陶瓷加热器及其制造方法以及加热装置和烫发器的制作方法

文档序号:707633阅读:142来源:国知局
专利名称:陶瓷加热器及其制造方法以及加热装置和烫发器的制作方法
技术领域
本发明涉及传感器加热用加热器,特别是在汽车用的空燃比检测传感器加热用、汽化器用加热器、烫发器(hair iron)、钎焊烙铁等方面使用的陶瓷加热器和采用它构成的加热装置及烫发器。
背景技术
一直以来,以氧化铝为主成分的陶瓷中,埋设由W、Re、Mo等高熔点金属构成的发热电阻体所形成的氧化铝陶瓷加热器被广泛应用。
例如,在制造圆柱状陶瓷加热器时,如图10所示,预备陶瓷成形体12和陶瓷生片13,在陶瓷生片的一个面上形成由W、Re、Mo等高熔点金属构成的发热电阻体14和引线引出部15,在背面(另一面)形成电极极板后,以发热电阻体14和引线引出部15成为内侧的方式将陶瓷成形体12进行卷绕并密接烧成。其中引线引出部15和电极极板通过陶瓷生片上所形成的穿孔16进行连接(例如,参照专利文献1)。
如此,以往的陶瓷加热器,是将糊(paste)状发热电阻体14与陶瓷成形体12和陶瓷生片12同时烧成所形成。然后,如此制作的陶瓷加热器的发热电阻体经过多次折返形成曲折的形状(专利文献2的图1等)。
另外,专利文献3~专利文献5中公开了以下内容一对把持部件的基部通过轴自由开闭地联结,通过轴承部中设定的弹簧的张力,平时两把持部件的前端部相互开放,同时在两把持部件前端部的开口部的内侧具备加热板的烫发器。
该烫发器具有以下结构在陶瓷制的绝缘板上卷绕镍铬电热线,使两面进一步由绝缘板所覆盖的加热板在板状体上勘合,或者通过板簧按压,将加热板发出的热传递到板状体上。
专利文献1特开2001-126852号公报专利文献2特开2001-102156号公报专利文献3特开2000-232911号公报专利文献4特开2002-291517号公报专利文献5特开2000-14438号公报但是,最近陶瓷加热器逐渐被使用在更高温度环境下,因此耐久性降低就成了问题。即,当进行高温下连续通电时,相邻图案间的绝缘性劣化、耐久性降低,最终发生如一会引发火化,一会断线的问题。
另外,在绝缘板上卷绕由镍铬电热线构成的发热体所制作的加热器,因反复加热通电而断线,发热体与空气中的水分反应形成反应层,发热体的电阻值就变大了,具有一定电压下不能达到一定温度的危险和耐久性减低的问题。
另外,由镍铬电热线构成的加热板很难在加热板上均匀地设置发热体,具有板状体的加热面不能均匀加热的问题。
另外,加热板的加热面和板状体面因为没有以同样热度接触,加热板的热很难在板状体上同样传播,具有加热面的温度不均匀的问题。

发明内容
本发明的第1个目的,借鉴上述事情所形成的部件,提供防止高温下绝缘性降低,耐久性良好的陶瓷加热器。
另外本发明第2个目的,提供能够均匀加热板状体加热面的加热装置及烫发器。
为了达成以上第1个目的,本发明所述陶瓷加热器的特征是包含陶瓷体,该陶瓷体具有外表面和被埋设的导体图案,所述导体图案由导体构成,所述导体按照形成成为电阻发热体的折返部的方式被设置,在所述折返部中由邻接的导体所夹的陶瓷部的空孔占有率为0.01~50%。
这里,所谓上述邻接导体间所夹的陶瓷部,被定义为是与该导体实质上具有相同的厚度且沿着上述外表面的作为内部区域中,夹在导体间的陶瓷部分。
另外,本发明的陶瓷加热器的第1制造方法,其特征包括在第一陶瓷生片表面由规定的图案形成导体糊的工序,
和在该第一陶瓷生片的形成导体糊的面上,叠层至少具有与该导体图案同样的厚度且比上述第一陶瓷生片更柔软的第二陶瓷生片,制作陶瓷生片层叠体的工序,和在陶瓷成形体上粘结该陶瓷生片的工序,和烧成该粘结的陶瓷生片层叠体及陶瓷成形体的工序。
另外,本发明的陶瓷加热器的第2制造方法,其特征是包括按规定的图案在陶瓷生片的表面形成导体糊的工序,和在上述规定图案中导体糊之间填充绝缘物的工序,和将在该导体糊间填充绝缘物的陶瓷生片,将形成上述导体糊的面作为粘结面而粘结在陶瓷成形体上的工序,和烧成该粘结陶瓷生片及陶瓷成形体的工序。
另外,为了达成上述第2目的,本发明的加热装置,其特征为,具备加热板,其由被埋设电阻发热体的板状陶瓷体构成,具有0.5~5.0mm范围的厚度;和板状体,其具有第1和第2面,在所述第1面设置所述加热板,将所述第2面作为加热面,该加热面由平面部和其周边的倒角部构成。
本发明的所述烫发器,其特征为采用本发明的陶瓷加热器或本发明的加热装置而构成。
以上发明所述的陶瓷加热器,因为在上述导体间陶瓷体的空孔占有率为0.01~50%,所以能够防止高温条件下绝缘性降低,能够提供耐久性高的陶瓷加热器。
即,陶瓷加热体的发明,发现如果上述导体间的陶瓷部的空孔占有率在一定范围内时,就能够防止高温条件下绝缘性降低,而完成了本发明。
另外,本发明的加热装置,因在板状陶瓷体中埋设电阻发热体,所以没有在水蒸气等中暴露电阻发热体的情况,因而耐久性卓越,同时可以反复急速加热,并且加热面内的温度差可以很小,因此均匀地加热被加热物成为可能。
进而,本发明所述烫发器,通过具备本发明的陶瓷加热器或本发明的加热装置,能具有高的耐久性。
另外,在本发明的烫发器上,通过具备本发明所述加热装置,因为在加热面不会产生局部高温部,所以能够提供不会出现例如对毛发进行部分地高温加热而造成损伤的烫发器。


图1是表示本发明的陶瓷加热器的构成部分剖开一实施方式1的立体图。
图2是表示陶瓷加热器的一图1的X-X断面图。
图3是表示实施方式1的圆柱状陶瓷加热器的导体间的放大断面图。
图4是表示实施方式1的变形例的平板状陶瓷加热器的导体间的放大断面图。
图5是表示本发明实施方式2的烫发器构成部分切口的侧视图。
图6是表示应用图5的烫发器的加热板和板状体位置关系的主视图。
图7是表示图6的X-X断面图。
图8是表示本发明实施方式2的变形例的加热装置的断面图。
图9是表示在实施方式2的加热装置中应用的加热板的俯视图。
图10以往陶瓷加热器的展开图。
图中1-陶瓷加热器,2-陶瓷芯材,3-陶瓷片,4-发热电阻体,5-引线引出部,6-通孔,7-电极极板,8-引线部件,A-圆柱状陶瓷加热器导体间区域,B-平板状陶瓷加热器导体间区域,5-加热装置,50-把持部件,52-轴,53-螺旋弹簧,54-轴承部,55-板状体,55a-加热面,57-加热板,58-电阻发热体,59-弹簧,61-引线。
具体实施方式
以下,参照附图说明本发明的实施方式。
实施方式1图1是本发明实施方式1的陶瓷加热器1的部分剖开立体图。图2是图1的X-X断面图。
本实施方式1的陶瓷加热器1的特征是在由陶瓷芯材2和陶瓷片3构成的陶瓷体中内装发热电阻体4。这里,发热电阻体4由导体图案的折返部构成,在形成该发热电阻体4的部分,邻近导体间陶瓷体的空孔(void)占有率为0.01~50%。
该陶瓷加热器1,是在表面形成发热电阻体4和引线引出部5;在背面形成电极极板7的陶瓷生片(烧成后为陶瓷片3),使发热电阻体4和引线引出部5成为内侧,卷绕在陶瓷成形体(烧成后为陶瓷芯材2)上,通过密接烧成来获得的。其中,引线引出部5和电极极板7通过在陶瓷片3上所形成的通孔6连接。
陶瓷体由烧成陶瓷成形体的陶瓷芯材2和烧成陶瓷生片的陶瓷片3构成。该陶瓷体由氧化铝质陶瓷、氮化硅质陶瓷、氮化铝质陶瓷、碳化硅质陶瓷等各种陶瓷构成,特别优选应用氧化铝或氮化硅作为重要成份的部件,以此能够获得急速升温并且耐久性卓越的陶瓷加热器1。例如,采用氧化铝(Alumina)时,优选采用由Al2O388~95重量%、SiO22~7重量%、CaO0.5~3重量%、MgO0.5~3重量%、ZrO21~3重量%构成的氧化铝。如果Al2O3含量不足88重量%时,则由于玻璃质增多,通电时的具有迁移(migration)增大的危险。另一方面,如果Al2O3含量超过95重量%时,则由于向内装的发热电阻体4的金属层内扩散的玻璃量减少,具有陶瓷加热器1的耐久性劣化的危险。另外,采用碳化硅质陶瓷时,相对于主要成份氮化硅,作为烧结辅助剂优选3~12重量%的稀土元素氧化物和0.5~3重量的Al2O3,进而作为烧结体中含有的SiO2量,SiO2尽量混合到1.5~5重量%。这里所示的SiO2量为氮化硅原料中含有的杂质氧化生成的SiO2、其他添加物含有的杂质的SiO2和意图添加的SiO2的总和。另外,通过使母材氮化硅中的MoSi2或WSi2分散,母材的热膨胀率与发热电阻体4的热膨胀率接近,从而能够改善发热电阻体4的耐久性。
另外,发热电阻体4由蛇行导体图案构成,并且连接相对于该发热电阻体4的电阻值为1/10左右的引线引出部5。通常为了简化这些操作,在陶瓷生片上(烧成后形成陶瓷片3)同时印制形成发热电阻体4及引线引出部5的情况较多。其中,本发明的折返部,是为了达到所期电阻值而含有U字折返形状或蛇行形状的部件。
这里,关于陶瓷加热器1的尺寸,例如没有外径可以是宽2~20mm,长40~200mm左右。作为汽车空燃比传感器加热用的陶瓷加热器1,优选外径和宽为2~4mm,长为50~65mm。另外,在汽车用用途方面优选发热电阻体4的发热长度尽可能为3~15mm。当发热长度短于3mm时,通电时的升温可以很快,但却使陶瓷加热器1的耐久性降低了。当发热长度长于15mm时,升温速度变慢,要想加快升温速度,陶瓷加热器1消耗的电力就得变大,因此不优选采用。其中,所谓发热长度为图1所示的蛇行发热电阻体4长方向的长度,该发热长度根据该目的用途进行适当选择。
其中,在图2中尽管在陶瓷芯材2和陶瓷片3之间描画了边界线,实际上未烧成的陶瓷成形体和陶瓷生片粘结后,经过烧成很多的情况下没有作为该粘结面的边界。
在本实施方式1时,优选在陶瓷加热器1的电极极板7上形成烧成后1次电镀层。该1次电镀层,当在电极图案7的表面钎焊引线部件8时,使钎焊料流动良好,具有增加钎焊强度的效果。1次电镀层当厚度为1~5μm时因密接力增加而优选。作为一次电镀层的材质,优选Ni、Cr或以这些成份为主要成份的复合材料,进而优选以耐久性卓越的Ni为主成份的电镀。
另外,在高湿度的气氛中应用时,采用Au系、Cu系的钎焊料因不易发生迁移而优选。作为钎焊料,优选耐热性高的Au、Cu、Au-Cu、Au-Ni、Ag、Ag-Cu系的物质。为了提高耐久性,特别进一步优选Au-Cu钎焊、Au-Ni钎焊、Ag-Cu钎焊。在钎焊料的表面为了改善高温耐久性及保护钎焊料被腐蚀通常优选形成由Ni构成的2次电镀层。
另外,作为引线部件8的材质,因为在使用中由发热电阻体4穿过来的热量会使引线部件8的温度上升,优选使用耐热性良好的Ni系或Fe-Ni系合金等。
而且,本发明特征具有如下几点,在内装导体图案的陶瓷加热器1中,导体图案具有构成发热电阻体4的折返部,该折返部中相邻的任意导体间的陶瓷体的空孔占有率为0.01~50%。并且,该折返部中相邻的任意导体间的陶瓷体的空孔占有率进而优选0.1~40%,更加优选1~20%。空孔占有率不足0.01%时,如果反复急速升温和急速降温,加热部的发热电阻体4加热膨胀时,由于发热电阻体4周围的陶瓷的热的逸散不充分,陶瓷体的热膨胀不能追随发热电阻体4的热膨胀,导致应力集中到发热电阻体的缘部41,具有发生断裂断线的危险。另一方面,当该空孔占有率大于50%时,在高温条件下进行连续通电时,加热部中发热电阻体4周围的陶瓷体的绝缘性劣化,具有耐久性降低的倾向。其中,在陶瓷成形体上直接粘结陶瓷生片使其密接烧成时,就变得比上述范围空孔占有率更大的数值。因此,为了达到上述范围的空孔率,采用了下述的制造方法。
图2是表示与长度方向垂直断面的一例断面图(图1所示的X-X线断面图),表示在导体图案的折返部(发热电阻体4)的导体在陶瓷芯材2的外周圆形的配置方式。这里,所谓导体间陶瓷体的空孔占有率为0.01~50%,意思是当测定任意邻近导体图案(图3中的4a和4b)间陶瓷体的空孔占有率为0.01~50%。于是,陶瓷体空孔占有率为0.01~50%的部分,可以是在与长度方向垂直的方向切断发热电阻体4的断面的任何部分。其中,所谓导体间为,当陶瓷体为圆柱状时,如图3所示,是沿着陶瓷芯材2外周圆(换言说,陶瓷体的外表面)连接邻近导体4a上边和4b上边的线,和沿着陶瓷芯材2的外周圆连接导体4a下边和4b下边的线,在导体4a、4b表面所包覆的区域A的区域;另外,当陶瓷体为平板状时,如图4所示,是连接邻近导体4c上边和4d上边的线,和连接导体4c下边和4d下边的线,在导体4c、4d的表面包覆区域B的区域。
另外,在本说明书中,所谓的导体形成区域,是指当陶瓷体为圆柱状时,陶瓷芯材2的外周和沿着该外周从该外周往外导体厚度的外周之间所夹的圆环区域;当陶瓷体为平板状时,如同连接各导体上边似的连接线和如同连接各导体下边似的连接线之间所夹的内部区域。即,如同上述定义的导体间,在导体形成区域中相邻的导体间的位置部分。
进而,在本实施方式1的陶瓷加热器中,沿着邻接导体间所存在的空孔外表面的长度优选为导体间隔的1/2以下。即,在导体图案折返部,沿着外表面对邻接导体间进行连接的任意线上,优选在导体间的陶瓷体中不存在长度超过该线长度(导体间距离)的1/2的空孔。当空孔的长度超过导体间距离的1/2时,高温条件下进行连续通电时,包覆加热部的发热电阻体4的陶瓷体的绝缘性就劣化,因此耐久性就劣化。其中,所谓任意线,是如图3所示当为圆柱状的陶瓷加热器时,沿着外表面连接区域A内相邻导体4a和4b的任意的线。这时的任意线为由如图3所示的圆柱状陶瓷加热器的断面图的外廓线(陶瓷体的外表面)构成的圆中心和具有大致同一中心的圆弧状曲线;另外,当如图4所示平板状陶瓷加热器时,连接区域B中相邻导体4c和4d的任意直线称作任意线。
进而,本发明中导体图案,特别是构成发热电阻体的导体厚度优选5~100μm。当导体图案厚度不足5μm时,尽管能够防止邻近任意的上述导体间的空孔,但是在高温连续耐久、高温周期耐久试验时,引起加热部的发热电阻体4的电阻变化及断线,耐久性劣化。另一方面,当导体图案厚度超过100μm时,具有很难抑制相邻的任意导体间的空孔率为50%以下的倾向。
接下来说明邻近任意导体间的陶瓷体空孔占有率达到0.01~50%的方法。
作为一个例子,可以采用如下方法在第一陶瓷生片表面形成导体图案,在第一陶瓷生片的导体图案形成侧面叠层具有至少与导体图案的厚度大致相同优选具有一样厚度的比第一陶瓷生片更柔软的第二陶瓷生片。根据该方法,通过在导体图案的厚度部分的空隙埋设柔软的第二陶瓷生片,可以排除图案间的空孔。这里,第二陶瓷生片需要比第一陶瓷生片柔软,因为当第二陶瓷生片柔软时,在实施导体图案的第一陶瓷生片上粘结第二陶瓷生片时,至少在导体间的中心部,两个陶瓷生片之间能够密接。这里,该陶瓷生片的硬度通过数字指示器(ミツトヨ制)进行测定,优选φ1mm的针在30秒侵入深度在200μm以上。陶瓷生片的硬度,即上述侵入深度不足200μm时,因为导体间不能够紧密接触而形成空孔。其中为了减少图案间的空隙,可以使用压力机等施加压力。
另外,作为其他的方法,可以采用网板印刷糊的方法。该方法如下所述完成。首先,在陶瓷生片上进行网板印刷发热电阻体4和引线引出部5。这时,在网板印刷涂布的糊为混合由高融点金属(W、Mo、Re等)作为主成分的粉末和粘接成分构成的有机树脂系的粘合剂,主要为乙基纤维素、硝酸纤维素及作为稀释剂所采用的有机溶剂,主要为T.P.O(松油醇)、D.B.P(邻苯二甲酸二丁酯)、D.O.P(邻苯二甲酸二辛酯)、B.C.A(二乙二醇丁醚醋酸酯)等形成的物质。在原始厚度为5~150μm范围内印刷这些糊。另外,以发热电阻体4的电阻值达到大约为引线引出部5的电阻值的约10倍的方式,调整线宽、印刷厚度或者糊的比电阻等而形成导体图案。然后,为了填充邻近导体间厚部分的空隙,对含有绝缘物的糊实施网板印刷。这时采用的糊为由高融点绝缘物,主要与陶瓷生片同一组成,即由Al2O388~95重量%、SiO22~7重量%、CaO0.5~3重量%、MgO0.5~3重量%、ZrO21~3重量%构成的氧化铝陶瓷中混合有由粘接成分构成的有机树脂系粘合剂,主要为乙基纤维素、硝酸纤维素及作为稀释剂所采用的有机溶剂,主要为T.P.O(松油醇)、D.B.P(邻苯二甲酸二丁酯)、D.O.P(邻苯二甲酸二辛酯)、B.C.A(二乙二醇丁醚醋酸酯)等形成的物质。进而,作为糊除了陶瓷生片组成以外也可以使用单一氧化铝成分或体积电阻系数108Ω以上的具有绝缘性的材料。这里,糊的粘度优选在50dPa.s~1000dPa.s范围内调整,进行印刷。当糊粘度为50dPa.s以下时尽管印刷性能优良,但因生料密度低,干燥收缩量变大,在导体图案上边部产生高低差,烧成后容易产生空孔。另外,粘度为1000dPa.s以上时,因整平(leveling)性降低,被膜中容易产生空孔,因而不优选。其中,网板印刷是在将发热电阻体及引线引出部反转的网板上进行的。
进而作为其他方法,可以采用应用分配器(dispenser)的填充方法。如上所述,糊粘度为1000dPa.s以上的物质,设定高生料密度成为可能,为了能够最小限度地产生干燥收缩导致的收缩量,尽管可以使导体间的空隙可靠填充,但是用网板印刷的方法时不优选,而不能采用。因此,在使用如此高粘度的糊时,可以优选采用应用分配器的填充方法。
如此,在使用网板印刷或应用分配器的方法,不是在导体图案上而是在导体间可以填充绝缘物这点上讲是有效的方法。
其中,本发明实施例中,关于在圆柱状陶瓷成形体中卷绕陶瓷生片烧成的陶瓷体作了明确指示,但本发明还包括平板状陶瓷成形体、或在陶瓷生片中粘结烧成实施导体等的印刷的陶瓷生片而成的陶瓷体。
实施方式2接下来说明本发明所述的实施方式2的加热装置51。
图5为表示使用本实施方式2加热装置51的烫发器100的一构成例的部分缺欠的侧视图。在该图5中,50为把持部件,52为联结自由开闭的一对把持部件的轴,53为在轴承部54内安装的平时保持两把持部件的前端部的开放方向的力的螺旋弹簧。55为在两把持部件50的前端部所设置的开口部56中分别嵌入而相互面对的板状体55。57表示密接在板状体55背面的加热板。
图6表示从图5加热装置51中取出的加热板57和板状体55的位置关系的主视图,图7为该X-X线断面图。加热板57的热通过加热板57的一方的主面57a传到板状体一方的主面55b,这样可以均匀加热板状体55的另一方的主面所具有的加热面55a。
因有如此构成,使用小型陶瓷制的加热板57可以效率良好地均匀加热具有大加热面55a的板状体55。
即,本实施方式2的加热装置51由在板状陶瓷体中埋设电阻发热体58的加热板57和具备加热被加热物的加热面55a的板状体55构成,板状体55的一方主面55b和上述加热板57的一方主面57a接触。于是,本发明的特征是上述加热面55a由平面部和其周边具备的C面或曲面的倒角部构成,加热板57的厚度H为0.5~5mm。加热板57在板状陶瓷体内部埋设了电阻发热体58,电阻发热体58阻断了空气,电阻发热体58可以防止空气中含有水分等的腐蚀。另外,在板状陶瓷体内部埋设的电阻发热体58因为其本身具有电阻,当一定的电力下印刷时焦耳发热到规定温度,加热板57作为发热体可以升温至所要求的规定温度。
于是,因为上述加热面55a由平面部和其周边具备的C面或曲面的倒角部构成,被加热物在加热面55a上滑动时即使被插入也很少有对被加热物造成损伤的危险。如此,被加热物时毛发时,为了不对毛发造成损伤,上述倒角部为C面时其大小优选Wc为0.1~5mm,进而优选0.3~4mm。更优选1~3mm。另外,上述倒角部为曲面时,所谓曲面就是在端面垂直的断面中由圆弧型或2次曲线所形成的区域,其宽Wr为0.2~5mm时因对被加热物造成的损伤小所以优选。进而优选0.3~4mm,更优选1~3mm。
另外,加热板57的厚度H为0.5~5.0mm时,加热板57的热可以高效地传给板状体55。加热板57的厚度不足0.5mm时,板状体55一方主面的平面度就会大到0.02~0.2mm,因此在安装加热板57时施加应力,则有加热板57破损的危险。
另外,当加热板57的厚度超过5mm时,即使在板状体55中安装加热板57,加热板57的一方主面57a也不变形,加热板57的一方的主面57a和板状体55的一方的主面55b就不能宽面积接触,因此就不能均匀加热板状体55的加热面55a。
因此,当加热板55厚度为0.5~5mm时,加热板57一方的主面57a和板状体55一方主面55b可以分别变形吻合,所以可以广泛均匀的温度下加热加热面55a。更优选加热板55厚度为1~3mm。
另外,在板状体55一方的主面55b和加热板57一方主面57a之间优选具备导热部件63。当具有导热部件63时上述表面粗糙度为Ra的加热板57一方主面57a和板状体55一方主面55b之间热传导就变得更容易,加热板57的热可以高效传给板状体55而优选。
导热部件63优选为硅系树脂或混合热传导率大的金属微粒粉末的树脂。作为上述金属微粒粉末优选热传动率大的金、银、铜、镍,进而优选银。另外,作为树脂可以采用硅系树脂或氟料树脂。进而,导热部件可以在板状体55一方主面55a和加热板57一方主面57a之间没有间隙的同时,即使因为上述板状体55和加热板57间的热膨胀差而发生伸缩滑动,通过导热部件63使主面55a和主面57a之间的热传导没有变化,可以防止加热面55a的温度差变得过大而优选。
另外,本发明的加热装置51优选加热板57一方主面57a的表面粗糙度Ra为1~30。当加热板57一方主面57a的粗糙度Ra不够1.0时,通过与板状体55的接触面很难一致地传导热,因此就会有被加热面55a面内温度差变大的危险。更加优选加热板57一方主面的表面粗糙度Ra为3~10。
图5、6的加热装置51由板状体55的爪部55c按压加热板57使板状体55和加热板57接触(图7),取代用爪部55c直接按压加热板57,如图8所示用爪部上所固定的弹簧59按压加热板57,可以使板状体55一方的主面55b和加热板57一方的主面57通过弹性按压接触。通过设定多个弹簧59的按压部,可以广泛范围内使加热板57和板状体55接触因而优选。于是,弹簧59优选由具备多个支点的弹簧板构成的部件。
另外,本发明的板状陶瓷体优选以氧化铝、莫来石或氮化硅的任何一种作为主成分的陶瓷。上述陶瓷优选热传导率比较大的、耐腐蚀性好的、高温条件下绝缘电阻大的陶瓷。
另外,板状陶瓷体为氧化铝时,该氧化铝含有量优选80~98质量%。因为这样的部件可以达到上述板状陶瓷体热传导率为16.7~25.21W/(m.K)、300℃高温条件下绝缘电阻在1013Ω.cm以上、弯曲强度在300MPa以上。当氧化铝含有量不到90质量%时,增大了Mn、Ca、Si等烧结辅助剂或杂质,因此就会有高温条件下绝缘电阻降低的危险。
另外,当氧化铝含量超过99.5质量%时,烧结辅助剂少,在1700℃以下的比较低温的情况时使其致密烧结就变得困难,因此低价大量生产也就困难了。
另外,本发明的板状体5优选为导电性的金属。金属热传导率达到200W/(m.K)以上,因此能够把加热板7的热均匀地传给加热面55a。作为上述金属优选铝、铁或这些的合金。优选由金属构成板状体5的膨胀系数为8~25×10-6/℃以下,特别优选板状陶瓷体57的热膨胀系数的范围接近8~17×10-6/℃。因板状体55和加热板57有热膨胀差,主面57a和主面55b的间隔就变得不均匀,热传导就变得不能均匀进行,因此就有温度分布均匀性受到损害的危险。进而,尽管被加热物与加热面55a接触从加热面55a向被加热物传导热,但是这时因为被加热物与加热面55a接触同时发生滑动,在加热面55a就有发生静电的危险,当加热面55a上具有导电性时,就具有使这些静电释放的效果而优选。
另外,板状体55和加热板57接触的接触面的面积为加热面55a面积的20~80%。当不足20%时有不能均匀加热板状体55的加热面55a的危险。另外,当板状体55和加热板57接触的接触面的面积超过加热面55a面积80%时,加热板57变大加热装置51的价格变高,就有在工业上很难利用的危险。进而优选接触面的面积为加热面55a面积的30~60%。
另外,板状体55厚度B优选为0.2~10mm。该厚度小于0.2mm时,在用弹簧板固定加热板57时强度小,板状体55变形产间隙,发生仅一边接触等不合格情况,因此具有加热面55a面内的温度差变大的危险。另外,当板状体55厚度超过10mm时热容量变大即使加热加热板57也有板状体55的加热面55a的温度不能快速升温的危险。厚度B更优选1~3mm。
另外,所谓的加热板57的厚度可以用主面55b和主面55a之间距离中3点的平均值来表示。
如此板状体55优选由热传导率200W/(m.K)以上的金属构成的部件,为了与加热板57面接触其周边具备爪部55c,优选增加周边部的厚度,增加热容量,减小加热面温度差的部件。
接下来说明本发明加热装置51的制作方法和其他构成。
加热板57由氧化铝烧结体或莫来石烧结体、氮化硅系烧结体等耐热性陶瓷构成,例如,当由氧化铝烧结体构成时,氧化铝(Al2O3)、二氧化硅(SiO2)、氧化钙(CaO)、氧化镁(MgO)等中适当添加混合有机溶剂和溶剂,成为料浆(slurry)状,同时用以往周知的修缮编织法(doctor braid)或压延机法(calender roll)形成片状得到陶瓷生片。然后对上述陶瓷生片进行适当的打孔加工。
电阻发热体58由钨、钼等金属材料构成,该钨等金属粉末中适当地添加混合有机溶剂和溶剂所得的电阻发热体糊,在预先形成板状陶瓷体的陶瓷生片上通过以往周知的网板印刷法按规定图案进行印刷涂布,在板状陶瓷体内部可以埋设电阻发热体8。于是,埋设有电阻发热体58的生料加热板经过高温(约1600℃)进行烧成可以制作出加热板57。此时为了得到上述表面粗糙度,优选调整烧成温度或时间尽量使加热板57表面结晶尺寸为0.5~5μm。
电阻发热体58两端在加热板57的端部被导出,该端部导出的两端通过板状体57上设置的开口A露出出来,利用焊锡等钎焊料钎焊接合引线61。使电阻发热体58两端露出的开口A具有形成电阻发热体58和引线61钎焊接合区域的作用,在预先成为板状陶瓷体的陶瓷生片上通过打孔加工法进行打孔在加热板57端部形成。上述开口A进一步在该侧壁对应引线61的孔径大小形成凹部62,当在开口A上钎焊接合电阻发热体58和引线61时,如果开口A侧壁所形成的凹部62内能够插入引线61,在露出电阻发热体58上面中央部上就可以正确接合位置,如此就可以在电阻发热体58上通过钎焊料极其牢固地钎焊接合引线61。
另外,在上述开口A上电阻发热体58上钎焊接合的引线61由镍等金属构成,该引线61使电阻发热体58与外部电回路连接,同时通过外部电回路也起到供给电阻发热体58产生规定温度焦耳热所必要的一定电力的作用。
引线61利用在露出电阻发热体58的上面中央部中在开口A侧壁设置的凹部62,进行准确焊接,同时在该焊接部通过供给溶融的焊锡等钎焊料61牢固地钎焊在电阻发热体58上。
因此,本发明的加热装置51利用引线61供给电阻发热体58一定电力,使电阻发热体58发出达到一定温度的焦耳热,发挥作为发热体的机能。
另外,上述发明不仅限定于上述实施例,在没有脱离本发明的要旨的范围内,可以进行多种变更,例如在上述实施方式2上露出的电阻发热体58,利用焊锡等钎焊料接合引线61,在开口A内通过填充树脂或玻璃等增强该接合,也可以通过在开口A内充填耐热性材料的同时用绝缘板覆盖开口来增强接合。此时,电阻发热体58和引线61之间的接合变得更牢固,可优选。另外,尽管上述实施例中利用焊锡等钎焊料在电阻发热体58上接合引线61,但使引线61焊接在电阻发热体58上同时也可以通过在开口A内充填树脂或玻璃等为此接合该焊接。
使上述加热装置51经由硅润滑油与金属制的板状体55接触,此时在板状体55、和也作为陶瓷加热板57的导热部件63的缓冲材的厚度优选5~100μm。为了连接烫发器用的陶瓷加热板57和板状体57,当使陶瓷加热板57和金属加热板57直接接触时,瓷器陶瓷加热板57和金属板状体55之间发生翘曲或因加热时热膨胀导致变形,不能均匀地接触接合面而形成一边接触,发生点式热传导,具有加热面55a的温度差变大的危险。具有导热部件63的缓冲材的厚度最好为必要的最小限度,相反过厚就会发生陶瓷加热器和金属板热传导恶化问题的危险,导热部件63的厚度优选1~100μm。
在以上实施方式2的烫发器中,加热板57具备构成实施方式1中说明的发热电阻体4折返部的导体图案,该折返部中邻接的任意导体间的陶瓷体的空孔占有率优选为0.01~50%(例如,采用由如实施方式1图4所示的板状陶瓷加热器构成的加热板)。这样的话,因为加热板57的耐久性能够提高,可以提供更高耐久性的烫发器。并且,该折返部的邻接的任意导体间的陶瓷体的空孔占有率进一步优选0.1~40%,更优选1~20%。
实施例1准备以Al2O3为主成分尽量调整SiO2、CaO、MgO、ZrO2合计在10重量%以内的陶瓷生片,采用由W(钨)粉末粘合剂和溶剂构成的糊,在该表面上印刷发热电阻体4和引线引出部5。
另外,在背面印刷电极极板7。发热电阻体4的形状是以5mm的发热长度进行4次往复的图案。
接着,为了在导体间填充绝缘物,将含有绝缘物的糊进行网板印刷。此时,为了使导体间陶瓷体空孔的占有率变化,预备了没有实施网板印刷的物质和对糊粘度进行变化而进行网板印刷的物质。
接着,在由W构成的引线引出部5的末端,形成通孔6,并向这里通过注入糊,使电极极板7和引线引出部5之间得到导通。通孔6的位置以当实施钎焊接合时进入钎焊接合部的内侧的方式形成。
接着,在陶瓷成形体的周围密接准备的陶瓷生片,通过1600℃烧成形成陶瓷加热器1。
对于这样得到的陶瓷加热器1,在1200℃下连续通电100小时后测定电阻变化,评价耐久性。以各组(lot)n=10进行评价。
另外,关于各组n=3的试样,SEM观察烧成后的发热电阻体4,测定空孔率。该结果如表1所示。
(表1)

各试样材质均为氧化铝,标印有*记号的试样是本发明范围之外的试样。
根据表1判断,在导体间陶瓷体空孔占有率超过50%的试样No9中,和在空孔占有率0.005%的试样No1中,电阻值变化15%以上,发生断线。与之相对应的,空孔占有率在50%以下的试样没有发生断线,表示具有良好的耐久性。
此外,只要空孔占有率处于本发明范围,其他要素比如空孔长度、墨厚度变化,对耐久性能没有意义。
实施例2首先,为了获得如图9所示的陶瓷加热板,在以Al2O3为主成分尽量调整SiO2、CaO、MgO、ZrO2合计在10重量%以内的陶瓷生片上,印刷由W构成的电阻发热体。使电阻发热体两端露出的开口A具有形成钎焊接合电阻发热体和引线的区域的作用,其通过预先在形成加热板的陶瓷生片上应用打孔加工法打孔,而在加热板端部形成。上述开口A进一步在该侧壁对应引线61的孔径大小形成凹部,用于在开口A进行钎焊接合电阻发热体的引出部和引线。然后,在电阻发热体表面形成由陶瓷片和大致相同成分构成的包覆层,充分干燥后进而使上述陶瓷片和大致相同组成的陶瓷分散,涂布密接液,这样层叠密接准备的陶瓷片,在1500~1600℃下烧成。
进而,在上述电阻发热体的引出部表面形成由Ni构成的厚度为3μm的镀层后,采用由Ag构成的钎焊料62,在还原气氛中,1030℃下接合以Ni为主成分的引线61得到加热板。
组合利用上述方法获得的加热板和板状体,制作出对加热板的厚度、表面粗糙度(Ra)、有无弹簧按压、有无导热部件或材质进行变更的烫发器。
接着,制作的烫发器加热面表面的温度分布通过日本电子制(TG-6200)温度分布测定装置测定温度分布,算出加热面表面的最高温度和最低温度,将最高温度和最低温度的差作为温度不稳定度进行测定。
该结果如表2所示。
表2

以板状体厚度1.5mm、板状体·加热板接触面积和加热面面积比率70%进行评价。
另外,印有*标记的为本发明范围之外的试料。
根据表2分析,如试料No.3~15加热板的厚度为0.5~5mm的试料加热面温度不稳定度为19℃以下,显示优良的特性。
与此相对的,试料No.1、2加热板的厚度薄到0.3mm时,在板状体上装置加热板时,加热板出现破损。另外,如试料No.16、17加热板厚度为7mm的试料,加热面温度不稳定度大到22℃以上,而不优选。
另外,板状体和加热板之间具备导热部件的试料No.5~13,加热面温度不稳定度在16℃以下,甚至更小的温度不稳定度的试料而优选。
另外,加热板主面表面的粗糙度为1~30μm的试料No.6~11,加热面温度不稳定度在小到15℃以下,而进一步优选。
另外,用弹簧按压板状体一方主面和加热板一方主面的试料No.7~9,加热面温度不稳定度成为13℃以下,判明温度不稳定度被改善。
实施例3接着,将作为加热板的主成分Al2O3的含有量调整在70%~99.8%之间,作成陶瓷片,把这些陶瓷片按照实施例2所述方法制作加热板。对于这些Al2O3组成量不同的材料,测定200℃下高温绝缘强度和弯曲强度。制作20张试验片以JIS规格的4点弯曲强度试验为标准测定弯曲强度,该平均值如下所示。
(表3)

根据表3分析,氧化铝含有量为80~99.5%的试料No.23~25高温绝缘电阻达到1×1013Ω.cm以上,即使作为烫发器使用,也不会从加热器电源漏电,因此优选。另外,弯曲强度大到300MPa以上,即使反复急速加热电阻发热体,很少有因热应力而破损的危险,因而优选。
但是,如试料No.21、22,当氧化铝含有量小到70、75质量%时,高温条件下绝缘电阻小到1011Ω.cm以下,利用加热板就有发生漏电的危险。另外,试料No.26氧化铝含有量高达99.8质量%,需要在1700℃以上烧成温度下烧结,低价大量生产就很困难了。
更进一步优选,如试料No.24、25氧化铝含有量为90~99.5%时,弯曲强度大而优选。
其中,氧化铝含有量通过ICO定量分析制作的板状陶瓷体求得的。
实施例4
然后,板状体的外形按照4mm×80mm×20mm(厚×长×宽)固定,逐渐变更加热板的长度,和实施例2同样制作变更接触面积及加热面积比率的烫发器。
接着,在加热板和板状体之间具备硅系树脂作为导热部件,在弹簧按压下,对电阻发热体施加额定电压,测定从室温到加热面最高温度为200℃的饱和温度为止的时间作为加热面饱和时间。
其结果如表4所示。
(表4)

根据表4可知,面积比例为20~80%的试料No.33~42加热面饱和时间小到60秒以下,显示出优良的特性。
另外,面积比率为30~60%的试料No.34~41加热面饱和时间小到57秒以下,显示更加优良的特性。
另一方面,加热板7和板状体5的接触面积和加热面接触面积比率不到20%的试料No.31、32饱和时间大到63秒以上,而不优选。
另外,如试料No.43接触面积超过80%时,加热板变得过大,加热板的成本就变高,产业利用价值就降低。
更进一步优选板状体厚度为0.2~10mm的试料No.36~39,这是因为它们加热饱和时间小到50秒以下。
权利要求1.一种陶瓷加热器,其特征是包含陶瓷体,该陶瓷体具有外表面和被埋设的导体图案,所述导体图案由导体构成,所述导体按照形成成为电阻发热体的折返部的方式被设置,在所述折返部中由邻接的导体所夹的陶瓷部的空孔占有率为0.01~50%。
2.如权利要求1所述的陶瓷加热器,其特征是在所述邻接导体间存在的空孔的沿所述外表面的长度是,该导体间隔的1/2长度以下。
3.如权利要求1所述的陶瓷加热器,其特征是所述导体的厚度设定在5~100μm范围。
4.一种烫发器,其特征是具备开闭自由地连结的一对把持部件、和在所述把持部件的前端分别安装的陶瓷加热器,所述陶瓷加热器包含陶瓷体,该陶瓷体具有外表面和被埋设的导体图案,所述导体图案由导体构成,所述导体按照形成成为电阻发热体的折返部的方式被设置,在所述折返部中由邻接的导体所夹的陶瓷部的空孔占有率为0.01~50%。
5.如权利要求4所述的烫发器,其特征是在所述邻接导体间存在的空孔的沿所述外表面的长度是,该导体间隔的1/2长度以下。
6.如权利要求4所述的烫发器,其特征是所述导体的厚度设定在5~100μm范围。
专利摘要一种陶瓷加热器,其特征是包含陶瓷体,该陶瓷体具有外表面和被埋设的导体图案,所述导体图案由导体构成,所述导体按照形成成为电阻发热体的折返部的方式被设置,在所述折返部中由邻接的导体所夹的陶瓷部的空孔占有率为0.01~50%。由此提供能防止高温条件下的绝缘性降低且具有良好耐久性的陶瓷加热器。
文档编号A45D4/00GK2924990SQ200520132200

公开日2007年7月18日 申请日期2005年12月23日 优先权日2005年12月23日
发明者长迫龙一 申请人:京瓷株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1