空气净化器的制作方法

文档序号:1158804阅读:164来源:国知局
专利名称:空气净化器的制作方法
技术领域
本发明总体上涉及一种空气净化器,更具体来讲,本发明涉及这样一种空气净化器用于在多个阶段中去除环境空气中的颗粒、杀菌消毒或消灭空气中的微生物。
背景技术
一个广泛而长期存在的问题是空气会被花粉、霉菌、灰尘、宠物的掉屑、微生物或其它许多种已知的刺激物所污染。人们几乎不可避免地要接触到这些污染物,对于某些个体,这些污染物常常会造成呼吸不适。另外,这些污染物还会带来长期的健康损害,尤其是对于那些患有过敏症、哮喘、肺气肿、以及其它呼吸性疾病的个体。
目前,市场上存在很多种空气净化器,用于清除环境空气中的污染物。这些系统通常包括一用于使空气循环流动的风扇;以及一设置在空气流道中的机械式过滤器,从而用于过滤或者是净化流经该过滤器的空气。在此行业中,有一种机械式过滤器得到了广泛的应用,这种过滤器即为空气颗粒高效过滤器(HEPA),其一般能俘获大于0.3微米的颗粒。
由于许多原生微生物都小于0.3微米,所以它们可轻松地漏过这些常规的机械式过滤器。因而,现有技术中还公知的是利用紫外灯产生的紫外线(UV)来杀死微生物或对微生物进行灭菌,从而使它们不能繁殖。
可通过用紫外线照射空气来产生臭氧。所产生臭氧的数量和类型取决于能量源的波长和强度。尽管只用臭氧自身就能有效地杀菌或破坏微生物,但由于臭氧固有地对人体健康存在损害,所以通常不提倡这样来作。因而,很重要的是用来杀灭微生物的任何辐射源都应当能有效地减小人体对臭氧的暴露度。
尽管已经发现紫外光源在减少环境空气中微生物数目方面是有效的,但必须要对人员作适当的防护,以避免长期直接暴露于紫外线中,而紫外线是会造成皮肤和眼睛损伤的—包括会导致失明。因而,在传统的空气净化器中,通常是将紫外光源设置在一壳体内的某一位置上,该壳体远离进气口和排气口;或者需要采用反光屏来限制紫外光线的传播。因此,许多采用紫外光线的传统空气净化器的结构会使得更换紫外灯的工作非常困难,而且这一工作也是很耗时的。
因此,希望能有这样一种空气净化器其利用多个阶段来有效地净化环境空气。此外,还希望有这样一种空气净化器其包括一过滤器组件,用于有效地去除掉空气中的颗粒;并包括一用于杀菌或杀灭微生物的紫外光源。另外,还希望有这样一种空气净化器其结构便于高效、方便地更换过滤器组件和紫外光源,同时还能防止人体由于暴露于紫外线中而带来的潜在危害。

发明内容
本发明的空气净化器包括一壳体,用于支撑一进气口、一排气口、以及一连接进气口与排气口的空气流道。一鼓风组件被壳体中的一分隔壁支撑着,其包括一由电机驱动的转动风扇。鼓风组件从进气口吸入空气,然后吹送空气,使空气经空气流道从进气口流向排气口。壳体还包括一后壁、以及一从后壁向外延伸出的间隔物,其中的间隔物用于使壳体与外部物体—例如墙壁保持相互分离的状态,以确保在空气净化器的周围存在适当的空气流。
在位于进气口与鼓风组件之间的空气流道中设置了一下游第一空气过滤器—或主过滤器。一弹性密封垫圈被主过滤器支撑着,用于与分隔壁密封接合,由此来防止气流绕过主过滤器。在主过滤器上可拆卸地固定了一个上游空气过滤器—或预过滤器,其位于进气口与主过滤器之间。优选的是主过滤器是由一空气颗粒高效(HEPA)过滤器组成的,其适于去除空气中尺寸大于等于0.3微米的颗粒。预过滤器优选地是由一碳网过滤器构成的,其适于在所述颗粒遇到主过滤器之前除去空气中的异味和较大的颗粒。
在主过滤器和预过滤器的下游位置设置了一紫外光源,其位于靠近排气口的空气流道中。紫外光源包括一紫外灯,其朝向一个基本上垂直于空气流道的平面,以便于向附近流过的空气照射最大量的紫外线。
一排气格栅支撑在靠近排气口的壳体部分上,空气可透过该格栅,但紫外线则基本上不能透过此格栅。优选的是排气格栅是由一百叶窗组件构成的,该组件包括多条旋绕的流路或通道,其可允许从空气流道流来的空气从排气口流出,但却基本上阻止紫外光源发出的紫外线从排气口照射出去。百叶窗的每一叶片最好都包括一片体,其具有相反的凸面和凹面,并具有纵向延伸的侧边缘和横向延伸的端部边缘。每一叶片的凹面都设置在邻近相邻叶片上凸面的位置处,其中,每一叶片的侧边缘都遮叠着相邻叶片片体的一部分。
一排气保险开关可与排气格栅选择性地接合。排气保险开关与紫外光源和鼓风组件保持工作连接,用于在排气格栅相对于壳体未正确设置时,停止紫外光源和鼓风组件的工作。一进气格栅被支撑在靠近进气口的位置处,其可与一进气保险开关选择性地接合。类似地,进气保险开关也与紫外光源和鼓风组件保持工作连接,用于在进气格栅相对于壳体的定位不正确时,停止紫外光源和鼓风组件的工作。
一控制器与鼓风组件的电机工作连接,用于控制流经空气流道的空气量。在壳体内安装了一空气品质传感器,其包括一采样室;一用于向采样室中发射光线的光学发射器;以及一与采样室相通的光学接收器,用于对光学发射器发出的光线进行检测。空气品质传感器向控制器提供有关空气品质的信号,该信号代表了采样室中空气的质量。控制器根据空气品质信号,通过改变电机的转速来调节鼓风组件的工作。
在采样室中可拆卸地安装了一清洁部件,用于人工地清洁光学发射器和接收器。在进气格栅的后方设置了一储放仓,用于在清洁部件不用时,可拆卸地储放该清洁部件。
控制器包括一计数器或定时器,用于判断空气净化器在电机每一工作转速上的累积工作时间。当每经过一第一设定时间间隔段时,控制器就产生一个代表“检查预过滤器”的指示信号。类似地,当每经过一第二时间间隔段时,控制器就产生一个指代“检查HEPA过滤器”的指示信号,其中,所述第二时间间隔段长于所述第一时间间隔段的时长。
一过滤器检查仪可拆卸地设置在靠近排气口的位置出,用于产生一指代气流体积的信号。该过滤器检查仪的安装位置靠近排气口,从而能产生一个代表流经排气口的气流体积的信号,更具体来讲,过滤器检查仪安装在排气格栅中制出的一个凹陷中。过滤器检查仪是由一端部开口的透明圆筒管、以及一指示器构成的,指示器可滑动地安装在圆筒管中,从而可响应于流经检查仪的空气而移动。在进气格栅的后方形成了一储放仓,用于在过滤器检查仪不用时将其可拆卸地储放在该储放仓中。
在壳体上形成了一个窗孔,经该窗孔可看到紫外光源,从而便于用户检查紫外光源的功能是否正常。窗孔包括一半透明的紫外线过滤罩,用于防止紫外线对用户的潜在危害。
因而,本发明的目的是设计一种内置式的便携空气净化器。
本发明的另一目的是设计这样一种空气净化器其包括在多个阶段过程中用于除去环境空气中颗粒的过滤器,以及用于对环境空气灭菌或杀灭微生物的紫外灯。
本发明的又一目的是提供这样一种空气净化器其所带有的过滤器和紫外灯易于更换。
本发明的另一目的是提供一种空气净化器,其包括多个过滤器,这些过滤器包括用于俘获环境空气中相对较小颗粒的主过滤器、以及用于俘获较大颗粒的预过滤器,由此可延长主过滤器的有效工作寿命。
本发明的又一个目的是提供这样一种空气净化器其包括一紫外光源,用于杀灭通过上游过滤器的细菌或微生物。
本发明还又一个目的是提供一种空气净化器其包括一排气格栅,该格栅允许空气通过,却基本上阻止紫外线通过。
本发明的另一个目的是提供一种空气净化器,其包括多个互锁的保险开关,用于防止由于进气格栅或排气格栅在空气净化器中的安装不正确而使紫外线照射到人体所带来的、潜在的意外伤害。
本发明的另一个目的是设置一窗孔,经该窗孔可看到紫外光源,从而允许用户对紫外光源进行观察,来确认其是否工作正常。
本发明的另一目的是提供一种空气品质传感器,用于检测环境空气的质量,并与此相应地控制空气净化器的工作。
本发明的又一个目的是当经过了设定的时间之后,提供一个有关过滤器检查的自动指示信号。
本发明的另一个目的是提供一种过滤器检查仪,用于简单而有效地判断气流的体积,从而判断是否需要更换空气过滤器。
从下文的描述、附图以及所附的权利要求,本发明的其它目的和优点将变得显见。


图1是从左前上方对本发明的空气净化器进行观察所得到的立体图;图2是对本发明的空气净化器所作的分解立体图;图3是对空气净化器所作的正视图;图4是空气净化器的右视图;图5是空气净化器的俯视图;图6是对本发明的空气净化器所作的后视图,图中该净化器的部分被切去;图7是沿图3中的7-7线所作的剖视图;图8是对本发明的空气净化器顶部所作的、局部分解立体图;图9是沿图8中的9-9线所作的剖视图;图10是对图4中作部分切去处理后所得的详细视图,图中表示出了进气格栅保险开关;图11是图8的细节表示,表示了排气格栅保险开关;图12是对本发明空气净化器的左侧面所作的详细视图,表示出了处于关闭状态、从而遮盖着空气品质传感器的检修门;图13是对本发明空气净化器的左侧面所作的详细视图,表示出了处于打开状态、从而露出空气品质传感器的检修门;图14中的方框图表示了在本发明空气净化器的一优选实施例中、各个电气部件的相互连接关系;图15中的详细视图表示了本发明空气净化器优选实施例中的控制面板;以及图16是一局部分解的立体图,表示出了过滤器检查仪以及过滤器检查仪的储放仓。
具体实施例方式
首先参见图1-7,图中表示了根据本发明所制出的一个空气净化器10,其包括一壳体12,该壳体内包含有一过滤室14、一鼓风室16(见图6和图7)、以及一紫外线室18。另外,壳体12还包括相对的第一侧壁20和第二侧壁22,它们与后壁24相连接。从后壁24向外突出一半球形的隆起或间隔物25,用于使空气净化器10与外部物体—例如墙壁保持适当的距离,以便于获得足够的气流。
下面参见图2、6、和图7,在壳体12内设置了一隔断或分隔壁26,其延伸在相对的侧壁20和22之间,并接近于它们各自的纵向中心轴线。用多个螺栓27(见图6)将分隔壁26固定到后壁24上,并使其与后壁24大体上平行。分隔壁26将过滤室14与鼓风室16分隔开,从而其构成了过滤室14的后壁和鼓风室16的前壁。分隔壁26支撑着向前延伸的侧壁28和29、底壁30以及顶壁31(见图7),所有这些部件都位于壳体12内,且共同构成了过滤室14。
分隔壁26上制有多个孔洞32,用于使过滤室14与鼓风室16相连通。从分隔壁26向后延伸出一挡流壁或涡管壁33,其抵压着壳体12的后壁24,从而围成了所述的鼓风室16。涡管壁33大体上为弧形的,并沿圆周方向延展了约270度,这样就形成了一个开口34,该开口连通了鼓风室16和紫外线室18。
进一步参见图1、2、4、6和7,过滤室14、鼓风室16、以及紫外线室18与孔洞32和开口34一道构成了一条空气流道35,该空气流道35从进气口36通向下游的排气口37。在空气净化器10的过滤室14中可拆卸地安装了一空气过滤器组件38。
一靠近进气口36的进气格栅39由侧壁28和29支撑着,并将空气过滤器组件38固定到过滤室14中。进气格栅39包括多个叶片或板条40以及一外周的框架42,板条由框架42支撑着,并沿水平方向延伸,且基本上在垂向上相互分隔开,从而分隔开了多个槽缝41。框架42包括向下延伸的定位突舌43,它们插入到制在底壁30上的槽44中(见图2)。侧壁28和29上的自偏置弹性锁止突舌46用于同框架42相接合,从而相对于壳体12(见图2和10)固定了进气格栅39。在壳体12的侧壁20、22上制有凹陷48,这些凹陷与制在框架40上的突舌49相配合,以便于进气格栅39的拆卸。
在侧壁20和22上还制有把手凹窝50,以有助于用户抓握该空气净化器10。从壳体12的底壁54向下延伸出多个支腿52,用于支撑空气净化器10。
下面参见图2和图7,空气过滤器组件38最好包括一位于下游的第一过滤器或主过滤器56。最为优选的是主过滤器56是由一颗粒高效(HEPA)过滤器构成的,这种类型的过滤器被广泛地用在医疗、保健、以及医药领域,用作俘获空气中所含的亚微米级颗粒。HEPA过滤器56包括一基本为刚性的支撑构架58,其用于支撑过滤材料60。过滤材料60被限定为对0.3微米尺寸的颗粒,其最低的过滤效率为99.97%,对于空气中所含微生物的浓度达到有害程度的环境,这种过滤器能提供高度的过滤效果。另外,HEPA过滤器56能除去空气中所含的灰尘、花粉、霉菌孢子等的其它污染物。HEPA过滤器56属于常规设计,并可从许多供货商购得,这些供货商包括位于俄亥俄州Ashville地方的ColumbusIndustries公司。
在过滤器构架58的后表面上设置了一弹性密封垫圈62,其可与制在分隔壁26中的一个前向凸肩部64相接合。不难理解通过将HEPA过滤器56适当地设置在过滤室14中,并使垫圈62与凸肩部64接合,就可以在过滤室14与鼓风组件16之间形成密封,以防止出现不利的情况颗粒从空气过滤器组件38的周边部分绕过。
在HEPA过滤器56的上游位置设置了一第二过滤器或预过滤器66,其紧邻着进气口36。预过滤器66的过滤效率相对较低,并叠压着HEPA过滤器56。另外,预过滤器66所具有的具体挡滤尺寸要大于HEPA过滤器56的0.3微米尺寸,其用于俘获空气中所含的诸如棉屑、灰尘、霉菌等的常规颗粒。预过滤器66最好包括用于对输入气流中可能带有的异味、烟雾、以及其它的有害蒸气进行处理的碳材料。预过滤器66实行了一项重要功能在空气先进入到HEPA过滤器56之前,先将其中的大颗粒除去,从而可延伸HEPA过滤器56的寿命。因此,预计预过滤器66的更换频率将显著大于HEPA过滤器56的更换频率。预过滤器66属于常规的设计,可从很多供货商购买到这样的过滤器,这些供货商包括位于俄亥俄州Ashville地方的Columbus Industries公司。
再返过来参见图2,在主过滤器56构架58的前表面上安装了多个固定装置68。固定装置68将预过滤器66可松脱地固定到HEPA过滤器56上。每个固定装置68最好是包括多个挂钩,按照公知的VELCRO(维可牢尼龙搭扣)中挂钩与钩环的紧固方式,这些挂钩可与预过滤器66上多个自然形成的圈环相接合。很容易理解预过滤器66被简单地绷罩到构架58的前表面上,然后再用固定装置68将其固定就位。
进一步参见图2、6、以及图7,通过多个常规的支架75在鼓风室16中安装了一鼓风组件74,支架利用普通的紧固件一例如螺栓76固定到分隔壁26上。鼓风组件74包括一用于驱动离心风扇78转动的常规电机77。风扇78包括一转轴80,其基本上与进气口36同轴对正,并由电机77驱动而使多个弧形的扇叶82运动,其中的扇叶相对于转轴80基本沿径向方向向外延伸。如上文提到的那样,在分隔壁26中制有用于使空气在过滤室14与鼓风室16之间流动的孔洞32(见图2、6、图7)。如图6和图7中的箭头84所示的那样,鼓风组件74从进气口36将空气沿轴向吸入,并使空气流经过滤器组件38而流到鼓风室16中。鼓风组件74将空气从风扇78的转轴80处沿径向向外排出。被排出的空气然后受涡管壁33的导引而向上流过开口34,从而流到紫外线室18中。
下面参见图6-8,在紫外线室18中设置了一紫外(UV)光源86,并使其定向面朝向一个平面,该平面基本上垂直于流经紫外线室18的空气流道35的一部分,用于最大程度地向气流照射紫外线。应当指出的是紫外线室18垂直与气流方向的横截面积要大于鼓风室16中风扇78与涡管壁33之间、且垂直于气流方向的横截面积。因此,气流在进入到紫外线室18之后速度会降低,从而就能增大紫外光源86的照射时间。
紫外光源86能杀灭空气中所含的、且未被空气过滤器组件38俘获的微生物;或者是基本上将它们杀死。更为具体来讲,UV光源86最好是由一C波段紫外灯88构成的,其安装在涡管壁33的上方。最为优选的是紫外灯88能在C波段波长范围内产生波长为254纳米的紫外线,选择该波长可有效地杀菌或杀灭微生物,通常使所产生的臭氧量达到最少。在该最佳实施例中,UV灯88被指定为G6T5型号,其中“G”代表杀菌灯,“6”代表瓦数,“T5”代表紫外灯88的相对管径等于5/8英寸。UV灯88包括普通的稳流器(图中未示出),并被连接到一启辉器89(见图2和图14)上。
如本领域中公知的那样灯89包括一纵长的管体90,其具有两个相对的双插针插头92、94。插头92、94被插入到普通的灯座96、98中。如所公知的那样,插头92、94以及灯座96与传统的家用照明灯具是不同的,由此可防止用户无意中将该紫外灯88用在不配套的灯具中。灯座96、98由一支架88支撑着,该支架连接于涡管壁26的上部上。支架100最好是用金属制成的,从而不会被紫外灯88发出的紫外线造成不利的损坏。
在紫外灯88的上方,用支架100支撑着一个挡板102,且其包括一孔口104(见图7和图8),下文将对该孔口的作用进行描述。挡板102有助于将紫外线向内反射到紫外线室18中,并使紫外线远离排气格栅106。应当指出的是通过将紫外灯88设置在过滤器组件38的下游位置,由于基本上没有任何大于0.3微米的颗粒能穿过HEPA过滤器56,所以可避免需要定期维护、清理紫外灯的情况出现。
参见图6到图9,排气格栅106由壳体12支撑在排气口37中,用于保护用户免受紫外灯88发出的紫外线照射而带来的潜在伤害。另外,排气格栅106被设计成完全符合美国联邦职业安全与健康研究所(NIOSH)关于紫外线最大允许量的标准,该标准规定了在四个小时的照射时长内,每平方厘米的照射量(μW/cm2)低于0.4微瓦。
排气格栅106包括一构架108,其支撑多个垂直延伸的叶片或翼板109,并基本上在水平方向上相互间隔开,该格栅属于常规设计,其分隔出了多个槽缝110。构架108包括多个定位突舌112,用于安装到壳体12顶壁115上制出的对应槽114中。类似地,在壳体12上设置了一对定位突舌116,用于可锁止一脱开地接合构架108。从构架108向外延伸出一把手117,以便于用户将排气格栅106从壳体12中拉出。
在构架108的下方安装了一百叶窗组件118,该百叶窗组件基本上是可透过空气的,也就是说,空气可从紫外线室18经排气口37排出。但是,百叶窗组件118基本上是不透光的,也就是说,基本上可挡住紫外灯88发出的、存在潜在危险的UV线,使其不能从排气口37透射出去。
下面参见图8和图9,百叶窗组件118包括前后两侧的支撑轨120和122,它们通过一对支架124、126固定到构架108上。支架124、126是用普通的紧固件一例如螺栓128固定到构架108上的。支撑轨124、126都包括多个弧形槽130,用于安装多个叶片或翼板136的两相对端部边缘132和134。每一叶片136包括一对相对的突舌138和140,它们从各自的端部边缘132、134向外延伸(见图7)。突舌138、140插入到侧支撑轨120、122的槽130中制出的孔口142中,然后再被弯曲或变形,从而就固定了叶片136。
每一叶片136都包括一对相对的侧边缘144、146,它们在两相对的端部边缘132、134之间沿纵向延伸。在每一叶片136的两相对侧边缘之间延伸着一中央部分或中间部分148。叶片136被设置成相互叠置的方式,从而某一叶片136的侧边缘144和146就会至少部分地遮叠着相邻第二叶片136的中间部分148。
更具体来讲,每一叶片136的相对侧边缘144和146之间都具有一凹面150和一凸面152。叶片136以这样的方式进行设置使得每一叶片的凹面150都紧邻相邻叶片的凸面152。不难理解这种相互叠置的位置关系形成了多条曲折的流路或通道153,这样的通道延伸穿过百叶窗组件118,由此阻止了紫外线按照直线传播路径穿过百叶窗。还应当指出的是整个百叶窗组件118最好被制为吸收光线的黑色。
叶片138优选地是用金属制成的,因而可耐受UV线辐射的损伤。侧支撑轨120、122与壳体12的对应部分、分隔壁26、以及涡管壁33一起构成了紫外线室18,这些部分最好是用热塑性的材料制成,且这些材料带有普通的紫外线抑制剂,从而防止被紫外线破坏。
下面参见图7和图8,在壳体12的顶壁115上设置有一个观察窗孔154,从该观察孔可看到UV灯88。另外,在观察孔154与紫外线室18之间延伸形成了一观察通道158。在挡板102上设置的孔口104便于直接地看到紫外灯88。为了保护用户免受潜在危害性紫外线的伤害,在观察孔154中设置了一盖板160,用于过滤UV线。盖板160优选地是用聚碳酸酯材料制成的,其带有淡的色泽,从而便于观察紫外灯88是否工作正常。
如图1、3和图15所示,优选的是,在前壁164中设置一操作控制面板162,其由分隔壁26支撑着。控制板162包括一用于控制风扇电机76转速的转速控制旋钮166、一用于启动和关闭紫外灯88的紫外灯开关168、以及一液晶显示板(LCD)170。在控制面板162上还设置了一紫外线指示灯172和一电源指示灯174,当UV灯88或风扇78工作时,这两个指示灯分别点亮。
一普通的电源电缆176向空气净化器10的各个电气部件输送工作电流(见图6和图14),其中的电气部件包括电机77和紫外灯88,该电缆带有一个插头178。
液晶显示板170显示出从空气品质传感器180接收来的、有关环境空气的相对品质的指示信息。下面参见图1、12和13,空气品质传感器180优选地支撑在壳体12的左侧壁20中,并包括一与进气口184和排气口186相通的采样室182(见图13)。用户可通过一检查门188接近于该采样室182,其中的检查门188枢转地支撑在侧壁20中。检查门188包括一弹性卡锁190,该卡锁带有受偏置的突舌192,用于同制在侧壁20上的一个孔口194相接合。
在采样室182中设置了相互通讯的一红外发射器196和一红外接收器198。红外发射器196被设置成相对于红外接收器198成约90度的夹角,其中,发射器196发出的红外线并不会被接收器198直接接收到。但是,只要采样室182中的空气带有一些颗粒199,则发射器196发出的部分红外线就会被颗粒199所反射,从而至少有部分红外线被红外接收器198接收到。容易领会采样室182中空气所含颗粒的数目约多,被接收器198接收到的红外线也就越多。
在靠近进口184的位置处设置有一个电阻(图中未示出),用于对空气进行加热,从而利用由热空气上升而产生的烟囱效应,可使得空气被从进口184抽吸到采样室182中。如图13中的箭头201所示,空气继续向上流动而流出采样室182,并经排气口186排出。
下面参见图14和图15,空气品质传感器180基于红外接收器198接收到的红外线量而向一控制器200输送一空气品质信号,该空气品质信号代表了环境空气的质量。控制器200与液晶显示板170保持通讯,该液晶显示板反过来再将空气品质传感器180产生的空气品质信号转换为液晶显示板200上显示的指示条202的个数。所显示的指示条202的数目指代环境空气的品质。在该优选实施例中,指示条202的数目越多,则环境空气的品质越差。
另外,如果用户通过转速控制旋钮166选择了自动工作模式,控制器200还基于空气品质传感器180所产生的空气品质信号改变风扇电机77的工况。此外,转速控制旋钮166不仅设置有关闭、低速、中速、高速档位(在图15中分别标记为203a、203b、203c以及203d),而且设置了一自动工作档位203e,用于指示控制器200根据传感器180的空气品质信号自动地改变风扇电机77的速度。
进一步参见下面的表1,如果传感器180检测到空气品质很差,则所显示的指示条202的数目就被定义在13到18的区间内,且控制器200将风扇电机77自动地调到高转速上。如果由空气品质传感器180检测到空气品质信号指代环境空气的品质尚可,则液晶显示板170所显示的指示条202的数目在7到12的范围内,控制器200选择为使风扇电机77的转速为中速。最后,如果传感器180输出的空气品质信号指代环境空气品质为良好,则液晶显示板170所显示的指示条202的数目在1到6之间,控制器200自动将风扇电机77的转速设为低速。
表1

如图2所示,优选地是设置一清洁装置204,用于手动地清理红外发射器196以及红外线接收器198镜头上的颗粒。最为优选的是,清洁装置204是由一弹性的海绵体构成的,该海绵体上覆有毛毡材料,其横截面略大于采样室182的横截面,从而是过盈地压装到采样室182中。
在清洁装置204不使用时,其被储放在一储放仓206中,储放仓设置在右侧壁29的边缘内。在空气净化器10使用时,储放仓206被进气格栅39挡住而不能看到。
本发明空气净化器10的另一安全特性包括进气、排气锁止开关208和210。另外,如图2和图10所示,从进气格栅39的构架42向内延伸出一突舌212,其可选择性地与进气保险开关208的一个簧片或触点214相接合。进气保险开关208被安装到侧壁29边缘上制出的一槽216后方,从而可防止无意中接触到该开关。进气保险开关208属于常规设计,其常态为断开状态。这样,当进气格栅39被拆掉后,触点214就发生移动而将使进气开关208断开,从而切断了电机77与紫外灯88的电源。当将进气格栅39重新安装到其相对于壳体12的正常位置上时,突舌212与触点214接合,由此使进气开关208闭合,从而从电源电缆176向风扇电机77和紫外灯88供电。
下面参见图8和图11,设置了一个排气保险开关210,用于确保排气格栅106在壳体12上的安装正确,该保险开关的设计类似于进气保险开关208。从百叶窗组件118的支架126向下延伸出一突舌218,其可选择性地与排气保险开关210的一个簧片或触点220相接合。排气保险开关210被安装在紫外线室18上制出的一个槽222后,从而可防止无意中接触到该触点。同样,排气保险开关210也属于常规设计,其常态为断开状态。这样,当带有百叶窗组件118的排气格栅106被拆掉后,触点220就发生移动而将使排气开关210断开,从而切断电机77与紫外灯88的电源。
如图14所示,进气开关208和排气开关210是串联在电源电缆176和控制旋钮166之间的。只要开关208和210是闭合的,且UV线开关168也是闭合的,则就向紫外灯88供电。如图所示,控制器200被连接到电源上,且控制器的输出与灯座96、98、以及启辉器89相连接。如果进气开关208与排气开关210之一由于进气格栅39或排气格栅106被拆掉而是断开的,则紫外灯88和风扇电机77的供电就都被切断了。
进一步参见图14和图15,控制器200还包括一计数器或计时器224,其保持着一个关于空气净化器10累积工作时间的计数值。在每经过一个第一预定时间间隔后,液晶显示板170上的一个“检查预过滤器”的指示器就点亮,以指示用户应当检测预过滤器66来进行更换。当每经过一第二预定时间间隔后,液晶显示板170上的一个“检查HEPA过滤器”的指示器就点亮,以指示用户检查HEPA过滤器56来进行更换。预过滤器66的更换次数应当频于HEPA过滤器56的更换次数,因此,第一预定时间间隔应当显著地短于第二预定时间间隔。
在控制面板162上设置有一个预过滤器清零按钮227和一个HEPA过滤器清零按钮228,用于对针对预过滤器66工作时间、以及HEPA过滤器56工作时间的计数器224进行清零。当用户更换了过滤器66和56中的任一个后,其就应当按压合适的清零按钮227和228,来将计数器224清零。
为了便于在预过滤器指示器225和HEPA过滤器指示器226点亮之后对过滤器66和56进行检查,设置了一个如图2、8、16所示的过滤器检查仪230。该过滤器检查仪230包括一基本上为透明的圆筒管232、以及一可在圆筒管232中滑动的圆柱形指示器234。圆筒管232的两相对端236、238优选为开口的。在靠近两端236和238的位置处设置了两环形的唇边240和242,用于防止指示器234脱出。优选的是,指示器234被制为易于与圆筒管232区别开的颜色。圆筒管232和指示器234最好是用热塑性材料模制而成的。
在工作过程中,过滤器检查仪230可拆卸地支撑在一环形的凸肩部243上,该凸肩部243位于一凹陷244的下部,凹陷244制在排气格栅106的上表面246上。将过滤器检查仪230的任一端236、238插入到凹陷244中,则如果过滤器66和56工作正常,则指示器234就会在过滤器检查仪230中向上浮起。在使用中,检查仪230突出于排气格栅106之外,且排出格栅106的空气将向指示器234施加压力。空气压力将变为一个抬升力,当该抬升力大于指示器234的重量时,就会使指示器234在圆筒管232中升高。如果指示器234在检查仪230中并不上升,则过滤器66和56就极有可能被颗粒所阻塞,所以就要更换其中的一个或两个过滤器。如上文提到的那样,过滤器66和56的更换工作是很简单的,只要拆下格栅39,并将过滤器从过滤室14中取出就可以了。
过滤器检查仪230在不使用时,可将其方便地储放在一个储放仓248中,储放仓248制在进气格栅39后方的壳体12内。储放仓248包括一对弹性臂250和252,弹性臂250、252具有唇边254和256,用于可松脱地固定圆筒管232。
本发明的特别有利之处在于空气净化器10实现了多级清洁。在一第一级别上,在紧邻进气口36的位置处,颗粒预过滤器66俘获空气中所含的相对较大的颗粒,这些颗粒例如为花粉、霉菌、烟雾、灰尘、以及宠物掉屑等,同时还用过滤器中的碳素吸附、氧化了气味、气体和化学物质。预过滤器66是为主过滤器56的微过滤HEPA介质60服务的,主过滤器能俘获尺寸小于0.3微米的颗粒。然后用杀菌紫外灯88将漏过HEPA过滤器56的微生物杀死或杀灭。
在工作过程中,用户通过将电机转速控制旋钮166从关闭档位203a旋转到某一理想的速度档203b、203c和203d上、或者也可选地将其旋转到自动功能档203e(见图15),就能启动该空气净化器10。如果用户选择了自动功能档203e,则空气品质传感器180就从抽吸到采样室182中的空气读取关于环境空气品质的信息。更具体来讲,基于空气中所含颗粒199的数目,从接收器198接收到的红外线量就可获得空气品质的指示信号。然后将空气品质信号从空气品质传感器180发送到控制器200。基于该空气品质信号,控制器200改变驱动风扇78的电机77的转速。
风扇78将环境空气从进气口36沿轴向吸入,空气首先是经过预过滤器66,以除去相对较大的颗粒。在下一阶段中,对空气进一步地进行清洁,其中,用HEPA过滤器56除去尺寸小于0.3微米的颗粒。之后,由于风扇78的工作,清洁后的空气经壳体12从过滤室14流到鼓风室16中,然后再流到紫外线室18中,紫外灯88杀灭或杀死几乎所有漏过过滤器组件38的残余微生物。然后从排气格栅106将清洁后的空气排出。如上文详细介绍的那样,排气格栅106允许空气透过,但却不允许损害性的紫外射线透过。
因此,可以领会利用本发明的空气净化器10而获得了一种便携式的内置单元,其利用过滤和紫外辐射对环境空气执行多级清洁,同时还能保护用户免受紫外线的潜在伤害。
尽管上文所述设备的形式构成了本发明的优选实施例,但应当指出的是本发明并不仅限于这种确切的设备形式,在不悖离本发明范围的前提下,可对此作各种形式的改动,其中,本发明的范围限定在所附的权利要求书中。
权利要求
1.一种空气净化器,其包括一壳体,其支撑着一进气口、一排气口、以及一连接所述进气口与所述排气口的空气流道;一鼓风组件,其被安装在所述壳体中,用于迫使空气经所述空气流道从所述进气口流向所述排气口;一紫外光源,其设置在所述空气流道中,并靠近所述排气口;一第一空气过滤器,其设置在所述空气流道中,位于所述进气口与所述紫外光源之间;以及一排气格栅,其由所述壳体支撑,并靠近所述排气口,所述排气格栅可透过空气,但基本上不透过紫外线。
2.根据权利要求1所述的空气净化器,其特征在于所述排气格栅包括一百叶窗组件,其包括基本上成一列排列的多个叶片,且在所述的多个叶片之间形成了多条绕流通路,其允许从所述空气流道输送来的空气经所述排气口排出,但基本上阻止所述紫外光源发出的紫外线从所述排气口透射出。
3.根据权利要求2所述的空气净化器,其特征在于每一所述叶片都包括一片体,其具有相对的凸面和凹面,所述凹面靠近一相邻叶片的所述凸面。
4.根据权利要求1所述的空气净化器,其特征在于所述紫外光源包括一紫外灯,其朝向一基本上垂直于所述空气流道的平面。
5.根据权利要求1所述的空气净化器,其特征在于还包括一排气保险开关,其与所述排气格栅相接合,所述排气保险开关与所述紫外光源工作连接,用于选择性地关闭所述紫外光源。
6.根据权利要求5所述的空气净化器,其特征在于还包括一进气格栅,其安装在所述进气口的附近;一进气保险开关,其与所述进气格栅相接合,所述进气保险开关与所述鼓风组件工作连接,用于选择性地关闭所述鼓风组件。
7.根据权利要求1所述的空气净化器,其特征在于还包括一固定装置,其由所述第一过滤器支撑着;一第二过滤器,其由所述第一过滤器的所述固定装置可拆卸地支撑着。
8.根据权利要求1所述的空气净化器,其特征在于所述第一过滤器包括一HEPA过滤器,所述第二过滤器包括一碳网过滤器,所述HEPA过滤器位于所述碳网过滤器的下游位置。
9.根据权利要求1所述的空气净化器,其特征在于所述鼓风组件包括一电机以及一与所述电机工作连接的离心风扇,所述离心风扇的转动轴线与所述进气口基本上同轴对正。
10.根据权利要求1所述的空气净化器,其特征在于还包括一控制器,其与所述鼓风组件工作连接,用于控制流经所述空气流道的空气运动;一空气品质传感器,其包括一由所述壳体支撑着的采样室、一与所述采样室相通的光学发射器、以及一与采样室相通的光学接收器,用于对光学发射器发出的光线进行检测;以及其中所述空气品质传感器向所述控制器输送指代所述采样室中空气品质的信号,所述控制器根据所述信号选择性地调节所述鼓风组件的工作。
11.根据权利要求10所述的空气净化器,其特征在于还包括一清洁部件,其适于可拆卸地安装到所述采样室中,用于对所述光学发射器和所述光学接收器进行清洁;以及一储放仓,其由所述壳体支撑着,用于可拆卸地储放所述清洁部件。
12.根据权利要求1所述的空气净化器,其特征在于还包括一过滤器检查仪,其可拆卸地设置在所述排气口的附近,用于产生一个关于空气流量的指示信号。
13.根据权利要求12所述的空气净化器,其特征在于还包括一由所述壳体支撑着的储放仓,用于可拆卸地储放所述过滤器检查仪。
14.根据权利要求1所述的空气净化器,其特征在于所述壳体包括一后壁和一间隔物,间隔物从所述后壁向外延伸,用于使所述壳体与外部物体保持预定的距离。
15.根据权利要求1所述的空气净化器,其特征在于还包括一窗孔,从该窗孔可看到所述紫外光源,所述窗孔包括一用于过滤紫外线的盖板。
16.一种空气净化器,其包括一壳体,其支撑着一进气口、一排气口、以及一连接所述进气口与所述排气口的空气流道;一鼓风组件,其被安装在所述壳体中,用于迫使空气经所述空气流道从所述进气口流向所述排气口;一紫外光源,其设置在所述空气流道中,并靠近所述排气口;以及一排气格栅,其由所述壳体支撑,并靠近所述排气口,所述排气格栅包括基本上成一列排列的多个叶片,且在所述的多个叶片之间形成了多条绕流通路,其允许从所述空气流道输送来的空气经所述排气口排出,但基本上阻止所述紫外光源发出的紫外线从所述排气口透射出。
17.根据权利要求16所述的空气净化器,其特征在于每一所述叶片包括一片体,其具有沿纵向延伸的两相对侧边缘,并具有位于所述两侧边缘之间的、沿纵向延伸的中间部分;以及每一所述叶片的所述侧边缘在横向上遮叠着一相邻所述叶片的所述中间部分。
18.根据权利要求16所述的空气净化器,其特征在于所述排气格栅还包括一对基本上相互平行的侧支撑轨;以及每一所述叶片包括一片体,其具有两相对的端部边缘,且从所述端部边缘向外延伸出突舌,突舌固定到所述侧支撑轨上。
19.一种空气净化器,其包括一壳体,其支撑着一进气口、一排气口、以及一连接所述进气口与所述排气口的空气流道;一鼓风组件,其被安装在所述壳体中,用于迫使空气经所述空气流道从所述进气口流向所述排气口;一空气过滤器,其设置在所述空气流道中;以及一过滤器检查仪,其可拆卸地设置在所述排气口的附近,用于产生指代气流体积的指示信号。
20.根据权利要求19所述的空气净化器,其特征在于还包括一储放仓,其由所述壳体支撑着,用于储放所述过滤器检查仪。
21.根据权利要求19所述的空气净化器,其特征在于还包括一排气格栅,其由所述壳体支撑着,并位于所述排气口的附近,其包括一用于可拆卸地接纳所述过滤器检查仪的凹陷。
22.根据权利要求19所述的空气净化器,其特征在于所述过滤器检查仪包括一圆筒管以及可滑动地安装在所述圆筒管中的指示器,指示器可响应于空气流经所述过滤器检查仪而运动。
23.一种空气净化器,其包括一壳体,其支撑着一进气口、一排气口、以及一连接所述进气口与所述排气口的空气流道;一鼓风组件,其被安装在所述壳体中,用于迫使空气经所述空气流道从所述进气口流向所述排气口;一第一空气过滤器,其设置在所述空气流道中;一固定装置,其由所述第一过滤器支撑着;以及一第二过滤器,其由所述第一过滤器的所述固定装置可拆卸地支撑着。
24.根据权利要求23所述的空气净化器,其特征在于所述固定装置包括多个挂钩,用于与制在所述第二过滤器上的多个环圈相接合。
25.根据权利要求23所述的空气净化器,其特征在于还包括一弹性垫圈,其安装在所述第一过滤器上,用于防止空气绕过所述第一过滤器。
全文摘要
本发明公开了一种空气净化器(10),其包括一壳体(12),其支撑着一进气口、一排气口、以及一连接进气口(36)与排气口(37)的空气流道。空气流道是由一位于鼓风室上游的过滤室限定的,并包括一由电机驱动的风扇(74),用于迫使空气空气经过空气流道从进气口流向排气口。在空气过滤室中可拆卸地安装了一个预过滤器(66)和一个主过滤器(56),用于俘获大于等于0.3微米的颗粒。在紫外线室中设置一紫外光源(86),其设置位置靠近排气口。在靠近排气口的位置处安装有一个排气格栅(106),设置该排气格栅是为了使空气通过,但却基本上防止紫外线通过。排气格栅包括一百叶窗组件,其包括一多个叶片(136),这些叶片形成了多个绕流通道。一排气保险开关(210)选择性地与排气格栅接合,用于防止在排气格栅相对于壳体未能正确设置时紫外光源和鼓风组件开始工作。一空气品质传感器(180)安装在壳体中,其向控制器输送一代表环境空气品质的指示信号,控制器反过来再根据所指示的环境控制品质改变鼓风组件的工况。在靠近排气口的位置处可拆卸地设置有一个过滤器检查仪(230),其用于输出气流体积的指示信号,从而来判断是否需要更换预过滤器或主过滤器。
文档编号A61L9/16GK1462205SQ01816082
公开日2003年12月17日 申请日期2001年9月6日 优先权日2000年9月29日
发明者马伦·哈克 申请人:汉密尔顿毕克/波特-西莱有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1