在图2中,保护开关112a被配置为MOSFET Q1,其中MOSFET Ql的源极通过电流检测电路116a耦合到前端电路102的输出DCieg的低侧,所述电流检测电路116a被配置为电阻器Rsense。MOSFET Ql的漏极分别通过电阻器Rl. . . RN耦合到多个电压转换器电路106a_l. . . 106a_N 中的多个开关Q2..QN中的每个开关的源极。利用这种配置,多个电压转换器电路106a-l. . . 106a-N,特别是多个开关Ql. . . QN通过保护开关112a和电流检测电路116a耦合到前端电路102的输出DCieg的低侧。因此,当保护开关112a处于导通或“闭合”(S卩“开”)状态时,前端电路102的输出DCreg的低侧被耦合到多个电压转换器电路106a-l. . . 106a_N,但是当保护开关112a处于非导通或“断开”(即“关”)状态时,前端电路102的输出DCieg的低侧与多个电压转换器电路106a-l. . . 106a-N脱离耦合,由此使得对电源电路IOOa的输出/通道的功率供应无效。MOSFET Ql的栅极耦合到控制器电路114a,并且提供跨电阻器Rsense的电压Vsense作为对控制器电路114a的输入。当通过电阻器Rsense的电流超过预定水平并且因此作为对控制器电路114a的输入提供的电压Vsmse超过预定水平时,多个电压转换器电路106a-l. . . 106a-N中的ー个或多个中可能出现短路或故障。例如,可能存在跨开关Q2或开关QN的短路,这导致了在电源电路IOOa的相关联输出/通道处输送过高功率的可能。因此,响应于电压Vsense超过预定水平,控制器电路114a被配置为向MOSFET Ql的栅极提供输出以将MOSFET Ql置于非导通或“断开”状态,由此使得来自前端电路102的输出DCreg与多个电压转换器电路106a-l. . . 106a-N脱离耦合,并且使得对电源电路IOOa的所有输出/通道的功率供应无效。在图2中,控制器电路114a被配置为向多个电压转换器电路106a_l. . . 106a_N中的每个开关控制器204-1. . . 204-N提供输出以启用和无效开关控制器204-1. . . 204-N向多个开关Q2. . . QN的PWM栅极驱动输出。当开关控制器204-1. . . 204-N通过控制器电路114a的输出启用吋,开关控制器204-1. . . 204-N的PWM栅极驱动信号对多个开关Q2. . . QN的栅极进行驱动以交替地将多个开关Q2... QN置于导通(“闭合”)和非导通(“断开”)状态,以便向与之耦合的相关联的光源108a-l. . . 108a-N输送功率。当开关控制器204-1. . . 204-N通过控制器电路114a的输出无效时,开关控制器204-1. . . 204-N将多个开关Q2. . . QN置于非导通(“断开”)状态,由此在开关正常工作时使得对相关联的光源108a-l. . . 108a-N的功率输送无效。
通过从控制器电路114a向开关控制器204_1. . . 204-N提供输出以将多个开关Q2. . . QN置于非导通(“断开”)状态并且使得对光源的功率输送无效,可以检测到多个电压转换器电路106a-l. . . 106a-N中将可能导致对电源电路IOOa的输出/通道进行过高功率输送的故障或短路。当多个开关Q2. . . QN被置于非导通状态,并且Ql处于导通(“闭合”)状态时,如果在多个开关Q2. . . QN中没有故障则应当只有非常小的电流通过电阻器Rsense。在这样的情况下,电压Vsmse将不会超过控制器电路114a中所设置的预定数值,并且控制器电路114a将继续向MOSFET Ql的栅极提供输出以保持MOSFET Ql处于导通(“闭合”)状态,以将前端电路102的输出DCreg-合到多个电压转换器电路106a-l. . . 106a_N。控制器电路114a可以接着向开关控制器204-1. . . 204-N提供输出以使得针对多个开关Q2. . . QN的栅极驱动输出能够继续正常操作以及继续对相关联光源108a-l. . . 108a-N的功率输送。然而,在多个电压转换器电路106a_l. . . 106a_N中的一个或多个出现故障的情况下,诸如跨多个开关Q2... QN中的一个或多个开关的短路,当多个开关Q2... QN被置于非导通(“断开”)状态时,电流可以通过该短路、通过MOSFET Ql并且通过电阻器Rsense。这可能导致电压Vsense超过控制器电路114a中所设置的预定数值。作为响应,控制器电路114a 可以向MOSFET Ql的栅极提供输出以将MOSFET Ql置于非导通状态,从而将前端电路102的输出DCreg与多个电压转换器电路106a-l. . . 106a-N脱离耦合,由此停止对输出通道的功率输送。图3中图示了电源电路IOOb的另ー种配置。电源电路IOOb包括前端电路102、保护电路IlOb和输出级,所述输出级包括多个电压转换器电路106a-l. . . 106a-N,其中每ー个被配置为提供相关联的输出/通道以便驱动相关联的光源108a-l. . . 108a-N。图3所示的前端电路102、多个电压转换器电路106a-l. . . 106a_N以及相关联的光源108a_l. . . 108a_N与结合图2所示的电源电路IOOa所示出和描述的那些相同。为了简明,将不再结合图3的电源电路IOOb对前端电路102、多个电压转换器电路106a-l. . . 106a_N以及相关联的光源108a-l. . . 108a-N的描述进行重复。图3的保护电路I IOb包括保护开关112b、电流检测电路116b和控制器电路114b。电流检测电路116b被配置为电阻器Rsense,前端电路102的输出DC,eg的低侧通过该电阻器与地相耦合。多个开关Q2... QN的源极分别通过电阻器Rl... RN耦合到地。保护开关112b被配置为MOSFET Ql,并且MOSFET Ql的漏极通过电阻器Ra耦合到前端电路102的输出DCreg的高侧。MOSFET Ql的源极分别通过相关联的光源108a-l. . . 108a-N和电感器LI. .. LN并且还通过反向偏置的ニ极管Dl. . .DN而耦合到多个电压转换器电路106a-l... 106a-N中的多个开关Q2. . . QN中的每个开关的漏极。利用这种配置,多个电压转换器电路106a-l. . . 106a-N,特别是多个开关Q2. . . QN通过保护开关112b和电阻器Ra耦合到前端电路102的输出DCieg的高侧。因此,当保护开关112b处于导通或“闭合”状态时,前端电路102的输出DCms的高侧耦合到多个电压转换器电路106a-l. . . 106a-N,但是当保护开关112b处于非导通或“断开”状态时,前端电路102的输出DCreg的高侧与多个电压转换器电路106a-l. . . 106a-N脱离耦合,由此使得对电源电路IOOb的输出/通道的功率供应无效。MOSFET Ql的栅极通过电阻器Rb耦合到双极结晶体管(BJT) 302的集电极并且还耦合到MOSFET Ql的漏极。BJT 302的发射极耦合到地。BJT 302的基极通过电阻器Re和Rd耦合到控制器电路114b的输出,并且电阻器Re和Rd之间的结合部通过滤波电容器Cl耦合到地。当通过电阻器Rsense (即,电流检测电路116b)的电流超过预定水平,并且因此提供给控制器电路114b的输入的电压Vsmse超过预定水平时,多个电压转换器电路106a-l. . . 106a-N中的ー个或多个中可能出现短路或故障。因此,响应于电压Vsense超过预定水平,控制器电路114b被配置为通过电阻器Re和Rd向BJT 302的栅极提供输出以将BJT 302置于导通状态。当BJT 302处于导通状态时,MOSFET Ql被置于非导通或“断开”状态,由此使得来自前端电路102的输出DC,eg与多个电压转换器电路106a-l. . . 106a_N脱离耦合,并且使得对电源电路IOOb的所有输出/通道的功率供应无效。控制器114b被配置为向开关控制器204-1···204_Ν中的每ー个提供输出以启用和无效开关控制器204-1··· 204-Ν对多个开关Q2. . . QN的PWM栅极驱动输出。当开关控制器204-1...204-Ν通过控制器电路114b的输出启用时,开关控制器204-1...204-N的PWM栅极驱动信号对多个开关Q2... QN的栅极进行驱动以交替地将多个开关Q2... QN置于导通(“闭合”)和非导通(“断开”)状态,以便向与之耦合的相关联的光源108a-l. . . IOSa-N输送功率。当开关控制器204-1...204-N通过控制器电路114b的输出无效时,开关控制器204-1...204-N将多个开关Q2. . . QN置于非导通(“断开”)状态,由此在开关正常工作时使得对相关 联的光源108a-l. . . 108a-N的功率输送无效。通过从控制器电路114b向开关控制器204-1. . . 204-N提供输出以将多个开关Q2. . . QN置于非导通(“断开”)状态并且使得对相关联光源108a-l. . . IOSa-N的功率输送无效,可以检测到多个电压转换器电路106a-l. . . 106a-N中可能导致对电源电路IOOb的输出/通道进行过高功率输送的故障或短路。当多个开关Q2. . . QN被置于非导通状态,并且MOSFET Ql处于导通(“闭合”)状态时,通过电阻器Rsense的电流应当相对低。在这样的情况下,电压Vs■将不会超过控制器电路114b中所设置的预定数值,并且控制器电路114b将继续向BJT 302提供输出以保持MOSFET Ql处于导通状态,以将前端电路102的输出DCreg耦合到多个电压转换器电路106a-l. . . 106a-N。控制器电路114b可以接着向开关控制器204-1. . . 204-N提供输出以使得针对多个开关Q2. . . QN的栅极驱动输出能够继续正常操作以及继续对相关联光源108a-l. . . 108a-N的功率输送。然而,在多个电压转换器电路106a_l. . . 106a_N中的一个或多个出现故障的情况下,当多个开关Q2. . . QN被置于非导通状态时,通过电阻器Rsense的电流相比不存在故障时可能有所増加。这可能导致电压Vs■超过控制器电路114b中所设置的预定数值。作为响应,控制器电路114b可以向BJT 302提供输出以将MOSFET Ql置于非导通状态以将前端电路102的输出DCreg与多个电压转换器电路106a-l. . . 106a_N脱离耦合,以由此停止对输出通道的功率输送。图4是根据这里所描述实施例的针对在诸如图I、2和3所示的电源电路100、100a和IOOb的多输出通道电源的一个或多个输出通道处提供过高功率进行保护的方法400和600的流程框图。所图示的流程框图可以被示出和描述为包括特定的步骤序列。然而所要理解的是,所述步骤序列仅提供了如何能够实现这里所描述的一般功能的示例。除非另外指出,这些步骤不必以所给出的次序来执行。在方法400中,多个电压转换器电路中的每个电压转换器电路被无效,步骤401,以使得多个电压转换器电路不用来向连接到电源的一个或多个输出通道的ー个或多个光源提供功率。检测通过无效之后的多个电压转换器电路的电流以建立电流检测输出,步骤402。确定所述电流检测输出是否超过了预定水平,步骤403,并且如果是,则作为响应,使得前端电路与多个电压转换器电路脱离耦合,步骤404。在一些实施例中,无效包括将多个电压转换器电路中的每个电压转换器电路的开关部分处于非导通状态,步骤405。在ー些实施例中,脱离耦合包括改变耦合在前端电路和多个电压转换器电路之间的保护开关的状态,步骤406。再次參考图1,在其中电流检测电路116包括一个或多个电阻器(例如图2和3中的Rsense)的实施例中,电流检测电路116在电源电路100的操作期间具有相关联的阻抗损失。与所述阻抗损失相关联的效率低下在一些实施例和/或应用中可能是无法接受的。为了減少或避免这样的效率低下,电流检测电路116可以被提供以旁路开关,该旁路开关在向光源108a-l. . . 108a-N进行功率输送期间有效地建立通过电流检测电路116的短路。例如,图5图示了包括旁路开关502和电流传感器504的电流检测电路116c的一个实施例。电流传感器504可以被配置为ー个或多个电阻器(例如,图2、3和6所不的Rsense),它们例如如图3所示直接或者如图2所示通过保护开关112af禹合在前端电路102 的低侧输出和多个电压转换器电路106a-l,106-2,. . . 106a_N之间。如以上所描述的,跨电流传感器504的电压Vs■可以作为输入提供至控制器电路114。当电压Vs■超过预定水平时,多个电压转换器电路106a-l. . . 106a-N中的ー个或多个中可能出现短路或故障。响应于电HVsmse超过预定水平,控制器电路114被配置为提供输出,所述输出将保护开关112置于将前端电路102的输出DC,eg与多个电压转换器电路106a-l. . . 106a_N脱离耦合的状态,由此使得对电源电路100的所有输出/通道的功率输送无效。旁路开关502与电流传感器504并联耦合并且被配置为从控制器电路114接收旁路控制信号。旁路开关502可以是被来自控制器电路114的旁路控制信号所控制的具有导通或“闭合”状态以及非导通或“断开”状态的任意组件或组件群组。例如,在一些实施例中,旁路开关502可以包括晶体管。当旁路开关502处于非导通或“断开”状态时,旁路开关502表现出非常高的阻抗(例如,开路),由此电流Isense通过电流传感器504但是不通过旁路开关502。然而,当旁路开关502处于导通或“闭合”状态时,旁路开关502表现出非常低的阻抗(例如,短路),由此电流Ismse在电流传感器504周围得以被分流并且通过旁路开关 502。连同图5 —起再次參考图I,通常,当包括如图5所示的电流检测电路116c的电源电路100加电时(或者在该电源电路操作期间的ー个或多个时刻),控制器电路114可以向电压转换器电路106a-l. . . 106a-N的开关控制器提供输出以使得对光源108a_l. . . 108a_N的功率输送无效,并且可以向旁路开关502提供旁路控制信号以将旁路开关置于非导通(或“断开”)状态。随着功率传输被无效以及旁路开关502处于断开状态,电流Ismse通过电流传感器504流动并且控制器电路114可以检测跨电流传感器504的电压Vsense来确定
是否超过预定阈值。如果电压Vs·超过了预定阈值,则控制器电路114可以继续使得对光源108a-l. . . 108a-N的功率输送无效并且还可以向保护开关112提供输出以将前端电路102的输出DCreg与多个电压转换器电路106a-l. . . 106a_N脱离耦合,由此使得对电源电路100的所有输出/通道的功率输送无效。然而,如果电压Vs·没有超过预定阈值,则控制电路114可以向电压转换器电路106a-l. . . 106a-N的开关控制器提供输出以启用对光源108a_l. . . 108a_N的功率输送,并且还可以向旁路开关502提供旁路控制信号以将旁路开关502置于导通(或“闭合”)状态。在这种配置中,通过旁路开关502在电流传感器504周围对电流Isense进行分流。与电流检测电路116c相关联的任意阻抗损失因此被減少或消除,使得效率与不包括旁路开关502的配置相比有所提高。再一次,包括旁路电路502的电流检测电路116c可以在与本公开相符的任意实施例中提供。仅通过举例,图6图示了包括保护电路IlOc的电源电路IOOc的一个实施例。保护电路IlOc包括电流检测电路116c、控制器电路114a和保护开关112a。电流检测电路116c包括电流传感器504a和旁路开关502a。电流传感器504a被配置为电阻器Rsense,并且旁路开关502a被配置为与Rsense并联稱合的MOSFET Qb,即Rsense稱合在Qb的源极和漏极之间。Qb的栅极耦合到控制器电路114a。控制器电路114a被配置为向Qb的栅极提供旁路控制信号以便改变Qb的传导状态。电源电路IOOc进ー步包括前端电路102和输出级,所述输出级包括多个电压转换器电路106a-l. . . 106a-N,其中每ー个被配置为提供相关联的输出/通道以便驱动相关 联的光源108a-l. . . 108a-N。通常,除了电流检测电路116c中的旁路开关Qb在向光源108a_l. . . 108a_N进行功率输送期间对电流传感器Rsense周围的电流Isense-行分流之外,前端电路102、保护开关电路110c、多个电压转换器电路106a-l. . . 106a_N以及相关联的光源108a-l. . . IOSa-N以与以上结合图2所描述的相同方式进行工作。特别地,在图6所示的实施例中,可以通过从控制器电路114a向开关控制器204-1-204-N提供输出以将多个开关Q2…QN置于非导通(“断开”)状态并且使得对光源108a-l. . . 108a-N的功率输送无效来检测多个电压转换器电路106a_l. . . 106a_N中可能导致向电源电路IOOc的输出/通道进行过高功率输送的故障或短路。控制器电路114a还向旁路开关Qb提供旁路控制信号以将所述旁路开关置于非导通(或“断开”)状态。控制器电路114a的这些输出可以仅在电路IOOc加电时提供,例如在紧随向前端电路102施加Vill的时间段内,或者在电源电路IOOc的操作期间的ー个或多个时刻,例如以周期性间隔来提供。当旁路开关Qb和多个开关Q2…QN被置于非导通状态,并且Ql处于导通(“闭合”)状态时,如果在多个开关Q2…QN中没有故障,则应当只有非常小的电流通过电阻器Rsense。在这种情况下,电压Vsense将不会超过在控制器电路114a中设置的预定数值,并且控制器电路114a将继续向MOSFET Ql的栅极提供输出以将MOSFET Ql保持在导通(“闭合”)状态以便将前端电路102的输出DCreg-合到多个电压转换器电路106a-l. . . 106a_N。控制器电路114a还将向开关控制器204-1··· 204-N提供输出以启用对多个开关Q2…QN的栅极驱动输出,以允许正常操作以及对相关联的光源108a-l. . . 108a-N的功率输送。此外,控制器电路114a将向Qb的栅极提供旁路控制信号以将Qb置于导通状态,由此通过Qb对电阻器Rsense周围的电流Ismse进行分流以减少或避免与Rsense相关联的阻抗损失所导致的效率低下。然而,在多个电压转换器电路106a_l. . . 106a_N中的ー个或多个中出现故障的情况下,诸如跨多个开关Q2…QN中的一个或多个开关的短路,当多个开关Q2…QN被置于非导通(“断开”)状态时,利用由来自控制器电路114a的旁路控制信号将Qb保持在断开状态,电流Ismse可以通过该短路、通过MOSFET Ql并且通过电阻器Rsense。这会导致电压Vsmse超过控制器电路114a中所设置的预定数值。作为响应,控制电路114a可以向MOSFET Ql的栅极提供输出以将MOSFET Ql置于非导通状态以将前端电路102的输出DC,eg与多个电压转换器电路106a-l. . . 106a-N脱离耦合,以由此停止向输出通道的功率输送。图7是根据这里所描述实施例的针对在诸如图1、2、3和6所示的电源电路100、IOOaUOOb和IOOc的多输出通道电源的一个或多个输出通道处提供过高功率而进行保护的方法700的流程框图。所图示的流程框图可以被示出和描述为包括特定的步骤序列。然而所要理解的是,所述步骤序列仅提供了如何能够实现这里所描述的一般功能的示例。除非另外指出,这些步骤不必以所给出的次序来执行。在方法700中,旁路开关被置于非导通状态,步骤701,该旁路开关与电流传感器并联耦合。多个电压转换器电路中的每个电压转换器电路被无效,步骤702,以使得所述多个电压转换器电路不用来向连接到所述ー个或多个输出通道的ー个或多个光源提供功率。在一些实施例中,为了对每个电压转换器电路进行无效,多个电压转换器电路中的每个电压转换器电路的开关部分被置于非导通状态,步骤707。检测通过电流传感器的电流,步骤703,以建立表示通过无效之后的多个电压转换器电路的电流的电流检测输出。确定所述电 流检测输出是否超过了预定水平,步骤704。在电流检测输出超过预定水平时,使得前端电路与多个电压转换器电路脱离耦合,步骤705。在一些实施例中,为了将前端电路脱离耦合,改变耦合在前端电路和多个电压转换器电路之间的保护开关的状态,步骤708。在电流检测输出没有超过预定水平时,旁路开关被置于导通状态以对电流传感器周围的电流进行分流,并且多个电压转换器电路中的每个电压转换器电路被启用,以使得多个电压转换器电路用来向连接到一个或多个输出通道的ー个或多个光源提供功率,步骤706。在此描述的方法和系统不限于特定的硬件或软件配置,并且可以在很多计算或处理环境中找到可应用性。这些方法和系统可以用硬件或软件或硬件和软件的组合来实现。这些方法和系统可以用一个或多个计算机程序来实现,其中计算机程序可以被理解为包括一个或多个处理器可执行指令。(ー个或多个)计算机程序可以在ー个或多个可编程处理器上执行,并且可以存储在可由处理器(包括易失和非易失存储器和/或存储元件)、一个或多个输入设备和/或一个或多个输出设备读取的ー个或多个存储介质上。处理器因此可以存取一个或多个输入设备以获得输入数据,并且可以存取一个或多个输出设备以传送输出数据。输入和/或输出设备可以包括以下的ー个或多个随机存取存储器(RAM),独立盘的冗余阵列(RAID),软盘,⑶,DVD,磁盘,内部硬盘驱动器,外部硬盘驱动器,存储棒,或其它能够被这里提供的处理器存取的存储设备,其中前面提到的这样的示例不是详尽的,而是为了图示而并非限制。(ー个或多个)计算机程序可以使用一种或多种高级程序的或面向对象的编程语言来实现以便与计算机系统通信;然而如果需要,(ー个或多个)程序可以用汇编或机器语言来实现。这种语言可以被编译或解释。因此如这里所提供的,(ー个或多个)处理器可以嵌入在可以单独或一起在联网环境中运行的一个或多个设备中,其中该网络可以例如包括局域网(LAN)、广域网(WAN)和/或可以包括内部网和/或互联网和/或另ー网络。(ー个或多个)网络可以是有线的或无线的或它们的组合,并且可以使用ー个或多个通信协议来促进不同处理器之间的通信。处理器可以被配置为用于分布式处理,并且在一些实施例中可以按照需要使用客户机-服务器模型。因此,所述方法和系统可以使用多个处理器和/或处理器设备,并且处理器指令可以在这样的单个或多个处理器/设备之间划分。与(ー个或多个)处理器集成的(ー个或多个)设备或计算机系统可以例如包括(一个或多个)个人计算机、(ー个或多个)工作站(例如Sun,HP)、(ー个或多个)个人数字助理(PDA)、诸如(ー个或多个)蜂窝电话或(ー个或多个)智能电话的(ー个或多个)手持设备、(ー个或多个)膝上型电脑、(ー个或多个)手持计算机或能够与可以如在此所提供的那样运行的(ー个或多个)处理器集成的其它(ー个或多个)设备。因此,在此提供的设备不是详尽的,而是提供用于图解说明而不是限制。对“微处理器”和“处理器”和“控制器”或“所述微处理器”、“所述处理器”和“所述控制器”的引用可以被理解为包括可以在(ー个或多个)独立式和/或分布式环境中通信的ー个或多个微处理器,并且因此可以被配置为经由有线或无线的通信与其它处理器通信,其中这样的一个或多个处理器可以被配置为运行在一个或多个处理器控制的设备上,这些设备可以是相似或不同的设备。使用这样的“微处理器”或“处理器”或“控制器”术语因此也可以被理解为包括中央处理单元、算木逻辑单元、专用集成电路(IC)和/或任务引擎,其 中这样的示例提供用于图解说明而不是限制。此外,对存储器和/或存储介质的引用,除非另外指定,可以包括一个或多个处理器可读取和可存取的存储器元件和/或部件,这些存储器元件和/或部件可以在处理器控制的设备内,在处理器控制的设备外,和/或可以使用各种通信协议经由有线或无线网络被存取,并且除非另外指定,可以被布置为包括外部和内部存储器设备的组合,其中这样的存储器可以基于应用而相连和/或分隔。因此,对数据库的引用可以被理解为包括一个或多个存储器关联,其中这样的引用可以包括市场上可获得的数据库产品(例如SQL,Informix, Oracle)以及还可以包括专用数据库,并且还可以包括用于将诸如链路、队列、图表、树的存储器与这样的被提供用于图解说明而并非限制的结构关联的其它结构。对网络的引用,除非另外提供,可以包括ー个或多个内部网和/或互联网。在此对根据上述的微处理器指令或微处理器可执行指令的引用可以被理解为包括可编程硬件。除非另有说明,单词“基本上”的使用可以被解释为包括精确的关系、条件、布置、取向和/或其它特性、以及本领域技术人员所理解的它们的差异,达到这样的差异不会实质上影响所公开的方法和系统的程度。贯穿本公开的全部内容,用于修饰名词的冠词“a (—个)”和/或“an (—)”和/或“所述”的使用可以被理解成为方便使用并且包括所修饰的名词的ー个或多于ー个,除非另外具体说明。术语“包括”、“包含”和“具有”意欲是总括性的,并且意味着可能存在除了所列出的元件的附加元件。通过附图描述和/或以其它方式描绘的、用干与其它东西通信、关联和/或基于该其它东西的元件、部件、模块和/或其部分可以被理解为以直接和/或间接方式如此通信、关联和/或基干,除非在此另外規定。尽管与方法和系统的具体实施例相关地描述了这些方法和系统,但是它们不限于此。显然很多修改和变化可以根据上述教导而变得明显。在此描述和图解说明的细节上的、材料上的以及部件布置上的很多附加改变可以由本领域技术人员进行。
权利要求
1.一种具有多个输出通道的光源电源电路,包括 前端电路,其被配置为接收输入电压并且提供经调整的前端直流(DC)电压; 多个电压转换器电路,所述多个电压转换器电路中的每个电压转换器电路被配置为接收经调整的前端DC电压并且为所述多个输出通道中相关联的一个提供单独的相关联的DC输出; 耦合在所述多个电压转换器电路和前端电路之间的保护开关,所述保护开关具有将前端DC电压耦合到所述多个电压转换器电路的导通状态以及将所述前端DC电压与所述多个电压转换器电路脱离耦合的非导通状态; 耦合到所述多个电压转换器电路的电流检测电路,所述电流检测电路包括电流传感器以及与所述电流传感器并联耦合的旁路开关,所述旁路开关具有对所述电流传感器周围的电流进行分流的导通状态以及允许电流流过所述电流传感器的非导通状态,由此在所述旁路开关处于非导通状态时,跨电流传感器的电压建立表示通过所述多个电压转换器电路中的至少一个电压转换器电路的电流的电流检测输出;和 控制器电路,其被配置为响应于所述电流检测输出将所述保护开关置于非导通状态。
2.如权利要求I所述的光源电源电路,其中所述多个电压转换器电路包括多个开关,并且其中所述控制器电路被配置为提供输出以将所述多个开关中的开关置于非导通状态,以使得功率不被所述多个开关中的所述开关输送到连接到光源电源电路的与该开关相关联的输出通道的光源。
3.如权利要求I所述的光源电源电路,其中所述保护开关耦合在所述前端电路的低侧输出和所述多个电压转换器电路之间。
4.如权利要求3所述的光源电源电路,其中所述多个电压转换器电路是多个开关转换器电路,并且其中所述电流传感器包括至少一个电阻器,所述至少一个电阻器耦合到所述多个开关转换器电路中的每个开关转换器电路以检测通过所述多个开关转换器电路的电流。
5.如权利要求4所述的光源电源电路,其中所述保护开关包括晶体管,所述晶体管具有耦合到所述控制器的栅极、耦合到所述至少一个电阻器的源极,以及耦合到所述多个开关转换器电路中的每个开关转换器电路的漏极。
6.如权利要求5所述的光源电源电路,其中所述漏极通过电阻器耦合到所述多个开关转换器电路中的每个开关转换器电路的开关部分。
7.如权利要求I所述的光源电源电路,其中所述保护开关耦合在所述前端电路的高侧输出和所述多个电压转换器电路之间。
8.如权利要求7所述的光源电源电路,其中所述电流传感器包括耦合在所述前端电路的低侧输出和地之间的至少一个电阻器。
9.如权利要求I所述的光源电源电路,其中所述旁路开关包括晶体管。
10.一种多输出通道光源电源电路,包括 前端电路,其被配置为接收输入电压并且提供经调整的前端直流(DC)电压; 多个电压转换器电路,每个电压转换器电路被配置为降压转换器并且被配置为接收经调整的前端DC电压并且为多个输出通道中相关联的一个提供单独的相关联的DC输出; 耦合在所述多个电压转换器电路和前端电路的低侧输出之间的保护开关,所述保护开关具有用来将所述前端DC电压耦合到多个电压转换器电路的导通状态以及用来将所述前端DC电压与多个电压转换器电路脱离耦合的非导通状态; 耦合到所述多个电压转换器电路的电流检测电路,所述电流检测电路包括电流传感器以及与所述电流传感器并联耦合的旁路开关,所述旁路开关具有对所述电流传感器周围的电流进行分流的导通状态以及允许电流流过所述电流传感器的非导通状态,由此在所述旁路开关处于非导通状态时,跨电流传感器的电压建立表示通过至少一个电压转换器电路的电流的电流检测输出;和 控制器电路,其被配置为提供输出以将所述保护开关置于非导通状态以使得功率不被输送到连接到所述多个输出通道的光源,其中所述控制器电路响应于所述电流检测输出提供所述输出。
11.如权利要求10所述的多输出通道光源电源电路,其中所述多个电压转换器电路是多个开关转换器电路,并且所述电流传感器包括耦合到所述多个开关转换器电路中的每个开关转换器电路的至少一个电阻器。
12.如权利要求11所述的多输出通道光源电源电路,其中所述旁路开关包括晶体管。
13.—种针对在多输出通道电源的一个或多个输出通道处提供过高功率而进行保护的方法,包括 将旁路开关置于非导通状态,所述旁路开关与电流传感器并联耦合; 使得多个电压转换器电路中的每个电压转换器电路无效,以使得所述多个电压转换器电路不用来向连接到一个或多个输出通道的一个或多个光源提供功率; 检测通过所述电流传感器的电流以建立表示通过无效之后的多个电压转换器电路的电流的电流检测输出; 确定所述电流检测输出是否超过预定水平; 在所述电流检测输出超过了预定水平时,将前端电路与所述多个电压转换器电路脱离奉禹合;并且 在所述电流检测输出没有超过预定水平时,将所述旁路开关置于导通状态以对电流传感器周围的电流进行分流,并且启用所述多个电压转换器电路中的每个电压转换器电路,以使得所述多个电压转换器电路用来向连接到一个或多个输出通道的一个或多个光源提供功率。
14.如权利要求13所述的方法,其中所述无效包括 将所述多个电压转换器电路中的每个电压转换器电路的开关部分置于非导通状态。
15.如权利要求13所述的方法,其中所述脱离耦合包括 改变耦合在所述前端电路和多个电压转换器电路之间的保护开关的状态。
全文摘要
提供了多输出通道光源电源电路以及用于保护的方法。前端电路接收输入电压并且提供经调整的前端DC电压(FEDC)。电压转换器电路(VCC)接收FEDC并且对每个相关联的输出通道提供单独的相关联的DC输出。保护开关耦合于其间。在其导通状态,FEDC被耦合到VCC。在其非导通状态,FEDC被脱离耦合。与旁路开关并联的电流传感器的电流检测电路被耦合到VCC以提供表示通过至少一个VCC的电流的电流检测输出。控制器电路响应于所述电流检测输出将保护开关置于非导通状态。所述旁路开关可以被置于导通状态以在正常操作期间对电流传感器周围的电流进行分流以减少或消除效率低下。
文档编号H05B35/00GK102821503SQ20121018792
公开日2012年12月12日 申请日期2012年6月8日 优先权日2011年6月9日
发明者K.陈, C.布罗伊尔, P.肖 申请人:奥斯兰姆施尔凡尼亚公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1