收纳库和使用该收纳库的冷藏库的制作方法

文档序号:440136阅读:428来源:国知局
专利名称:收纳库和使用该收纳库的冷藏库的制作方法
技术领域
本发明涉及具有喷雾装置的收纳库和使用该收纳库的冷藏库,其中,该喷雾装置用于利用雾使蔬菜或水果等农作物上附着的农药等的有害物质浮起,从而将其容易地除去。
背景技术
近年来,消费者非常担心食品的安全性。根据某调查结果,该结果显示约九成的消费者对食品的残留农药尤其感到担心。与此相呼应,为了确保农药残留的安全性,针对农户的农药使用的法律法规、和从人的健康方面考虑而针对食品的农药残留量的法律法规正在完善中。尽管如此,有时还会出现残留农药超过规定量的检查结果。这样,检测出超标的农作物。超标率高的残留农药主要是来自海外的、在收获后使用的农药,其中,有很多在日本国内已禁止使用的农药。
在这样的残留农药的实际情况中,为了使消费者安心地享受饮食生活,除去残留农药的装置的必要性很高。例如,特开平9-75050号公报公开了一种食物清洗装置。该食物清洗装置具有除去蔬菜或水果等上附着的农药等有害物质的功能。图48表示这样的现有的食物清洗装置。
清洗液2通常使用自来水。供给清洗液2的供给管12与清洗槽1的侧壁连接,排出清洗液的排出管13与清洗槽1的底部连接。另外,在供给管12和排出管13中设置有电磁阀14、15。
在清洗液2中产生微细气泡的气泡发生部3包括喷射器(ejector)6、流体泵4和分支部9。在喷射器6上设置有用于吸引成为微细气泡的气体的吸引管7。流体泵4输送清洗液2,并向清洗液2加压以使气体溶解。分支部9使清洗槽1内的清洗液2再次回到喷射器6。该清洗液2含有已溶解的气体减压而析出的微细气泡。输送清洗液2的输送管5连接清洗槽1与喷射器6、以及喷射器6与流体泵4。喷出管8经由液体改性部16连接流体泵4和分支部9。回流管11连接分支部9和喷射器6。
液体改性部16使食物上附着的污染物质溶出。液体改性部16被设置在流体泵4和分支部9之间。在液体改性部16中,通过清洗液2与环硅酸盐化合物接触,使污染物质溶出,从而将其改性。
污染分解部17包括臭氧发生装置18、气体泵19和电磁阀20。臭氧发生装置18利用高压放电产生臭氧。气体泵19将在臭氧发生装置18中产生的臭氧供给清洗槽1。电磁阀20防止臭氧的供给和清洗液2的流入。
以下,对构成为以上那样的食物清洗装置的动作进行说明。从控制部(未图示)发出清洗开始的信号时,电磁阀14开启,从供给管12向清洗槽1供给清洗液2。清洗槽1内的清洗液2达到规定的量时,电磁阀14关闭,停止供给。
接着,流体泵4运转,将清洗液2通过输送管5输送至喷射器6。清洗液2卷入由设置在喷射器6上的吸引管7吸引的空气。被卷入清洗液2中的空气被流体泵4加压,溶解在清洗液2中。
此后,清洗液2通过喷出管8,由液体改性部16活化。然后,在减压喷嘴10中,清洗液2在由于加压溶解的空气的析出而产生微细气泡的状态下,向清洗槽1内喷出。在减压喷嘴10中,为了使被加压的清洗液2减压,提高了压降,减少了喷出流量。因此,将过剩的清洗液2导向回流管11,使其在气泡发生部3内循环。
另一方面,在流体泵4运转的同时,污染分解部17运转,向清洗槽1内的清洗液2供给臭氧。利用清洗液2清洗放入清洗槽1内的蔬菜或水果等农作物。
在上述现有的结构中,将农作物浸渍在清洗液中,利用含有臭氧气体的微细气泡的物理作用、化学作用,除去农药等有害物质。这样的专用设备需要清洗槽1和排水管,成为结构复杂、规模大的装置。另外,在上述现有的结构中,由于将农作物浸渍在清洗液2中,所以需要大量的水。

发明内容
本发明的收纳库包括箱体和喷雾装置。箱体在内部具有农作物用的储藏室。喷雾装置向储藏室内喷射液体以产生雾。喷雾装置利用雾使储藏室中收纳的农作物的表面附着的有害物质浮起,或者使雾附着在储藏室中收纳的农作物的表面所附着的有害物质上。这样,即使不使用专用的清洗设备,也能够在蔬菜的收纳室内、通过少量的水利用雾容易地除去有害物质,因此,使用者能够容易地除去有害物质。另外,本发明的冷藏库通过在上述收纳库内添加冷却装置、并使用绝热箱体作为箱体而构成。


图1是本发明的实施方式1的收纳库的侧截面图。
图2是图1所示的收纳库的补充部的侧截面图。
图3是图1所示的收纳库的补充部的平面截面图。
图4是本发明的实施方式2的收纳库的侧截面图。
图5是本发明的实施方式3的冷藏库的侧截面图。
图6是图5所示的冷藏库的喷雾装置的侧截面图。
图7是图6所示的喷雾装置的A-A线截面图。
图8是表示图6所示的喷雾装置的农药除去性能的图。
图9是表示图6所示的喷雾装置的农药除去性能相对于雾的粒径的特性的图。
图10是表示图6所示的喷雾装置的农药除去性能相对于喷雾量的特性的图。
图11是本发明的实施方式4的冷藏库的侧截面图。
图12是图11所示的冷藏库的喷雾装置的纵截面图。
图13是图12所示的喷雾装置附近的正面图。
图14是图12所示的喷雾装置的主要部分的纵截面图。
图15是图12所示的喷雾装置的功能框图。
图16是图12所示的喷雾装置的控制流程图。
图17是本发明的实施方式4的另一个喷雾装置的纵截面图。
图18是表示图12所示的喷雾装置的农药除去性能相对于雾的粒径的特性的图。
图19是表示图12所示的喷雾装置的农药除去性能相对于喷雾量的特性的图。
图20是本发明的实施方式5中的雾的粒径、喷雾量与农药除去效果的相互关系图。
图21A是表示本发明的实施方式5中的农药除去性能相对于雾粒径的特性的图。
图21B是表示本发明的实施方式5中的农药除去性能相对于喷雾量的特性的图。
图22是本发明的实施方式6的冷藏库的侧截面图。
图23是图22所示的冷藏库的喷雾部附近的纵截面图。
图24是本发明的实施方式6的另一个喷雾装置的纵截面图。
图25是本发明的实施方式7的冷藏库的蔬菜室附近的正面图。
图26是图25所示的冷藏库的蔬菜室附近的A-A线上的纵截面图。
图27A是本发明的实施方式8的冷藏库的侧截面图。
图27B是表示图27A所示的冷藏库的概要的部分正面图。
图28是本发明的实施方式9的冷藏库的蔬菜室附近的侧面截面图。
图29是图28所示的冷藏库的蔬菜室附近的正面截面图。
图30是表示图29的A-A截面的主要部分截面图。
图31是表示图29的B-B截面的主要部分截面图。
图32是表示在本发明的实施方式9中喷射的雾的粒径分布比例的图。
图33是本发明的实施方式10的冷藏库的侧截面图。
图34是图33所示的冷藏库的蔬菜室的侧截面图。
图35是图33所示的冷藏库的喷雾装置的主要部分放大图。
图36是表示图33所示的冷藏库的臭氧水喷雾的农药除去性能的图。
图37是本发明的实施方式10的冷藏库的另一个喷雾装置的主要部分放大图。
图38是本发明的实施方式10的冷藏库的又一个喷雾装置的主要部分放大图。
图39是本发明的实施方式11的冷藏库的侧截面图。
图40是图39所示的冷藏库的控制系统的框图。
图41是表示图39所示的冷藏库的喷雾装置与分解部的农药除去性能的图。
图42是表示利用图39所示的冷藏库的喷雾装置与分解部处理后的清洗水中残留的农药的比例的图。
图43是本发明的实施方式11的另一个冷藏库的侧截面图。
图44是图43所示的冷藏库的控制系统的框图。
图45是表示由图43所示的冷藏库的分解部的照射时间产生的分解性能的图。
图46是本发明的实施方式11的又一个冷藏库的侧截面图。
图47是图46所示的冷藏库的控制系统的框图。
图48是现有的食物清洗装置的概略结构图。
符号说明1清洗槽2清洗液3气泡发生部4流体泵5输送管6喷射器7吸引管8喷出管9分支部10 减压喷嘴11 回流管12 供给管13 排出管14、15、20 电磁阀16 液体改性部17 污染分解部
18 臭氧发生装置19 气体泵21 喷雾装置22 蓄水槽23 喷雾喷嘴24 臭氧水供给口25 臭氧发生体27 臭氧水路径28 水供给路径29 电极30 电源31 水供给口40 储存水供给部41 喷雾前端部42 毛细管供给结构体43 电极60、63 箱体61 喷雾装置62 汽车70、90 收纳库71 储藏室72、72A 储水罐73 供水路径74 补充部76 喷雾部77 送风部80 超声波元件81 金属筛82 金属板83 电源84 储存水
85 温度传感器102 蒸发器103 机械室104 压缩机105 冷凝器106、107、108 控制部110 绝热箱体111、111A、111B 分隔板112 冷藏室113 切换室114 蔬菜室115 冷冻室116 绝热壁120 喷雾装置121、200 分解部122 蓄水槽123 喷雾部124 储存水128 电源129 送风部132 喷雾前端部133 毛细管供给结构体134 阴极135 阳极202 外壁227 制冰室228、228A 容器228B 特定容器229 风路301 喷雾部302、302A 喷雾装置
303 供水部304 供给部305 连接部306 罩部件307 循环风路308、309 循环风路开口部310 喇叭状部(horn)310A 喷雾前端部311 压电元件312 凸缘部313 蓄水槽314 控制部317 送风部321 水收集板323 臭氧发生体325 蔬菜室温度检测部326 蔬菜室湿度检测部327 水收集板温度检测部328 加热部330 门开闭检测部350 气孔351 长径352 短径400A、400B 门402 遮光板403 开关404、404A 喷雾装置405 支架(holder)406 施加电极406A 喷雾前端部407 保水部件
408 相对电极409 电压施加部412 温度检测部413 加热部414 控制部420 凹部425、425B、425C 储水罐425A 底面426 供给水431 喷雾部431A 下端441 供水部442 供水路径444 供水调整部501 罩部件501A 底面部512 导轨部件514 盖515 保持部516 突起部523 照射部524 扩散板617 绝热箱体619、620 储藏室624 循环导管625 循环风路626 喷雾部627 扩散部628 喷出口629 吸入口630 循环部
631 选择部632 排水管(drain)633、634 温度传感器635 滑轨(slide rail)636 食品收纳容器637 通气口638 加热器具体实施方式
本发明的收纳库包括箱体和喷雾装置。箱体在内部具有农作物用的储藏室。喷雾装置向储藏室内喷射液体以产生雾,利用雾使储藏室中收纳的农作物的表面附着的农药的有害物质浮起,或者使雾附着在储藏室中收纳的农作物的表面所附着的农药的有害物质上。由此,喷射的雾进入农作物表面的微细的凹部,利用雾的物理作用、化学作用的协同效果,除去残留在凹部中的农药的有害物质。或者,通过使雾附着在残留农药等的有害物质上,利用少量的水使有害物质浮起并容易地将其除去。这样的结构可以应用于冷藏库的蔬菜室、流通的箱(container)等收纳农作物的各种各样的方式。
以下,参照附图,说明本发明的实施方式。此外,在各实施方式中,对于构成与先前的实施方式同样的结构的部分,使用相同的符号进行说明,并省略其详细说明。
(实施方式1)在本发明的收纳库中,作为箱体,使用运输农作物用的运输箱。由此,能够在将储藏在储藏室内的食品送到消费地点之前,除去有害物质或者使其浮起。
通常,蔬菜或水果在收获后被运输到市场或超市等,但是运输需要很长时间。利用该时间,向保存在储藏室内的蔬菜或水果喷雾。由此,能够进行为了让消费者安心地享受饮食生活而容易地除去残留农药用的前处理。
图1是本发明的实施方式1的收纳库的侧截面图,图2是图1所示的收纳库的水补充部的侧截面图,图3是图1所示的收纳库的补充部的平面截面图。
收纳库70中设置有将农作物收纳在箱体60中的储藏室71。另外,收纳库70在储藏室71的内部具有喷雾装置61。箱体60是运输箱,搭载在汽车62上用于运输。除此以外,也可以搭载在飞机或船舶上进行运输。
喷雾装置61具有储水罐72、供水路径73以及补充部74。供水路径73从储水罐72向补充部74供给水。补充部74设置在储藏室71的上部顶面上。补充部74包括作为储存水的保持部的蓄水槽75、喷雾部76、和将由喷雾部76产生的雾吹送到储藏室71内的送风部77。
喷雾部76包括位于蓄水槽75底部的金属筛81和金属板82、以及设置在外部的超声波元件80和电源83。超声波元件80利用超声波方式将水雾化。金属筛81只透过规定粒径以下的雾。另外,蓄水槽75内的储存水84从供水路径73供给,储存在蓄水槽75内。另外,在储藏室71的一个角落,设置有检测库内温度的温度传感器85。
对如以上那样构成的收纳库的动作和作用进行说明。首先,将储存在储水罐72内的水经由供水路径73供给蓄水槽75内,作为储存水84进行储存。随后,利用超声波元件80将储存水84雾化。只将生成的雾中的规定粒径以下的微细雾从金属筛81喷出。这样,补充部74内处于充满规定粒径以下的雾的状态。补充部74内的微细雾由送风部77吹送至储藏室71内,形成雾。微细雾附着在储藏室71内的蔬菜或水果等农作物的表面,进入至农作物表面的微细的凹部中。残留农药或蜡等的有害物质由于该微细雾的内压能量而浮起。这样,通过使有害物质浮起,在使用者水洗蔬菜时,与没有附着雾的情况相比,更容易除去有害物质。另外,在雾带有电荷的情况下,利用电气作用进入至农作物表面的微细的凹部中,与残留农药或蜡发生化学反应。从而,有害物质的亲水性提高,被吸收进雾中,并被分解除去。另外,即使雾不这样与有害物质发生化学反应,例如,只使雾附着在有害物质上也可以。由此,有害物质溶入雾中,或者雾溶入有害物质内,将有害物质稀释。结果,在使用者水洗蔬菜时,与没有附着雾的情况相比,更容易除去有害物质。
此外,雾是指细小地分裂、处于超微颗粒状态的水,其粒径从眼能看见的数μm直至眼看不见的数nm,具有液体的性质。
如以上所述,在本实施方式的收纳库70中,利用喷雾装置61对储藏室71内保存的农作物适量地喷射能够进入细胞间隙的凹部的微细雾。由此,喷射的雾进入农作物表面的微细的凹部,使得储藏室71内部收纳的农作物表面附着的残留农药等的有害物质浮起,或者,通过使雾附着在有害物质上,在使用者水洗蔬菜时,与没有附着雾的情况相比,更容易除去有害物质。另外,在对凹部中残留的有害物质施加如上所述的雾的物理作用以外,通过使与雾同时产生的臭氧或OH自由基可靠地附着在蔬菜表面上,能够利用物理作用和化学作用的协同效果除去有害物质,从而能够更加有效地进行有害物质的除去。这样,使用少量的水,作为雾进行喷射,使有害物质浮起,或使雾附着在有害物质上,有害物质的除去变得容易。
蔬菜或水果在收获后被运输到市场或超市等,但是运输需要很长时间。利用该时间,向保存在储藏室71内的蔬菜或水果喷雾。由此,能够进行为了让消费者安心地享受饮食生活而容易地除去残留农药用的前处理。
另外,在储藏室71内保存有作为蔬菜水果的蔬菜中的绿色的食叶蔬菜和水果等,这些蔬菜水果容易由于运输中的蒸发而变蔫。但是,箱体60是在运输中使用的运输箱,由此,可防止储藏室71内储藏的食品在运输中的水分蒸发、和营养成分的降低,食品可在新鲜的状态下进行运输。另外,即使是迄今为止只能运送至能够以不变蔫的状态到达的场所的蔬菜,也能够实现长时间的运输。
另外,在以上的说明中,以喷雾自来水为前提进行了说明,但是并不限定于此。如果喷雾臭氧水、酸性水或碱性水等功能水作为喷雾的液体,则功能水雾会进入蔬菜或水果表面的微细的孔中。从而,使微细的孔的内部的污垢或农药等的有害物质浮起进行除去的效果、有害物质的氧化分解效果或酸·碱分解效果提高。
另外,储藏室71内附着的污垢或储藏室71库内的臭氧的除去、酸·碱分解效果也提高。特别地,这样利用振动能量生成雾的类型的喷雾部76,使用高频的振动能量将水滴微粒化。即,利用振动能量生成雾的类型的雾化装置,由于不对水颗粒进行电分解等的分解,所以有时能够不改变水的成分而将其雾化。这样,在采用通过施加振动能量的方法将水的成分直接雾化的装置的情况下,例如即使使用碱离子水或负离子水等与纯水相比添加有某些成分的功能水,也能够将该成分直接雾化,从而能够根据使用者的需要,将任意的水雾化后进行供给。
另外,如果设置对储藏室71进行冷却的冷却装置,则能够调节温度带,如果在利用温度传感器85检测出比预先设定的温度高的温度时,使冷却装置运转,则能够在夏季等高温时在冷藏温度带保持农作物的新鲜度。
另外,储藏室71达到湿度90%以上的高湿度时,食品中的特别是蔬菜类的蒸发被抑制,因此储藏室71内储藏的食品的劣化速度变慢。所以,雾的水分补充效率提高。为了得到这样的效果,在储藏室71内设置湿度传感器,进一步根据储藏室71内的空气质量的变化来驱动喷雾部76,能够进一步提高雾的水分补充效率。另外,如上述那样利用振动能量生成雾的类型的喷雾部76,使用高频的振动能量将水滴微粒化。所以,在生成微细雾时,不需要高电压,能够由低电压得到微细雾。这在运输箱等中、在运输车的发动机使用汽油等可燃性物质的情况下尤其有效。即,即使在可燃性物质万一泄漏进储藏室71内的情况下,因为喷雾部76不产生高电压,所以爆炸等的危险性低,与雾的产生相伴的安全性进一步提高。
此外,在本实施方式中,通过在喷雾部76中使用超声波元件80和金属筛81调整雾的粒径,但是设置与金属筛81相对的金属板82,利用电源83向金属筛81和金属板82之间施加高电压,将雾的粒径进一步微粒化,由此,也能够调整雾的粒径。在这种情况下,在雾的微粒化的同时,也能够使雾颗粒带有静电。由此,带有负电荷的微细雾附着在带有正电荷的库内壁面和蔬菜、水果表面等,雾进入库内壁面、蔬菜或水果表面的微细孔内。从而,也能够提高使蔬菜表面附着的有害物质浮起进行除去的效果。
(实施方式2)在本发明的收纳库中,作为箱体,使用保管收获后的农作物用的保管箱。由此,能够在运出储藏室内储藏的食品之前除去有害物质或使有害物质浮起。而且,能够利用保管中的时间除去有害物质或使有害物质浮起。
图4是本发明的实施方式2的收纳库的侧截面图。本实施方式的收纳库90包括箱体63和喷雾装置61。箱体63是保管箱,用于保管收获后的农作物。除此以外的结构与实施方式1同样。
箱体63用于保管储藏室71内保存的蔬菜或水果等农作物的收获后的食品。通过在这样的箱体63内的储藏室71中设置喷雾装置61,利用在储藏室71内储藏的时间,向储藏室71内保存的农作物喷雾。由此,能够进行为了让消费者安心地享受饮食生活而容易地除去残留农药用的前处理。由此,例如,能够在于铺面内出售之前的保管状态下除去农药,能够向消费者提供安全性更高的蔬菜。
雾化用的优选的液体、雾的带电效果、带有温度调节功能的效果等与实施方式1相同。
接下来,与实施方式3至实施方式10一起说明将本发明的收纳库应用于冷藏库的例子。
本发明的收纳库包括箱体和喷雾装置。箱体具有收纳农作物的储藏室。喷雾装置具有向储藏室内喷雾液体的喷雾部。喷雾装置利用产生的雾使农作物表面附着的残留农药等的有害物质浮起。或者,使雾附着在残留农药等的有害物质上。由此,喷出的雾进入农作物表面的微细的凹部中,利用雾的物理作用和化学作用的协同效果,除去凹部中残留的农药的有害物质。所以,利用少量的水,使农药等有害物质浮起,或者雾附着在残留农药等的有害物质上。从而,易于除去有害物质。
另外,在本发明的收纳库的箱体内,设置有作为保持液体的保持部的蓄水槽。由此能够预先储存一定量的储存水,因此能够在任意的定时向喷雾装置补充水。由此,能够稳定地向储藏室的内部收纳的农作物进行喷雾。
另外,本发明的收纳库的喷雾装置具有作为供给部的储水罐。通过使用者从外部向储水罐内供水,保持储存水。由此,使用者能够总是补充新鲜的水,而且能够预先储存一定量的储存水。所以,多数情况下能够对储藏室内的内部收纳的食品进行充足量的水分补充。
另外,本发明的收纳库的保持部保持从储藏室内的空气内含有的水分提取出的水。这样被保持的储存水被保持在保水装置内。由此,即使使用者不从外部补充水,也能够对储藏室内的内部收纳的食品进行水分补充,所以维护管理方面并不费事。
另外,本发明的收纳库的喷雾部具有作为喷出雾的部分的喷雾前端部,至少将喷雾前端部设置在储藏室内。所以,能够对收纳有农作物的储藏室直接喷出雾颗粒。另外,能够更加缩短喷雾前端部与农作物的距离。所以,例如,与在储藏室外喷雾后送到储藏室内的情况相比,能够防止雾颗粒的气化。另外,能够提高浮游状态的雾的流速,从而能够进一步提高雾向农作物表面的附着率。
另外,本发明的收纳库的喷雾装置的供给部设置有具有喷雾部的区域和其它区域。即,供给部不受喷雾部的配置位置的影响,能够设置在易于向蓄水槽内补充水和易于对蓄水槽内进行清扫的任意位置。所以,使用者使用的方便性提高。
另外,本发明的喷雾部产生粒径0.003μm~20μm的雾,由此,雾高效地进入农作物表面的微细的凹部中。因此,能够遍及细微部分地使农药等有害物质浮起。
另外,通过使本发明的喷雾部的喷雾量为0.0007~0.14g/h·L,可喷出使农药等有害物质浮起所需要的量的雾。由此,农药等有害物质的除去效果和保存性能够并存。
另外,通过使在本发明的喷雾装置中产生的雾为氧化分解性的雾,使雾具有氧化分解能力,将农药等有害物质氧化分解,提高亲水性。所以,使农药等有害物质浮起的效果提高。
另外,通过使在本发明的喷雾装置中产生的雾为臭氧雾,能够强有力地氧化分解农药等有害物质,通过分解有害物质,变为安全的物质。
另外,通过使在本发明的喷雾装置中产生的雾为碱分解性的雾,使雾具有碱分解性,由此,能够将农药等有害物质碱分解,变为安全的物质。
另外,通过使在本发明的喷雾装置中产生的雾成为含有自由基的雾,利用自由基的强有力的氧化分解能力,能够将农药等有害物质分解,变为安全的物质。
另外,本发明的喷雾部利用静电雾化方式产生雾。在该方式中,使用高电压等电能使水滴分裂,通过细分产生微细雾,所以,产生的雾带有电荷。因此,雾利用该电荷具有的正的和负的吸附力而附着在农作物上,从而雾更加均匀地附着在蔬菜表面。另外,与不带有电荷的类型的雾相比,雾的附着率进一步提高。结果,能够更有效地进行农药的除去。
另外,优选本发明的静电雾化方式的喷雾部的喷雾量为0.0007~0.007g/h·L。由静电雾化方式的喷雾部产生的雾带有电荷,雾向农作物的附着率高。所以,与喷射不带有电荷的类型的雾的情况相比,得到同等的附着率,能够更加有效地进行农药的除去。
另外,本发明的喷雾部产生粒径0.003~0.5μm的雾。使用静电雾化方式的喷雾部时,雾的粒径越大,带电的电荷能量越弱。但是,通过在上述粒径范围内使用静电雾化方式,能够产生为了提高向蔬菜的附着率而带有充分的电荷的雾,从而能够更加有效地利用静电雾化方式进行农药的除去。
另外,在本发明中,可以使用超声波雾化方式的喷雾部。在利用这样的喷雾部生成雾的情况下,使用高频的振动能量将水滴微粒化。所以,在生成微细雾时,不需要高电压,能够由低电压得到微细雾。结果,能够进一步提高与雾的产生相伴的安全性,并且能够节省能量。
另外,优选本发明的超声波雾化方式的喷雾部的喷雾量为0.014~0.14g/h·L。在使用超声波雾化方式的喷雾部的情况下,使用高频的振动能量将水滴微粒化,因此,随着喷雾量变小,产生的振动能量变小,喷出的雾所具有的动能变小。所以,雾的飞行距离有变小的趋势。但是,通过在上述喷雾量的范围内使用超声波雾化方式,能够产生具有向库内的扩散性、并且具有到达蔬菜表面的飞行距离的雾,从而能够更加有效地利用超声波雾化方式进行农药的除去。
另外,优选本发明的超声波雾化方式的喷雾部的雾粒径为0.5~20μm。在使用超声波雾化方式的喷雾部的情况下,随着雾的粒径变小,需要使用高频的振动能量将水滴微粒化。所以,有频率越高,振动次数越多、超声波雾化方式的耐久年数越短的趋势。但是,通过在上述粒径的范围内使用超声波雾化方式,即使在平均使用年数达到10年左右的家电产品中,特别是在要求长时间的耐久性的冷藏库中,也能够得到充分的耐久性。所以,能够提高利用超声波雾化方式除去农药的可靠性。
(实施方式3)图5是本发明的实施方式3的冷藏库的侧截面图。
图6和图7分别是图5所示的冷藏库的喷雾装置的侧截面图和A-A线截面图。
在该冷藏库中,利用分隔板111将绝热箱体110从上方开始分隔为冷藏室112、切换室113、蔬菜室114、和冷冻室115。在冷冻室115的后面设置有蒸发器102。蒸发器102通过导管与设置在机械室103内的压缩机104、设置在冷藏库下部的冷凝器105、和未图示的膨胀阀连接,它们构成通过使被封入内部的制冷剂压缩、蒸发,对冷藏库内进行冷却的冷却装置。在蒸发器102中生成的冷气经由风路229被输送至各储藏室,由此将冷藏室112内和蔬菜室114内冷却。切换室113内经由未图示的送风路径由蒸发器102冷却,由此,能够在保持为冷冻温度或保持为冷藏温度之间切换使用。在蔬菜室114的背面配置有用于分隔风路229和蔬菜室114的分隔板111A。在分隔板111A和主体外壁202之间设置有风路229。风路229例如将在蒸发器102中生成的冷气输送至各储藏室,或者从各储藏室将热交换后的空气输送至蒸发器102。即,在作为箱体的绝热箱体110的内部设置有储藏农作物的储藏室,即蔬菜室114。冷却装置对蔬菜室114内部进行冷却。
蔬菜室114利用绝热壁116构成,蔬菜室114内被保持在大约90%RH以上(收纳食品时)的湿度、被冷却至4~6℃。在蔬菜室114的上部顶面上设置有喷雾装置120。
喷雾装置120包括储藏储存水124的蓄水槽122、喷雾部123、和将喷雾部123产生的雾吹送到蔬菜室114内的送风部129。喷雾部123位于蓄水槽122的内部。喷雾部123包括毛细管供给结构体133、作为第一电极的阴极134、作为第二电极的阳极135、和电源128。毛细管供给结构体133的一端浸渍在储存水124中,另一端在蓄水槽122内形成喷雾前端部132。即,将喷雾前端部132设置在蔬菜室114内。阴极134和阳极135被设置在蓄水槽122的一部分上。阴极134向储存水124施加负的高电压。阳极135与阴极134相对。电源128向阴极134和阳极135之间施加高电压。
以下,对如以上那样构成的喷雾装置120的动作和作用进行说明。首先,在蓄水槽122内储存除霜水、作为储存水124。即,蓄水槽122是提取出蔬菜室114内的空气内含有的水分并保持的保持部。
接着,电源128向阴极134和阳极135之间施加高电压。这样,利用在喷雾前端部132和阳极135之间存在的电场,从喷雾前端部132引出多条液线。这些液线进一步分散为带电的液滴,成为0.1μm以下的微细雾。另外,由于在静电雾化时进行放电,所以在产生雾时,同时产生微量的臭氧和自由基。该臭氧立即与雾混合,生成低浓度的臭氧雾。此外,所谓自由基是具有不成对电子的、氧化能力强的分子。
利用送风部129将该臭氧雾喷送到蔬菜室114内。因为喷出的臭氧雾带有静电,所以,在蔬菜室114内,该臭氧雾电气附着在带正电的蔬菜或水果等农作物的表面以及库内壁面上。于是,进入至农作物表面的微细的凹部中。残留农药或蜡等的有害物质由于雾的内压能量而浮起。由此,结果,在使用者水洗农作物时,与没有附着雾的情况相比,更容易除去农药。另外,利用臭氧的氧化分解作用,有害物质被氧化分解除去。或者,利用电气作用进入微细的凹部的雾与有害物质进行化学反应。由此,有害物质的亲水性提高,被吸收进雾中,并被分解。
另外,即使不这样与有害物质发生化学反应,例如,只使雾附着在有害物质上,有害物质溶入雾内。或者,雾溶入有害物质内,将有害物质稀释,结果,在使用者水洗农作物时,与没有附着雾的情况相比,更容易除去农药。
这样,喷雾装置120使用电能使水滴分裂,并通过细分产生微细雾。这样,在喷雾装置120中使用静电雾化方式。因此,产生的雾带有电荷,雾利用该电荷具有的正的和负的吸附力而附着在农作物上。从而,雾均匀地附着在农作物表面。另外,与不带电荷的雾相比,向农作物的附着率提高。所以,农药等的有害物质被有效地除去。
另外,通过使雾带有静电,雾中的水分子自由基化,产生OH自由基。因此,除了臭氧的氧化能力以外,OH自由基的氧化能力会提高有害物质的分解性能。
此外,雾进入绝热壁116的微细的孔中,同样,使孔内部的污垢或有害物质浮起,利用臭氧氧化分解将其分解除去。
图8是表示将图6所示的喷雾装置120的农药除去性能与现有的浸渍方法、以及水洗相比较的图。在该实验中,各使用10个附着有大约3ppm的马拉硫磷(malathion)的迷你番茄,按照各方法进行除去处理。然后,利用气相色谱法(GC)测定处理后的残留马拉硫磷浓度,算出除去率。
接着,说明各除去处理方法。在处理A中,将上述10个迷你番茄放入笊篱中,用流水清洗大约10秒钟。在处理B中,与使用通常的食物清洗装置的处理相当,将10个迷你番茄在含有1ppm臭氧的2L水中浸渍1小时,利用臭氧进行气泡清洗。在处理C中,用喷雾装置120对10个迷你番茄进行12小时的喷雾处理。在处理D中,在对10个迷你番茄进行12小时的喷雾处理之后,将其放入笊篱中用流水清洗大约10秒钟。此外,在处理C、处理D中,库内的臭氧气体浓度为大约0.03ppm。另外,处理C、处理D中的雾的粒径为0.003μm,喷雾量为0.0007g/h·L。
如图8所示,处理A中的除去率是20%,可知在通常家庭中的水洗的情况下,80%的残留农药没有被除去,而是被人体摄取了。另外,在处理B中除去了55%的残留农药。
与此相对,处理C的除去率是50%,显示出与处理B大致相同的农药除去性能。再者,处理D的除去率是70%。可以认为这是由于通过超微细雾的物理作用,附着的农药浮起,变得易于脱落。从以上的结果可知,具有本实施方式的喷雾装置120的冷藏库,具有与食物清洗的专用设备大致相同的农药除去性能。
图9是表示本实施方式的喷雾装置120的农药除去效果与雾的水粒径的关系的图。雾的喷雾时间和喷雾量与图8的处理C、D同样。
从图9可看出,马拉硫磷除去率为50%左右,雾的粒径为0.5μm以下。另外,马拉硫磷除去率为70%左右,雾的粒径为0.1μm以下。可以认为这是因为雾的粒径越微细越容易进入农作物表面的凹凸中。即,可以认为这是因为雾的粒径越微细,有害物质越易于附着在雾颗粒上,或者越易于将有害物质吸收进雾颗粒内。
另外,雾的粒径大于0.5μm时,除去率降低。可以认为这是因为在喷雾部123为静电雾化方式的情况下,随着雾的粒径变大,带电的电荷能量变弱。所以,在应用静电雾化方式的情况下,通过将雾的粒径控制在0.5μm以下,将会产生为了提高向农作物的附着率而带有充分的电荷的雾。
另外,马拉硫磷除去率为50%左右,雾的粒径为0.003μm以上。另外,马拉硫磷除去率为70%左右,雾的粒径为0.005μm以上。可以认为这是因为在水粒径小于0.003μm时,颗粒过小,与马拉硫磷的接触频率降低,除去效果降低。
另外,与雾的粒径超过0.1μm的情况相比,粒径为0.005μm以上0.1μm以下的情况,除去率高。可以认为这是因为在粒径小的情况下,自由基的个数多。因此,可以认为这是因为与马拉硫磷的反应性提高,从而除去率变高。
根据以上的结果,在静电雾化方式的喷雾装置120中,为了使农药除去率为50%以上,使雾的粒径为0.003μm以上0.5μm以下即可,为了使农药除去率为70%以上,使雾的粒径为0.005μm以上0.1μm以下即可。为了这样控制雾的粒径,在本实验中,通过改变向喷雾装置120的施加电压来调整粒径,但是,例如,也可以改变毛细管供给结构体133的直径或长度来调整粒径。这是利用通过改变供给的水的团簇(cluster)的大小,即使供给相同的能量,由喷雾装置120分割后的粒径也不同。从而,在大致确定了目标粒径的情况下,这种方法能够利用简单的结构得到目标粒径的雾,所以是有效的。
图10是表示本实施方式的喷雾装置120的农药除去效果与喷雾量的关系的图。喷雾时间和雾的粒径与图8的处理C、D同样。另外,在本实验中,蔬菜室的容积是70升(L)。
从图10可看出,为了使马拉硫磷除去率为50%左右,喷雾量需要为0.0007g/h·L以上,农药除去效果随着喷雾量的增加而提高。
另外,达到超过0.007g/h·L的喷雾量时,就农药除去效果而言,某装置产生的臭氧浓度超过0.03ppm,因此,从人体的安全性的观点考虑,目前的静电雾化方式的技术难以应用于家庭用冷藏库。臭氧浓度0.03ppm是没有臭氧气味的水平,不会对蔬菜产生组织损伤等不良影响,是具有农药分解效果的臭氧浓度的上限值。这样,喷雾量的适当范围是0.0007g/h·L以上0.007g/h·L以下。但是,在将来,现阶段的技术进一步发展,即使在静电雾化方式下喷雾量超过0.007g/h·L,也能够将臭氧浓度抑制在0.03ppm以下的情况下,能够扩大该喷雾量。另外,为了使臭氧浓度为0.03ppm以下而增加臭氧分解催化剂或臭氧分解装置等时,即使喷雾量为0.007g/h·L以上,只要能够利用臭氧分解催化剂或臭氧分解装置降低臭氧的浓度,也可以将喷雾量增加至例如10倍的0.07g/h·L。该上限值扩大范围依赖于增加的臭氧分解催化剂的能力。
如以上所述,在本实施方式中,能够得到具有用简单的结构除去农药等有害物质的功能的冷藏库。使用者只要将蔬菜或水果保存在冷藏库中,就能够简单地除去农药等的有害物质。
另外,喷雾装置120向蔬菜室114内喷雾。由此,喷出的雾进入农作物表面的微细的凹部中,利用物理作用、化学作用的协同效果,除去凹部中残留的农药等的有害物质。这样,能够用少量的水除去农药等有害物质。
另外,与微细雾同时产生的臭氧或OH自由基可靠地附着在蔬菜表面。由此,微细雾进入微细的凹部中,利用物理作用、化学作用的协同效果,除去残留在凹部中的农药等的有害物质。这样,用少量的水就能够将农药等有害物质除去、分解。
另外,喷雾装置120产生对除去农作物表面的农药有用的粒径的雾。由此,雾高效地进入农作物表面的微细的凹部中,遍及细微部分地除去农药等有害物质。具体地说,优选雾的粒径为0.003μm以上0.5μm以下。
另外,优选喷雾装置120的喷雾量为0.0007g/h·L以上0.07g/h·L以下。由此,可确保除去有害物质所需要的喷雾量,可发挥出有害物质的除去效果,并且可确保农作物的保存性。
另外,利用微细雾与农作物的电位差,微细雾附着在农作物表面上。从而,雾能够高效地附着。
在上述说明中,说明了通过利用静电雾化方式产生雾、从而产生含有臭氧的雾的例子,但是也可以喷射臭氧以外的氧化分解性的雾、或碱分解性的雾。该情况也与臭氧水同样,农作物表面的农药等有害物质的分解效果提高。另外,对库内附着的污垢和库内臭氧的除去效果和分解效果也提高。
另外,本实施方式的喷雾部123利用静电雾化方式产生雾。除此以外,也可以如实施方式1的图2那样,利用使用超声波元件和金属筛使微细化的雾带静电的喷雾部。或者,使用提高超声波元件的频率从而使微细化的雾带静电的喷雾部,也能够得到同样的效果。
在本实施方式中,在喷出的雾中溶解有利用放电产生的臭氧气体。除此以外,使储存水为臭氧水或富有反应性的功能水,也能够得到同样的效果。即,蓄水槽122保持用于生成雾的液体,并不一定限于保持水。
此外,在本实施方式中,保持储存水的保持部为蓄水槽122,蓄水槽122保持有作为除霜水的储存水124。除此以外,作为保持部,也可以使用吸湿剂提取出蔬菜室114内的空气内含有的水分并保持。作为吸湿剂,例如可以使用硅胶、沸石、活性炭等的多孔质材料等。如果这样使用除霜水等、使用者不从外部供给储存水也能够确保储存水,就不必费事从外部补充水分,使用的方便性提高。
(实施方式4)图11是本发明的实施方式4的冷藏库的截面图。图12、图13分别是图11所示的冷藏库的喷雾装置附近的纵截面图和正面图。图14是表示图12所示的喷雾装置的喷雾部的纵截面和振幅波形的图。图15是图11所示的冷藏库的功能框图。图16是图15所示的控制部的控制流程图。图18是表示图12所示的喷雾装置的农药除去效果与雾的水粒径的关系的图。图19是表示图12所示的喷雾装置的农药除去效果与喷雾量的关系的图。
该冷藏库与图5所示的冷藏库的不同点在于在分隔板111A上设置有喷雾装置302,在蔬菜室114的顶面上设置有臭氧发生体323。除此以外的基本结构与图5所示的冷藏库同样。此外,在蔬菜室114内设置有容器228。
在分隔板111A上安装有具有超声波雾化方式的喷雾部301的喷雾装置302。分隔板111A主要由发泡苯乙烯等绝热材料构成,其壁厚为30mm左右。但是,在供给部304的背面,壁厚为5mm~10mm。
供给部304保持储存水,并向喷雾部301供给储存水。供给部304包括水收集板321、加热部328、送风部317和罩部件306。水收集板321设置在库内侧,加热部328与水收集板321的一面接触配置。加热部328例如是由镍铬丝构成的加热器等。送风部317是盒式风扇(boxfan)等,将库内的空气输送至配置在库内侧的水收集板321。罩部件306构成循环风路307。
如图13所示,在罩部件306上设置有与循环风路307相关的第一循环风路开口部(以下称为开口部)308和第二循环风路开口部(以下称为开口部)309。另外,在水收集板321上设置有用于检测水收集板321表面的温度的水收集板温度检测部(以下称为检测部)327。
另外,如图14所示,喷雾部301具有喇叭状部310和压电元件311。喇叭状部310通过切削加工等形成为大致圆锥状,喇叭状部310的喷雾前端部310A至少在蔬菜室114内开口。在压电元件311侧,与喇叭状部310一体地形成有凸缘部312。另外,喇叭状部310与压电元件311接合固定。利用喇叭状部310的形状,使由压电元件311产生的振动在喷雾前端部310A中增大到最大振幅。
喷雾部301隔着凸缘部312,被安装在作为冷藏库侧的安装部件的连接部305上。或者,直接安装在冷藏库上。此时,设定超声波振动的振幅,使得凸缘部312成为振幅的节部。即,在压电元件311驱动的情况下,图14所示的各部位振动。
通过这样将作为传播的振动的节部的凸缘部312与连接部305连接,可防止产生超声波时的振动向冷藏库主体传播。从而,由冷藏库的部件或在库内设置的架等振动而产生的噪声减少。即,设置有利用振动能量产生雾的类型的喷雾装置302的冷藏库的噪声、振动被抑制。
喇叭状部310由热传导性高的材料构成。例如,由铝、钛、不锈钢等金属构成。特别地,从重量轻、热传导性高、超声波传播时的振幅的增大性能的方面考虑,优选由以铝为主要成分的材料构成。另外,为了长寿命化,优选由以不锈钢为主要成分的材料构成。
如上所述,设定喇叭状部310的尺寸,使得超声波振动的振幅在凸缘部312为振幅的节部,在作为喇叭状部310的前端的喷雾前端部310A为振幅的腹部。另外,设定喇叭状部310的尺寸,使得凸缘部312与喷雾前端部310A之间的尺寸是超声波振动的1/4波长。这样,将振动的节部固定在冷藏库主体上,并且使距离其为希望得到的频率的1/4波长的位置成为振幅的腹部。该结构与在凸缘部312和喷雾前端部310A之间有多个腹部的情况相比,能够大副降低振动能量损失,从而能够抑制振动所需要的电力。通过这样设计喇叭状部310,能得到低输入、高输出、且小型的喇叭状部310。
在近年来的家庭用冷藏库中,有保持现有的外形尺寸不变而增大库内容量,以提高使用者的使用方便性的趋势。在这种类型的冷藏库中,绝热壁通过高绝热化而变得更薄,背面侧的设备收纳空间等也变得更加紧凑。这样,通过使用高输出、小型的喇叭状部310,防止喷雾装置302向库内的延伸,并且能够得到足够量的产生雾,冷藏库的使用方便性提高。
另外,喇叭状部310的长度由产生的雾的粒径、压电元件311的振荡频率以及喇叭状部310的材质决定。例如,在使雾的粒径为大约10μm的情况下,如果喇叭状部310的材质是铝、压电元件311的振荡频率是大约270kHz,则喇叭状部310的长度是大约6mm。另外,在使雾的粒径为大约15μm的情况下,如果喇叭状部310的材质是铝、压电元件311的振荡频率是大约146kHz,则喇叭状部310的长度是大约11mm。将这一系列的理论计算值汇总示于表1。
表1

另外,在该冷藏库内搭载有用于将内部冷却的冷却装置。如实施方式3所述,冷却装置包括压缩机104、冷凝器105、膨胀阀或毛细管等减压装置(未图示)、和蒸发器102等。另外,就制冷剂而言,从地球环境保护的观点考虑,有时使用作为地球温暖化系数小的可燃性制冷剂的异丁烷。
以下,对如以上那样构成的冷藏库的动作和作用进行说明。在图11所示的冷藏库中,利用冷气的分配或加热部等的ON·OFF(打开·关闭)操作,将蔬菜室114调整为4℃~6℃,通常,不具有库内温度检测部的情况较多。另外,蔬菜室114内由于来自食品的水分的蒸发和由开关门引起的水蒸气的进入等,而为高湿度。为了确保某种程度的冷却能力,分隔板111A构成为比其它部分薄。
在此,如果使水收集板321的表面温度为露点温度以下,则水收集板321附近的水蒸气在水收集板321上结露,可靠地生成水滴。具体地说,控制部314利用设置在水收集板321上的检测部327掌握水收集板321表面的温度状态。然后,控制部314对送风部317和加热部328进行接通/断开(ON/OFF)控制或工作(Duty)控制。由此,将水收集板321的表面温度调整为露点温度以下,由送风部317从库内输送的高湿空气中含有的水分在水收集板321上结露。
此外,如图15所示,可以在蔬菜室114内设置蔬菜室温度检测部(以下称为检测部)325和蔬菜室湿度检测部(以下称为检测部)326等。该结构能够利用预先确定的运算,严格地根据露点温度在库内环境下的变化,计算出露点温度。在水收集板321表面生成冰或霜的情况下,控制部314能够驱动加热部328使水收集板321表面温度上升至融解温度,因此能够适度地生成水。在此,当使送风部317运转时,由于蔬菜室114的空气的影响,水收集板321表面温度上升,在送风部317停止的情况下,表面温度降低。如果供给部304的背面的分隔板111A的壁厚超过10mm,则在送风部317运转时,加热部328 OFF(关闭),水收集板321表面温度变为露点温度以上,无法调整结露量。相反,在壁厚小于5mm的情况下,因为水收集板321表面温度过低,所以,加热部328总是变为ON(打开)状态,能量效率变差。因此,优选水收集板321背面的分隔板111A的厚度为5mm以上10mm以下。由此,能够控制水收集板321的表面温度,并且加热部328的消耗能量最小。
另外,为了促进结露,需要使湿度更高的蔬菜室114内的空气循环。所以,在利用送风部317送入空气时,例如从开口部309送入高湿的空气。然后,在水收集板321上结露后,从开口部308向库内喷出空气,使蔬菜室114内的空气循环。这样的话,促进结露。
在水收集板321表面上结露后的水滴渐渐成长,不使用泵等的动力,利用自重向下方流动,汇集在喷雾部301附近的蓄水槽313中。蓄水槽313被设置在绝热箱体110内,是保持液体的保持部。汇集的结露水由供水部303供给喇叭状部310前端。
供给喇叭状部310前端的水,利用超声波振子311的振动产生粒径小的雾,并向蔬菜室114内喷出。喇叭状部310中,在喷雾前端部310A附近产生由振动引起的热,但是因为喇叭状部310是高热传导性材料,所以该热向喇叭状部310的整体扩散。
另外,至少喷雾前端部310A被设置在蔬菜室114内。所以,对收纳有蔬菜等农作物的蔬菜室114直接喷出雾颗粒。即,喷雾前端部310A与农作物之间的距离短。该结构,例如,与在蔬菜室114外进行喷雾后再送入蔬菜室114内的情况相比,可防止颗粒的气化,浮游状态的流速提高。所以,雾向农作物表面的附着率提高。
另外,在喷雾部301中使用利用由电能引起的电致伸缩现象的压电元件311。喷雾部301能够使用高频的振动能量将水滴微粒化。因此,在生成微细雾时,不需要高电压,能够用低电压得到微细雾。所以,与雾的产生相伴的安全性提高,并且能量消耗降低。另外,因为不对水颗粒进行电分解等的分解,所以能够不改变水的成分而直接将其雾化。因此,即使代替供给部304,从储水罐等向喷雾部301供给功能水,利用振动能量生成雾的类型的雾化装置,因为不对水颗粒进行电分解等的分解,所以有时能够不改变水的成分而将其雾化。这样,在使用通过提供振动能量的方法将水的成分直接雾化的装置的情况下,例如即使使用碱离子水或负离子水等与纯水相比添加有某些成分的功能水,也能够将该成分直接雾化,从而能够根据使用者的需要,将任意的水雾化后进行供给。
此外,在喷雾部301中不限定于使用压电振子311。作为振子,也可以使用利用由磁能引起的磁致伸缩现象的磁致伸缩振子。在该情况下,也能够得到与上述同样的效果。
另外,喷雾部301利用超声波振动产生雾。超声波的频率,一般说来,位于由振动产生的噪声作为定常声人耳听不见的频带上。这样,通过使用例如2万赫兹以上的频率,在应用于家庭用冷藏库的情况下,由振动产生的噪声作为定常声,人耳听不见。所以,能够得到具有低噪声、高品质的喷雾装置302的冷藏库。
接着,使用图15所示的功能框图和图16的控制流程图,说明控制部314的控制。在图15中,向控制部314输入来自检测部325、326、327和门开闭检测部(以下称为检测部)330的信息信号。控制部314控制喷雾部301、加热部328、压缩机104、送风部317和臭氧发生体的323。加热部328控制向喷雾部301供水的水量。例如,检测部325检测出库内温度为5℃,检测部326检测出库内湿度为90%,检测部327检测出水收集板321的表面温度为4℃。在该情况下,控制部314决定喷雾部301的接通/断开(ON/OFF)、和加热部328的动作。即,需要将水收集板321的表面温度冷却至露点温度以下。所以,控制部314例如将加热部328关闭(OFF)或使其输入降低。为了降低冷气的温度,增加压缩机104的转数或降低送风部317的转数。另外,控制部314只在由检测部330检测到门关闭时使喷雾部301动作。由此,防止门打开时雾向外部泄漏。
接着,用图16详细说明控制流程。首先,在步骤21中,检测部327检测到水收集板327的表面温度t℃。在t℃处于预先设定的tA℃和tB℃的范围内时,控制部314判断进行农药除去,控制进入步骤22。在t℃不处于tA℃和tB℃的范围内时,控制返回到步骤21,反复进行温度检测和判断。
在步骤22中,控制部314使喷雾部301运转,向蔬菜室114内喷雾。随后,在步骤23中,如果喷雾部301的累计运转时间TA达到预先设定的T1以上,则控制部314在步骤24中使臭氧发生体323动作,控制进入步骤25。在TA小于T1时,控制部314继续在步骤23中判断喷雾时间。
在步骤25中,如果喷雾部301的累计运转时间TA达到预先设定的T2以上,则控制部314在步骤26中停止喷雾部301,终止喷雾。同时,控制部314将臭氧发生体323关闭(OFF),控制进入步骤27。在TA小于T2时,控制部314继续在步骤25中判断喷雾时间。
接着,在步骤27中,如果喷雾部301的停止时间TB达到预先设定的T3以上,则控制部314通过步骤28使TA、TB返回到初始值,再次返回到步骤21。在TB小于T3时,控制部314继续在步骤27中判断喷雾部301的停止时间。
接着,对代替供给部304、供水部303,供给用于在喷雾部301中产生雾的水等液体的结构进行说明。图17是喷雾部301附近的纵截面图。
在该结构中,从冷藏库的门400A侧朝向库内间隔里面设置有储水罐425B和喷雾部301,构成喷雾装置302A。喷雾装置302A固定在构成蔬菜室114的顶面的分隔板111B上。储水罐425B的底面倾斜,在里面底部设置有供水调整部444。
对如以上那样构成的喷雾装置的动作和作用进行说明。为了易于人进行拆装,储水罐425B设置在蔬菜室114的门400A侧、即前面侧,蓄积有自来水、结露水等。或者,可以向储水罐425B内注入各种各样的功能水。功能水是例如酸性水、碱性水、或含有维生素等的营养水等。通过向蔬菜室114内喷雾这样的功能水,可给蔬菜室114添加各种各样的新功能。这样,喷雾部301能够喷出各种各样的功能水。
储水罐425B的底面向冷藏库里面倾斜,使得注入的水向内侧流动。另外,在该内侧底面上设置有供水调整部444。供水调整部444例如由开关阀构成。供水调整部444只在打开时向喷雾部301供水。
如上所述,在图17的结构中,储水罐425B设置在门400A侧,喷雾部301设置在储水罐425B的内侧,所以使用的方便性提高。因为储水罐425B的底面向喷雾部301侧倾斜,所以可高效地利用储水罐425B的水。另外,可利用供水调整部444对喷雾部301供给适量的水。
此外,储水罐425B被固定在分隔板111B上,但也可以是可装卸式的。由此,易于进行水的更换、添加、和清扫,使用方便性提高。
图18是表示喷雾装置302的农药除去效果和雾粒径的关系的图。在该实验中,也与实施方式3同样,使用10个附着有大约3ppm的马拉硫磷的迷你番茄。用由喷雾装置302产生的雾连续进行12小时的喷雾处理,然后用GC测定迷你番茄的残留马拉硫磷浓度,算出除去率。此外,此时的喷雾量是0.03g/h·L。雾的粒径如上所述,由压电元件311的振动频率和喇叭状部310的尺寸决定。
如图18所示,为了使马拉硫磷除去率达到50%左右,需要将粒径控制在20μm以下。另外,为了使马拉硫磷除去率达到70%左右,需要将粒径控制在0.5μm以下。认为这是因为一般的蔬菜的凹凸为20~30μm,所以,在20μm以上时,雾难以进入蔬菜的微细的凹部中,难以使有害物质附着在雾颗粒上或难以将有害物质吸收进雾颗粒中。另外,认为因为粒径0.5μm的雾比粒径20μm的雾的扩散性高,所以,雾与蔬菜表面的农药的接触频率高,农药除去率也高。
根据以上的结果,在利用超声波方式产生雾的喷雾装置中,具有农药除去率50%以上的性能的粒径为20μm以下,另外,具有农药除去率70%以上的性能的粒径为0.5μm以下。
此外,如果使雾的粒径小于0.5μm、甚至更小的话,认为农药除去率会进一步提高。喷雾部301使用高频的振动能量将水滴微粒化。因此,在超声波雾化方式的喷雾部301中,为了使雾的粒径小到低于0.5μm,需要提高振动频率。但是,有如下的趋势越提高振动频率,振动次数越多,采用现有的超声波雾化方式的喷雾部301的耐久年数越短。因为冷藏库在家电产品中使用年数长,平均使用年数为10年左右,所以尤其要求长期的耐久性。因此,在现阶段的技术中,在使用超声波雾化方式产生雾的情况下,优选使雾粒径的下限值为0.5μm。
如以上所述,优选使用超声波雾化方式的喷雾部301产生的雾粒径在0.5μm以上20μm以下的范围。但是,在将来,在利用超声波雾化方式产生粒径小于0.5μm的雾的情况下,只要是能够确保长期的可靠性的超声波雾化方式,能够进一步将该雾粒径的下限值扩大至例如1/10的0.05μm左右。
图19是表示喷雾装置302的农药除去效果和喷雾量的关系的图。在本实验中,向70L的蔬菜室114内喷射粒径10μm的雾。喷雾时间与图18的实验同样,为12小时。另外,在本实验中,喷雾量通过改变向喷雾部301施加的电压来控制。除此以外,通过改变喷雾前端部310A的开口面积,也能够进行喷雾量的调整。
从图19可看出,喷雾量越多,作为农药的马拉硫磷的除去效果越高。为了使马拉硫磷除去率达到50%以上,需要将喷雾量控制在0.014g/h·L以上。另一方面,喷雾量超过0.14g/h·L时,虽然有农药除去效果,但是多余的水分附着在蔬菜表面,产生水腐,蔬菜的品质降低。所以,优选使用超声波雾化方式的喷雾部301的喷雾量在0.014g/h·L以上0.14g/h·L以下的范围。但是,即使喷雾量超过0.14g/h·L,使蔬菜振动以使多余的水分落下等,只要能够防止水腐,也可以增加喷雾量。在这种情况下,从维持蔬菜品质的观点考虑,优选喷雾量为0.5g/h·L以下。
如以上所述,在本实施方式中,作为具有冷却装置的收纳库的冷藏库,包括将绝热箱体110绝热分隔而形成的作为储藏室的蔬菜室114。另外,该冷藏库具有喷雾装置302,喷雾装置302包括喷出液体的雾的超声波雾化方式的喷雾部301。在具有蔬菜室114的本实施方式的冷藏库中,利用风路229向比较低温的各储藏室输送低温冷气。利用来自风路229侧的热传导,用于向喷雾部301供给水的水收集板321被冷却。通过将水收集板321的温度调整至露点以下,使空气中的水分可靠地生成水,通过供水部303等向喇叭状部310的喷雾前端部310A供给水。
另外,因为喷雾部301是超声波雾化方式,所以,只要水的供给充分,就可充分确保喷雾量。因此,能够利用接通/断开(ON/OFF)操作进行喷雾量的调整,而且,实际使用中的操作时间缩短,构成部件的寿命可靠性提高。因为使用极少量的水就能够使农作物表面附着的农药或蜡等浮起,并将其除去,所以节约水。
另外,因为喷雾部301是超声波雾化方式,所以,在产生雾时不产生臭氧,只产生OH自由基。所以,可以不特别针对臭氧采取对策,部件结构和控制内容简单。在使用臭氧时,可以像本实施方式那样另外设置臭氧发生体323。
另外,通过设置向喷雾部301供给液体的储水罐425B,喷雾部301能够喷雾各种功能水。功能水是例如酸性水、碱性水、或含有维生素等的营养水等。通过向蔬菜室114内喷雾这样的功能水,可给蔬菜室114添加各种各样的新功能。
另外,通过使喷出的雾粒径为0.5μm以上20μm以下,雾高效地进入农作物表面的微细的凹部中。因此,能够遍及细微部分地除去农药等的有害物质。
另外,通过使喷雾量为0.014g/h·L以上0.14g/h·L以下,可有效地除去有害物质,并且可保持农作物的水分。另外,可防止农作物的水腐。
另外,在本实施方式中,使由放电产生的臭氧气体溶入喷出的雾中,但使储存水为臭氧水或富有反应性的功能水,也能够得到同样的效果。
另外,在本实施方式中,因为使用超声波雾化方式的喷雾部301,在将雾微颗粒化时,不需要高电压。所以,在使用异丁烷或丙烷等可燃性制冷剂作为制冷装置的制冷剂时,在万一制冷剂从制冷装置泄漏的情况下,也能够确保安全性,不需要对冷却装置的结构部件的配置进行特别的研究。另外,也不需要防爆对策等特别的对策。所以,将利用振动能量生成雾的类型的喷雾部301应用于使用可燃性制冷剂的冷藏库,不会损害家庭用冷藏库的安全性。
另外,在本实施方式中,通过在蔬菜室114内设置水收集板321,可以不从外部供给水。再者,通过设置加热部328和送风部317,能够调整结露量。同时,通过改变水收集板321的温度,能够调整库内湿度。
另外,喷雾部301具有形成为大致圆锥状的喇叭状部310、和压电元件311。压电元件311与喇叭状部310的一个端面连接,并形成为一体。包含这样的超声波雾化方式的喷雾部301的喷雾装置302是小型的,并且以低输入进行运转。所以,能够将其配置在蔬菜室114内。近年来主流的冷藏库被设计成,在维持外形尺寸与以往相同的情况下,进一步扩大库内容量。这样,使用者的使用方便性提高。因为喇叭状部310是小型的,所以也能够应用于这样的冷藏库,喷雾装置302能够以不延伸至库内的方式进行配置。因此,能够使库内容量的减少为最小限度,同时设置低输入且高输出的喷雾装置302。由此,在实现节能的同时,能够提高冷藏库的使用方便性。另外,喷雾装置302的设置制约少,能够使冷藏库的设计具有自由度。另外,因为喷雾装置302是低输入的,所以可抑制消耗电力的增加,并且控制基板实现小型和低成本。
另外,因为喷雾装置302自身的发热量受到抑制,所以蔬菜室114内的温度上升被抑制。并且,发生缺水时的异常发热也被抑制,所以喷雾部301寿命变长、可靠性提高。再者,因为冷藏库内是低温气氛,所以,喷雾部301的温度上升受到抑制。结果,喷雾部301寿命变长。
另外,通过设置供水部303,可有效且稳定地向喇叭状部310的前端供给水。从而,喷雾部301总是稳定地喷雾,向蔬菜室114内喷雾。另外,通过稳定地向喇叭状部310的前端供给水,可防止喇叭状部310前端缺水,喷雾部310寿命变长、可靠性提高。
另外,供水部303设置在供给部304的附近。所以,可利用供水部303从供给部304向喇叭状部310的前端补充水。由此,高效地向蔬菜室114内喷雾。另外,因为供给部304和供水部303位于邻近的位置,所以,从供给部304到喇叭状部310前端的水的路径紧凑而且简单,设计自由度提高。
另外,供给部304具有用于收集水、使蔬菜室114内的空气中的水分结露的水收集板321。由结露生成的结露水汇集在供给部30中,由供水部303将汇集的结露水总是稳定地供给喇叭状部310的前端。从而,高效地向储藏空间内喷雾。
另外,因为喇叭状部310由高热传导性的材料构成,所以在喇叭状部310的前端部产生的热向喇叭状部310的整体扩散。另外,因为冷藏库内是低温气氛,所以,喷雾部301的温度上升受到抑制。结果,喷雾部301寿命变长,可靠性提高。
另外,喇叭状部310的前端部被配置在振动的腹部附近,设置在与压电元件311接合的面一侧的凸缘部312被配置在振动的节部附近。于是,凸缘部312与冷藏库主体直接或间接连接。因此,在振动的振幅大的腹部、即喇叭状部310的前端部,能够使向喇叭状部前端补充的液体高效地雾化。另一方面,因为振动的节部、即凸缘部312振幅小,所以,向与其直接或间接连接的冷藏库的振动传播降低。
另外,在使喇叭状部310的喷雾前端部310A与凸缘部312之间的长度为1/4波长的模式中,压电元件311振动。由此,在产生雾的喷雾前端部310A和凸缘部312之间,有一个振动的腹部和节部。这样,因为不存在多个振动的腹部和节部,所以能够实现喇叭状部310的小型化。另外,因为能量的分散和衰减降低,所以效率提高。另外,小型的喇叭状部310的设置制约少,能够得到设计自由度,并且储藏空间增大。具体地说,能够使喇叭状部310的长度为1mm~20mm。只要这样使喇叭状部310缩小,就可得到冷藏库的设计自由度、且储藏空间增大。
另外,通过在喷雾装置302的周边设置罩部件306,使用者不会直接接触喷雾装置302的内部,所以,安全性提高。
此外,虽然说明了将喷雾部301的喇叭状部310形成为大致圆锥状的例子,但是并不限定于此。只要是使前端的振动的振幅增大的形状,就能够得到同样的效果。例如,作为从压电元件311侧向前端逐渐变细的形状,喇叭状部的前端部可形成为大致长方形形状。在该结构中,喷雾面积比圆形形状大,所以,喷雾范围扩大,扩散性提高。
(实施方式5)本发明的实施方式5的冷藏库,将以上说明的实施方式3、实施方式4的各喷雾装置120、302组合使用。从雾的粒径和喷雾量的观点出发,说明这样的复合型喷雾装置的农药除去效果、蔬菜室114中储藏的农作物的保鲜效果、和蔬菜室114内的壁面的防污效果。
图20是表示本实施方式的雾的粒径和喷雾量、与各自的效果的相关关系的图。将70L的蔬菜室保持在5℃的气氛温度下,用静电雾化方式和超声波方式,改变雾的粒径和喷雾量,图20表示表现出各自效果的范围。调整实施方式3、4的喷雾装置120、302的能力,使其覆盖某个范围,在该范围内,两者的粒径和喷雾量的适当数值重叠。根据图20可知,实施方式3、4的雾的粒径和喷雾量、与各自的效果,有各自适宜的范围,相互间有偏差。
首先,说明蔬菜的复苏。为了提高蔬菜的水分含量,如果粒径不为气孔在最大打开状态下的气孔直径以下,则喷出的雾无法物理地进入蔬菜的内部。气孔位于蔬菜的表面,进行水分的调节。另外,根据实验的结果,在不照射光的情况下,如果雾的粒径为细胞间隙宽度以下,则水分含量的复原率高。即,雾从细胞间隙活跃地进入蔬菜中,蔬菜的水分含量复原效果提高。相反,如果雾粒径过小,则雾与气孔的接触频率少,蔬菜的复苏率降低。
另一方面,需要使雾的喷雾量为将蔬菜室114内的相对湿度与蔬菜内部的湿度保持在平衡状态的量以上。但是,喷雾量过多时,蔬菜由于水腐等,品质降低。需要使喷雾量为不产生这样的状况的量以下。
另外,在带有静电的雾与蔬菜之间产生电位差,雾的蔬菜附着率提高。所以,在同一粒径的情况下,包含很多带有静电的雾的一方,即使喷雾量少,蔬菜的复苏率也高。
接着,对蔬菜表面的农药等的有害物质的除去进行说明。此外,在本实验中,使作为通常的蔬菜农药的马拉硫磷附着在蔬菜表面,在臭氧雾气氛中放置12小时。另一方面,使同等量的马拉硫磷附着在蔬菜表面,在非雾气氛的通常的蔬菜室中放置12小时。将它们分别放入笊篱中,用流水清洗10秒钟,以马拉硫磷的除去率比放置在非雾气氛的通常的蔬菜室中高50%以上的情况作为适当范围进行表示。
在雾的粒径为蔬菜的凹凸宽度以下、并且是具有扩散性的微细颗粒的情况下,农药除去效果高。如果粒径过小,则与农药的接触频率少,除去率降低。另一方面,与蔬菜的复苏同样,因为带有静电的雾与蔬菜的接触频率高,所以,带有静电的雾的比例越高,利用越少量的喷雾量即有除去效果。另外,在该情况下,不需要像蔬菜的复苏那样将雾供给至蔬菜的内部,雾的供给只限于蔬菜表面。所以,所需的喷雾量比蔬菜复苏时要少。另外,在相同喷雾量的情况下,由粒径引起的农药除去效果的差别几乎没有。除去效果的大小与其说是由喷雾量决定,不如说是由雾中的臭氧和OH自由基等具有分解能力的物质的量决定。利用静电雾化方式产生的雾,越变得微细,自由基的个数越增加。所以,含有很多带有静电的雾的一方,农药除去效果也提高。
接着,说明冷藏库库内的防污效果。如果在冷藏库的库内的壁面上到处都附着有雾的水颗粒,则可防止污垢物质直接附着在库内的壁面上。所谓冷藏库库内的防污效果就意味着这样的效果。在污垢物质这样隔着水颗粒附着在库内的壁面上的情况下,例如,只擦拭库内壁面就能够简单地使污垢落下,冷藏库内的清扫变得非常简单。
对于防污效果的确认,在充满各种粒径的规定喷雾量的雾的70L的蔬菜室114内,将污垢物质喷到作为一般的冷藏库内的树脂的ABS树脂上。其后,在一定时间后擦拭污垢时,不残留污垢物质的范围就是适当范围。
如图20所示,粒径为库内树脂的凹凸宽度以下、并且具有扩散性的微细颗粒,防污效果高。另外,在雾附着在库内壁面上时,作为水滴被眼睛看见的粒径,会产生结露,有可能引起库内食品的品质劣化。所以,需要使喷出的雾的粒径为如下的粒径,即附着在壁面上的雾成为眼睛看不见的水平的水滴。另外,喷雾量比蔬菜复苏或农药除去的喷雾量多。这是因为为了发挥防污效果,需要在壁面上到处附着水颗粒,需要喷出大量的雾。在由静电雾化方式产生雾的情况下,与农药等的除去效果同样,粒径越小,氧化分解能力高的自由基的个数越多。因此,认为雾的氧化分解能力提高,并且与污垢的接触频率提高,从而附着的污垢的分解效果提高。但是,如果粒径过小,则雾的壁面到达率降低,防污效果降低。
这样,根据雾的粒径与喷雾量的关系,能够得到冷藏库的库内的各种各样的有用效果。即,通过进行可实现多个希望得到的效果的喷雾,冷藏库的使用方便性进一步提高。
接着,说明这样使用复合型的喷雾装置时的雾粒径的适当范围。图21A是表示本实施方式的农药除去效果与雾的水粒径的关系的图。此外,在该实验中,也与实施方式3同样,使用10个附着有大约3ppm的马拉硫磷的迷你番茄。然后,使用由喷雾装置产生的雾进行连续24小时的喷雾处理后,用GC测定迷你番茄的残留马拉硫磷浓度,算出除去率。此外,此时的喷雾量是0.03g/h·L。
从图21A可看出,为了使农药除去率为50%以上,需要使雾粒径为0.003μm以上20μm以下。雾粒径为农作物的凹凸宽度以下、并且具有扩散性的微细雾颗粒,具有高的农药除去效果。因此,优选雾粒径为20μm以下。如果粒径过小、低于0.003μm,则认为与农药的接触频率变少,除去率降低。
接着,说明这样使用复合型的喷雾装置时的雾粒径、喷雾量的适当范围。图21B是表示本实施方式的农药除去效果与喷雾量的关系的图。
图21B是表示本发明的实施方式5中的农药除去效果相对于喷雾量的特性的图。在本实验中,向70L的蔬菜室114内喷射粒径0.5μm的雾。喷雾时间与图21A的实验同样,为12小时。
从图21B可看出,喷雾量越多,作为农药的马拉硫磷的除去效果越高。为了使马拉硫磷除去率为50%以上,需要将喷雾量控制在0.0007g/h·L以上。该下限值与由静电雾化方式喷雾时得到的值相同。即,下限值由静电雾化方式决定。
另一方面,喷雾量超过0.14g/h·L时,虽然有农药除去效果,但是多余的水分附着在蔬菜表面,产生水腐,蔬菜的品质降低。但是,即使喷雾量超过0.14g/h·L,使蔬菜振动以使多余的水分落下等,只要能够防止水腐,也可以增加喷雾量。在这种情况下,从维持蔬菜品质的观点考虑,优选喷雾量为0.5g/h·L以下。这样,上限值由超声波振动方式决定。
(实施方式6)图22是本发明的实施方式6的冷藏库的截面图。图23是图22所示的冷藏库的喷雾装置附近的纵截面图。此外,图23还兼带有喷雾装置的控制系统的框图,并不是表示电压施加部409和控制部414的位置。
图22所示的冷藏库与图5所示的冷藏库的不同点,是在蔬菜室114的顶面的分隔板111B上设置的喷雾部431的结构。除此以外的基本结构与图5所示的冷藏库同样。
如图23所示,喷雾装置404具有静电雾化方式的喷雾部431。喷雾部431的外部轮廓由圆柱形的支架(holder)405构成。在支架405中设置有施加电极406。施加电极406的周围被保水部件407覆盖。保水部件407保持结露水,施加电极406直至球状前端都呈现含水状态。即,保水部件407是保持向构成喷雾装置404的施加电极406供给的水的保持部。保水部件407在支架405的库内侧开口部配置有中心具有开口的板状的相对电极408。安装相对电极408,使得其与施加电极406的前端保持一定距离。产生高电压的电压施加部409的负极侧与施加电极406电气连接,正极侧与相对电极408电气连接。
另外,在喷雾部431中配置有用于检测施加电极406的前端温度的温度检测部412。控制部414接收来自温度检测部412的信号等,进行预先确定的运算,使结构部件动作。在施加电极406的背面,设置有控制施加电极406的前端温度的加热部413。
分隔板111B主要由发泡苯乙烯等绝热材料构成,其壁厚为30mm左右,但是,在喷雾部431的背面,壁厚为5mm~10mm。
以下,对以上结构的冷藏库的动作和作用进行说明。
如实施方式4所述,利用来自蒸发器102的冷气的分配等,将蔬菜室114调整为4℃~6℃,通常没有库内温度检测部。另外,由于来自食品的水分蒸发和由门的开关引起的水蒸气的进入,蔬菜室114内部为高湿。
在该冷藏库中,在蔬菜室114的上面设置有切换室113或未图示的制冰室。这些储藏库内的温度比蔬菜室114内的温度低。设置有喷雾部431的分隔板111B的厚度,需要用于将施加电极406冷却的冷却能力。所以,设置有喷雾部431的地方的壁厚,构成为比其它的部分薄。在此,如果使施加电极406的前端温度为露点温度以下,则施加电极406附近的水蒸气在施加电极406上结露,可靠地生成水滴。具体地说,控制部414利用设置在施加电极406附近的温度检测部412,掌握前端温度的状态。于是,控制部414对加热部444进行接通/断开(ON/OFF)控制或工作(Duty)控制,将施加电极406的前端温度调整为露点温度以下。这样,高湿空气中含有的水分在施加电极406上结露,此外,虽然未图示,但是如果库内具有库内温度检测部和库内湿度检测部等,则控制部414能够利用预先确定的运算,严格地根据库内环境下的变化,计算出露点温度。另外,在施加电压406的前端结有冰或霜的情况下,控制部414利用加热部444使施加电极406前端的温度上升至溶解温度。这样,在喷雾部431中,通过将霜或冰融解,适度地生成水。
施加电极406被保水部件407覆盖。所以,施加电极406的表面呈一定量的含水状态。在该状态下,以施加电极406为负电压侧、以相对电极408为正电压侧,电压施加部409向该电极间施加高电压(例如4.6kV)。此时,在距离被设定为例如3mm的电极间产生电晕放电。由此,施加电极406上的水从前端开始雾化,成为微细雾。该雾带有电荷,是眼睛看不见的小于1μm的纳米水平的粒径。另外,随着雾的生成,产生臭氧和OH自由基等。产生的臭氧立即与雾混合,生成低浓度的臭氧雾。
产生的臭氧雾被喷至蔬菜室114内。该雾带有负电荷。蔬菜室114内收纳的农作物通常带有正电荷。因此,雾易于聚集在农作物表面。另外,在雾中含有臭氧和OH自由基等。因此,雾将农作物表面附着的农药或蜡等的有害物质氧化分解。
如以上所述,在本实施方式中,作为具有冷却装置的收纳库的冷藏库,包括将绝热箱体110绝热分隔而形成的作为储藏室的蔬菜室114。另外,该冷藏库具有喷雾装置404,喷雾装置404包括喷出液体的雾的静电雾化方式的喷雾部431。喷雾部431包括向水施加电压的施加电极406、配置在与施加电极406相对的位置上的相对电极408、以及向施加电极406和相对电极408之间施加电压的电压施加部409。
于是,以比较低温的其它储藏室的低温冷气作为冷却源,利用热传导将施加电极406冷却。另外,利用加热部413将施加电极406的前端温度调整至露点温度以下。由此,空气中的水分可靠地在施加电极406的前端结露。即,施加电极406作为从蔬菜室114内的空气中提取出水分的水收集部起作用。
另外,利用在施加电极406背面设置的加热部413对施加电极406的前端温度进行微调整,由此可调整结露的产生量。另外,即使在施加电极406的前端生成冰或霜,通过利用加热部413将其融解,能够使其变为水滴,从而可靠地向喷雾部431内供给水。
另外,通过保水部407将收集的水供给施加电极406的前端。然后,由施加电极406使该水成为微细雾并向蔬菜室114内喷出,使其可靠地附着在农作物表面。此时,利用与产生雾同时产生的臭氧或OH自由基,除去农作物表面的有害物质。另外,蔬菜室114内的除臭和防污等的效果提高。
另外,在保水部件407自身中,风难以直接流动。从而,可防止保水部件407干燥,保水部件407向施加电极406的前端供给充足的水。
另外,喷出的雾被直接喷到蔬菜室114内的农作物上。因此,能够利用雾与农作物的电位差,使雾附着在农作物表面。从而,能以少量的水高效地除去农药等的有害物质。
再者,作为水收集部的施加电极406被设置为从喷雾部431的上部吊下来。因此,由施加电极406收集的结露水,利用重力向前端方向自然落下。由此,能够不利用泵或毛细管等送水部,廉价地向喷雾装置404供给水。
再者,在施加电极406的周围设置有保水部件407。由此,将结露水保持在施加电极406的周围,并适时地向施加电极406供给。而且,因为不使保水部件407振动,所以可防止由材料的收缩产生的劣化。
另外,结露水像自来水那样不含矿物质成分或杂质。从而,可防止由保水部件407的劣化或孔堵塞而引起的保水性的降低。
此外,在产生雾时也产生臭氧,通过喷雾装置404的接通/断开(ON/OFF)操作,调整蔬菜室114内的臭氧浓度。通过这样适当调整臭氧浓度,可防止由于臭氧过多而引起的蔬菜黄化等劣化,并且,蔬菜表面的杀菌、抗菌作用提高。
接着,说明更可靠地向喷雾部404中供给用于产生雾的水等液体的结构。图24是表示本实施方式的喷雾部附近的其它结构的纵截面图。
在构成蔬菜室114的顶面的分隔板111B上,从冷藏库的门400A侧朝向库内间隔里面,依次设置有储水罐425和喷雾部431。在储水罐425中储存有供给水426。在喷雾部431的周边设置有开有孔的罩部件501,使得食品或人不会接触到。这样,构成喷雾装置404A。
为了易于人进行拆装,储水罐425设置在蔬菜室114的门400A侧、即前面侧。在储水罐425内蓄积有用于向喷雾部431供给的供给水426。另外,为了将供给水426供给喷雾部431,设置有供水部441和供水路径442。供水部441例如是齿轮泵、压电泵或毛细管等,向喷雾部431的施加电极406的前端或其周围的保水部件407供给水。在此,给水量与向蔬菜室114内喷雾的量大致相等。此外,虽然在图24中未图示,但是与图23同样,设置有控制部414和电压施加部409。控制部414还控制供水部441的动作。
说明以上结构的喷雾装置404A的动作和作用。例如,在判断需要向蔬菜室114的喷雾时,控制部414首先使供水部441动作,利用供水路径442向施加电极406的前端供水。向蔬菜室114内喷雾的必要性,控制部414利用检测蔬菜室114内的湿度的蔬菜室湿度检测部(未图示)进行判断。或者,使用者进行判断,并利用喷雾装置404A的动作开关(未图示)传达至控制部414。向施加电极406的前端供给水时,电压施加部409在施加电极406和相对电极408之间施加高电压。由此产生的微细雾被喷向蔬菜室114内。
喷雾部431嵌入顶部的分隔板111B中设置的凹部420中。另外,喷雾部431设置在蔬菜室114的顶面内部,罩部件501设置在其周围。这样,使用者不会接触到喷雾部431,可确保安全性。另外,配置罩部件501,使得底面部501A在储水罐425的底面425A之上。这样构成的罩部件501不会影响可利用抽屉式的门400A前后移动的蔬菜容器228的移动动作。
在容器228内收纳有作为农作物的蔬菜。特别是在保存有绿色的食叶蔬菜或水果等时,这些蔬菜水果通常大多由于买回来的路上的蒸发或保存中的蒸发而在呈现稍为变蔫的状态下被收纳。这些蔬菜水果通常带有正电荷,喷出的带有负电荷的微细雾易于聚集在蔬菜表面。所以,喷出的雾使蔬菜室114内成为高湿,同时附着在蔬菜水果的表面上。这样,雾就电气附着在带电的农作物的表面以及库内壁面上。进一步,雾进入农作物表面的微细的凹部中,利用其内压能量使残留农药或蜡等的有害物质浮起。
另外,通过利用静电雾化方式生成微细雾,产生雾的同时产生微量的臭氧。该臭氧立即与雾混合,生成低浓度的臭氧雾。另外,通过使雾带有静电,雾中的水分子自由基化,生成OH自由基。因此,除了臭氧的氧化能力以外,还利用OH自由基的氧化能力,浮起的有害物质由于臭氧的氧化分解作用而被氧化分解除去。或者,雾利用电气作用进入至农作物表面的微细的凹部中之后,雾中含有的臭氧或OH自由基与残留农药或蜡发生化学反应。因此,残留农药或蜡的亲水性提高,被吸收进雾中,并被分解除去。
如以上所述,在本实施方式中,在位于冷藏库的蔬菜室114的顶面的分隔板111B上,在门400A侧设置有储水罐425。即,从使用者的位置看,储水罐425设置在前面侧。特别地,在储水罐425是可装卸式的情况下,易于进行水的更换、添加、和清扫,使用的方便性提高。另外,因为喷雾部431设置在储水罐425的内侧,所以可防止使用者与喷雾部431、特别是喷雾前端部406A接触,安全性提高。再者,喷雾部431的下端431A配置在储水罐425的内侧、且位于作为储水罐425的下端面的底面425A之上。因此,使用者难以看见喷雾部431,不会损害蔬菜室114内的美观。另外,因为使用者难以接触喷雾部431,所以使用者的安全性进一步提高。另外,因为可防止食品或人与喷雾部431接触,所以可防止由于外力引起的可靠性的降低。
另外,为了进一步抑制喷雾部431向库内的突出,喷雾部431被嵌入在分隔板111B上设置的凹部420中。由此,将喷雾部431设置在蔬菜室114内,而不会减少库内容积,且不会对食品的收纳造成影响。
再者,通过设置覆盖喷雾部431的罩部件501,进一步防止食品或人接触喷雾部。
另外,在用罩部件501覆盖喷雾部431的情况下,底面部501A配置在储水罐425的底面425A之上。由此,防止库内容积减少,并且设置有喷雾部431的蔬菜室114的美观与安全性进一步提高。
此外,虽然说明了可装卸式的储水罐425,但是,并不限定于此。储水罐425也可以是固定式的,例如可以自动地供给自来水、或利用冷藏库内的水分生成的储存水等。在这样类型的喷雾装置404A中,如上所述,也优选将喷雾部431配置在储水罐425的内侧。由此,可防止使用者与喷雾部431接触,安全性提高。再者,通过将喷雾部431配置在储水罐425的内侧且在储水罐425的底面425A之上,从使用者的位置难以看见喷雾部431。因此,能够在不损害蔬菜室114内的美观的情况下,将喷雾部431设置在蔬菜室114内。另外,因为使用者更难以与喷雾部431接触,所以使用者的安全性进一步提高。而且,因为可防止食品或人与喷雾部431接触,所以可防止由于外力引起的可靠性的降低。
此外,在本实施方式中,使用静电雾化方式的喷雾部431,但是,并不限定于此。也可以使用超声波雾化方式等其它方式的喷雾部。在该情况下,通过使储水罐425与喷雾部的配置关系与上述同样,冷藏库的使用方便性和安全性提高。
在以上所述的图24的结构中,通过使施加电极406的周边更加高湿,可抑制施加电极406与相对电极408间的空气放电。因而,产生的臭氧浓度降低,在应用于家庭用冷藏库等的情况下,能够确保使用者的安全性。
另外,在图24的结构中,喷雾部431被嵌入在分隔板111B上设置的凹部420中,分隔板111B的厚度比其它的部分薄。因此,施加电极406的前端容易被冷却而结露。但是,如图24所示,在设置储水罐425向施加电极406供水的情况下,也可以不在施加电极406上结露。在该情况下,可以不设置温度检测部412和加热部420等。
另外,在图24的结构中,使用静电雾化方式的喷雾部431,但在使用超声波雾化方式的喷雾部的情况下,尤其是喷雾前端部干燥时,喷雾部会变热。因此,可靠性有可能降低。在这样使用超声波雾化方式的喷雾部的情况下,通过在供水部441的动作后驱动喷雾部,可防止喷雾前端部的干燥,喷雾装置的可靠性提高。
(实施方式7)图25是本发明的实施方式7的冷藏库的蔬菜室附近的正面图。图26是图25所示的冷藏库的蔬菜室附近的A-A线的纵截面图。
在蔬菜室114内配置有储藏蔬菜或水果用的容器228A。在冷藏库的外部轮廓上设置有保持容器228A的导轨部件512。由导轨部件512保持的容器228A随着门400A的开闭而前後移动。再者,在蔬菜室114内,设置有大致与容器228间隔开的特定容器228B。只在门400A关闭时,盖514基本将特定容器228B密闭。盖514由透光性材料构成,在一部分上开有孔。此外,在图26中,将容器228A省略。如图26所示,盖514在门400A侧被配置在特定容器228B的内侧,在库内里侧被配置在比特定容器228B更靠近里侧的位置。
在特定容器228B内,在门400A侧、即前面侧设置有可装卸的储水罐425C。在分隔板11B的内侧安装有喷雾部431。静电雾化方式的喷雾部431的基本结构与实施方式6同样。在盖514的靠近喷雾部431的位置,设置有比喷雾部431的外形尺寸稍大的孔517。利用该结构,盖514相对于喷雾部431的移动被限制。盖514随着门400A的开闭而移动。在门400A关闭时,盖514大致将特定容器228B密闭。另外,在门400A打开时,从特定容器228B离开,被保持在主体侧。因此,在打开门400A的状态下,特定容器228B的上面开口。
在容器228A内设置有保持特定容器228B用的保持部515。保持部515保持在特定容器228B上设置的突起部516。在图26中,特定容器228B被设置至库内内侧,在特定容器228B的进深比容器228A的进深充分小的情况下,保持部515作为拉出特定容器228B时的导轨起作用。
在分隔板111B上设置有照射部523和扩散板524。照射部523将特定波长的光照射到特定容器228B内,对特定容器228B内的农作物施加影响。扩散板524覆盖均匀地照射特定容器228B内、且作为光源的照射部523。照射部523设置在特定容器228B上方的投影面上,通过透明的盖514将光照射到特定容器228B内。
说明如上所述的结构的冷藏库的蔬菜室114的动作和作用。蔬菜室114内收纳的食品近年来变得多种多样。例如,也收纳PET瓶(petbottle)那样不需要高湿的饮料,其用途千差万别。在蔬菜中,菠菜等带叶的蔬菜比较喜好低温高湿,但是香菇等不喜好高湿度。另外,马铃薯等谷物喜好10℃左右。在本实施方式中,特定容器228B设置在容器228A的内部。由此,提供与保存的蔬菜相应的空间环境。另外,特定容器228B和盖514形成大致密闭的空间。于是,利用来自储水罐425C的水的蒸发,特定容器228B内变为高湿,从而,成为适合于保存菠菜等带叶蔬菜的空间。
在该高湿化的特定容器228B的内部空间的上部,设置有喷雾部431的至少喷雾前端部406A。喷雾部431和储水罐425C利用高湿的空气中的水蒸气,构成以静电雾化方式喷雾的喷雾装置。如实施方式6所述,喷雾部431利用来自背面的冷却而进行结露。因此,在分隔板111B的安装有喷雾部431的部分设置有凹部420A。利用这样的结构,喷雾部431产生带有电荷的眼睛看不见的纳米水平的微细雾,向特定容器228B内喷雾。如上所述,由静电雾化方式产生的微细雾,在产生时带有电荷,同时产生微量的臭氧和OH自由基。因此,除了臭氧的氧化能力以外,还具有OH自由基的氧化能力。雾浸透至蔬菜或水果表面的微细的凹部中,利用其内压能量使残留农药或蜡等的有害物质浮起。然后,利用臭氧的氧化分解作用,将其氧化分解除去。根据情况不同,雾利用电气作用进入至蔬菜或水果表面的微细的凹部中,与残留农药或蜡发生化学反应,提高残留农药或蜡的亲水性,将其吸收进雾中,并分解除去。
这样,至少喷雾前端部406A被设置在特定容器228B内。从而,可对收纳有农作物的特定容器228B直接地喷出雾颗粒。这样,喷雾前端部406A与农作物的距离短。因此,例如与在特定容器228B外喷雾后再送入特定容器228B内的情况相比,可防止雾颗粒的气化。另外,因为浮游状态的雾的流速提高,所以雾向农作物表面的附着率提高。
另外,喷雾前端部406A被设置在特定容器228B内,并且储水罐425C被设置在与设置有喷雾部431的区域不同的另一个区域中。即,储水罐425C被设置在绝热箱体110的、与喷雾前端部406A不同的另一个区域内,是保持水、并向喷雾部431供给水蒸气的供给部。在该结构中,储水罐425C的配置位置不受喷雾部431的配置位置的影响。因此,可以将储水罐425C设置在易于向储水罐425C内补充水或进行储水罐425C内的清扫的任意位置。这样,使用者的使用方便性提高。
通过这样分离配置喷雾部和储水罐,使用者的使用方便性提高。即使使用本实施方式的喷雾部431以外的、例如超声波雾化方式的喷雾部或其它的雾化方式,也同样可以得到这样的效果。
另外,在同一蔬菜室114的内部,配置有作为喷雾区域的特定容器228B和不进行喷雾的容器228A。由此,提供与保存的蔬菜相应的空间环境。因为使用者能够根据用途使用蔬菜室114的功能,所以冷藏库的使用方便性和农作物的保存性大幅提高。
照射部523设置在通过喷雾而成为高湿度的特定容器228B的外部。由此,照射部523的周边不会成为高湿度,可防止由于在照射部523上结露而造成的可靠性的降低。
在图25和图26中,照射部523设置在特定容器228B的上侧。位于照射部523与特定容器228B之间的盖514,由透光性的材质构成。也可以将照射部523设置在这以外的位置。例如,可以将照射部523设置在特定容器228B的侧面部或底面部。在那样的情况下,至少位于照射部523与特定容器228B内的空间之间的部分的特定容器228B的材料由透光性材料形成。由此,即使将其配置在特定容器228B的上侧以外的位置,照射部523也能够向特定容器228B内的蔬菜进行光照射。
接着,说明照射部523的种类及其效果。首先,对照射部523产生包含400nm以上500nm以下的波长的蓝色光的情况进行说明。这种情况下,例如由蓝色发光二极管(LED)构成照射部523。由此,通过盖514被光照射的特定容器228B内的农作物蔬菜,由于光刺激,生态活动受到促进。具体地说,气孔打开,吸收表面附着的雾或水滴。由此,农作物的水分含量和重量增加,维持新鲜性。
另外,在照射部523中使用具有包含紫外线区域的波长的LED。在该情况下,喷出的雾被杀菌,并且食物表面也被杀菌。所以,食品的安全性提高。通过照射这样的光,特定容器228B内的壁面和食物表面附着的微生物的增殖功能被钝化。从而,由微生物引起的食物变色、腐烂味、以及储藏品表面产生白毛变慢。即,可保持特定容器228B内部的卫生性。再者,因为使用发热量小的LED作为光源,所以可防止蔬菜室114内的温度上升,食品的保存性稳定。
另外,在特定容器228B内,也可以不使喷雾部431动作,只使照射部523动作。例如,蘑菇类和鱼类中含有很多骨骼和牙齿成长中不可或缺的维生素D的前驱物。如果在保存它们时照射紫外线,则分子被激发,转换成维生素D。由此,通过将包含紫外光的光源设置在蔬菜室114内,与保存前相比,能够提高蔬菜室114内的特定的食品、例如干沙丁鱼的维生素D的含量。保存的食品并不限于农作物,通过这样保存以熟化为目的的食品,能够将特定容器228B作为具有熟化功能的空间进行利用。
如以上所述,在本实施方式中,在蔬菜室114内设置有特定容器228B和用于将其空间大致密闭的盖514。在特定容器228B内的前面设置有储水罐425C,在其内面上方具有喷雾装置所包含的静电雾化方式的喷雾部431。由此,向特定容器228B内保存的农作物上喷雾,有害物质浮起,并被分解。另外,通过只对喜好高湿环境的农作物进行加湿,能够提高保鲜性。这样,在蔬菜室114内部,能够根据蔬菜的种类提供最合适的保存环境。
另外,由照射部523照射选择了特定波长的光,并且由喷雾部431适量地喷出能够通过气孔的微细雾。由此,特定容器228B内的保存环境的幅度进一步扩大,能够提供与使用者的需求和保存的蔬菜相应的空间环境。
另外,由于在特定容器228B的前面设置有储水罐425C,所以水的补充、水的更换、添加、和清扫容易等,使用方便性好。另外,因为喷雾部431被设置在人难以接触的内面上方,所以安全性高。而且,在门400A关闭的状态下,盖514覆盖喷雾部431,因此,不直接暴露在蔬菜室114内的冷气下,安全性进一步提高。
另外,由于照射部523被设置在特定容器228B之外,所以由结露而引起的配线不良等的可能性降低,可靠性提高。另外,盖514由透光性材料构成,由此,能够将照射部523发出的光照射到容器内。
另外,在本实施方式中,特定容器228B形成大致密闭的空间。因此,即使在使用异丁烷或丙烷等可燃性制冷剂作为对蔬菜室114等储藏室内进行冷却的冷却装置制冷剂的情况下,也是安全的。即,在万一制冷剂泄露的情况下,因为特定容器228B内大致被密闭,所以不会达到可燃浓度。另外,如果将喷雾部431配置在上部,则尤其在使用比重比空气大的可燃性制冷剂的情况下,不会损害安全性。这是因为万一制冷剂泄露的情况下,泄露的异丁烷会滞留在下部。
此外,照射部523除了产生蓝色光以外,也可以产生紫外线。在该情况下,能够对喷出的雾进行杀菌,并且能够对食物表面进行杀菌,能够提高食品的安全性。再者,如后述的实施方式那样,可促进附着在农作物上的有害物质分解。
此外,在本实施方式中,特定容器228B与蔬菜室114内的不进行喷雾的容器228A相邻设置,但是,例如,有时也可以将特定容器228B设置在不进行喷雾的容器228A的上部、且使其高度为蔬菜室114的高度的一半左右。在该情况下,在取出在不进行喷雾的容器228A中收纳的蔬菜时,可以使位于上部的特定容器228B向后方滑动,通过使被喷雾的特定容器228B的深度变浅,可避免雾积存在底部,从而能够使雾到达蔬菜的各处。另外,在将一般的蔬菜放入蔬菜室114内时,能够利用两层的容器有效地使用蔬菜室114的上下的空间,使蔬菜室114的收纳量增加,从而可使使用者的使用方便性提高。
(实施方式8)图27A是本发明的实施方式8的冷藏库的侧截面图。图27B是表示图27A所示的冷藏库的概略的部分正面图。
该冷藏库与实施方式3的图5所示的冷藏库的不同点在于具有实施方式1的图1所示的喷雾部76,代替喷雾部123。喷雾部76设置在蔬菜室114的顶面上。另外,向喷雾部76供水的储水罐72A设置在冷藏室112内的背面侧。此外,如图27B所示,在切换室113的旁边设置有制冰室227。供水路径73从储水罐119向制冰室227和蔬菜室114供给水。除此以外的基本结构与图5所示的冷藏库同样。
在以上结构的冷藏库中,利用供水路径73从制冰用的储水罐72A向喷雾部76输送水。所以,即使不设置专用的罐,也可以向喷雾部76供给水。因为在作为与蔬菜室114不同的另一个储藏室的冷藏室112内设置有储水罐72A,所以不会影响蔬菜室114的内部容积,不会影响食品收纳量。另外,使用者需要从外部供给水的某个罐,是制冰用和喷雾用的,是一个。由此,与另外设置一个喷雾专用的储水罐的情况相比,能够减少使用者供给储存水的麻烦。另外,能够降低储水罐72A的断水的可能性。
此外,在本实施方式中,设置有储水罐72A,将从外部供给的储存水供给喷雾部76。除此以外,可以使用某种方法将蔬菜室114内的空气中含有的水分提取出来并供给喷雾部76。例如,可以将喷雾部76配置在蔬菜室114的里侧,设置实施方式4中说明的供给部304。这样,如果使用冷藏库的除霜水或库内的结露水等能够确保储存水,则可省去使用者从外部供给储存水的麻烦,使用方便性进一步提高。
另外,在本实施方式中,喷雾部76的供水路径73从储水罐72A吸取水,然后分支,向制冰室227和蔬菜室114两室中供水。所以,部件数目少,能够以简单的结构向两室内供水。
此外,制冰用的储水罐72A还兼用作喷雾用,所以可以设置制冰室227用、蔬菜室114用的各自独立的供水路径。在这种情况下,可以在与各自的需要相应的定时,随时进行水的补充。例如,在两室同时需要供水时,可以任意地供给水。
另外,通过将喷雾部76配置在蔬菜室114顶面的内侧,即使在将储水罐72A兼用作制冰用的情况下,也能够在冷藏库的内侧构成供水路径73。例如,在能够将供水路径73拆下进行清洗的结构的情况下,可以将供水路径73形成为短的、大致垂直状的简单的路径。因为这样简单地构成,所以供水路径73易于清洗,卫生性高。另外,通过将喷雾部76配置在蔬菜室114顶面的内侧,可防止喷雾部76与库内收纳食品的接触。因此,可防止喷雾前端部附着污垢,喷雾前端部的喷雾能力的寿命变长。另外,由于使用者不容易与其接触,所以使用者的安全性提高。
此外,与实施方式6同样,通过在喷雾部76向蔬菜室114内露出的部分上设置罩(cover),防止污垢附着的效果和安全性进一步提高。
(实施方式9)图28、图29是本发明的实施方式9的冷藏库的蔬菜室附近的侧面截面图和正面截面图。图30是表示图29中的A-A截面的主要部分截面图,图31是表示B-B截面的主要部分截面图。图32是表示在本实施方式中喷射的雾的粒径分布比例的图。
在该冷藏库的绝热箱体617内,设置有蔬菜室114和储藏室619、620。蔬菜室114的前面开口部被闭塞,使得不从门400A流入外部空气。
在蔬菜室114内部的背面和底面上设置有循环导管624。在循环导管624和绝热箱体617之间形成有循环风路625。在循环风路625内,在位于蔬菜室114的背面的部分,设置有喷雾的喷雾部626。另外,在喷雾部626的上方配置有扩散部627。喷雾部626例如是在先前的实施方式中公开的任一个喷雾部。或者,也可以是通常的喷雾器。扩散部627例如是送风扇。在循环导管624的垂直面上部设置有多个喷出口628。另一方面,在底面上设置有多个吸入口629。
循环风路625、构成循环风路625的循环导管624、设置在循环导管624上的喷出口628和吸入口629、以及扩散部627,构成循环部630。另外,选择雾的粒径的选择部631由扩散部627和喷雾部626构成。选择部631也是喷雾装置。
在喷雾部626的下方,设置有从循环风路625向绝热箱体617外排出剩余的水的排水管632。在蔬菜室114的顶面和循环导管624的底部,分别设置有温度传感器633、634。在循环导管624的底部设置有对蔬菜室114的下部进行加热的加热器638。
在门400A上设置有左右两对在蔬菜室114内延伸的板状的滑轨635,以载置食品收纳容器(以下称为容器)636。门400A利用滑轨635沿水平方向拉出以进行开闭。喷出口628位于比容器636的外边缘部高的位置,使得雾一定会进入容器636内。另外,在容器636的底面上,设置有多个通气口637。
说明以上结构的冷藏库的动作和作用。在蔬菜室114的上下配置有被设定为比蔬菜室114低的温度带的储藏室619、620。蔬菜室114利用这些储藏室619、620被自然地冷却。
将门400A向跟前方向水平地拉出,将农作物放入容器636后,关闭门400A,此时,利用门开放检测部(未图示)检测出门关闭状态,喷雾部626开始喷雾。喷出的雾利用配置在喷雾部626上方的扩散部627向上方上升,穿过喷出口628向蔬菜室114内扩散。
喷雾部626例如可以使用利用超声波将水微粒子化后进行喷雾的装置。喷出的雾的粒径如图32所示进行分布。为了使雾扩散至蔬菜室114内的各处,例如,认为可以使蔬菜室114内的雾的滞空时间尽量长。这样的话,可利用空气的循环可靠地进行扩散。为了延长蔬菜室114内的雾的滞空时间,需要使雾的粒径比较小。如图32所示,例如,在要得到某种效果的情况下,只要取出与该效果相对应的规定的粒径X以下的水颗粒,并进行扩散喷雾即可。即,例如为了除去蔬菜室114内收纳的农作物表面的有害物质,只要如实施方式5所述有选择地取出粒径为0.003μm以上20μm以下的雾即可。
在由喷雾部626喷出的雾中,粒径超过X的颗粒利用其自重,落到下方。所以,粒径X以下的比较轻的颗粒利用扩散部627而上升。由此,能够有选择地提取出一定的粒径以下的雾颗粒。此外,能够自由地设定期望的粒径X,能够通过喷雾部626的运转状态、扩散部627的运转状态、以及喷雾部626与扩散部627的距离而进行调整。所谓的运转状态是指,例如在喷雾部626使用超声波振动方式的喷雾装置的情况下的振动频率、在扩散部627使用送风扇的情况下的风扇转数。另外,将落到下方的超过粒径X的雾从排水管632排出到蔬菜室114外。
因为喷出口628位于容器636的上方,所以,喷到蔬菜室114内的雾从容器636的上方、即所收纳的农作物的上方落下。喷出的雾穿过容器636与农作物的间隙、或农作物与农作物的间隙而落到下方。在此,多个喷出口628的端部间的距离被设定为与容器636的横向宽度同等程度的尺寸。因此,抑制了横方向上的雾的浓度分布不均衡。
在容器636的底面上设置有多个通气口637。容器636内的雾从通气口637落到蔬菜室114的下部。所以,雾凝集而成的水不会在容器636内停留,底部不会积存有水。此外,在本实施方式中,在底面上设置有通气口637,但是不仅在底面上,也可以设置在容器636的侧壁面上。
通过通气口637后的雾,由吸入口629返回到循环风路625内,其一部分利用扩散部627再次被喷入蔬菜室114内。另外,一部分变为大的水滴,从排水管632排出到蔬菜室114外。为了高效地进行该排水,如图28所示,优选将循环风路625的下部设置为向排水管632倾斜。此外,如果将吸入口629和通气口637实质上设置在同一位置并连通,则循环的阻力小,效果好。
此外,为了使容器636内的雾的分布最优化和更均匀,调整扩散部627的运转状态,或调整喷出口628、通气口637、和吸入口629的位置和面积是有效的。
此外,需要连续地向喷雾部626供给水。这可以采用设置储水罐定期地补充水的方法,或可以构筑将储藏室内的水分结露回收的水回收结构。这些结构在先前的实施方式中已经进行了说明。另外,也可以同时使用储水罐和水回收结构。
在夜间等门400A不开闭的情况下,湿度的降低程度缓慢,可以停止喷雾一定时间。在该情况下,如果由未图示的门开放检测部检测出门关闭后已经过一定时间,则停止喷雾部626的运转和扩散部627的运转。同时,向设置在循环导管624上的加热器638通电,对蔬菜室114的下部加热。进行加热器638的加热控制,使得设置在蔬菜室114顶面的温度传感器633与设置在循环导管624底部的温度传感器634的温度差为某一定值。由此,在蔬菜室114的上部和下部之间存在温度差,促进空气的自然对流。此外,加热器638只要是在大范围内、实质上均匀地发热的加热器即可,可应用线状加热器或薄板状加热器。另外,设定温度差的方法并不限定于使用加热器638。也可以将储藏室19的温度控制为比储藏室20的温度低。
如以上所述,本实施方式的冷藏库包括绝热箱体617、喷雾部626和扩散部627。绝热箱体617具有被绝热分隔的储藏室619、620和蔬菜室114。喷雾部626设置在蔬菜室114内,进行喷雾。扩散部627使喷出的雾扩散。喷雾部626和扩散部627构成喷雾装置。喷出的雾利用扩散部627向蔬菜室114内扩散喷雾,由此,蔬菜室114内的雾的浓度均匀化。由此,可高效地向农作物的周围供给雾。所以,将雾的喷雾量抑制为最小限度。因此,能够防止结露,并且能够同时进行农作物的有害物质的除去。
另外,在蔬菜室114内设置有雾循环部630。由此,进一步将雾供给至蔬菜室114内的各处,降低雾的喷雾量。另外,雾循环部630由循环风路625、构成循环风路625的循环导管624、设置在循环导管624上的喷出口628和吸入口629、以及扩散部627构成。因此,易于调整雾的循环量和分布,雾的喷雾量进一步降低。
另外,优选将喷出口628设置在比蔬菜室114内收纳的农作物高的位置。由此,总是从农作物的上方喷射雾,不论农作物的量为多少,向农作物全体供给雾。另外,优选将吸入口629设置在蔬菜室114内收纳的农作物的下方。由此,能够可靠地将雾供给至容器228C的底部。
另外,选择部631从由喷雾部626喷出的雾中选出一定的粒径以下的雾。由此,有选择地喷射微细的雾。因此,雾长时间积存在蔬菜室114内,并且分散,可靠地供给农作物。另外,选择部631通过将喷雾部626设置在扩散部627的下方而构成。由此,能够从喷出的雾中有选择地取出一定的粒径以下的轻颗粒,并向蔬菜室114内喷射。
另外,在本实施方式的冷藏库中,在蔬菜室114的上部和下部之间设置有温度差。由此,促进蔬菜室114内的空气的自然对流,喷出的雾易于扩散到蔬菜室114内。另外,喷雾部626和扩散部627可同时暂时停止,结构部件的可靠性提高。
(实施方式10)图33是本发明的实施方式10的冷藏库的蔬菜室的侧截面图。图34是该蔬菜室的侧截面图,图35是该喷雾装置的主要部分放大图。图36是表示图33所示的冷藏库的臭氧水雾的农药除去性能的图。
该冷藏库与实施方式3的图5所示的冷藏库的不同点,是在蔬菜室114的上部背面设置有喷雾装置21。除此以外的基本结构与图5所示的冷藏库同样。
喷雾装置21包括储存臭氧水的蓄水槽22、以喷射方式喷出臭氧水的喷雾喷嘴(以下称为喷嘴)23、和作为向蓄水槽22供给液体的供给部的储水罐72。喷嘴23构成喷雾前端部。蓄水槽22设置在绝热箱体110内,是保持作为液体的水的保持部。在蓄水槽22的上部设置有臭氧水供给口24。以高电压方式产生臭氧的臭氧发生体25设置在蔬菜室114的附近,与臭氧水路径27连结。在臭氧水路径27上设置有从储水罐72配设管路的水供给路径28。另外,在喷嘴23的前端附近设置有用于施加高电压的环状电极29和电源30。喷嘴23、电极29和电源30构成喷雾部。另外,储水罐72设置在绝热箱体110的、与作为设置有喷雾前端部的区域的蔬菜室114不同的区域的冷藏室112内。
说明以上结构的喷雾装置21的动作和作用。首先,由臭氧发生体25生成臭氧气体。从储水罐72经由水供给路径28供给的水与生成的臭氧气体混合,形成臭氧水。该臭氧水经过臭氧水路径27,由臭氧水供给口24供给蓄水槽22内,进行蓄积。蓄水槽22内的臭氧水利用喷嘴23形成雾,被喷射到蔬菜室114内。此时,由电源30向设置在喷嘴23的前端附近的环状电极29施加高电压。由此,使由喷嘴23喷出的臭氧水雾带有静电。
图36表示该结构的、番茄附着农药的臭氧水雾的除去效果。实验按照以下的方法进行。将附着有3~5ppm浓度的马拉硫磷的迷你番茄保存在蔬菜室114内。此时,利用在20分钟间隔中进行10秒钟喷雾的间歇喷雾,进行12小时的臭氧水雾喷雾。利用气相色谱法测定这样的喷雾处理后的迷你番茄上残留的马拉硫磷浓度,算出除去率。此外,为了进行比较,对同样地附着马拉硫磷、保存在没有喷雾装置的蔬菜室中的迷你番茄,同样地测定马拉硫磷浓度。
如图36所示,比较实验中的除去率为20%,而进行了喷雾的情况下的除去率为40%,显示出大约2倍的除去效果。
如以上所述,在图33~图35所示的结构中,在蔬菜室114附近混合臭氧和水生成臭氧水,利用喷雾装置21将由该臭氧水形成的带有静电的雾,向蔬菜室114内喷射。由此,喷出的微细雾均匀地附着在蔬菜室114壁面和蔬菜或水果的表面上,雾进入壁面、蔬菜或水果表面的微细的孔中。使微细的孔内部的污垢或有害物质浮起,因此,污垢或有害物质的除去效果提高。另外,在提高蔬菜表面的有害物质的氧化分解效果的同时,蔬菜的保湿性也提高。
另外,通过使臭氧雾带有静电,臭氧雾中的水分子自由基化,生成OH自由基。因此,利用臭氧的氧化能力和OH自由基的氧化能力,除菌、脱臭以及有害物质分解性能提高。
储水罐72被设置在冷藏室112内,该冷藏室112是与作为设置有喷雾部的区域的蔬菜室114不同的另一个区域。在该结构中,储水罐72的配置不受喷雾部的配置的影响。因此,可以将储水罐72设置在易于向储水罐72内补充水或易于进行储水罐72内的清扫的任意位置。这样,使用者的使用方便性提高。这与实施方式8的储水罐72A同样。
在上述结构中,在臭氧水路径27中,臭氧和水混合,生成臭氧水。除此以外,也可以在喷雾装置21附近设置臭氧发生体、以产生臭氧,在喷嘴23内与水混合,形成臭氧水雾,并进行喷雾。或者,也可以在蓄水槽22内设置臭氧发生部25。对这样的结构进行说明。图37是本发明的实施方式10的另一个喷雾装置的主要部分放大图。将以高电压方式产生臭氧的臭氧发生体25设置在蓄水槽22内的一部分上。除此以外的结构与图33~图35同样。
下面,对以上结构的冷藏库的喷雾装置的动作和作用进行说明。首先,从储水罐72供给水,从水供给口31向蓄水槽22内供给水,并储存起来。接着,向臭氧发生体25施加高电压,通过放电,水中溶解的氧由于与电子的碰撞而离解为氧原子。然后,氧原子与溶解的氧分子结合,生成臭氧,并且与水分子反应,同时生成OH自由基。产生的臭氧溶解在储存水中,生成臭氧水。这样生成的臭氧水,由喷嘴23形成雾,并被喷射到蔬菜室114内。此时,由电源30向设置在喷嘴23的前端附近的环状电极29施加高电压,使由喷嘴23喷出的臭氧水雾带有静电。
在以上所述的图37的结构中,以放电方式产生臭氧的臭氧发生部25被浸渍在蓄水槽22内的储存水中。由此,将蓄水槽22内的储存水中的溶解氧离解,产生臭氧和OH自由基。因为原料氧是水中溶解的氧,所以臭氧的生成量与空中放电相比非常少,因此,产生的臭氧处于溶解在储存水中的状态。利用这样不需要特殊材料的简单结构,能够生成包含对人体安全且没有臭氧气味的低浓度臭氧、和比臭氧的氧化能力强的OH自由基的臭氧水,并且进行喷雾。
接着,对本实施方式的又一个不同的喷雾装置进行说明。图38是本发明的实施方式10的另一个冷藏库的喷雾装置的主要部分放大图。
喷雾装置21包括蓄水槽22、储存水供给部40、毛细管供给结构体42、和电极43。蓄水槽22储存臭氧水、酸性水等功能水或水。储存水供给部40向蓄水槽22供给储存水。毛细管供给结构体42的一端位于蓄水槽22内,另一端在蔬菜室114内形成为喷雾前端部41。电极43与蓄水槽22连接,向蓄水槽22内的储存水施加高电压。
下面,对以上结构的喷雾装置21的动作和作用进行说明。首先,从储存水供给部40向蓄水槽22内供给功能水或水,并储存起来。接着,向蓄水槽22内的电极43施加高电压时,利用在喷雾前端部41和其周围之间存在的电场,从喷雾前端部41引出多条液线。进一步分散为带电的液滴,形成雾,向蔬菜室114内喷射。
在如上所述的图38的结构中,向蓄水槽22内的储存水直接施加高电压,喷雾带有静电的储存水。由此,雾的带静电率增加,雾的微细化和向食品表面的附着率提高。
另外,通过将功能水微细化,雾在大气中的滞空时间延长。由此,功能水微细雾与库内浮游菌和库内扩散臭气物质的接触机会增加,除菌、脱臭性能提高。
此外,在本实施方式中,由储水罐72供给水。除此以外,如果利用冷藏库的排出水,形成向蓄水槽内供给排出水的结构,则能够减少向储水罐72内加水的麻烦。
接着,在说明实施方式11的同时,说明将本发明的收纳库应用于冷藏库的例子。
本发明的收纳库除了箱体和喷雾装置以外,还包括分解部。喷雾装置产生雾,使箱体内的储藏室的内部收纳的蔬菜表面附着的残留农药等的有害物质浮起。分解部将该浮起的有害物质分解。在该结构中,喷出的雾进入蔬菜或水果表面的微细的凹部中,利用物理作用,以少量的水使凹部中残留的农药或有害物质浮起。然后,分解部将浮起的农药等的有害物质氧化分解,因此食品的安全性提高。
另外,本发明的收纳库包括箱体、喷雾装置和分解部,喷雾装置喷射氧化分解性的雾。利用该氧化分解性的雾将蔬菜表面附着的残留农药等的有害物质分解。分解部将这样生成的分解生成物、和未与氧化分解性的雾反应的残留农药等的有害物质分解。由此,能够使分解生成物和未反应的有害物质无害,因此安全性提高。
另外,本发明的收纳库的分解部向储藏库内的农作物照射紫外线。由此,能够在不给蔬菜带来不良影响的情况下,使残留农药等的有害物质无害。另外,由简单的结构构成分解部。因此,能够减少构成部件,能够在小的空间内实现分解效果。
另外,本发明的收纳库的分解部照射波长为220nm以上400nm以下的紫外线。由此,氧化分解速度提高。
另外,本发明的收纳库还具有控制部,控制部在喷雾装置动作之后使分解部动作。由此,只对喷雾装置喷出的雾所剥离的农药等的有害物质或未反应物使用能量。因此,分解效率提高。特别地,在喷雾装置产生氧化分解性的雾的情况下,分解部将利用氧化分解性的雾没有氧化分解完的未反应物分解。因此,作为收纳库的氧化分解效率提高。
另外,本发明的收纳库还包括覆盖储藏室开口的门、检测该门的开闭的检测部、和控制部。控制部在检测部检测到门打开时,停止分解部的动作。由此,防止在打开门时、人直接看到紫外线的照射,安全性提高。
另外,本发明的收纳库还具有使分解部动作的开关。由此,能够只在人认为需要使其动作的时候才使分解部动作,所以安全性提高。
另外,在本发明的收纳库中,在分解部的周围设置有遮光板。由此,人不会直接看到紫外线,只将紫外线照射在储藏室内的农作物上。所以,安全性提高。
(实施方式11)图39是本发明的实施方式11的冷藏库的侧截面图。图40是图39所示的冷藏库的控制系统的框图。
图39所示的冷藏库与实施方式3的图5所示的冷藏库的不同点是在蔬菜室114的上部顶面上设置有喷雾装置120和分解部121,以及壁面由难以被紫外线劣化的材料构成。该难以被紫外线劣化的材料是不锈钢、或难以被紫外线劣化的树脂材料等。分解部121是照射峰值波长为250nm左右的紫外线的紫外线灯。另外,如图40所示,设置有控制喷雾装置120和分解部121的动作的控制部106。除此以外的结构与图5~图7所示的结构同样,省略详细说明。
对以上结构的冷藏库的喷雾装置120和分解部121的动作和作用进行说明。首先,在蓄水槽122内储存水。此时的储存水124是除霜水。接着,电源128向蓄水槽122内的阴极134施加负的高电压,利用在喷雾前端部132和阳极135之间存在的电场,从喷雾前端部132引出多条液线。进而,分散为带电的液滴,成为雾。由送风部129将该雾送往蔬菜室114内。在这样静电雾化时,进行了放电,使雾带有静电,因此,雾利用电气作用在蔬菜室114内附着在带正电的蔬菜或水果的表面上。于是,进入蔬菜或水果表面的微细的凹部中,利用微细雾的内压能量使残留农药或蜡等的有害物质浮起。从分解部121照射的紫外线,利用其分解作用,将有害物质分解除去。另外,通过使雾带有静电,雾中的水分子自由基化,生成OH自由基。因此,由放电产生的臭氧的氧化能力再加上OH自由基的氧化能力,提高了农药等的有害物质的分解性能。
图41是将图39所示的冷藏库的农药除去性能和现有的浸渍方法、以及水洗进行比较的图。在该实验中,各使用10个附着有大约3ppm马拉硫磷的迷你番茄,用各方法进行除去处理。然后,利用气相色谱法(GC)测定处理后的残留马拉硫磷的浓度,算出除去率。
接着,说明各除去处理方法。在处理A中,将上述10个迷你番茄放入笊篱中,用流水清洗大约10秒钟。在处理B中,将10个迷你番茄在含有1ppm的臭氧的水中浸渍1小时。该处理与使用通常的食物清洗装置的处理相当。在处理C中,用喷雾装置120对10个迷你番茄进行12小时的喷雾处理。在处理E中,在对10个迷你番茄进行12小时的喷雾处理之后,由分解部121照射峰值波长250nm、1600μW/cm2的紫外线1小时。此外,处理C、E中的库内臭氧气体浓度大约为0.03ppm。
如图41所示,处理A中的除去率是20%,可知通常家庭中的水洗的程度下,残留农药的80%没有被除去,而是被人体摄取了。另外,在处理B中,残留农药的55%被除去。
与此相对,处理C的除去率是50%,显示出与处理B大致相同的农药除去性能。另一方面,处理E的除去率是70%。可以认为这是因为由于超微细雾的物理作用,附着的农药浮起,并被紫外线分解。从以上的结果可知,具有本实施方式的喷雾装置120和分解部121的冷藏库,具有食物清洗专用设备以上的农药除去性能。
图42是将在图39所示的冷藏库的喷雾装置120中进行农药除去后再水洗后水中的残留马拉硫磷量、和以现有的浸渍方法进行农药清洗后的水中的残留马拉硫磷量进行比较的图。
在该实验中,与上述同样,各使用10个附着有大约3ppm马拉硫磷的迷你番茄,用上述的各处理方法进行除去处理。采集最终处理时的10秒钟的自来水,利用气相色谱法(GC)测定该自来水中的马拉硫磷浓度。根据该结果和图41的结果,算出自来水中含有的马拉硫磷量相对于由各处理除去的马拉硫磷的量的比率。
接着,说明各除去处理方法。在处理A中,将上述10个迷你番茄放入笊篱中,用流水清洗大约10秒钟。在处理B’中,将10个迷你番茄在含有1ppm的臭氧的水中浸渍1小时。然后将其放入笊篱中,用流水清洗大约10秒钟。该处理与使用通常的食物清洗装置的处理相当。在处理C’中,用喷雾装置120对10个迷你番茄进行12小时的喷雾处理。然后将其放入笊篱中,用流水清洗大约10秒钟。在处理E’中,在对10个迷你番茄进行12小时的喷雾处理之后,由分解部121照射峰值波长250nm、1600μW/cm2的紫外线1小时。然后将其放入笊篱中,用流水清洗大约10秒钟。此外,处理C’、E’中的库内臭氧气体浓度大约为0.03ppm。
如图42所示,在处理A中,自来水中的马拉硫磷量是除去的马拉硫磷量的100%。即,在自来水清洗中,马拉硫磷没有被分解。另外,在处理B中,自来水中的马拉硫磷量是除去的马拉硫磷量的约20%。
另一方面,在处理C’中,自来水中的马拉硫磷量也是除去的马拉硫磷量的20%。这样,在马拉硫磷分解能力方面,喷雾装置120与专用设备具有同等的分解性能。在处理E’中,尽管除去率是70%,但自来水中的马拉硫磷量为检测界限以下。可以认为这是因为由紫外线除去的马拉硫磷几乎100%被分解。这样,具有喷雾装置120和分解部121的冷藏库能够除去蔬菜等的农药,而且具有将除去的农药分解的能力。
如上所述,图39所示的冷藏库包括喷雾装置120和分解部121。喷雾装置120包括蓄水槽122、和喷射储存水124的喷雾部123。本实施方式的冷藏库以这样的简单结构,具有将农药等的有害物质分解并除去功能。因此,消费者只要将蔬菜或水果保存在冷藏库中,就能够简单地除去农药等的有害物质。
另外,在本实施方式的冷藏库中,向蔬菜室114内喷射超微细的雾。由此,喷射的雾进入蔬菜或水果表面的微细的凹部中,利用物理作用将凹部中残留的农药等的有害物质除去。然后,利用紫外线将该有害物质分解。即,能够用少量的水,将农药等有害物质除去并分解。
另外,在本实施方式的冷藏库中使用静电雾化方式的喷雾部123,但是并不限定于此。在喷雾部中使用超声波元件的情况下,与静电雾化方式相比,能够产生大量的喷雾量。因此,在需要增加喷雾量的情况下,特别有效。另外,即使使用其它的喷雾方式,只要能够产生上述那样的超微细的雾,就能够根据各装置的特性将农药等的有害物质除去并分解。
此外,在本实施方式的冷藏库中,将除霜水储存在蓄水槽122中,使用者不从外部供给储存水就能够确保储存水124。在该结构中,不需要费事从外部补充水分,能够得到使用方便性进一步提高的冷藏库。除此以外,也可以使用储水罐等从外部供给水。在这样的结构中,易于维护储水罐,且能够大量地喷出雾。
另外,保持储存水124的保持部,并不限定于使用蓄水槽122。也可以使用作为保水装置的吸湿剂(例如、硅胶、沸石、和活性炭等多孔材料等),提取出蔬菜室114内的空气内含有的水分,并进行保持。
另外,如果设置有通过使储藏室内的一部分强制地具有温度差、从而使储藏室内的空气中含有的水分结露的结露发生部,则能够在任意的定时提供需要量的储存水,再者,就喷雾量而言,通过控制结露部,能够确保需要的喷雾量,因此不必费事从外部补充水分,使用方便性进一步提高,而且能够在需要时供给需要量的储存水。以下,说明具有超声波元件和储水罐的冷藏库的例子。
图43是本实施方式的另一个冷藏库的侧截面图。图44是图43所示的冷藏库的控制系统的框图。图43所示的冷藏库具有包含超声波元件80的喷雾部74、经由供水路径73向喷雾部74供水的储水罐72、和分解部200。喷雾部74的结构与实施方式1的图2、图3同样。喷雾部74、供水路径73和储水罐72构成喷雾装置61。另外,如图44所示,设置有控制喷雾装置61和分解部200的动作的控制部107。除此以外的结构与图39的结构同样,省略详细说明。在以下的说明中,也参照图2、图3进行说明。
喷雾部74和分解部200设置在蔬菜室114的上部顶面上。分解部200是照射峰值波长为380nm附近的紫外线的紫外线LED。
对以上结构的冷藏库的喷雾装置61和分解部200的动作和作用进行说明。首先,经由供水路径73,将储存在储水罐72内的水供给蓄水槽75内。
然后,喷雾部74开始运转。储存水84被作为喷雾部74的超声波元件80雾化。此时,由超声波元件80产生的微小气泡的高速膨胀和压缩破坏现象将水分子分解,生成含有OH自由基的氧化分解性的雾。利用金属筛81和金属板82之间的电场,只将氧化分解性的雾中的规定粒径以下的微细雾,从金属筛81喷出。这样,喷雾部74内成为充满规定粒径以下的雾的状态。由送风部77将该微细雾喷射至蔬菜室114内。喷出的微细雾附着在蔬菜室114内的蔬菜或水果的表面上,将蔬菜等的表面上附着的农药等的有害物质氧化分解。这样,控制部107在向喷雾部61的超声波元件80和电源83通电之后,向分解部200通电,以照射紫外线。由此,利用氧化分解性的雾氧化分解的分解生成物不会使绝热壁116劣化,完全被无害化。
图45是表示图43所示的冷藏库的农药除去性能与处理时间的关系的图。在该实验中,各使用10个附着有大约3ppm的马拉硫磷的迷你番茄,用喷雾装置61进行12小时处理后,利用分解部20改变照射时间进行照射紫外线的处理。然后,利用GC(气相色谱法)测定马拉硫磷浓度,算出马拉硫磷的除去率。
从图45可知,为了发挥出与图39的结构的紫外线灯构成的分解部121处理1小时同等的性能,需要12小时。
如以上所述,图43所示的冷藏库包括喷雾装置61和分解部200。喷雾装置61包括储水罐72、和喷射储存水84的喷雾部74。分解部200由紫外线LED构成。如果利用分解部200向农作物长时间照射紫外线,则能够得到与紫外线灯同等的氧化分解性。另外,不会产生由紫外线引起的绝热壁116的劣化。因此,绝热壁116的材料费降低,绝热壁116的寿命变长。另外,通过使分解部200的照射波长为350nm附近,能够将紫外线对人体造成的影响控制在不会产生问题的范围。
接着,说明设置有分解部的冷藏库的又一个优选的结构。图46是本发明的实施方式11的又一个冷藏库的侧截面图。图47是图46所示的冷藏库的控制系统的框图。
图46所示的冷藏库与图39所示的冷藏库的不同点在于在覆盖蔬菜室114的开口的门400A上设置有门开闭检测部(下面称为检测部)330,在覆盖冷藏室112的开口的门400B上设置有开关403。进一步,在蔬菜室114的上部顶面上设置有由不锈钢制成的遮光板402,以包围分解部121,在这一点上也不同。另外,如图47所示,设置有利用来自检测部330或开关403的输入、控制分解部121和喷雾装置120的动作的控制部108。检测部330检测门400A的开闭。检测部330例如由微动开关或压力传感器构成。除此以外,与图39所示的结构同样。
对以上结构的冷藏库的喷雾装置120、分解部121、和控制部108的动作和作用进行说明。首先,将水储存在蓄水槽122内。以下,利用喷雾装置120产生的雾使残留农药或蜡等的有害物质从蔬菜室114内的农作物表面浮起的作用,与对图39的结构进行的说明同样。
然后,使用者接通(ON)开关403,控制部108接收到该信号,向分解部121通电。这样,通过设置开关403,能够只在使用者认为需要使分解部121动作的时候使其动作。所以,安全性提高。再者,因为能够只在人需要时使其动作,所以与以连续运转的方式使用时相比,能够削减使用能量,因此,可节约电费。此外,通过接通(ON)开关403,也可以开始从喷雾装置120的运转开始的一系列的动作。
以下,利用分解部121的作用,将浮起的农药等有害物质分解。
另外,控制部108只在由检测部330检测到门400A的关闭状态时,向分解部121通电。这样,可防止使用者接触紫外线,安全性提高。再者,通过在分解部121的周围设置遮光板402,防止来自分解部121的紫外线的光照射到门400A侧。因此,使用者打开门400A时,不会直接看到紫外线,紫外线只向蔬菜室114内的储藏物照射。这样,安全性提高。再者,因为遮光板402使照射到蔬菜室114内的农作物上的紫外线的能量不分散,所以有害物质的分解效率提高。
此外,在上述说明中,只说明了对使分解部121动作的开关403进行接通/断开(ON/OFF)的切换。除此以外,在接通/断开(ON/OFF)的切换功能之外,优选还具有使用者能够选择紫外线的光量的开关。在该情况下,因为使用者能够在需要的时候选择需要的紫外线的光量,所以可削减使用能量。
另外,除了不锈钢以外,也可以使用由紫外线引起的劣化少的金属、玻璃构成遮光板402。另外,绝热壁116除了由不锈钢构成以外,也可以使用由紫外线引起的劣化少的金属、玻璃构成。
在本实施方式中,分解部121、200配置在蔬菜室114的顶面上。除此以外,如果使蔬菜室114内的容器228透明,则只要在蔬菜室114内,配置在任何位置都能够得到同样的效果。
在本实施方式中,蔬菜室114配置在冷冻室115的上层。除此以外,如果将蔬菜室114配置在最下层,则在使用蔬菜室114时,紫外线不会直接进入使用者的眼睛,能够更安全地使用蔬菜室114。
另外,分解部121、200在喷雾装置120、61动作之后被通电。控制部106、107、108都这样进行控制。因此,能够只对利用喷雾装置120、61喷出的雾被剥离后的农药等的有害物质或未反应物的分解使用能量,分解效率提高。
另外,优选分解部121、200发出的紫外线的波长为220nm以上400nm以下。由此,农药等的有害物质的氧化分解速度提高。
以上,对本发明的各种实施方式进行了说明,但各实施方式固有的结构和特征在可能的范围内也能够应用于其它的实施方式。特别地,可以将实施方式3以后的冷藏库的特征应用于实施方式1、实施方式2中的箱。另外,本发明并不限定于这些实施方式。
产业上的可利用性本发明的收纳库能够在流通中的各种状况下提高农作物的安全性。另外,应用该收纳库的冷藏库结构简单,不会损害使用方便性,能够在家庭或商业设施等中提高农作物的安全性。
权利要求
1.一种收纳库,其特征在于,包括箱体,在该箱体内部具有农作物用的储藏室;和喷雾装置,向所述储藏室内喷射液体,以产生雾,所述喷雾装置进行以下的任一过程,(A)利用所述雾,使所述储藏室中收纳的所述农作物的表面附着的有害物质浮起,(B)使所述雾附着在所述储藏室中收纳的农作物的表面所附着的的所述有害物质上。
2.根据权利要求1所述的收纳库,其特征在于还包括设置在所述箱体内、用于保持所述液体的保持部。
3.根据权利要求2所述的收纳库,其特征在于所述保持部保持从外部供给的储存水。
4.根据权利要求2所述的收纳库,其特征在于所述保持部保持从所述储藏室内的空气内含有的水分中提取出的储存水。
5.根据权利要求4所述的收纳库,其特征在于所述喷雾装置具有喷出雾的喷雾前端部,还包括设置在所述箱体的与所述喷雾前端部不同的另一区域内,用于保持水并向所述喷雾装置供给水蒸气的供给部。
6.根据权利要求1所述的收纳库,其特征在于所述喷雾装置具有喷出雾的喷雾前端部,至少将所述喷雾前端部设置在所述储藏室内。
7.根据权利要求6所述的收纳库,其特征在于还包括设置在所述箱体的与所述喷雾前端部不同的另一区域内,用于保持所述液体并向所述喷雾装置供给所述液体的供给部。
8.根据权利要求1所述的收纳库,其特征在于所述喷雾装置产生粒径0.003μm以上20μm以下的雾。
9.根据权利要求1、8中任一项所述的收纳库,其特征在于所述喷雾装置的喷雾量为0.0007g/h·L以上0.14g/h·L以下。
10.根据权利要求1所述的收纳库,其特征在于还包括分解所述有害物质的分解部。
11.根据权利要求10所述的收纳库,其特征在于所述分解部向所述有害物质照射紫外线。
12.根据权利要求11所述的收纳库,其特征在于所述紫外线的波长为220nm以上400nm以下。
13.根据权利要求11所述的收纳库,其特征在于还包括设置在所述分解部的周围的遮光板。
14.根据权利要求10所述的收纳库,其特征在于还包括在所述喷雾装置动作后、使所述发生部动作的控制部。
15.根据权利要求10所述的收纳库,其特征在于,还包括覆盖所述储藏室的开口部的门;检测所述门的开闭的检测部;和在所述检测部检测到所述门打开时、停止所述分解部的动作的控制部。
16.根据权利要求10所述的收纳库,其特征在于还包括使所述喷雾装置动作的开关。
17.根据权利要求1所述的收纳库,其特征在于所述喷雾装置产生氧化分解性的雾。
18.根据权利要求17所述的收纳库,其特征在于,还包括分解部,该分解部利用所述氧化分解性的雾,对通过分解所述有害物质而生成的分解生成物、和未分解的所述有害物质中的至少任一方进行分解。
19.根据权利要求18所述的收纳库,其特征在于所述分解部向所述分解生成物和所述有害物质中的至少任一方照射紫外线。
20.根据权利要求19所述的收纳库,其特征在于所述紫外线的波长为220nm以上400nm以下。
21.根据权利要求19所述的收纳库,其特征在于还包括设置在所述分解部的周围的遮光板。
22.根据权利要求18所述的收纳库,其特征在于还包括在所述喷雾装置动作后、使所述发生部动作的控制部。
23.根据权利要求18所述的收纳库,其特征在于,还包括覆盖所述储藏室的开口部的门;检测所述门的开闭的检测部;和在所述检测部检测到所述门打开时、停止所述分解部的动作的控制部。
24.根据权利要求18所述的收纳库,其特征在于还包括使所述喷雾装置动作的开关。
25.根据权利要求1所述的收纳库,其特征在于所述喷雾装置产生臭氧雾。
26.根据权利要求25所述的收纳库,其特征在于,还包括设置在所述箱体内、用于保持所述液体的保持部;通过分解空气中的氧而生成臭氧的臭氧发生体;和向所述保持部供给水的供给部,将所述臭氧发生体生成的臭氧和所述供给部供给的水混合,生成臭氧水。
27.根据权利要求25所述的收纳库,其特征在于,还包括设置在所述箱体内、用于保持所述液体的保持部;设置在所述保持部的一部分上的臭氧发生体;和向所述保持部供给水的供给部,将所述保持部内储存的水中的溶解氧分解,产生臭氧,由此生成臭氧水。
28.根据权利要求1所述的收纳库,其特征在于所述喷雾装置产生碱分解性的雾。
29.根据权利要求1所述的收纳库,其特征在于所述喷雾装置产生含有自由基的雾。
30.根据权利要求1所述的收纳库,其特征在于所述喷雾装置具有以静电雾化方式产生雾的喷雾部。
31.根据权利要求30所述的收纳库,其特征在于所述喷雾部产生粒径0.003μm以上0.5μm以下的雾。
32.根据权利要求30、31中任一项所述的收纳库,其特征在于所述喷雾部的喷雾量为0.0007g/h·L以上0.07g/h·L以下。
33.根据权利要求30所述的收纳库,其特征在于所述喷雾装置具有喷射方式的喷雾喷嘴、和设置在所述喷雾喷嘴的前端附近的环状电极,通过向所述电极施加电压,使由所述喷雾喷嘴喷出的颗粒带有静电。
34.根据权利要求30所述的收纳库,其特征在于还包括设置在所述箱体内、用于保持所述液体的保持部,所述喷雾装置包括毛细管供给结构体,其一端位于所述保持部内,另一端形成在所述储藏室内开口的喷雾前端部;设置在所述喷雾前端部附近的第一电极;和与所述第一电极相对设置的第二电极,通过向所述第一电极和所述第二电极之间施加电压,使从所述喷雾前端部喷射的水带有静电。
35.根据权利要求1所述的收纳库,其特征在于所述喷雾装置具有以超声波雾化方式产生雾的喷雾部。
36.根据权利要求35所述的收纳库,其特征在于所述喷雾部产生粒径0.5μm以上0.20μm以下的雾。
37.根据权利要求35、36中任一项所述的收纳库,其特征在于所述喷雾部的喷雾量为0.014g/h·L以上0.14g/h·L以下。
38.根据权利要求1至37中任一项所述的收纳库,其特征在于所述箱体是在运输中使用的运输箱。
39.根据权利要求1至37中任一项所述的收纳库,其特征在于所述箱体是用于保管收获后的所述农作物的保管箱。
40.一种冷藏库,其特征在于,包括权利要求1至37中任一项所述的收纳库;和对所述绝热箱体的内部进行冷却的冷却装置,所述箱体是具有被绝热分隔的储藏室的绝热箱体。
全文摘要
本发明提供一种收纳库。该收纳库包括箱体和喷雾装置。箱体在内部具有农作物用的储藏室。喷雾装置通过向储藏室内喷射液体而产生雾。喷雾装置利用雾使储藏室中收纳的农作物的表面附着的有害物质浮起,或者使雾附着在储藏室中收纳的农作物的表面所附着的有害物质上。
文档编号A23L3/358GK1989383SQ20058002479
公开日2007年6月27日 申请日期2005年7月21日 优先权日2004年7月22日
发明者辻本香, 井下美桃子, 上迫丰志, 森下贤一, 上田启裕, 野田俊典, 石王治之, 滨田和幸, 足立正 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1