一种来源于小眼虫的δ4脂肪酸去饱和酶及其应用的制作方法

文档序号:469578阅读:179来源:国知局
一种来源于小眼虫的δ4脂肪酸去饱和酶及其应用的制作方法
【专利摘要】本发明公开了一种来源于小眼虫的Δ4脂肪酸去饱和酶及其应用。本发明公开的一种蛋白,为如下(1)或(2)所示:(1)SEQ?ID?No.2所示的蛋白;(2)将SEQ?ID?No.2所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且功能相同的蛋白质。本发明公开的一种Δ4脂肪酸去饱和酶可以促进哺乳动物中生产高水平的DHA等重要的长链多不饱和脂肪酸,同时也能将哺乳动物细胞或动物中利用各种方法产生的DPA转化为DHA。
【专利说明】一种来源于小眼虫的Δ 4脂肪酸去饱和酶及其应用
【技术领域】
[0001]本发明涉及一种来源于小眼虫的λ 4脂肪酸去饱和酶及其应用。
【背景技术】
[0002]脂肪酸分为饱和脂肪酸、单不饱和脂肪酸和多不饱和脂肪酸(PUFAs)。其中,PUFAs对人体具有更为独特的作用和意义,是一类被广泛研究和备受关注的脂肪酸。PUFAs包括ω-3和ω-ePUFAs两种类型,每一种类型又包括多个碳链长度不同、不饱和键数量不等的成员。碳链长度≥20的PUFAs被称为长链多不饱和脂肪酸(LCPUFAs),最重要的LCPUFAs包括DHA (22:6n-3)、EPA (20:5n_3)和ARA (20:4n_6,即花生四烯酸),它们是生物体内生物活性最强的三种不饱和脂肪酸,已经被证实在促进大脑发育和功能维持以及在预防和治疗心血管疾病、炎症、癌症等多种疾病方面有着重要作用。相对于其他一些生物,人类及其他哺乳动物自身合成PUFAs的能力很低,原因如下:首先,哺乳动物不能从乙酰辅酶A开始合成PUFAs,仅能够以来源于食物的LA (18:2n-6,即亚油酸)和ALA (18:3n-3,即α-亚麻酸)为底物,利用自身的脂肪酸去饱和酶及延长酶活性合成相应的PUFAs ;其次,哺乳动物中这些脂肪酸去饱和酶及延长酶活性是很有限的,故只能最终合成有限的一小部分PUFAs ;再次,哺乳动物中还缺失一些其他生物拥有的脂肪酸去饱和酶及延长酶活性而使得一些重要的长链多不饱和脂肪酸尤其是DHA的合成极为困难。因此,人体对更多的PUFAs需求主要依靠从食物来源获取。但是自然界中o-6PUFAs丰富而o-3PUFAs稀缺,从而致使人体中摄入和积累的o-6PUFAs过多而co-3PUFAs过少。而哺乳动物中不存在使co-6PUFAs转变为o-3PUFAs的酶活性,故人体中co-6PUFAs和ω-3PUFAs的比例严重失衡。co-6PUFAs虽然对人体也不可或缺,但其过量的摄入反而危害人体健康。
[0003]现代人的生活和饮食模式导致了脂肪酸的摄取严重不平衡。这种不平衡体现在以下几个层次。第一个层次是饱和脂肪酸与不饱和脂肪酸之间的不平衡,即大多数情况下人体摄入了过多的饱和脂肪酸(主要来自动物油脂),而不饱和脂肪酸不足;第二个层次是摄入的不饱和脂肪酸中ω-6系不饱和脂肪酸与ω-3系不饱和脂肪酸之间的不平衡,即ω-6系不饱和脂肪酸过多而ω-3系不饱和脂肪酸过少;第三个层次是摄入的不饱和脂肪酸中,短链不饱和脂肪酸(18C)与长链不饱和脂肪酸(20C~22C)的不平衡,即短链不饱和脂肪酸多,长链不饱和脂肪酸少。大多数常用植物油如大豆油、花生油、葵花籽油等都含有很高水平的短链的ω-6不饱和脂肪酸即LA (18:2η-6,即亚油酸),亚麻籽油、紫苏籽油等虽然含有高水平的短链的ω-3不饱和脂肪酸即ALA (18:3η-3,即α -亚麻酸),但它们并非日常生活中常用油。深海鱼油是长链多不饱和脂肪酸EPA和DHA的主要提供者,但价格昂贵,资源稀少,食用人群有限,所以它并没有在大范围内改变人类脂肪酸摄入不平衡的状态。由此可见,脂肪酸的不平衡正好体现在DHA (22:6η-3)、ΕΡΑ (20:5η_3)和ARA (20:4η_6)这三种最具生物活性的长链多不饱和脂肪酸的缺乏。也就是说,如果能够获得丰富的DHA (22:6η-3)、ΕΡΑ (20:5η_3)和ARA (20:4η_6)资源供人类摄取就能够改变目前人类脂肪酸摄取不平衡的现状。[0004]如何获取丰富的DHA (22:6n_3)、EPA (20:5n_3)和 ARA (20:4n_6)资源是当今世界范围内人们所关心的一个问题。在深海鱼油面临资源枯竭以及污染日益严重的现状下,利用一些海洋藻类和真菌类等EPA (20:5n-3)、DHA (22:6n_3)的初始生产者获取这些长链多不饱和脂肪酸成为很好的选择,目前开发也获得很大的成功。然而,这些产品通常作为食品添加剂使用有一定的局限性,其保存需要严格的措施、其口味不佳难以长期使用。可以设想,如果陆地动物如猪牛羊等家畜能够像深海鱼一样可以提供DHA (22:6n-3)、EPA (20:5n-3)和ARA (20:4n_6)等不饱和脂肪酸的话,那么其资源的丰富性将产生革命性的变化,而且在不影响和改变人们生活习惯的情况下就能获取这些重要的脂肪酸,这对人类健康将产生深远的影响。但是,正如前面所提及的,哺乳动物合成DHA (22:6n-3)、EPA (20:5n_3)和ARA (20:4n-6)是极为有限的,要提高其含量,就必须从相应的多不饱和脂肪酸合成酶着手。相关的研究基础已经显示,通过转基因动物技术在哺乳动物中来生产这些长链多不饱和脂肪酸是有可能的。1997年,James P等从线虫C.elegans中筛选克隆了第一个动物Δ 15去饱和酶基因,命名为fat-Ι,在后续的研究发现fat-Ι基因可以将16~20碳ω -6PUFAs去饱和变成o-3PUFAs。Zhao B.Kang等将fat_l基因转入哺乳动物细胞,ω -6/ ω -3PUFAs比从15:1下降到1:1,使哺乳动物的o-3PUFAs含量显著地提高。之后又于2004年将fat_l基因转入小鼠,使得ALA、EPA、DPA等co-3PUFAs均显著提高。2006年,Lai等制备的fat_l的转基因猪,也表现出了与转基因小鼠类似的情况。然而,这些转基因动物体内所合成的co-3PUFAs中以18C、20C的co-3PUFAs为主,而更为重要的22C的DHA (22:6n_3)总量仍然很少。事实上,后续的一些研究表明fat-Ι的Δ 15去饱和酶活性并不能增加这些动物体内的DHA (22:6n-3)含量。因此,fat_l基因用于提高哺乳动物长链多不饱和脂肪酸含量的实践中,关键性的缺憾就是不能增加DHA (22:6n-3)的含量。
[0005]事实上,DHA (22: 6n_3)在哺乳动物中的合成很复杂,要经过一个所谓的“Sprecher通路”,EPAC 20: 5n-3)延长生成一个中间产物DPA( 22: 5n_3)后,再进一步延伸为24: 5n_3,然后迅速被Λ 6去饱 和酶作用生成24: 6η-3,之后进一步经β -氧化作用产生DHA( 22: 6n_3 ),这种复杂的机制可能是哺乳动物难以合成高水平DHA (22:6n-3)的原因。有关多不饱和脂肪酸生物合成途径如图1所示。

【发明内容】

[0006]本发明的目的是提供一种来源于小眼虫的Λ 4脂肪酸去饱和酶及其应用。
[0007]本发明提供的一种蛋白,为如下(I)或(2)所示:
[0008](I) SEQ ID N0.2 所示的蛋白;
[0009](2)将SEQ ID N0.2所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且功能相同的蛋白质。
[0010]上述蛋白的编码基因也属于本发明的保护范围。
[0011]上述编码基因中,所述编码基因为如下中至少一种:
[0012]I) SEQ ID N0.1中自5’末端起第10位至第1635位核苷酸所示的DNA分子;
[0013]2)在严格条件下与I)限定的DNA分子杂交且编码所述蛋白质的DNA分子;
[0014]3)与I)或2)限定的DNA分子具有90%以上的同一性且编码所述蛋白质的DNA分子。[0015]含有上述任一所述编码基因的重组载体、表达盒、转基因细胞系或重组菌也属于本发明的保护范围。
[0016]一种蛋白组合物也属于本发明的保护范围,由SEQ ID N0.2所示的蛋白和SEQ IDN0.4所示的蛋白组成。
[0017]一种蛋白组合物也属于本发明的保护范围,由SEQ ID N0.2所示的蛋白、SEQ IDN0.5所示的蛋白和SEQ ID N0.6所示的蛋白组成。
[0018]一种提高哺乳动物细胞中DHA (22:6n-3)合成能力的方法也属于本发明的保护范围,包括如下步骤:将所述蛋白的编码基因导入到出发细胞中,得到转基因细胞;与出发细胞相比,转基因细胞的DHA (22:6n-3)合成能力提高。
[0019]上述方法中,所述编码基因是通过重组表达载体导入的,所述重组表达载体是将所述编码基因插入出发载体PCDNA3.1(_)的多克隆位点得到的。
[0020]上述蛋白在制备促进DHA (22: 6n_3 )合成的产品中的应用也属于本发明的保护范围;
[0021]或,
[0022]上述任一所述的蛋白组合物在制备促进DHA (22:6n_3)合成的产品中的应用也属于本发明的保护范围。
[0023]上述蛋白在制备促进0?么(22:511-3)转化成0撤(22:611-3)的产品中的应用也属于本发明的保护范围;
[0024]或,
[0025]上述任一所述的蛋白组合物在制备促进DPA (22:5n-3)转化成DHA (22: 6n_3)的产品中的应用也属于本发明的保护范围;
[0026]或,
[0027]上述蛋白在制备促进Λ 15脂肪酸去饱和酶将DPA(22:5n-3)转化成DHA(22:6n_3)的产品中的应用也属于本发明的保护范围;
[0028]或,
[0029]上述蛋白在制备促进Λ 15脂肪酸去饱和酶将LA(18:2n-6)和/或ARA (20: 4n_6)转化成DHA(22:6n-3)的产品中的应用也属于本发明的保护范围;
[0030]所述Λ 15脂肪酸去饱和酶的氨基酸序列如SEQ ID N0.4所示;
[0031]或,
[0032]上述蛋白在制备促进Λ6-脂肪酸去饱和酶和Λ5-脂肪酸去饱和酶将DPA(22:5n-3)转化成DHA(22:6n_3)的产品中的应用也属于本发明的保护范围;
[0033]上述蛋白在制备促进Λ6-脂肪酸去饱和酶和Λ5-脂肪酸去饱和酶将LA(18:2n-6)和/或ALA(18:3n_3)转化成DHA(22:6n_3)的产品中的应用也属于本发明的保护范围;
[0034]所述Λ 6-脂肪酸去饱和酶的氨基酸序列如SEQ ID N0.6所示;
[0035]所述Λ 5-脂肪酸去饱和酶的氨基酸序列如SEQ ID N0.8所示。
[0036]本发明提供的一种Λ4脂肪酸去饱和酶,通过配合或协同其他脂肪酸去饱和酶(Λ 15或Λ6/Λ5)的作用,可以促进基因转染的哺乳动物细胞以及转基因动物将添加的初始脂肪酸底物如LA(18:2n-6)或ALA(18:3n_3)转化成为高水平的DHA (22:6n_3)等重要的长链多不饱和脂肪酸,同时也能将哺乳动物细胞或动物中利用各种方法产生的DPA转化为 DHA。
【专利附图】

【附图说明】
[0037]图1为多不饱和脂肪酸生物合成途径。
[0038]图2 为 pcDNA3.l_sEgD4 载体示意图。
[0039]图3为转sEgD4基因细胞中目的基因的表达鉴定。
[0040]图4为GC-MS检测结果。
[0041]图5为实施例2中转基因细胞的鉴定。
[0042]图6为Λ 4脂肪酸去饱和酶与Λ 15脂肪酸去饱和酶的协同作用分析。
[0043]图7为实施例3中转基因细胞的鉴定。
[0044]图8为Λ 4脂肪酸去饱和酶与Λ 6/ Λ 5脂肪酸去饱和酶的协同作用分析。
【具体实施方式】
[0045]下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
[0046]下述实施例中所用 的材料、试剂等,如无特殊说明,均可从商业途径得到。
[0047]中国仓鼠卵巢(CHO)细胞购自中国医学科学院基础医学研究所基础医学细胞中心。
[0048]pEGFP-Nl 购自 Clontech 公司。
[0049]pcDNA3.1(-)购自 Invitrogen 公司。
[0050]pcDNA3.1-EGFP的构建方法如下:
[0051]一、以 pEGFP-Nl 为模板,用引物 fG-s:5' -TCTAGATCGCCACCATGGTGAGCAAGG-3'和fG-a:5' -CTCGAGCTTGTACAGCTCGTCCATGCCGAG-3'进行 PCR 扩增,得到 PCR 扩增产物,此产物为EGFP基因编码区(725bp);
[0052]二、Xba I和Xho I双酶切步骤一得到的PCR扩增产物,得到基因片段;Xba I和Xho I双酶切pcDNA3.1 (_),得到载体大片段;将基因片段与载体大片段连接,得到重组质粒,将其命名为pcDNA3.1-EGFP。
[0053]pMD18-T购自宝生物工程(大连)有限公司。
[0054]pcDNA3.1-F2F1的构建方法在文献“汪坤福,朱贵明,张莉等。脂肪酸合成酶系多基因表达载体的构建。中国老年学杂志,2013,33 (17),4178-4180”中公开过,公众可从佳木斯大学获得。
[0055]实施例1、Λ 4脂肪酸去饱和酶基因(sEgD4基因)的合成及其功能验证
[0056]一、Λ4脂肪酸去饱和酶基因(sEgD4基因)的合成
[0057]对GenBank中提交的小眼虫(Euglena gracilis)的Δ4脂肪酸去饱和酶基因(GenBank号:AY278558)的cDNA序列(编码框全长为1626bp)进行密码子优化,使之符合哺乳动物基因密码子使用偏好。优化后使用软件预测其mRNA的二级结构,验证密码子优化是
否合理。
[0058]优化后的Λ 4脂肪酸去饱和酶基因(sEgD4基因)的核苷酸序列如SEQ ID N0.1中自5’末端起第10位至第1635位核苷酸所示,其编码的氨基酸序列如SEQ ID N0.2所示。[0059]将优化后的序列在两端加上EcoRI和HindIII酶切位点,然后进行全长基因的人工合成,全长序列如SEQ ID N0.1所示。
[0060]二、将 SEQ ID N0.1 所示的序列与 T 载体(pMD18_T)连接,得到 pMD18T_sEgD4重组质粒;用EcoRI和HindIII双酶切pMD18T_sEgD4,得到基因片段;EcoRI和HindIII双酶切真核表达载体PCDNA3.1 (-),得到载体大片段;将基因片段与载体大片段连接,得到重组表达质粒,将其命名为pcDNA3.l-sEgD4。将pcDNA3.l_sEgD4送测序,结果正确。pcDNA3.l-sEgD4载体的示意图如图2所示。
[0061]三、Λ4脂肪酸去饱和酶基因(sEgD4基因)的功能验证
[0062](一)CHO细胞的培养
[0063]培养基组成:DMEM高糖培养基,10 %胎牛血清,I %青链霉素(IOOX ),I %非必需氨基酸,lg/100ml丙酮酸钠,0.22 μ M滤膜过滤除菌,%均代表体积百分含量。
[0064]中国仓鼠卵巢(CHO)细胞以5X105/ml接种于培养瓶中,于37°C、5%C02及饱和湿度的培养箱中培养。
[0065](二)脂质体法瞬时转染CHO细胞
[0066]1、转染前的准备:用pcDNA3.l_sEgD4瞬时转染CHO细胞(实验组),以含增强型绿色荧光蛋白的重组质粒pcDNA3.1-EGFP为对照瞬时转染CHO细胞(对照组),监测转染效率。转染前一天将培养的CHO细胞传代至60mm培养皿,添加lOymol/L的脂肪酸底物即DPA(22:5n-3),当细胞长至90%~95%进行转染。
`[0067]2、转染:向1.5ml EP管中加500 μ I DMEM基础培养基,再力卩入8 μ gpcDNA3.l-sEgD4或pcDNA3.1-EGFP后轻轻混匀,标为A液;向另一 1.5ml EP管中加500 μ I DMEM基础培养基,再加入20 μ I转染试剂Lipofectamine?2000后混合均匀,标为B液,室温孵育5min。将A和B加到一个管中混匀,室温静置20min,得混合液。然后将混合液加到CHO细胞的60mm培养皿轻轻混匀,37°C,5%C02培养4_6h后,吸弃孔中的液体,换新鲜培养基(同样含Ιθμπιο?/L的DPA)培养。转染后次日开始可用荧光显微镜观察转染情况,48h后收集得到的实验组和对照组的细胞用于后续检测和实验。
[0068](三)RT-PCR进行转基因细胞的鉴定
[0069]1、总RNA的提取:取转染48h后的实验组和对照组的细胞用TRizol试剂提取总RNA,并测定RNA浓度,最后将提取的RNA置于_80°C超低温冰箱保存备用。
[0070]2、mRNA的反转录:将实验组和对照组的mRNA反转录为cDNA,反转录反应条件为420C 30min ;95°C 5min ;5°C 5min ;4°C保存。反转录结束后,将cDNA置于_20°C保存备用。
[0071]3、PCR检测目的基因sEgD4的表达,并以β-actin为内参基因
[0072]①sEgD4基因的检测引物:
[0073]D4d-s:5,-TCATCATCAACCACATCAGCGAG-3,Tm:63.2°C
[0074]D4d-a:5’ -TTTAGCTCTTCTTGTCGCCGTTG-3’ Tm:63.8°C
[0075]目的产物长度为426bp。
[0076]②β -actin内参基因检测引物:
[0077]Bact-s:5,-CTGAGAGGGAAATCGTGCGTGAC-3,Tm:65.7°C
[0078]Bact-a:5,-TGCCACAGGATTCCATACCCAAG-3,Tm:65.7°C
[0079]目的产物长度为2IObp。[0080]以步骤2制备的实验组的cDNA为模板,分别以D4d_s和D4d-a、Bact_s和Bact-a为引物进行PCR扩增,得到PCR扩增产物I。
[0081]以步骤2制备的对照组的cDNA为模板,分别以D4d_s和D4d-a、Bact_s和Bact-a为引物进行PCR扩增,得到PCR扩增产物2。
[0082]取PCR扩增产物I和2进行1%琼脂糖凝胶电泳,结果如图3所示。
[0083]图3中,I为PCR扩增产物2 ;2为PCR扩增产物I。
[0084]图3表明,pcDNA3.l_sEgD4转染的CHO细胞中检测到目的基因sEgD4的转录,而转染含增强型绿色荧光蛋白的重组质粒pcDNA3.1-EGFP的CHO细胞中没有检测到目的基因sEgD4,证明实验组转sEgD4基因细胞构建成功。
[0085](四)气相色谱-质谱联用分析技术(GC-MS)检测脂肪酸的组成变化
[0086]1、总脂肪酸的提取:将转染48h后的实验组和对照组的培养皿中的细胞分别用
0.4ml胰蛋白酶37°C消化3min,用Iml含血清培养基终止胰蛋白的作用,用去离子水漂洗一次,lOOOrpm,离心5min,加入Iml体积百分含量为2.5%H2S04的甲醇溶液,轻轻混匀,80°C水浴90min,待冷却至室温,加入1.5ml0.9g/100ml的NaCl溶液和Iml正己烷,震荡,2000rpm,离心5min,将脂肪酸萃取到有机相(即正己烷)中,吸取实验组或对照组的有机相萃取物经氮气吹干浓缩后用于GC-MS检测分析,或于_80°C保存备用。
[0087]2、GC-MS检测:检测时使用仪器为ΗΡ_5890/ΗΡ_5971气质联用分析仪,实验条件按照常规不饱和脂肪酸的检测分析要求进行,具体参考文献“Kang ZB, Ge Y, Chen Z, etal.Adenoviral gene transfer of Caenorhabditis elegans n-3fatty acid desaturaseoptimizes fatty acid composition in mammalian cells.Proc Natl Acad SciUSA, 2002,98 (7): 405 0 - 4054”。
[0088]结果如图4所示,图4中,A为对照组GC-MS检测结果;B为实验组GC-MS检测结
果O
[0089]图4表明,添加DPA (22: 5n_3)底物后,实验组较对照组DHA (22: 6n_3)的合成量显著增加,差异极显著,说明sEgD4基因表达厶4脂肪酸去饱和酶在合成0撤(22:611-3)的过程中发挥了其作用,将DPA(22:5n-3)直接转化成为DHA(22:6n_3)。
[0090]实施例2、哺乳动物细胞中sEgD4基因编码的Λ 4脂肪酸去饱和酶与Λ 15脂肪酸去饱和酶的协同作用
[0091]一、根据研究报道,来源于线虫C.elegans的fat-Ι基因(GenBank号:NM_001028389)的表达产物具有Λ 15脂肪酸去饱和酶活性,将fat_l基因进行密码子优化设计、人工合成的序列如SEQ ID N0.3所示。
[0092]该Λ 15脂肪酸去饱和酶的编码基因序列如SEQ ID N0.3中自5’末端起第13位至第1221位核苷酸所示,Δ 15脂肪酸去饱和酶的氨基酸序列如SEQ ID N0.4所示。
[0093]按照实施例1步骤二的方法得到重组表达质粒pcDNA3.l_sD15。
[0094]二、按照实例I中步骤三的细胞转染方法,分别将表达质粒pcDNA3.1-EGFP,pcDNA3.l-sD15、pcDNA3.l_sD15+pcDNA3.l_sEgD4 转染铺板于 60mm 平皿的 CHO 细胞,每个转染组所用质粒均为8 μ g (pcDNA3.l_sD15+pcDNA3.l_sEgD4中两种质粒各4 μ g),并与细胞培养基中添加lOymol/L的底物亚油酸LA(18:2n_6)及10 μ mol/L花生四烯酸ARA(20:4n-6)培养48h后,收集细胞,一部分用于提取总RNA,进行RT-PCR鉴定和检测基因表达的转录水平,方法同实施例1中步骤三的(三),结果如图5所示;另一部分用于提取细胞中脂肪酸,进行GC-MS分析脂肪酸组成,方法同实施例1中步骤三的(四),结果如图6所
/Jn ο
[0095]图5中,I代表pcDNA3.1-EGFP转染组(对照组);2代表pcDNA3.l_sD15转染组;3代表 pcDNA3.l-sD15+pcDNA3.l_sEgD4 转染组。
[0096]图5表明,目的基因sD15、sD15和sEgD4按照预期在相应的细胞中实现了表达,不含目的基因表达质粒的pcDNA3.1-EGFP转染组(对照组)则检测不到目的基因的转录产物。
[0097]图6 中,EGFP 代表 pcDNA3.1-EGFP 转染组(对照组);sD15 代表 pcDNA3.l_sD15 转染组;sD15+sEgD4 代表 pcDNA3.l_sD15+pcDNA3.l_sEgD4 转染组。
[0098]Δ 15脂肪酸去饱和酶将添加的一部分LA(18:2n-6)转化为ALA(18:3n_3)(这部分ALA(18:3n-3)按ω-3途径经两步代谢后成为EPA (20: 5η_3)),另一部分LA (18: 2η_6)被细胞内本身所拥有的去饱和酶和延长酶活性通过两步转化而成为ARA(20:4n-6)。这部分ARA(20:4n-6)同添加的ARA(20:4n_6) —起被Λ 15脂肪酸去饱和酶部分转化为ΕΡΑ(20:5η-3)。仍然有一部分ARA(20:4η_6)未被转化成为EPA(20:5η_3)则被细胞内本身所拥有的延长酶活性转化为ADA(22:4n-6)。Λ 15脂肪酸去饱和酶此时可将ADA (22: 4η_6)转化为DPA(22:5n-3),还有一部分DPA (22: 5n_3)由EPA (20: 5n_3)经过细胞内延长酶作用而产生。经过Sprecher通路将DPA(22:5n-3)转化成为DHA(22:6n_3)的量并不显著,但在sD15+sEgD4转染组中由Λ 4脂肪酸去饱和酶则可以进一步将积累的DPA(22:5n_3)直接转化为DHA(22:6n-3),其数量的增加是非常显著的。上述多不饱和脂肪酸的代谢转化过程可参见图1。
[0099]图6 表明,与对照组相比,pcDNA3.l_sD15、pcDNA3.l_sD15+pcDNA3.l_sEgD4 两组转染组中0-6系?现么8如1^(18:211-6)、六狀(20:411-6)及ADA(22:4n_6)均显著降低,而 ω -3 系 PUFAs 中 ALA (18: 3η_3)及 EPA (20: 5η_3)均显著增加。但是,DPA (22: 5η_3)和DHA(22:6n-3)情况完全不同:与对照组相比,pcDNA3.l_sD15转染组中DPA(22:5n_3)显著增加,而sD15+sEgD4转染组中DPA(22:5n-3)含量基本与对照组持平;sD15转染组中DHA(22:6n-3)含量基本与对照组持平,而pcDNA3.l_sD15+pcDNA3.l_sEgD4转染组中DHA(22:6n-3)含量则显著增加(其含量占多不饱和脂肪酸总含量的近10%)。
[0100]结果表明,sEgD4基因编码的Λ 4脂肪酸去饱和酶可与Λ 15脂肪酸去饱和酶协同作用,在哺乳动物细胞内,利用sEgD4基因编码的Λ 4脂肪酸去饱和酶可以促进Λ 15脂肪酸去饱和酶活性,将添加的亚油酸及花生四烯酸转化为较高水平的DHA(22:6n-3),与只添加Λ 15脂肪酸去饱和酶相比,含量提高约I倍。
[0101]实施例3、哺乳动物细胞中sEgD4基因编码的Λ 4脂肪酸去饱和酶与Λ 6/ Λ 5脂肪酸去饱和酶的协同作用
[0102]pcDNA3.1-F2F1为含有来源于小鼠的Λ 6_脂肪酸去饱和酶基因fads2 (GenBank号:BC057189)和Λ 5-脂肪酸去饱和酶基因fadsl (GenBank号:BC063053)的双基因表达载体。
[0103]Λ 6-脂肪酸去饱和酶的编码基因序列如SEQ ID N0.5所示,该蛋白的氨基酸序列如 SEQ ID N0.6 所示。
[0104]Λ 5-脂肪酸去饱和酶的编码基因序列如SEQ ID N0.7所示,该蛋白的氨基酸序列如 SEQ ID N0.8 所示。
[0105]按照实例I中步骤三的细胞转染方法,分别将表达质粒pcDNA3.1-EGFP,pcDNA3.1-F2F1、pcDNA3.l_F2Fl+pcDNA3.l_sEgD4 转染铺板于 60mm 平皿的 CHO 细胞,每个转染组所用质粒均为8μ g (pcDNA3.l-F2Fl+pcDNA3.l_sEgD4中两种质粒各4 μ g),并与细胞培养基中添加1(^11101/1的脂肪酸底物亚油酸1^(18:211-6)和10 μ mol/L α -亚麻酸ALA(18:3n-3)培养48h后,收集细胞,一部分用于提取总RNA,进行RT-PCR鉴定和检测转基因表达的转录水平,方法同实施例1中步骤三的(三),结果如图7所示;另一部分用于提取细胞中脂肪酸,进行GC-MS分析脂肪酸组成,方法同实施例1中步骤三的(四),结果如图8所示。
[0106]图7中,I代表pcDNA3.1-EGFP转染组(对照组);2代表pcDNA3.1-F2F1转染组;3代表 pcDNA3.l-F2Fl+pcDNA3.l_sEgD4 转染组。
[0107]图7表明,转染的目的基因f ads2和fads 1、f ads2、fads I和sEgD4按照预期在相应的细胞中实现了超表达,其转录水平显著高于对照组;不含目的基因表达质粒的pcDNA3.1-EGFP转染组(对照组)则检测不到sEgD4基因的转录产物。
[0108]图8 中,EGFP 代表 pcDNA3.1-EGFP 转染组(对照组);F2F1 代表 pcDNA3.1-F2F1 转染组;F2Fl+sEgD4 代表 pcDNA3.l_F2Fl+pcDNA3.l_sEgD4 转染组。
[0109]图8中各物质的转化过程如实施例2中所述。
[0110]图8表明,与对照组相比,pcDNA3.1-F2F1转染组中,Λ 6/Λ 5脂肪酸去饱和酶活性的增加能够促使添加的脂 肪酸底物LA (18: 2η-6)显著地转变为ARA (20: 4η_6),Λ 6/ Λ 5脂肪酸去饱和酶活性的增加使添加的脂肪酸底物ALA(18:3n-3)转变为更多的EPA(20:5n_3)和DPA(22:5n-3),但Λ 6/Λ 5脂肪酸去饱和酶活性并没有显著地提高DHA (22: 6n_3)的含量。与 pcDNA3.1-F2F1 转染组相比,在 pcDNA3.l_F2Fl+pcDNA3.l_sEgD4 转染组中,EgD4 基因编码的Λ 4脂肪酸去饱和酶协同Λ 6/Λ 5脂肪酸去饱和酶的活性,将DPA (22:5η-3)直接转化成为更高水平的DHA(22:6n-3),DHA(22:6n-3)的含量较pcDNA3.1-F2F1转染组提高了约1.5倍,占多不饱和脂肪酸总含量近30%。
[0111]结果表明,在哺乳动物细胞内,EgD4基因编码的Λ 4脂肪酸去饱和酶可以协同Λ6/Λ5脂肪酸去饱和酶的作用将ω-3系的α -亚麻酸ALA(18:3η_3)转化为高水平DHA(22:6n-3)。
【权利要求】
1.一种蛋白,为如下(I)或(2)所示: Cl) SEQ ID N0.2所示的蛋白; (2)将SEQ ID N0.2所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且功能相同的蛋白质。
2.权利要求1所述蛋白的编码基因。
3.根据权利要求2所述的编码基因,其特征在于:所述编码基因为如下中至少一种: O SEQ ID N0.1中自5’末端起第10位至第1635位核苷酸所示的DNA分子; 2)在严格条件下与I)限定的DNA分子杂交且编码权利要求1所述蛋白质的DNA分子; 3)与I)或2)限定的DNA分子具有90%以上的同一性且编码权利要求1所述蛋白质的DNA分子。
4.含有权利要求2或3所述编码基因的重组载体、表达盒、转基因细胞系或重组菌。
5.一种蛋白组合物,由SEQ ID N0.2所示的蛋白和SEQ ID N0.4所示的蛋白组成。
6.一种蛋白组合物,由SEQ ID N0.2所示的蛋白、SEQ ID N0.5所示的蛋白和SEQ IDN0.6所示的蛋白组成。
7.一种提高哺乳动物细胞中DHA (22:6n-3)合成能力的方法,包括如下步骤:将权利要求I所述蛋白的编码基因导入到出发细胞中,得到转基因细胞;与出发细胞相比,转基因细胞的DHA (22:6n-3)合成能力提高。
8.根据权利要求7所述的方法,其特征在于:所述编码基因是通过重组表达载体导入的,所述重组表达载体是将所述编码基因插入出发载体PCDNA3.1(_)的多克隆位点得到的。
9.权利要求1所述的蛋白在制备促进DHA(22:6n-3)合成的产品中的应用; 或, 权利要求5或6所述的蛋白组合物在制备促进DHA (22:6n_3)合成的产品中的应用。
10.权利要求1所述的蛋白在制备促进DPA(22:5n-3)转化成DHA(22:6n_3)的产品中的应用; 或, 权利要求5或6所述的蛋白组合物在制备促进DPA (22:5n-3)转化成DHA (22: 6n_3)的产品中的应用; 或, 权利要求1所述的蛋白在制备促进Λ 15脂肪酸去饱和酶将DPA(22:5n-3)转化成DHA(22:6n-3)的产品中的应用; 或, 权利要求1所述的蛋白在制备促进Λ 15脂肪酸去饱和酶将LA(18:2n-6)和/或ARA(20:4n-6)转化成DHA (22: 6n_3)的产品中的应用; 所述Λ 15脂肪酸去饱和酶的氨基酸序列如SEQ ID N0.4所示; 或, 权利要求1所述的蛋白在制备促进Λ6-脂肪酸去饱和酶和Λ5-脂肪酸去饱和酶将DPA(22:5n-3)转化成DHA (22: 6n_3)的产品中的应用; 或,权利要求1所述的蛋白在制备促进Λ6-脂肪酸去饱和酶和Λ5-脂肪酸去饱和酶将LA(18:2n-6)和 / 或 ALA (18: 3n_3)转化成 DHA (22: 6n_3)的产品中的应用; 所述Λ 6-脂肪酸去饱和酶的氨基酸序列如SEQ ID N0.6所示; 所述Λ 5-脂肪酸去饱和酶的氨·基酸序列如SEQ ID N0.8所示。
【文档编号】C12N15/53GK103820402SQ201410043571
【公开日】2014年5月28日 申请日期:2014年1月29日 优先权日:2014年1月29日
【发明者】朱贵明, 王淑秋, 孙洁, 王迪迪, 葛堂栋, 江旭东, 朴金花 申请人:佳木斯大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1