用于扩增和复制亚硫酸氢盐修饰的核酸的酶的制作方法

文档序号:571352阅读:465来源:国知局
专利名称:用于扩增和复制亚硫酸氢盐修饰的核酸的酶的制作方法
技术领域
本发明涉及酶在复制或扩增核酸,特别是经亚硫酸氢盐处理的核酸中的应用。
背景技术
由于自动测序技术的发展,已经进行了大量工作来确定DNA的编码区,实现包括 人基因组在内的许多动物基因组的完全测序。然而,多年来已经认识到基因组DNA的大部 分是非编码的,且这些物质一度被认为是“无用”DNA。现在认为对DNA非编码区的分析对 研究基因表达和功能是重要的。认为核酸特别是基因组DNA中的甲基化状况或模式对动物 的基因表达和调控具有功能性或调节性作用。已经表明,在单链DNA中,与以非常慢的速度将5-甲基胞嘧啶脱氨基为胸腺嘧啶 相比,亚硫酸氢钠优先将胞嘧啶脱氨基为尿嘧啶(Shapiro, R.,DiFate, V.,and Welcher, M, (1974) J. Am. Chem. Soc. 96 906-912)。这项观察结果成为 Frommer 等,1992 (Frommer M, McDonald LE,Miliar DS,Collis CM,Watt F,Grigg Gff,Molloy PL and Paul CL. PNAS 89: 1827-1831(1992))开发亚硫酸氢盐基因组测序方案的基础。总之,现在使用的这种方法包 括以下一般步骤DNA的碱变性;使用亚硫酸氢钠进行脱氨基;通过脱盐进行脱磺化,随后 进行氢氧化钠处理、中和及脱盐。亚硫酸氢盐修饰方法以及其已建立的变式方法的主要缺点之一是现已表明该方 法导致 84-96% 的初始引入 DNA 发生降解(Grunau et al. Nucleic AcidsResearch 29(13) e65, (2001))。与此方法相关的高损失意味着在实践上很难成功地分析少量细胞的基因 组甲基化状况,或成功地分析DNA已经处于部分降解状态的古老的保存标本。此外,由于 现有方法固有的核酸降解,不可能按照与公立的人类基因组计划(International Human Genome SequencingConsortium,2001,Nature,409,860-921)或私人的 CELERA 测序计划(J CraigVenter et al.,2001,Science,291,1304-1351)所成功使用的相同方式,对生物体的 完整基因组进行测序和装配,以确定其基因组范围上的甲基化谱,这是因为序列中有大量 “空位(gap) ”。现在使用的亚硫酸氢盐方法的另一个缺点是通常只可扩增DNA的小片段。经验表 明,通常可成功处理并扩增小于约500个碱基对(bp)。该现有技术不适用于新的分子生物 学方法,例如长距离聚合酶链式反应(PCR),该长距离聚合酶链式反应使得扩增一般长达约 50kb的大段未处理基因组DNA成为可能。目前,甚至不可能分析完整基因的甲基化状况,因 为在哺乳动物基因组中大量基因的长度超过50kb。普遍使用的耐热聚合酶不能绕过在亚硫酸氢盐转换中产生的无碱基位点,且通 胃&弓曾β·!^白勺(Sikorsky, J. Α. , Primerano, D. Α. , Fenger, Τ. W. and Denvir, J. (2004)Biochem. Biophys. Res. Commun. 323,823-230)。此外,这些聚合酶也不能成功和 有效地扩增含大加合物(bulky adduct)如磺酸盐基团(sulphonate group)的DNA。这 需要在PCR扩增前在碱性介质中和高温下将亚硫酸氢盐转换的核酸的脱磺化,且这导致此 方法期间所观察到的大部分核酸损伤和损失(Munson,K.,Clark, J.,Lamparska-Kupsik,K. and Smith, S. S. (2007) Nucl. Acids. Res. 35 (9),2893-2903)。此外,富含 T 的 3 碱基的 基因组的高效产生(因在PCR扩增期间非甲基化的C被转换为U并随后转换为T,引起主 要包括碱基A、T、G的基因组)导致很难使用目前可用的聚合酶,并引起延伸期间频繁滑 动。在PCR扩增亚硫酸氢盐转换的DNA期间,所遇到的另一问题是单链模板包含一些聚合 酶如古细菌DNA聚合酶,如Pfu、Pwo和Vent不能加工的尿嘧啶(Lasken,R. S.,Schuster, D. Μ. and Rashtchian,Α. (1996) J. Biol. Chem. 271 (30),17692-17696)。因此,目前即便是为 了观察相对小的基因(<4kb)的甲基化状况,PCR反应也不得不艰难地通过目的基因区域 (D. SMillar, K. K Ow, C. L. Paul, P. J. Russell, P. L. Molloy, S. J. Clarke, 1999,Oncogene, 18(6) 1313-24 ;Millar DS, Paul CL, Molloy PL, Clarke SJ. (2000). J Biol Chem ; 275(32) :24893-9)。在一些情况下,在将RNA逆转录成cDNA并随后进行PCR之前,期望用亚硫酸氢盐 修饰RNA。然而,RNA在脱磺化所需高温和pH下对降解更灵敏,且这导致灵敏度的进一步降 低。这需要能够有效加工亚硫酸氢盐修饰的、处理的或转换的核酸的酶。

发明内容
本发明的发明人意外地发现可鉴别或修饰这样的酶,其能更有效地加工亚硫酸氢 盐修饰或处理的核酸。一般而言,本发明涉及新型或修饰的酶的应用,在基本相同的反应条件下,与目前 可获得的酶如真细菌酶Taq聚合酶、Superscript III逆转录酶、Klenow外切聚合酶、Bst 聚合酶或Bca聚合酶相比,所述酶能更有效地复制或扩增亚硫酸氢盐修饰或处理的核酸。第一方面,本发明提供了酶用于复制或扩增亚硫酸氢盐修饰或处理的核酸的应 用,其中在基本相同条件下,与天然Taq聚合酶相比,所述酶在复制或扩增核酸中更有效。
优选地,所述酶能够复制或扩增核酸,所述核酸为具有无碱基位点的核酸,具有大 加合物如磺酸盐基团的核酸,基本上仅具有A、T、G和U碱基或基本上仅具有A、T和G碱基 的核酸。所述酶可为嗜热或嗜温聚合酶、逆转录酶、内切核酸酶,或其修饰或嵌合形式。优选地,所述酶选自EP 18012113中所述的酶(其中称为5D4)、HIV-RT和它们的 修饰形式。适用于本发明的酶可使用公开于WO 99/02671、WO 00/40712、W002/22869、WO 03/044187,WO 05/045 和 EP 18012113 (Medical ResearchCounci 1)中的修饰方法获得,上 述文献通过引用并入本文。第二方面,本发明提供了用于复制或扩增亚硫酸氢盐处理的核酸的方法,包括用亚硫酸氢盐处理核酸;和使用酶来复制或扩增亚硫酸氢盐处理的核酸,所述酶在基本相同条件下,与天然 Taq聚合酶相比,在复制或扩增亚硫酸氢盐处理的核酸中更有效。优选地,亚硫酸氢盐处理使用亚硫酸氢钠或偏亚硫酸氢钠。优选地,亚硫酸氢盐处理基本上无脱磺化步骤。优选地,此方法进一步包括在亚硫酸氢盐处理前的核酸变性。优选地,变性步骤通过提供碱性环境或加热所述核酸来进行。
5
优选地,样品中任何甲基化的核苷酸保持不变,而未甲基化的核苷酸经亚硫酸氢 盐处理被转换为尿嘧啶。优选地,此方法进一步包括将所述处理的核酸样品脱盐或分离所述处理的核酸样品。优选地,所述酶能够复制或扩增核酸,所述核酸为具有无碱基位点的核酸,具有大 加合物的核酸,基本上仅具有A、T、G和U碱基或基本上仅具有A、T和G碱基的核酸,所述 大加合物包括磺酸盐基团。优选地,所述酶选自由嗜热聚合酶、嗜温聚合酶、逆转录酶、内切核酸酶以及它们 的修饰和嵌合形式组成的组。优选地,所述酶选自称为5D4的嵌合酶、HIV-RT和其修饰形式。优选地,所述酶是5D4或其修饰形式。优选地,所述酶是HIV-RT或其修饰形式。优选地,所述方法进一步包括加工或分析所处理的核酸,以确定核苷酸序列、甲基 化状况,鉴定核酸来源,或检测微生物。优选地,亚硫酸氢盐处理的核酸的扩增通过聚合酶链式反应(PCR)、逆转录酶 PCR、qPCR、等温扩增或信号扩增进行。优选地,所述处理的核酸包括亚硫酸氢盐修饰的DNA、亚硫酸氢盐修饰的RNA、或 亚硫酸氢盐处理的DNA和亚硫酸氢盐修饰的RNA的组合。第三方面,本发明提供了用于复制或扩增亚硫酸氢盐处理的核酸的方法,包括核酸样品的变性;用亚硫酸氢盐试剂处理所述核酸样品,和温育所述样品以形成处理的核酸样品, 其中所述样品中任何甲基化的核苷酸保持不变,而未甲基化的核苷酸被转换为其它形式;将所述处理的核酸样品脱盐或分离所述处理的核酸样品;和使用能力上更有效的酶以有效地加工亚硫酸氢盐修饰或处理的核酸以扩增、逆转 录、消化,或酶促加工亚硫酸氢盐修饰的核酸。所述方法可进一步包括加工或分析所述处理的核酸,以确定核苷酸序列或甲基化状况。亚硫酸氢盐处理的核酸的扩增可通过任何适合的方法,如聚合酶链式反应(PCR)、 逆转录酶PCR、qPCR、等温扩增或信号扩增进行。优选地,所述变性步骤通过提供碱性环境或加热所述核酸样品来进行。优选地,所述处理的核酸包括亚硫酸氢盐修饰的DNA、亚硫酸氢盐修饰的RNA、或 亚硫酸氢盐处理的DNA和亚硫酸氢盐修饰的RNA的组合。所述样品可获得自组织、器官、细胞、微生物、生物样品或环境样品。优选地,所述 组织或器官选自脑、结肠、泌尿生殖系统、肺、肾脏、造血系统、乳房、胸腺、睾丸、卵巢、子宫 及其混合物。优选地,所述微生物选自细菌、病毒、真菌、原生动物、类病毒或其混合物。优 选地,所述生物样品选自由血液、尿液、粪便、精液、脑脊髓液、灌洗液或其混合物组成的组。不同于现有方法,所述方法使用下述酶,包括但不限于嗜热和嗜温聚合酶、逆转录 酶和内切核酸酶,其与目前可获得的酶相比特异地具有更高的能力以加工亚硫酸氢盐修饰 的核酸。类似地,与标准的酶如Taq聚合酶、Superscript III逆转录酶、Klenow外切聚合酶、Bst聚合酶或Bca聚合酶相比,所述酶具有更强的功能以绕过无碱基位点,DNA上大加合 物如磺酸盐基团,以及更有效地作用于3碱基基因组,不过也可产生其它修饰。能够加工带 有磺酸盐基团的核酸的新型酶的产生将不需要在亚硫酸氢盐修饰后对核酸脱磺化,并因此 消除了现有方法中所见的核酸损伤和损失,以及节省时间。此外,使用绕过无碱基位点能力 更强的聚合酶将能够使PCR反应更有效,并可比使用目前可用的标准酶产生更长的PCR产 物。优选地,所述亚硫酸氢盐是亚硫酸氢钠,其是在水存在下将胞嘧啶修饰为尿嘧啶 的试剂。亚硫酸氢钠(NaHSO3)易于与胞嘧啶的5,6_双键反应以形成磺化的胞嘧啶反应中 间产物,其易于脱氨基,且在水存在下引起尿嘧啶磺化。需要时,磺酸盐基团可在温和碱性 条件下去除,导致尿嘧啶的形成。因此,可能全部未保护的胞嘧啶将被转换为尿嘧啶。然而, 任何甲基化的胞嘧啶因受到甲基化的保护而不能被亚硫酸氢盐转化。与未处理的核酸相比,DNA的亚硫酸氢盐处理导致具有较少胞嘧啶总数的修饰的 核酸,其中任何未甲基化的胞嘧啶(C)将被转换为尿嘧啶(U)。因此,未甲基化的亚硫酸氢 盐处理的核酸将基本上包含碱基腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和尿嘧啶(U),但仍 与相应未处理的核酸具有基本相同的碱基总数。如果该处理的核酸通过如PCR进行扩增, 则核酸的简化形式基本上仅由碱基腺嘌呤(A)、鸟嘌呤(G)和胸腺嘧啶(T)形成。对于含胞嘧啶的双链DNA,亚硫酸氢盐处理导致两种核酸(每条互补链一种),各 含碱基腺嘌呤、鸟嘌呤、胸腺嘧啶和尿嘧啶。两种核酸产生自双链DNA的两条单链。两种核 酸可不具有胞嘧啶,但仍与原始未处理的DNA分子具有相同总数的碱基和序列长度。重要 地是,两种处理的核酸彼此不互补,且形成用作扩增的顶和底链模板。链的一种或多种可用 作扩增或进一步加工的标靶。在处理的核酸扩增期间,顶(或底)链中的尿嘧啶被核酸相 应扩增产物中的胸腺嘧啶替代。随着扩增继续,顶链(和/或底链,如果扩增)将被稀释, 因此每条新的互补链将仅具有碱基腺嘌呤、鸟嘌呤、胸腺嘧啶。第四方面,本发明提供了酶用于复制或扩增亚硫酸氢盐处理的核酸的应用,所述 酶选自由5D4或其修饰形式、HIV-RT逆转录酶或其修饰形式组成的组。优选地,亚硫酸氢盐处理基本上无脱磺化步骤。除非文章内容另有需要,否则在本说明书全文中术语“包含(包括)”应被理解为 含有指定的元素、整体或步骤,或者元素组、整体组或步骤组,但不排除其它元素、整体或步 骤,或者元素组、整体组或步骤组。包含在本说明书中的文献、法规、材料、装置或物品等的任何讨论都仅出于提供本 发明内容的目的。不能认为由于以上任一项内容或所有内容在本申请的各项权利要求的优 先权日之前已在澳大利亚存在,就认定这些内容构成部分现有技术的基础或者是本发明相 关领域的普遍常识。为了更清楚地理解本发明,将参考以下附图和实施例对优选实施方案进行阐述。


图1显示了用Taq聚合酶(泳道1、4和7)、Dpo4聚合酶(泳道2、5和8)和杂合 聚合酶(泳道3、6和9)对(图A)脱磺化的和(图B)未脱磺化的亚硫酸氢盐处理的DNA进行PCR扩增,得到所期望的结果。IOpg亚硫酸氢盐处理的DNA使用产生200bp (泳道1_3)、 500bp (泳道4-6)或2000bp (泳道7-9)扩增子的引物扩增。图2显示了所期望的逆转录效率结果。32p-标记的cDNA在以下条件下合成20μ 1 反应体系,所示温度下持续60分钟,使用Superscript III(图2A和图2C)和嵌合逆转录酶 (B 和 D),l. 3kb、2. 5kb、4kb、6. 5kb 和 IOkb 总 RNA 中每个为 0. 25 μ g 的混合物,Superscript III缓冲液中200单位的每种RT和0. 5 μ g随机六聚物。对RNA进行亚硫酸氢盐修饰和脱 磺化(图2A和图2B)或未脱磺化(C和D)。将cDNA产物在1. 4%碱性凝胶上进行电泳并 曝光于X射线胶卷上。图3显示了使用HIV-RT逆转录酶扩增亚硫酸氢盐处理的RNA的结果。泳道1 在 76°C下脱磺化0分钟;泳道2 在76°C下脱磺化1分钟;泳道3 在76°C下脱磺化2分钟;泳 道4 在76°C下脱磺化5分钟;泳道5 在76°C下脱磺化10分钟;泳道6 在76°C下脱磺化 15分钟;泳道7 在76°C下脱磺化15分钟(对照逆转录酶);泳道8 =RT阴性对照;泳道9 PCR阴性对照。图4显示了在Taq和5D4酶之间的PCR扩增效率的比较。
具体实施例方式酶最近开发的技术区室化自我复制(compartmentalisedself-replication) (CSR) 或体外区室化(in vitro compartmentalisation) (IVC)是可被操作来产生具有特异特征 的新酶的一种技术(Tawfik,D. S and Griffiths,A. D. (1998)NatureBiotech. 16,652-656 ; Ghadessy,F. J. ,Ong, J. L. and Holliger,P. (2001) PNAS. 98 (8),4552-4557 ;d,Abbadie,M., Hofreiter, Μ. , Vaisman, Α. , Loakes, D. , Gasparutto, D. , Cadet, J. , Woodgate, R. , Paabo, S. and Holliger, P. (2007) NatureBiotech. 25 (8),939-943)。此外,在生命的全部三界中 发现的新醇如聚合醇的 DinB 家族(Boudsocq, F. , Iwai, S. ,Hanaoka, F. and Woodgate, R. (2001) Nucl. Acids. Res. 29, (22),4607-4616)已经被报道具有新性质,其至今仅被用于 扩增古老的DNA,且可用于复制或扩增亚硫酸氢盐处理的核酸。适用于本发明的酶的实例可使用公开于WO 99/02671、WO 00/40712、WO 02/22869、WO 03/044187、WO 05/045 和 EP 18012113 (Medical ResearchCounci 1)中的修 饰方法获得,上述文献通过弓I用并入本文。EP 18012113中公开了大量修饰的酶,它们是用在本发明中的潜在候选物,或被进 一步修饰以开发或增强对亚硫酸氢盐处理的核酸的活性。酶包括被称为2F3、1A10、1A9、 2F12、1C2、2G6、1A8、2F11、2H4、2H9、1B12、2H2、1C8、2H10X、3A10、3B5、3B6、3B8、3B10、3C12、 3D1、4D1和5D4的酶。本发明的发明人已经发现酶5D4特别适用于本发明。各种诱变和/或重组技术可用于产生突变的/杂合的酶。易错PCR诱变(Zaccolo, Μ. and Gherardi,E. (1999) J. Mol. Biol. 285,775-783)、交错延伸法(StEP ;Zhao,H. ,Giver, L. , Shao, Ζ. AffthoIter, J. A. and Arnold, F. H. (1998) Nature biotech. 16,258—261)禾口分 子育禾中(d' Abbadie, Μ. , Hofreiter, Μ. , Vaisman, Α. , Loakes, D. , Gasparutto, D. , Cadet, J. ,Woodgate, R. , Paabo, S. and Holliger, P. (2007)Nature Biotech. 25(8),939-943) ^ 合适技术的实例,但也可使用其它技术。
8
易错PCR诱变是PCR反应期间突变序列的随机方法,其中将嘧啶(6_ (2_脱 氧-β -D-呋喃核糖基)-3,4- 二氢-8Η-嘧啶并-[4,5-c] [1,2]噁嗪-7-酮;dP)的三磷酸 盐衍生物和嘌呤(8-氧代-2'-脱氧鸟苷;8-oxodG)核苷类似物用在体外DNA合成反应中 并起诱变剂作用。通常将所用引物生物素化(或进行不同标记)以能从野生型DNA中纯化 出突变的PCR产物,使得可根据所需特性来克隆和筛选突变的序列,并使其随后经历更多 轮的诱变和筛选。此步骤产生更高频率的氨基酸残基取代,至少比那些之前达到的频率高 一个数量级。交错延伸法(StEP)合并了 PCR形式中模板序列的体外诱变和重组。模板序列由 共同的侧翼引物所引发,并经历具有极短退火和延伸步骤的PCR循环。短延伸时间导致每 轮期间不完全的引物延伸。在随后循环中,增长的片段基于序列互补性与不同模版退火并 进一步延伸,这有效地导致不同基因间的重组。此过程继续进行直到制得全长序列,且轻微 调整延伸时间使交换基因片段的长度得到一定控制。已经表明分子育种比单独的随机诱变步骤更适于耐损伤聚合酶的选择。此步骤使 用StEP合并来自不同生物体的各种聚合酶片段。这产生可随后对所需特征进行测试的各 种嵌合聚合酶。此方法也适用于产生其它嵌合酶,如逆转录酶、内切核酸酶等。用于亚硫酸氢盐修饰的核酸的目的酶包括但不限于嗜热和嗜温DNA聚合酶(如 Taq、Pfu, Tth、Tfl, Pfx, Pfx50 、Tko, Bst、Bca、VentR 、De印 Vent 、Phusion 、ABV, UlTima、DyNAzyme EXT , Therminator、polK、polIV、Dbh, Dpo4 和 Dpo4 类酶、DNA I、DNA I聚合酶Klenow片段、Klenow外切、Phi 29、T4和T7DNA聚合酶),逆转录酶(如AMV RT、 M-MuLV RT, ThermoX R 、Thermoscript R 、Superscript III),和内切核酸酶(如内切核 酸酶III、IV、V、VIII、T7内切核酸酶I、hOGGl、UDG、Fpg、USER),和其突变体或嵌合体。具有更强加工亚硫酸氢盐修饰的DNA或RNA能力的适用于本发明的新酶可使用 上述技术中的一种或多种,或这些技术的组合,或诱变和/或重组的其它适合技术,或通过 从不同细菌物种分离新型聚合酶如聚合酶的DinB家族来制备(Boudsocq,F.,Iwai, S., Hanaoka,F. and Woodgate, R. (2001)Nucl. Acids. Res. 29,(22),4607-4616),其已显示出具 有独特的性质,此性质在使用亚硫酸氢盐处理的核酸样品时很有用。特别地,但不排它,以 嗜热和嗜温聚合酶、逆转录酶和内切核酸酶为目标。来自同类或不同类酶的两种或多种酶 将经历重组以产生大量突变的/杂合的酶。将筛选杂合的酶,且将选择显示出高加工性和 对DNA损伤高耐受性的那些酶并进一步检验。试验的选择将取决于所检验酶的类型。例如, 聚合酶活性的试验可通过PCR和将“新”酶扩增野生型和亚硫酸氢盐修饰的模版的能力与 亲本聚合酶的此能力进行比较此时,将选择显示扩增亚硫酸氢盐修饰的DNA能力更强的克 隆来用于进一步多轮重组和再选择,直到产生这样的一种或多种聚合酶,所述聚合酶与亲 本聚合酶相比,显示出能有效将亚硫酸氢盐转换的DNA扩增至更好的水平,同时显示出令 人满意的可加工性和热稳定性水平。亚硫酸氢盐修饰的核酸可以是或不是脱磺化的。两种不同酶的嵌合体可有利于扩增亚硫酸氢盐修饰的DNA的实例是热稳定聚 合酶Taq和Dpo4类酶的重组,所述热稳定聚合酶Taq具有高可加工性但对DNA损伤,所 述Dpo4类酶具有低可加工性但能够复制通过若干类DNA损伤,包括无碱基位点和大加合 物(McDonald, J. P. , Hall, Α. , Gasparutto, D. , Cadet, J. , Ballantyne, J. and Woodgate, R. (2006) 34 (4) ,1102-1111)。聚合酶、逆转录酶、内切核酸酶、DNA改性酶和其它酶的任何
9组合可使用这些技术重组在一起,且本发明涵盖了它们在加工亚硫酸氢盐转换的核酸中的 应用。应用本发明提供了利用此类酶的方法,所述酶具有更强的能力来加工亚硫酸氢盐修饰 的核酸。此类方法的优点在于它们可鉴定酶的新阵列,其能够例如但不限于改进PCR扩增 效率并增加亚硫酸氢盐修饰的DNA的扩增子长度,和对亚硫酸氢盐修饰的DNA进行有效的 逆转录和/或一步逆转录PCR。本发明的方法提供简化的步骤,由此亚硫酸氢盐修饰的核酸 可使用共同的分子生物学技术操作,而无需将样品脱磺化,这相对于已知方法将极大地改 进产率并保持较高分子量DNA。与亚硫酸氢盐修饰技术联合的这些酶将能够成功分析少量 细胞、保存核酸和大段核酸或整个基因中基因组的甲基化状况,全部这些到现在为止是不 可能的。本文所用术语“更有效的活性”或“更高活性”是指在基本相同的反应条件下,与 目前所用的标准酶如Taq聚合酶、Superscript III逆转录酶、Klenow外切聚合酶、Bst聚 合酶或Bca聚合酶相比,根据本发明的分离的酶可更有效地加工亚硫酸氢盐修饰的核酸, 且错误较少或基本无错误。 亚硫酸氢盐修饰的样品可包括DNA,或RNA,或DNA和RNA的组合。样品可从组织、细胞制备,或可为任何生物学样品,如血液、尿液、粪便、精液、脑脊 髓液、灌洗液,来自如脑、结肠、泌尿生殖系统、肺、肾脏、造血系统、乳房、胸腺、睾丸、卵巢、 子宫等来源的细胞或组织,来自胚胎细胞系或胚外细胞系的组织、环境样品、植物、微生物, 所述微生物包括细菌、胞内寄生物、病毒、真菌、原生动物、类病毒等。适用于通过本发明处 理的最佳描述的哺乳动物细胞类型总结在B. Alberts et al.,1989,TheMolecular Biology of the Cell, 2nd Edition,Garland Publishing Inc New York andLondon,pp 995-997中。来自人、动物、植物、细菌、真菌和病毒来源的样品DNA中5-甲基胞嘧啶残基的分 析意在包括从受精至死后48小时内的所有细胞、组织和器官的所有生命周期阶段,以及可 源自组织学来源的样品如显微镜载玻片样品,整块包埋的样品,或者从合成或天然表面或 从液体提取的样品。分析包括健康(WHO定义的健康)个体的细胞、组织和器官,以及来自患病个体的 细胞、组织和器官之间天然存在的变异。此意义上的疾病包括在Harrison’ s Principles of Internal Medicine,第 12 版,由 Jean D Wilson 等编著,McGraw Hill Inc,以及之后的 版本中描述或提及的全部人类疾病、痛苦、不适和异常;以及在OMIM中描述的全部疾病、痛 苦、不适禾口异常((QnlineMendelian Inheritance in Man, www. ncbi. gov),但强调死亡的 主因,即恶性肿瘤(癌)、缺血性心脏病、脑血管疾病、慢性阻塞性肺病、肺炎和流感、动脉的 疾病(包括动脉粥样硬化和主动脉瘤)、糖尿病和中枢神经系统疾病,以及社会性衰弱病症 (socially debilitating conditions)如焦虑、压力相关的神经精神病症和肥胖,和由染 色体数异常或染色体重排引起的全部病症(涉及常染色体以及性染色体的异倍性、复制、 缺陷、易位和插入),以及线粒体基因组的类似异常。正常或患病个体可来自(i)不同种族划分和进化谱系的人群;(ii)品系和地理的 隔离种;(iii)亚种;(iv)相同或不同性别的双胞胎或更多胎;(ν)由普通配对方法、人工 授精、胚胎干细胞法克隆或核(来自体细胞或生殖系核)转移克隆产生的个体,或由线粒体或其它细胞器官输入或修饰产生的个体;(Vi)由转基因敲除、敲入或敲减法产生的个体 (或体内、离体、或基因活性被瞬时或永久改变的任何方法,所述方法如RNAi、核酶、转座子 活化、药物或小分子方法学、肽核酸(PNA)、插入核酸(ΙΝΑ)、阿卓糖核酸(ΑΝΑ)、己糖醇核酸 (HNA)、锁核酸(LNA)、环己烷核酸(Cyclohexanyl Nucleic Acid) (CAN)等,或基于核酸的类 缀合物,包括但不限于特洛伊肽)的个体,或在怀孕、正常或异位的任何时期的个体。分析还包括来自原核或真核生物体和病毒DNA或RNA (或其组合)中的5_甲基胞 嘧啶和胞嘧啶残基,其与胞外或胞内模式的人类疾病相关,在正常改变体系和患病体系中, 用于诊断学和疾病状态监测或确定,和治疗学上改变以下疾病的变化参数和基础机制⑴遗传性疾病;(ii)由环境诱因(生物或非生物起源)引起的非遗传性或表观遗传性疾病(此 意义上的环境也包括在怀孕全部时期,或在生育和不育处理情况下生物体本身内部的环 境);(iii)对遗传或非遗传性疾病的倾向,包括由“朊病毒”类因子、暴露于压力变化和 失重、或辐射作用所引起的结果;(iv)在全部细胞类型、组织、器官系统和生物网络的老化过程中5-甲基胞嘧啶改 变,包括年龄相关的抑郁、疼痛、神经精神性和神经退行性病症,和更年期前和更年期后病 症(包括两种性别中生育力降低);(ν)在癌症中5-甲基胞嘧啶改变(包括在具有因DNA扩增、缺失、重排、易位和 插入事件引起的异常核型的细胞中的变化),和它们在不同细胞周期现象中的变化或改变 (包括昼夜节律、光周期、睡眠、记忆和“时差”对细胞周期的影响);(vi)在最广义定义的代谢网络中的5-甲基胞嘧啶改变,其来自这样的合子,所述 合子经过胚胎发生、胎儿发育、出生、青年、成年和老年(包括由低氧、缺氧、任何类型辐射 (离子化或非离子化,或由于化疗治疗、来自邻近自然源如岩石或来自军事或政府资助活动 的“放射性沉降物”的高海拔暴露辐射)、应激、线粒体、细胞核或器官基因组间不平衡引起 的代谢作用);(vii) 5-甲基胞嘧啶改变,其是由于在分子、细胞、组织、器官和整个生物体水平上 响应蛋白质、多肽、肽和DNA、RNA、PNA、INA、ANA、HNA、LNA、CNA等,或肽适配体(包括具有翻 译后添加物、翻译后裂解产物、翻译后修饰物(如内含子和外显子,泛素化和降解产物)的 任何肽适配体;涉及学习、脑生长和细胞死亡的含稀有天然氨基酸的蛋白质、多肽和肽以及 单个稀有氨基酸,如D-丝氨酸;药物、生物药剂、化学实体(其中化学实体和生物药剂的定 义与 G.Ashton,2001,Nature Biotechnology 19,307-3111 的定义相同))、代谢物、新盐、 前药、现有化合物的酯、疫苗、抗原、聚酮、非核糖体肽、维生素和任何天然来源的分子(如 植物源的环巴胺);(viii) 5-甲基胞嘧啶或胞嘧啶改变,其是由于在分子、细胞、组织、器官和整个生 物体水平上响应单链或双链的RNA和DNA病毒,所述病毒是外源的,或在如内源转座子或逆 转座子(SINES和LINES)中被在内部活化;(ix)5-甲基胞嘧啶改变,其是由于在分子、细胞、组织、器官和整个生物体水平上 响应基因源或非基因源(含或不含内含子)的RNA转录本的逆转录拷贝;(χ) 5-甲基胞嘧啶改变,其是由于在分子、细胞、组织、器官和整个生物体水平上响应(a) DNA、RNA、ΡΝΑ、ΙΝΑ、ANA、HNA、LNA, CNA 等(或 DNA、RNA、ΡΝΑ、ΙΝΑ、ANA、HNA、LNA, CAN、 全部组合中任何的适配体);包括在怀孕之前、期间和之后在包括血液和脑脊液的全部流 体以及母性液体中循环的DNA、RNA、PNA、INA、ANA、HNA、LNA、CAN和类似分子,(b)缀合生物 分子的组合,所述缀合生物分子是肽和核酸的嵌合体;或天然分子如胆固醇部分、激素和核 酸的嵌合体;和(xi) 5-甲基胞嘧啶改变,其是由于人和动物源的干细胞(体内、离体或与新环境 或天然和合成底物(或其组合)有关)响应上述(i)至(X)中任何变化所引起。修饰的核酸可使用任何适于获得核酸材料的方法。实例包括但不限于商购的DNA、RNA试剂盒 或试剂、工作站、含蛋白酶试剂的标准细胞裂解缓冲液,和本领域技术人员熟知的有机提取 方法。此方法可在反应容器中进行。反应容器可为任何适合的容器,如试管、平板、毛细 管、孔、离心管、微离心管、载玻片、盖玻片、珠子、膜或任何适合的表面。此方法通常在一个 反应容器中进行,以降低核酸样品降解或损失的可能性。通常,通过加入碱如NaOH来向样品提供碱性环境。如果核酸材料是RNA,使用加热 代替碱,以产生无二级结构的单链材料。提供碱性环境,以将双链核酸分子变性为分子易于 与亚硫酸氢盐试剂反应的状态。然而,应理解,可加入或使用任何其它变性方法如热处理或 其它适合的碱或变性剂,如KOH和任何其它碱。亚硫酸氢盐处理通常,亚硫酸氢盐试剂是偏亚硫酸氢钠。亚硫酸氢盐试剂使胞嘧啶碱基磺化,从而 获得磺酸胞嘧啶(cytosine sulphonate),随后通过磺酸胞嘧啶的水解脱氨基获得磺酸尿 嘧啶(uracil sulphonate)。然而,可理解,任何其它适合的亚硫酸氢盐试剂可使用,例如亚 硫酸盐或乙酸盐离子(参见 Shapiro, R.,DiFate, V.,and Welcher,M, (1974) J. Am. Chem. Soc. 96 906-912)。与磺化试剂的温育可在低于7的pH以及有利于形成尿嘧啶磺酸盐基团的温度下 进行。低于7的pH最适用于进行磺化反应,由此将胞嘧啶碱基转化成磺酸胞嘧啶,随后转 化为磺酸尿嘧啶。然而,如果需要,这些方法可在7以上的pH下通过磺化反应进行。磺化反应可在能够增强亚硫酸氢盐反应的添加剂存在下进行。适合的添加剂的实 例包括但不限于醌醇、尿素、DTT和甲氧胺。在这些试剂中,醌醇为还原剂。尿素和甲氧胺 是为改进亚硫酸氢盐反应效率而加入的试剂。此外,DTT可用在反应中以防止RNA被内源 核糖核酸酶降解。可理解,还可提供其他添加剂或试剂以辅助所述亚硫酸氢盐反应。磺化 反应导致核酸样品中的甲基化胞嘧啶保持不变,而未甲基化的胞嘧啶被转换为尿嘧啶。运行很好的反应条件如下。将待处理的DNA或其它核酸制成20 μ 1体积,且通过 用2. 2μ 1新鲜制备的3Μ氢氧化钠(BDH AnalaR#10252. 4X)溶液在37°C下温育15分钟 来变性。氢氧化钠浓度和温育时间可根据需要调节,以确保完成模板核酸的变性。加入 220 μ 1新鲜制备的3Μ偏亚硫酸氢钠溶液(BDHAnalaR#10356. 4D)pH 5. 0 (该pH可通过添 加IOM氢氧化钠(BDH AnalaR#10252. 4X)来调节到),以及12 μ 1 IOOmM的醌醇溶液(BDH AnalaR#103122E)。所添加的醌醇的浓度可以是约IOmM至500mM范围内的任何值,这根据试 验确定。随后将溶液涡旋混合,并覆盖208 μ 1矿物油(Sigma,分子生物等级Μ-5904)。随后
12将样品在适合温度下温育充分的时间,以获得用于完全亚硫酸氢盐转换的时间,如在80°C 下温育45分钟。本领域技术人员可以理解,只要反应条件适合于核酸的磺化,可改变上述 体积、浓度,以及温育时间和温度。将转换的核酸随后通过使用脱盐柱,如根据生产商说明书使用Zymo-Spin I柱来 脱盐,或通过沉淀来脱盐。为了沉淀,将样品稀释,使得抑制随后反应的盐不与磺化的核酸 共沉淀。将盐浓度稀释至小于约1M。通常稀释步骤使用水或缓冲液进行,从而将盐浓度降 低至低于约0. 5M。例如,通常将盐浓度稀释至小于约ImM至约1M,特别是小于约0. 5M,小于 约0. 4M,小于约0. 3M,小于约0. 2M,小于约0. 1M,小于约50mM,小于约20mM,小于约10mM, 或者,如果需要,甚至可小于约ImM。本领域技术人员能很容易地测定减少盐与核酸沉淀的 适合的稀释度,从而能够实施随后的步骤,并使对所述核酸样品的进一步净化或处理缩减 至最小限度。稀释通常在水中进行稀释,但也可在任何适合的缓冲液,例如Tris/EDTA或其 它生物缓冲液中进行,前提是此缓冲液不明显沉淀核酸,或导致盐与核酸一起明显沉淀以 至于抑制后续反应。通常沉淀使用沉淀剂如醇进行。用于沉淀核酸的示例性醇可选自异丙 醇、乙醇或任何其它适合的醇。使用能处理含大加合物如磺酸盐基团的DNA的酶将消除对亚硫酸氢盐转换的核 酸进行脱磺化的需要。因为在亚硫酸氢盐转换方法期间,在脱磺化步骤时观察到大部分核 酸损伤和损失,所以相对于之前已知的方法,能够省略或改进此步骤将极大地改进产率并 保持较高分子量DNA。然而,会有仍需要将亚硫酸氢盐修饰的核酸脱磺化的情况,且这可使 用下述标准方法或改进的方法进行。脱磺化步骤可通过将沉淀的经处理核酸的pH调节至最大到约12. 5来进行。暴 露于碱性环境有助于促进之前暴露于酸性PH所诱导的DNA中脱嘌呤位点处的链断裂。因 此,使碱性PH的处理最少化以避免链断裂。此步骤可使用适合的缓冲剂或碱性试剂在约pH 10. 5-11. 5下有效地进行。适合的缓冲剂或碱性试剂的实例包括具有pH 7. 0-12. 5的缓冲 剂。本领域技术人员可以理解,适合的缓冲剂或碱性试剂可选自大量已知可获得的缓冲剂 和碱性试剂。脱磺化步骤的温度范围从室温至约96°C,且时间可从2分钟变化至96小时,这 取决于所使用条件。本领域技术人员可以容易地确定适合于进行脱磺化反应的时间和温 度。也可使用低于室温的温度,只要增加温育时间以进行充分脱磺化。因此,温育步骤可 在约 10°C、约 20°C、约 22°C、约 25°C、约 30°C、约 35°C、约 37°C、约 40°C、约 45°C、约 50°C、 约 55°C、约 60°C、约 65°C、约 70°C、约 75°C、约 76°C、约 80°C、约 85°C、约 90°C、约 95°C和约 96°C下进行。进行脱磺化反应的特别有用的温度在约75至95°C的温度范围内。本发明提供了表征甲基化核酸的方法。此方法可对核酸样品进行有效的磺化(和 需要时的脱磺化步骤)。然而,应理解,如本文的公开,磺化或脱磺化步骤均不需要进行彻 底,只要足以随后表征核酸的甲基化即可。本领域技术人员能很容易地测定是否这些步骤 应当进行至接近完全,或者不完全反应是否足以进行所需分析。例如,当使用少量细胞或少 量核酸样品时,通常需要进行更完全的反应。在表征较大量的核酸样品时,可进行不太完全 的反应,但仍可提供足以进行随后核酸样品甲基化状况分析的反应产物。本发明提供了利用此类酶的方法,所述酶具有更强的能力来充分加工亚硫酸氢盐 修饰的核酸。如本文公开,这些酶可用在基因组甲基化状况的分析中以测量细胞、组织或生物体的状态,或用于测定核酸给定区域的序列。本发明的结果提供了优于当前用于加工甲 基化核酸的酶的若干优点。此类方法的优点在于它们可提供酶的新阵列,其能够例如但不 限于改进PCR扩增效率并增加亚硫酸氢盐修饰的DNA的扩增子长度,和对亚硫酸氢盐修饰 的RNA进行有效的逆转录和/或一步逆转录PCR。此类酶将具有更强的能力来加工在亚硫 酸氢盐修饰期间产生的无碱基位点、磺酸盐基团和3碱基基因组,以及其它核酸损伤位点, 且也能绕过其它大加合物,例如但不限于插入核酸。本发明的方法也可用于检测或诊断微生物,参见WO 2006/058393' Methods for simplifying microbial nucleic acids by chemical modification ofcytosine‘禾口 WO 2006/066353' Detection of Human Papilloma virus' (HumanGenetic Signatures Pty Ltd, Australia),它们通过引用并入本文。本发明的方法提供简化的步骤,由此亚硫酸氢盐修饰的核酸可使用共同的分子生 物学技术操作,而无需将样品脱磺化,或使用更温和方法脱磺化。因为在脱磺化步骤时可观 察到大部分核酸损伤和损失,所以相对于之前已知的方法,能够忽略或改进此步骤将极大 地改进产率并保持较高分子量DNA。这些酶将能够成功分析少量细胞、保存核酸和大段核酸 或整个基因的甲基化状况,或能够测定临床样品中DNA或RNA中少量传染性因子的存在与 否,全部这些到现在为止是不可能的。因此,本发明的方法提供了其它优点,即允许使用更少量的起始样品并对甲基化 进行有效表征。用于确定样品甲基化状况的方法可在测试样品和对照样品中平行地进行, 使得可相对于参比样品来比较并测定样品的甲基化状况。例如,可比较样品来测定是否在 一般或特定位点处甲基化增加或降低。如本文所讨论,此类测定方法可用于诊断和/或确 定疾病的预后。此方法可进一步包括如在诊断实施中报告样品的甲基化状况。应理解,本发明所用的组分可以以有效加工亚硫酸氢盐修饰的核酸的试剂盒方式 来提供。应用对亚硫酸氢盐修饰的核酸进行更好加工的工程化酶的实施方式以非限制性 形式描述如下。实施例方法和试剂化学品可如下获得乙醇来自Aldrich(St. Louis MO ;200 proof E702-3);异丙 醇来自 Sigma (St. Louis MO ;99% +Sigma 1-9516);矿物油来自 Sigma (M-5904);醌醇来自 BDH(AnalaR#103122E) ;3M的乙酸钠溶液来自Sigma (S-7899);氯化钠来自Sigma (ACS试剂 S9888);和氢氧化钠来自 BDH(AnalaR#10252. 4X);偏亚硫酸氢钠来自 BDH(AnalaR#10356); 二乙醚来自 Sigma (St. Louis MO ;309958);己烧来自 Sigma (St. Louis MO ;650420) ;Luria 肉汤来自 Oxoid (Liverpool ; CM0996B);氯化镁来自 Sigma (St. Louis MO ;63069);矿物油 来自 Sigma (M-5904);氯化钾来自 Sigma (St. Louis MO ;60142) ; Span 80 来自 Fluka (Buchs CH ;85548);盐酸四环素来自 Sigma (St. Louis MO ;T8032) ;Triton X-100 来自 Sigma (St. Louis MO ;93426);三羟甲基氨基甲烧盐酸盐来自 Sigma (St. Louis MO ;T5941) ;Tween 80 来自 Sigma (St. Louis MO ;P8074)。酶/试剂可如下获得dNTPs来自Promega(Madison WI ;C1145);糖原来自 Roche (Indianapolis IN ;#10 901 393 001) ;tRNA 来自 Roche(Indianapolis IN ;#10109 495 001);不含 DNA 酶的 RNA 酶来自 Roche(Castle Hill NSff ;11 119915 001); SalI 来自 New England Biolabs (Beverly MA ;#R0138L,20 单位 / μ 1) ;XbaI 来自 New England Biolabs (Beverly MA ;#R0145L,20 单位 / μ 1);和 DNA 标记物来自 Sigma (直接 上样的 PCR 低梯度 lOO-lOOObp,Sigma D-3687 和 lOO-lOKb,Sigma D-7058) ;EcoRl 来自 Roche (Indianapolis IN ;#87930626,10 单位 / μ 1) ;HindIII 来自 Biolabs (Beverly ΜΑ; #R01045,10 单位 / μ 1) ;PCR 通用混合物来自 Promega(Madison WI ;#M7505)和 DNA 标记 物来自 Sigma(直接上样的 PCR 低梯度 lOO-lOOObp,Sigma D-3687 禾口 lOO-lOKb,Sigma D-7058)。溶液如下(1)IOmM Tris/0. IM EDTA, ρΗ 7. 0-12. 5 ; (2) 3Μ NaOH(50ml 水中 6g ; BDHAnalaR#10252. 4X) ;(3)3M 偏亚硫酸氢盐(7. 6g,在含 416 μ IlON NaOH 的 20ml水中(BDH AnalaR#10356. 4D)) ; (4) IOOmM 醌醇(50ml 水中 0. 55g ;BDH AnalaR#103122E) ; (5) 50X TAE 凝胶电泳缓冲液(242g Trizma碱、57. Iml冰乙酸、37. 2g EDTA和水至1L) ; (6)5X琼脂糖凝 胶上样缓冲液(Imll %溴酚蓝(Sigma B6131)、Iml 二甲苯蓝(Sigma Χ-4126)、3· 2ml甘油 (Sigma G6279) ,8 μ 1 0. 5M EDTA ρΗ 8. 0,200 μ 1 50Χ TAE 缓冲液和水至 10ml);禾口 (7) Ix Taq 缓冲液(50mM KClUOmM Tris-HCl, ρΗ 9. 0,0. 1% Triton X-100U. 5mM MgCl2)。用亚硫酸氢盐处理核酸用亚硫酸氢盐处理核酸的示例性方法描述如下,且可用于产生本发明酶扩增或复 制用的模板核酸。此方法成功地导致保留基本全部的被处理的DNA。应理解可改变样品或 试剂的体积或量。向20μ1体积的2yg核酸中加入2. 2μ1 3Μ Na0H(50ml水中6g,新鲜制备)。此 步骤将双链核酸分子变性为单链形式,这是因为亚硫酸氢盐试剂优选与单链分子反应。将 混合物在37°C下温育15分钟。在室温以上的温度下温育可用于改进变性效率。在温育后,连续加入20μ 1 3Μ偏亚硫酸氢钠(3. 35g,在含320 μ IlONNaOH的 4. 68ml 水中;BDH AnalaR#10356. 4D ;新鲜制备)和 12 μ 1 IOOmM 醌醇(50ml 水中 0. 55g, BDHAnalaR#103122E;新鲜制备)。醌醇是还原剂,且有助于降低试剂的氧化。也可使用其 它还原剂,如二硫苏糖醇(DTT)、巯基乙醇、醌(氢醌),或其它适合的还原剂。同样地,也可 加入增强反应的添加剂,如甲氧胺或尿素。将样品用200 μ 1防止试剂挥发或氧化的矿物油 覆盖,但这不是必需的。随后将样品在80°C下温育45分钟。也可使用25°C至90°C的其它 温度,以及从5分钟至8小时,或更长的温育时长。在用偏亚硫酸氢钠处理后,将油去除,且如果核酸浓度低,加入2μ 1糖原(20mg/ ml ;Roche#10 901 393 001)或 tRNA (Roche#10 109 495 001)。这些添加剂是任选的,且当 核酸以低浓度存在时,可用于改进通过与目标核酸共沉淀获得的核酸的产率。通常,将糖原 用在DNA的沉淀中,将tRNA用作RNA的助沉淀剂,不过也可使用其它助沉淀剂。将亚硫酸氢盐修饰的核酸随后通过使用脱盐旋转柱,如根据生产商说明书使用 Zymo-spin柱(Zymo#C1003)来脱盐。或者,样品可通过异丙醇沉淀,如下将800 μ 1水加 入样品中,混合,并随后加入Iml异丙醇。水或缓冲液将反应容器中亚硫酸氢盐的浓度降低 至盐不与感兴趣的目标核酸一起沉淀的水平。将样品再混合并在4°C下放置60分钟,不过 在有效引起核酸沉淀的前提下,可使用其它温育温度和时长。将样品以15,OOOxg在4°C下 离心10至15分钟,并将沉淀物(pellet)用70% EtOH清洗。此清洗处理可清除与核酸一起沉淀的任何残余盐。将沉淀物干燥并随后重悬在合适体积的缓冲液或水中,这取决于下步应用。如果 需要脱磺化,发现在TE缓冲液(IOmM Tris,0. ImM EDTA,pH 10. 5)中重悬并在95°C下温 育20分钟特别有助于DNA样品的脱磺化。也可使用pH 7. 0-12. 5的缓冲液,且可将样品在 37°C至95°C下温育1分钟至96小时,以根据需要促进核酸脱磺化至使用者可接受的水平。上述方法可通过用一种或多种限制性酶消化来进行。两种独立的限制性酶消化建 立在与下述相同的DNA样品上。消化选用的酶取决于待扩增的序列。例如,消化2yg基因 组DNA要使用20 μ 1体积的EcoRI在37°C下持续1小时。此步骤用于将基因组DNA消化为 比基因组DNA更易受到亚硫酸氢盐转换作用的较小片段。超声波降解或物理力也可用于将 DNA剪切为较小片段。根据DNA片段的所需大小选择超声波的强度和超声波的长度。如上 所述,单独的消化反应通过如用HindIII消化2 μ g基因组DNA来进行。可选择这些或其它 适合的限制性酶来用于预处理消化。如上所述,将消化的DNA用偏亚硫酸氢盐处理。酶的产生和利用如何产生在扩增亚硫酸氢盐转换的DNA中使用的热稳定性DNA聚合酶的实例被给 出以说明此技术,且其根据 d,Abbadie et al (d,Abbadi e,Μ. ,Hof re iter, Μ.,Vaisman,Α., Loakes, D. , Gasparutto, D. , Cadet, J. , Woodgate, R. , Paabo, S. and HolIiger, P. (2007) Nature Biotech. 25 (8), 939-943)进行,其适用于专一产生下述加工亚硫酸氢盐修饰的核 酸能力较高的酶。使用具有旁侧XbaI和SalI限制性位点的基因特异性引物,分别将DNA聚合酶 基因Taq和Dpo4从嗜热水生菌(Thermus aquaticus,登录号J04639)和硫磺矿硫化叶 菌(Sulfolobus solfataricus,登录号N002754)扩增。将纯化的PCR产物克隆到预消 化的PASK75中,并将构建体转化入大肠杆菌(E. coli)并表达,参见Ghadessy et al., (Ghadessy,F. J et al.,PNAS(1998),98,(8),4552-4557)和 Skerra(Skerra, A. (1994) Gene, 151,131-135的方法,其通过引用并入本文。为了纯化,将Taq和Dpo4克隆通过经由 引物引入的N末端6个组氨酸亚克隆,如上表达,并裂解和根据制造商说明书使用Ni-NTA 旋转柱(Qiagen, #31014)纯化。使用分子育种以产生两种酶的嵌合体。简而言之,使用类似于旁侧区的引物将相 同浓度的两种聚合酶基因循环40次(94°C,30秒;55°C,1秒)。短退火/延伸时间导致每 轮期间不完全的引物延伸。在随后循环中,增长的片段基于序列互补性与不同模版退火并 进一步延伸,这有效地导致不同基因间的重组。进行此方法直至制的全长序列,且可需要 更多或更少的循环。微调延伸次数对可被交换的基因片段的长度产生一些控制,且可改变 成与此处给出的次数不同。随后将产物根据制造商说明书使用QIAquick凝胶提取试剂盒 (Qiagen,#28706)进行凝胶纯化,再扩增并克隆入pASK75以产生杂合的聚合酶文库。随后将乳化和区室化自我复制反应(CSRs)按照d,Abbadie et al (2007)使用匹 配的引物、含无碱基位点的引物、脱磺化的亚硫酸氢盐转换的引物,或未脱磺化的亚硫酸氢 盐转换的引物,或它们的组合进行。CSRs通过在94°C循环5分钟,随后在94°C进行20个循 环,每个持续循环1分钟,在50°C持续1分钟和在72°C持续8分钟来进行。5分钟的初始变 性使含杂合聚合酶的细菌细胞破裂,所述杂合聚合酶随后被释放到水环境中。如果酶有活 性,这实现了聚合酶的自我复制。无活性的酶将不能自我复制,将不被选用于随后的轮次,
16并因此被从基因池中去除。为了回收反应混合物,将乳液进行溶剂提取,且将纯化的选择产物再扩增并再克 隆,并随后对它们通过PCR从如上(或脱磺化或未脱磺化)产生的亚硫酸氢盐修饰的DNA中 扩增各种大小产物的能力进行筛选,所述PCR使用含IOpg模板DNA、0. 2mM dNTPsU μ M引 物的Ix Taq缓冲液,在94°C下循环5分钟,随后在94°C下进行30个循环,每个循环持续1 分钟;在55°C下持续1分钟;在68至72°C下持续30秒至2分钟,这取决于所期望的产物大 小。假设将来自选择轮次1和2的克隆进行StEP洗牌(shuffled),并与上述亲本聚合酶基 因回交。重组、再克隆、再筛选和再选择继续,直到产生比亲本酶具有更强扩增亚硫酸氢盐 修饰的DNA能力的一种或多种酶。特别地,与亲本聚合酶相比,优势体现在有能力更有效、 更大量地产生扩增子,产生更大的扩增子,和/或从未脱磺化的亚硫酸氢盐处理的DNA产生 扩增子。可获得的各种诱变和/或重组技术可用于产生在扩增或复制亚硫酸氢盐修饰的 核酸能力上被特异增强的多种突变的/嵌合的酶,包括但不限于嗜热和嗜温聚合酶、逆转 录酶和内切核酸酶。此外,新发现的酶如聚合酶的DinB家族(如来自硫磺矿硫化叶菌的 Dpo4)可展现出更强地扩增亚硫酸氢盐修饰的DNA的能力,而无需进一步诱变或重组。图1例示与亲本聚合酶相比,通过新型聚合酶(根据它们在加工亚硫酸氢盐转换 的核酸上的能力选择)得到所期望的结果。与亲本聚合酶相比,杂合的/突变的酶将显示 在扩增脱磺化的亚硫酸氢盐修饰的DNA上更强的能力,且更够扩增加大的扩增子,且还能 够从亲本聚合酶不能扩增的未脱磺化的模板中扩增。图2例示与亲本逆转录酶相比,通过新型逆转录酶(根据它们在加工转换的核酸 上的能力选择)得到的结果。与可获得的转录酶相比,新型转录酶将能够更有效地复制各 种大小的脱磺化的亚硫酸氢盐转换的RNA模板,且还能够从亲本逆转录酶不能复制的未脱 磺化的模板中复制。实验HIV-RT 酶HCV RNA使用QiAmp UltraSens (Qiagen)病毒试剂盒根据制造商说明书从 OptiQual HCV RNA 高阳性对照(Acrometrix cat# 96-0203)中分离,并以 5,OOOIU/μ 1
的终浓度重悬。通过亚硫酸氢盐转换RNA。将3. 3g 亚硫酸氢盐(Sigma 59000500g ;批次号 116K0761)溶解在 5mlXceed 试剂 1中。将试剂在80°C下加热直到完全溶解,冷却。将0. Ilg 氢醌(Merck 8. 22333. 0250 ;批次号 K36100033 702)溶解在 IOml 不含
核酸酶的水中。将5 μ 1 RNA与220 μ 1亚硫酸氢盐试剂和12 μ 1醌醇在PCR管中混合,并在PCR 仪中在70°C下温育20分钟。将800. μ 1 不含核酸酶的水与 2 μ 1 glycoblue (Ambion AM9515 ;批次号 0705003) 一起加入,将样品充分混合,随后加入Iml异丙醇,并将样品在4°C下温育1小时。将RNA通过在4°C下以16000xg离心20分钟来沉淀。弃去上清,并使用70%乙醇在温和涡旋混合下清洗沉淀。将样品以16000xg在4°C
17下离心7分钟。弃去上清,并将沉淀风干数分钟。将沉淀重悬在70 μ 1脱磺化缓冲液(Xceed试剂5),并在PCR仪中在76°C下脱磺 化0至15分钟。将RNA冷却,随后加入2μ 1预混母液,对于每份反应,此预混母液包含以下成分10 μ 1 转换的 RNA1 μ 1 IOmM dNTPS1 μ 1 随机 H 引物(300ng/y 1)将样品在65°C下加热5分钟,然后在冰上放置至少1分钟。加入7 μ 1预混母液, 对于每份反应,此预混母液包含以下成分HIV-RT对照 RT2μ 1 IOxHIV-RT 缓冲液 4μ1 5x FS 缓冲液1 μ 1 HIV-RT (IU/ μ 1) 1 μ 1 0. IM DTT1 μ 1 RNA Sl OUTΙμ Superscript III4μ 1 7jCIylRNA酶OUT将样品混合,并进行如下的逆转录25°C持续2分钟,27°C持续2分钟,29°C持续2 分钟,31°C持续2分钟,33°C持续2分钟,35°C持续2分钟,37°C持续30分钟,45°C持续10 分钟,50°C持续10分钟,70°C持续5分钟,随后在15°C浸泡。取出5 μ 1 cDNA用于PCR分析,每份反应包含以下组分36. 5 μ 1 Promega 预混母液1. 0μ 1 Fl 引物(lOOng/μ 1)1 μ 1 RO 引物(lOOng/μ 1)6. 5 μ 1 7jC提示引物是在橙色盒中以“Herbert”标记的RNA引物循环条件如下95 °C,3 分钟95°C, 10 #52°C,1 分钟 40x68°C,1 分钟68°C,7 分钟从图3中可见,HIV-RT能够复制亚硫酸氢盐处理的RNA而无需额外的脱磺化步骤。5D4 酶亚硫酸氢盐转换反应将1 μ g模板材料制成终体积20 μ 1。通过加入2 μ 1 3Μ NaOH将模板在37°C下变性 15分钟。随后根据MethylEasy Xceed亚硫酸氢盐转换试剂盒(HumanGenetic Signatures, Sydney, Australia)将DNA用亚硫酸氢盐处理。为了脱磺化,将转换的DNA在80°C下加热 20分钟,随后在-20°C储存备用。将未脱磺化的亚硫酸氢盐处理的DNA重悬在水中(代替 来自MethylEasy试剂盒的试剂#5)并立即使用。引物延伸反应
制备50 μ 1体积的反应,其包含2 μ 1 100 μ M模板寡核苷酸、2 μ 1 2. 5yMCy3标记 的寡核苷酸、5 μ 1聚合酶缓冲液、4 μ 1 dNTPs (每种625 μ M得到终浓度50 μ Μ)和蒸馏水至 49 μ 1。BStemp35' -TAGCACCCTAGCCAGCTAGCTGGGTATAGTGAGTGGTATTA (SEQ ID NO 1)BStempC85' -CCCCCCCCTGGGTATAGTGAGTGGTATTA(SEQ ID NO 2)引物 5,-7C6C5CTATACCCA(SEQ ID NO 3)7 = Cy36 = LNAT5- = LNAA(CTCACTATACCC(SEQ ID NO 4))将样品加热至85°C,持续2分钟,并随后缓慢冷却至40°C,持续1分钟。随后将样 品加热至55°C,持续1分钟,并随后加入1 μ 1每种酶的1/10稀释液,并将样品温育适合的 时间。通过加入50μ1 8Μ尿素,50mM EDTA来终止反应。将样品随后加热至95°C,持续2分钟,随后在冰上骤冷。将10 μ 1样品在20%变 性丙烯酰胺凝胶上以30W电泳3小时。随后在Typoon成像器上记录荧光。PCR 扩增制备终反应体积25μ1的扩增反应,其包含2. 5μ1 XlO SuperTaq缓冲液、 1 μ IlOmM dNTPU μ 1 lOOng/μ 1 的每条弓I物、0· 5μ 1 SuperTaq(Cambio Ltd, Cambridge, United Kingdom)和18 μ 1蒸馏水。加入1 μ 1模板。
引物
Fl 5, -GAGGTTTGGAAGTTTTATTTTATT Rl 5, -TAACTTATCATCAAAATAAAC R3 5’ -TATACTACCTCAAAAATATAAATA R5 5’ -AAAAATCCTTACAAAACTTATAAC
(SEQ ID NO 5) (SEQ ID NO 6) (SEQ ID NO 7) (SEQ ID NO 8)
模板质粒Tgo由Vitor Pinheiro (MRC实验室)提供。
扩增在MJ Research PTC-200 (PTC200) DNA Engine Thermal Cycler PCR上,使用 如下PCR程序进行94°C1 分钟 30 秒94°C20 秒45 °C 30 秒,重复 24 次68°C 1 分钟将PCR产物溶解在含溴化乙锭的1. 5%琼脂糖凝胶中。表1显示使用6种聚合酶和部分脱磺化的BStemp3模板的引物延伸反应的结果。 从表1中可见,部分复制全长磺化的亚硫酸氢盐处理的模板的酶仅是Taq聚合酶、5D4和 3A10酶。酶14、5D4、3A10、E10和Tgo全部通过区室化自我复制(CSR)产生,并定义在EP 18012113 (Medical Research Council)中。因此选择 OT4 进一步表征。表1使用脱磺化和磺化的亚硫酸氢盐处理的模板对多种突变的聚合酶进行引物 延伸分析。
Tgo-L=粗溶解产物Tgo-P=纯化的酶表2显示使用对照(C)、脱磺化的(D)和磺化的(S)亚硫酸氢盐处理的BStemp3模 板的随时间推移的引物延伸实验。结果显示,即使在如1分钟这样短的时间后,修饰的5D4 酶仍能够从磺化的模板产生全长产物。在15分钟后,5D4已经完成磺化模板的复制,而野 生型Taq聚合酶仍显示多个停止,表示此酶未有效地加工磺化的模板。有趣地,5D4似乎比 Taq聚合酶更有效地复制脱磺化材料。表2使用脱磺化的和磺化的亚硫酸氢盐处理的模板以及Taq聚合酶和5D4的随时
间推移的引物延伸。
+++-无全长产物产生+低水平的全长产物++大量的全长产物+++全部产物是全长产物表3显示在C8模板上进行的5分钟引物延伸反应的结果。此外,能够看出,在复 制含脱磺化和磺化目标的一系列C的能力方面,5D4酶优于Taq聚合酶。确实5D4完全复制 模板,而野生型Taq聚合酶又产生多个停止。表3使用聚C8硫酸氢盐处理的脱磺化和磺化的模板,比较5D4和Taq聚合酶。 -表示在凝胶上未观察到带。+/"表示观察到极弱的停止。+ 多个阻断产物(blockage product)。++多个大阻断物。+++强停止产物。表4显示与被磺化的C模板阻断的Taq聚合酶相比,5D4的保真度和更强的绕过磺 化DNA损伤的能力。NB在亚硫酸氢盐处理后,C残基转换成U,其随后被聚合酶作为T复制,因此如果 酶显示出100%保真度,聚合酶应仅将A加入至正在延长的链中。表4使用聚C8亚硫酸氢盐处理的脱磺化和磺化的模板,比较5D4和Taq聚合酶的 可加工性。 在PCR反应中比较Taq聚合酶和5D4,结果显示在图4中。条件如下模板亚硫酸氢盐处理的Tgo质粒引物组1扩增250bp片段组2扩增600bp片段组3扩增1050bp片段94 "C -20 秒45 "C -30 秒;25 个循环68 "C -1 分钟图4显示使用亚硫酸氢盐处理的DNA在标准PCR反应中通过5D4完成改进的扩增。 此酶也能复制250bp磺化的模板,如箭头中所见。本领域技术人员可以理解,在不偏离广泛阐述的本发明的精神或范围的前提下,
21可以对具体实施方案中所示的本发明进行多种改变和/或改进。因此,在所有方面考虑,本 发明的实施方案都是说明性的而非限制性的。
权利要求
酶用于复制或扩增亚硫酸氢盐修饰或处理的核酸的应用,其中在基本相同条件下,与天然Taq聚合酶相比,所述酶在复制或扩增所述核酸中更有效。
2.如权利要求1所述的应用,其中所述酶能够复制或扩增核酸,所述核酸为具有无碱 基位点的核酸,具有大加合物的核酸,基本上仅具有A、T、G和U碱基或基本上仅具有A、T和 G碱基的核酸,所述大加合物包括磺酸盐基团。
3.如权利要求1或2所述的应用,其中所述酶选自由嗜热聚合酶、嗜温聚合酶、逆转录 酶、内切核酸酶以及它们的修饰和嵌合形式组成的组。
4.如权利要求1至3中任一项所述的应用,其中所述酶选自本文称为5D4的嵌合酶、 HIV-RT和它们的修饰形式。
5.如权利要求4所述的应用,其中所述酶是5D4或其修饰形式。
6.如权利要求4所述的应用,其中所述酶是HIV-RT或其修饰形式。
7.用于复制或扩增亚硫酸氢盐处理的核酸的方法,所述方法包括用亚硫酸氢盐处理核酸;和使用酶复制或扩增亚硫酸氢盐处理的核酸,所述酶在基本相同条件下,与天然Taq聚 合酶相比,在复制或扩增亚硫酸氢盐处理的核酸中更有效。
8.如权利要求7所述的方法,其中所述亚硫酸氢盐处理使用亚硫酸氢钠或偏亚硫酸氢钠。
9.如权利要求7或8所述的方法,其中所述亚硫酸氢盐处理基本上无脱磺化步骤。
10.如权利要求7至9中任一项所述的方法,进一步包括在亚硫酸氢盐处理前将所述核 酸变性。
11.如权利要求10所述的方法,其中所述变性步骤通过提供碱性环境或加热所述核酸 来进行。
12.如权利要求7至11中任一项所述的方法,其中所述样品中甲基化的核苷酸都保持 不变,而未甲基化的核苷酸经所述亚硫酸氢盐处理被转换为尿嘧啶。
13.如权利要求7至12中任一项所述的方法,进一步包括将所述处理的核酸样品脱盐 或分离所述处理的核酸样品。
14.如权利要求7至13中任一项所述的方法,其中所述酶能够复制或扩增核酸,所述核 酸为具有无碱基位点的核酸、具有大加合物的核酸、基本上仅具有A、T、G和U碱基或基本上 仅具有A、T和G碱基的核酸,所述大加合物包括磺酸盐基团。
15.如权利要求14所述的方法,其中所述酶选自由嗜热聚合酶、嗜温聚合酶、逆转录 酶、内切核酸酶以及它们的修饰和嵌合形式组成的组。
16.如权利要求15所述的方法,其中所述酶选自本文称为5D4的嵌合酶、HIV-RT和它 们的修饰形式。
17.如权利要求16所述的方法,其中所述酶是5D4或其修饰形式。
18.如权利要求16所述的方法,其中所述酶是HIV-RT或其修饰形式。
19.如权利要求7至18中任一项所述的方法,进一步包括加工或分析所述处理的核酸, 以确定核苷酸序列、甲基化状况,鉴定核酸来源,或检测微生物。
20.如权利要求7至19中任一项所述的方法,其中所述亚硫酸氢盐处理的核酸的扩增 是通过聚合酶链式反应(PCR)、逆转录酶PCR、qPCR、等温扩增或信号扩增进行的。
21.如权利要求7至20中任一项所述的方法,其中所述处理的核酸包括亚硫酸氢盐修 饰的DNA、亚硫酸氢盐修饰的RNA或亚硫酸氢盐修饰的DNA和亚硫酸氢盐修饰的RNA的组口 O
全文摘要
本发明涉及酶在复制或扩增亚硫酸氢盐修饰或处理的核酸中的应用,其中在基本相同条件下,与天然Taq聚合酶相比,所述酶在复制或扩增所述核酸中更有效。
文档编号C12Q1/68GK101918595SQ200880124807
公开日2010年12月15日 申请日期2008年11月27日 优先权日2007年11月27日
发明者道格拉斯·斯潘塞·米勒 申请人:人类遗传标记控股有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1