用于dna介导基因沉默的组合物的制作方法

文档序号:891760阅读:679来源:国知局
专利名称:用于dna介导基因沉默的组合物的制作方法
背景技术
发明领域本发明总体上涉及转录后基因沉默,特别是涉及DNA介导的通过RNA干扰进行的转录后基因沉默。
背景信息去除一个基因的表达可以提供给研究者有关该基因功能的信息。在蛋白水平这可以通过运用特异性抑制剂抑制蛋白质功能而实现或者在RNA水平通过阻止mRNA翻译成蛋白质来完成。用于RNA水平抑制的传统方法包括反义寡核苷酸和核酶。这些抑制基因表达的方法也提供了对人类疾病的潜在治疗方法。
新近在mRNA水平沉默基因表达的方法,称为RNA干扰或RNAi,已经成为较以前的技术而言非常有力的备选方法。它通过大量未知然而却比反义机制更加有效的机制起作用。双链RNA(“dsRNA”)参与这种转录后基因沉默,转录后基因沉默在植物和真菌中是天然存在的现象(Cogoni和Macino,Curr.Opin.Microbiol.6657-62.1999)。当导入蠕虫、苍蝇、或早期小鼠胚胎时,dsRNA可诱导降解与dsRNA的一条链具相同序列的mRNA的细胞反应(Fire,Trends Genet.9358-363,1999)。在一些系统中,少量dsRNA拷贝能诱导靶mRNA全面降解(Fire等,Nature 6669806-811,1998)。RNAi可与mRNA中几乎任何序列非常成功高效地作用(Caplen等,Proc.Natl.Acad.Sci.USA 179742-9747,2001)。
RNAi作为基因功能研究工具非常有前途,如果能够将其成功地用于哺乳动物细胞或有机体,RNAi则是人类疾病的潜在治疗方式。RNAi在大多数哺乳动物系统中基本上是不成功的,这一状况直到最近由于与用于蠕虫和果蝇的dsRNA相似的dsRNA的导入,通过有PKR和干扰素参与的哺乳动物抗病毒系统诱导了基因表达的普遍阻断而得以改变(Caplen等,Gene 1-295-105.2000;Oates等,Devel.Biol.120-8.2000)。然而,通过使用一个短的21到23个核苷酸的dsRNA,Elbashir等和其他研究者的研究表明小的干扰RNA(siRNA)能够降低或敲低(knock-down)特异基因的表达,而不至于引起基因表达的普遍关闭(Caplen等,Proc.Natl.Acad.Sci.USA 179742-7.2001;Elbashir等,Nature 6836494-8.2001)。
聚合酶III启动子的使用能够有效地在哺乳动物细胞内产生siRNA。例如,象U6启动子一样,同样是聚合酶III的III类启动子的H 1-RNA启动子已用于质粒载体中,以直接转录出一短的发夹RNA,随后该发夹RNA在细胞内被加工产生siRNA(Brummelkamp等,Science 296550-553.2002)。同样U6启动子也用于产生短的发夹RNA(Paddison等,Genes Devel.8948-958.2002;Paul等,Nat.Biotechnol.5505-508.2002;Sui等,Proc.Natl.Acad.Sci.USA 85515-20.2002;Yu等,Proc.Natl.Acad.Sci.USA 96047-6052.2002),或有意和反义siRNAs(Lee等,Nat.Biotechnol.5500-505,2002;Miyagishi和Taira,Nat.Biotechnol.5497-500,2002;Yu等,Proc.Natl.Acad.Sci.USA 96047-52,2002)。短的发夹RNAs(shRNAs)能够模拟天然存在的可能与RNAi相关的小RNA(micro-RNAs;miRNAs)。然而,当前有关设计和将此类人工shRNA加工成RNAi诱导者功能的资料仍然相互矛盾。例如,一篇报道发现发夹环的大小(如多于7个核苷酸)和序列非常重要(Brummelkamp等,见上文,2002),而其他人采用较短的环(1,4或6个核苷酸)也成功了(Paddison等,见上文,2002;Paul等,见上文,2002;Sui等,见上文,2002;Yu等,见上文,2002)。基因沉默的效应在一些情况下依赖于发夹中有意链和反义链的次序和方向(Paddison等,见上文,2002),但是在其他人看来是不重要的或不相干的(Paul等,见上文,2002)(Yu等,Proc.Natl.Acad.Sci.USA 96047-52.2002)。所有上述的研究都利用了短的III类聚合酶III启动子和其简单的终止子产生了高拷贝数量的短转录物。尽管观察到了具有诱导非特异性表达关闭潜能的较长转录本,简单的天然终止子可能不足以在预期位置终止所有转录(Lee等,见上文,2002)。在用水动力学转染方法将合成的siRNA或从U6启动子转录的shRNA导入成年小鼠内后能够有效地使转基因或病毒基因沉默(McCaffrey等,Nature 41838-39,2002)。
将长的或短的通过体外或体内转录分离的、在可溶性细胞提取物中加工得到的或化学合成的dsRNA分子导入细胞的方法具有严重的局限性。一个局限是分离的dsRNA所介导的基因沉默,也称作基因敲低,只是暂时的,因为由RNA分子所携带的遗传信息不能整合到宿主细胞的染色体上,所以dsRNA的效应只在有限次的细胞分裂过程中维持。另一个局限是RNA分子特别不稳定,易于被环境中大量存在的RNase降解。因此操作RNA分子需要格外小心。将RNA分子用于治疗目的是不切实际的。经修饰的RNA,如在核苷酸上加入保护基团或改变多核苷酸链的骨架能够提高稳定性,就象在许多反义研究中那样。然而,经修饰RNA分子的几种形式虽然较天然RNA相比能够对RNase的降解作用具有更强的抵抗性但会出现RNAi能力的减弱或丢失,而用DNA替换dsRNA中的一条链根本不能诱导产生RNAi(Parish等,Mol.Cell 51077-87.2000)。此外,制备RNA分子的费用很高并且方法繁琐而复杂。
由于存在这些局限性,能够提供永久的导入细胞或生物体(如哺乳动物,例如小鼠或人),和/或不依赖于使用RNA分子作为载体的用于基因沉默的材料和方法具有巨大的经济利益。另一方面,DNA分子比RNA分子更加稳定且成本效率更高。DNA分子可以被整合到宿主细胞基因组并且在宿主细胞内具有长期的效应。DNA分子相对容易合成和操作。
发明概述本发明提供了用于靶基因表达抑制和利用DNA作为工具降解靶RNA的方法和组合物。这种方法是指“DNA介导的基因沉默”(“DMSG”“De-message”)。这样,本发明提供了通过对靶细胞(例如,预对其中特定RNA进行降解的细胞)用RNA干扰效应进行的诸如真核细胞或生物体内(包括哺乳动物细胞或有机体在内)基因特异的干扰。本发明提供了不必要在靶细胞外操作RNA分子而实现RNAi的好处。可以诱导RNAi用于短暂的基因敲低,还可以用于永久的基因敲低,因为编码RNAi的DNA分子可以插入到靶细胞内的染色体上。相应的,DMSG也可以用于产生遗传学上修饰的动物,它是通过将DMSG掺入生殖系统,从而能够提供根据设计组成型表达或使用诱导试剂诱导表达编码RNAi的下一代动物。这样,本发明的另一个优点是基因特异的沉默可以限定在一种或少数几种细胞类型,或限定在特定时间,而不导致在机体其它细胞内产生全面的基因关闭。
本发明涉及含有编码中间体小干扰核糖核酸(RNA)分子(siRNA)的至少约16个核苷酸的可表达的模板核苷酸序列的分离脱氧核糖核酸(DNA),这种干扰核糖核酸分子能够介导靶RNA的RNA干扰。在一个实施方案中,中间体siRNA包含与靶RNA有意链互补的至少约15个核苷酸的5’部分和任选地包含约1-5个核苷酸的3’端部分,并且这种中间体siRNA被设计成能够与靶RNA有意链进行选择性杂交。在另一个实施方案中,中间体siRNA包含与靶RNA反义链互补的至少约15个核苷酸的5’部分和任选地包含约1-5个核苷酸的3’端部分,并且这种中间体siRNA被设计成能够与靶RNA反义链进行选择性杂交。在上述实施方案的一个方面,中间体siRNA包括1-5个核苷酸的3’端部分,在一个进一步的方面中,这种3’端部分不能够分别与靶RNA的有意链或反义链互补。
本发明还提供了DNA介导基因表达沉默(DMSG)盒(也叫做LineSilenceTM盒),它包括可操作地连接到至少一个异源核苷酸序列上的上述分离的核酸分子。在一个实施方案中,DMSG盒包括可操作连接的RNA聚合酶III(pol III)启动子和可表达的模板核苷酸序列和末端,或者能够在特定核苷酸位置切开成为末端,以至于预定长度和组成的“脱落式(run-off)”中间体siRNA能够被表达,其中可表达的模板核苷酸序列相对于聚合酶III启动子而言是异源的,并且由能够编码中间体siRNA的至少约16个核苷酸组成。在另一个实施方案中,LineSilenceTM盒包括可操作连接的RNA聚合酶III(pol III)启动子和可表达的模板核苷酸序列和至少一个聚合酶III终止子,其中可表达的模板核苷酸序列相对于聚合酶III启动子而言是异源的,并且由能够编码中间体siRNA的至少约16个核苷酸组成。中间体siRNA可以包括至少约15个核苷酸的5’部分,它能够与靶RNA的有意链互补,和任选地包括约1-5个核苷酸的3’端部分,其中中间体siRNA选择性地与靶RNA的有意链进行杂交;或者中间体siRNA可以包括至少约15个核苷酸的5’部分,它能够与靶RNA的反义链互补,和任选地包括约1-5个核苷酸的3’端部分,其中中间体siRNA选择性地与靶RNA的反义链进行杂交。例如,中间体siRNA可以是长度约为21-23个核苷酸,它可包括长度约为1-4个核苷酸的3’端部分。
当本发明的DMSG盒中存在聚合酶III启动子或聚合酶III终止子或这两者时,它们可以是哺乳动物U6基因聚合酶III启动子或聚合酶III终止子,例如人U6基因聚合酶III启动子或终止子(或两者)或小鼠U6基因聚合酶III启动子或终止子或两者。例如,LineSilenceTM盒可包括可操作连接的下述有意多核苷酸序列,所述序列包含SEQ ID NO1中的核苷酸6-13、SEQ ID NO1中的核苷酸19-38、SEQ ID NO1中的核苷酸66-69、模板核苷酸序列和至少一个包含TTTT四核苷酸序列的转录终止子;反义多核苷酸,它与上述的核苷酸序列互补;或包括可以选择性地彼此杂交的上述有意多核苷酸和反义多核苷酸的双链多核苷酸。当此种双链DMSG编码的中间体siRNA分子包括任选的1-5个核苷酸的3’端部分时,通过DMSG盒表达形成siRNA分子,并且所述中间体siRNA分子选择性杂交形成在双链siRNA的每一条链上包含1-5个核苷酸的3′突出端。
在另一个实施方案中,DMSG盒包含编码第一中间体siRNA的可表达模板核苷酸序列,且该可表达的模板核苷酸序列进一步可操作地连接到编码第二中间体siRNA的第二个可表达模板核苷酸序列上。在该实施方案的另一方面,第二中间体siRNA的5’部分与第一中间体siRNA的5’部分互补,于是当表达时第一中间体siRNA的5’部分选择性地与第二中间体siRNA的5’部分杂交,从而形成发夹结构。
当存在DMSG盒的转录终止子时,其可以包括天然聚合酶III终止子的核苷酸序列,例如包含SEQ ID NO48的人U6基因终止子或包含SEQID NO49的小鼠U6基因终止子;或可以包含设计用来在特定核苷酸处终止聚合酶III转录的经修饰聚合酶III终止子,例如如SEQ ID NO50或SEQ ID NO51所列的那些经修饰的聚合酶III终止子。此外,DMSG盒可进一步包括可操作连接的增强子,它可以是组成型的活化增强子或可诱导的增强子。
当DMSG盒为双链DNA分子时,一条链能够编码与靶RNA有意链互补的第一中间体siRNA,且第二链能够编码与靶RNA反义链互补的第二中间体siRNA。在一个实施方案中,编码的第一中间体siRNA和第二中间体siRNA能够选择性地杂交,形成能够介导RNA干扰的双链siRNA。在另一个实施方案中,此种双链siRNA在每个3′末端具有1-5个核苷酸的3′突出。也提供了包含本发明DMSG盒的载体,以及含有存在于载体中的DMSG盒的细胞。
本发明还涉及介导靶RNA的RNA干扰的方法,通常在细胞中,通过表达至少一种中间体siRNA,并一般往往表达至少第一中间体siRNA和第二中间体siRNA,其中第一和第二siRNA的5’部分选择性地彼此杂交。因此,本发明涉及细胞中介导靶RNA的RNA干扰的方法,例如,通过将至少一种DMSG盒导入细胞,从而表达DMSG盒编码的siRNA(包括中间体siRNA),激发靶RNA的降解,于是介导细胞内RNA干扰。此外,本发明还提供了敲低样本中靶基因表达的方法,例如,通过使样本与至少一种DMSG盒接触,从而表达DMSG盒编码的siRNA(包括中间体siRNA),激发靶基因编码的靶RNA分子的降解,从而敲低样本中靶基因的表达。
本发明还涉及在细胞群体中,示踪经历DNA介导的基因沉默的特定细胞或特定细胞组群的方法。此种方法可通过以下步骤实现,例如通过将至少一种可检测的标记DMSG盒导入特定细胞或特定细胞组群中的每个细胞;和监测可检测的标记,从而在细胞群体中示踪特定细胞或特定细胞组群。此外,本发明还涉及鉴定发生DNA介导的基因沉默的细胞的方法,例如,在足以将DMSG盒导入细胞的条件下,通过将至少一个细胞与至少一种可检测的标记DMSG盒接触;和检测细胞中可检测标记的存在。在一个实施方案中,该方法是通过将相同的或不同的DMSG盒的阵列在适于将DMSG盒导入细胞的条件下与细胞接触,从而通过反向转染将阵列的DMSG盒导入细胞。
本发明还涉及评价测试细胞中基因功能的方法。该方法可以通过以下步骤完成,例如,通过将至少一种DMSG盒导入测试细胞,和观察当DMSG盒编码的siRNA(包括中间体siRNA)表达时测试细胞的表型,从而测试细胞与对照细胞的表型的比较可以指示靶基因的功能,从而评价测试细胞中基因的功能。此种方法特别适合于高通量分析,例如,如可能的话,利用细胞微阵列方法检测多种基因的功能,其中不同的DMSG盒定位于固体支持物如载玻片或硅片上的阵列上,特别是可寻址阵列,并且在适于将阵列的DMSG盒导入细胞的条件下将阵列与细胞接触。在阵列某一位置上细胞表型变化的鉴定允许评价与点在阵列位置上的特定DMSG盒相关的基因。
此外,本发明还涉及测定一种试剂是否能作用或影响在测试细胞中某个特异基因的方法,特别是作用或影响特异基因的表达的方法。此种方法可按以下进行,例如,通过在测试细胞中表达被至少一种DMSG盒编码的包括中间体siRNA的siRNA,其中siRNA的中间体siRNA包括与测试细胞中特异基因编码的RNA分子互补的5′部分;将测试细胞和对照细胞与试剂接触;和比较测试细胞与对照细胞的表型,从而评价是否该试剂能作用或影响测试细胞中的特异基因。
本发明还涉及通过导入针对介导疾病的靶RNA的RNAi来改善个体中RNA介导的疾病的方法。此种方法可按以下进行,例如,通过将表现出RNA介导的疾病个体的细胞与至少一种DMSG盒接触,其中由DMSG盒的模板核苷酸序列编码的包含一种或多种中间体siRNA分子的siRNA的表达能够介导针对靶RNA的RNAi。个体的细胞可离体地(ex vivo)与DMSG盒相接触,然后再回施至受试者体内,或可将DMSG施用于受试者使它在体内与含有靶RNA的细胞接触。靶RNA可以是内源RNA,包括编码RNA(如mRNA)或非编码RNA(如X染色体调节子或结构RNA),或可以是外源RNA,例如,由于个体感染而存在于细胞中的细菌或病毒RNA。
本发明还涉及一种试剂盒,它包括至少一种包含可表达的模板核苷酸序列的分离的DNA分子和/或至少一种DMSG盒。在一个实施方案中,该试剂盒包括含有,如果期望可在可寻址的位置上影印在其上的多个DMSG盒的固体支持物,其中多个DMSG盒可以是相同的或不同的或它们的组合。此外,多个DMSG盒可以是相关的多个DMSG盒,例如,代表基因相关家族如TGF-β家族成员、免疫球蛋白家族成员、生长因子或生长因子受体家族成员的DMSG盒;或代表能对特定刺激物起反应而诱导(或抑制)的基因如对生长因子、毒素或感染剂起反应而诱导的基因的DMSG盒;或代表在特殊细胞或细胞类型表达的基因如以组织特异性或发育阶段特异性方式表达的基因、或在异常细胞如癌细胞中表达的基因的DMSG盒。还提供了非人类转基因生物,它为经遗传学修饰而在其基因组中含有DMSG盒。
本发明还提供了分离的经修饰U6基因启动子,特别是缩短的增强子,包括DSE可操作地连接到PSE(对照天然存在的U6基因5′端上游调节序列;SEQ ID NO36)。本发明的经修饰U6基因增强子以5′-ATTGCAT-N(10-60)-CTTACCGTAACTTGAAAGTA-3′(SEQ ID NO38)和5′-ATTGCAT-N(10-60)-CTCACCCTAACTGTAAAGTA-3′(SEQ ID NO39)为例,其中N(10-60)是指任意10-60个核苷酸可定位于DSE(ATTGCAT)和PSE(人,SEQ ID NO34;或小鼠,SEQ ID NO35所示)之间。此种经修饰的U6基因增强子以其中DSE和PSE由大约10个核苷酸分开的下述DSE和PSE为例阐述,-5′-ATTGCAT-N(13)-CTTACCGTAACTTGAAAGTA-3′(SEQ ID NO40);和5′-ATTGCAT-N(13)-CTCACCCTAACTGTAAAGTA-3′(SEQ ID NO41)-,并且更特别地是由SEQ ID NO1的核苷酸6-46分开的DSE和PSE。在一个实施方案中,缩短的U6基因增强子可操作地连接到启动子元件上,特别是TATA元件。在另一个实施方案中,可以可操作地连接到启动子上的经修饰增强子包含于载体中,该载体可包括可操作连接的模板克隆位点。此外,本发明还提供了经修饰的哺乳动物U6基因聚合酶III终止子,例如,以SEQ IDNO50和51为例的经修饰聚合酶III终止子。
本发明还提供了多种分离的DNA分子,其中每种DNA分子都固定在固体支持物上,并且其中每种DNA分子都包含编码介导靶RNA的RNA干扰的中间小干扰核糖核酸(RNA)分子(siRNA)的至少约16个核苷酸的可表达模板核苷酸序列,其中中间体siRNA包含含有与靶RNA的有意链互补的至少约15个核苷酸的5’部分和含有与靶RNA的有意链不互补的约1-5个核苷酸的3’端部分,其中siRNA选择性地与靶RNA的有意链杂交;或者其中中间体siRNA包含含有与靶RNA的反义链互补的至少约15个核苷酸的5’部分和含有与靶RNA的反义链不互补的约1-5个核苷酸的3’端部分,其中siRNA选择性地与靶RNA的反义链杂交。多种DNA分子中的一种或多种DNA分子可进一步包括可操作地连接到可表达的模板核苷酸序列上的异源聚合酶III启动子,例如,哺乳动物U6基因启动子,特别是人U6基因启动子。
在一个实施方案中,多种DNA分子中每一DNA分子,都包含可操作连接的聚合酶III启动子、可表达的模板核苷酸序列和至少一个聚合酶III终止子,其中可表达的模板核苷酸序列相对于聚合酶III启动子是异源的。例如,多种DNA分子中每一DNA分子,可包括可操作连接的哺乳动物U6基因聚合酶III启动子、可表达的模板核苷酸序列和至少一个聚合酶III终止子,并且其中可表达的模板核苷酸序列相对于聚合酶III启动子是异源的。一方面,多种的DNA分子,都包括可操作连接的包含SEQ ID NO1的核苷酸6-13、SEQ ID NO1的核苷酸19-38、SEQ ID NO1的核苷酸66-69、模板核苷酸序列、和至少一个含有TTTT四核苷酸序列转录终止子的有意多核苷酸序列。另一方面,多种的DNA分子包括与含有SEQ IDNO1的核苷酸6-13、SEQ ID NO1的核苷酸19-38、SEQ ID NO1的核苷酸66-69、模板核苷酸序列、和至少一个含有TTTT四核苷酸序列转录终止子的有意多核苷酸序列互补的反义多核苷酸。又在另一方面,多种的DNA分子包含含有如上所述的有意多核苷酸和反义多核苷酸的双链多核苷酸。在本发明的多种DNA分子中,当存在转录终止子时,转录终止子可以包含SEQ ID NO48或SEQ ID NO49,或可以包含SEQ ID NO50或SEQ ID NO51。
在另一实施方案中,多种的DNA分子的可表达模板核苷酸序列编码第一中间体siRNA,其中可表达模板核苷酸序列被可操作地连接到包含编码第二中间体siRNA的至少约16个核苷酸长的第二个可表达模板核苷酸序列的核苷酸序列上,并且其中第二中间体siRNA的5’部分与第一中间体siRNA的5’部分互补,因此,在表达时,第一中间体siRNA的5’部分选择性地与第二中间体siRNA的5’部分杂交,从而形成发夹结构。
在一个实施方案中,多种DNA分子的每一DNA分子都被固定在固体支持物上的特定位置,例如,在阵列中,并且优选地为可寻址阵列。多种的DNA分子可以被固定使它们在通常不降解DNA的条件下保持吸附于固体支持物上,或者可以被可逆固定。一方面,利用诸如明胶这样的试剂将作为DMSG盒成分的DNA分子可逆固定于固体支持物上,其中,当与适当的溶液接触时,DNA分子从支持物上释放出来。
另一方面,多种DNA分子中的DNA分子(其可包含多种DMSG盒)被可操作地连接于作为膜内剪切蛋白酶底物的跨膜结构域肽上,其中所述DNA分子(或DMSG盒)可通过跨膜结构域肽固定于固体支持物上。跨膜结构域肽可以是任意此类作为膜内蛋白酶或肽酶底物的肽,包括,例如,β-淀粉状前体蛋白质的肽、果蝇sevenless蛋白质或其哺乳动物同系物的肽、果蝇torso蛋白质或其哺乳动物同系物的肽、果蝇δ蛋白质或其哺乳动物同系物的肽、或人血型糖蛋白-A蛋白质的肽;或者作为诸如早衰因子1或早衰因子2的早衰因子的底物的肽。多种的DNA分子单独或者与跨膜肽结构域结合后也可以包含可操作性连接的蛋白质转导结构域,该结构域有利于DNA分子(或DMSG盒)跨细胞膜的脂双层的转运。此类蛋白质转导结构域可用以下例子阐明,人免疫缺陷病毒TAT结构域、果蝇触角足同源异型域、单纯疱疹病毒VP22转导结构域、或成纤维细胞生长因子转导结构域。
具有如此处公开的一种或多种DNA分子(或DMSG盒)固定于其上的固体支持物提供了便利,使在移动和操作DNA分子时,其所附着的固体支持物是稳定的,并且提供了进一步的便利,当需要时可以使多种的DNA分子能够从支持物上释放出来,例如,通过使支持物暴露于改变了的条件或通过将支持物与细胞接触。固体支持物可以是任意通常用于固定DNA的材料,包括,例如,硅微芯片、载玻片、或塑料珠。相应地,本发明还提供了含有此类多种的DNA分子的试剂盒,其中所述多种的DNA分子例如固定于可寻址阵列中的固体支持物上,并且特别是固定于固体支持物的多种DMSG盒,优选的是在可寻址阵列中。
本发明还涉及将DMSG盒导入细胞的方法。此种方法可按以下进行,例如,通过在足以使DMSG盒进入细胞的条件下将固定于固体支持物上的DMSG盒与细胞相接触。优选地是,DMSG盒是多种DMSG盒之一,其中多种DMSG盒中的DMSG盒被固定于固体支持物上,例如,在阵列中,它可以是但不需要是可寻址阵列。利用诸如明胶的基质材料,或通过接头,特别是作为膜内剪切蛋白酶或肽酶的底物的跨膜结构域,可以将DMSG盒固定于支持物上,从而仅当进入细胞膜和被膜内剪切蛋白酶接触时才使DMSG盒从支持物上释放出来。如果期望,DMSG盒可以进一步包括蛋白质转导结构域,因此可以促进DMSG盒进入细胞膜的脂双层。
根据本发明方法的一个实施方案,在含有DMSG盒的细胞中,DMSG盒的可表达核苷酸序列的表达可以降低或抑制细胞中基因的表达,因此提供了鉴定能够敲低基因表达的DMSG盒的方法。当利用此处所述的DMSG盒阵列进行时,此种方法提供了RNAi技术的微阵列,该微阵列允许具有预期基因敲低活性的DMSG盒的鉴定,例如,对编码转录因子、生长因子、生长因子受体、蛋白激酶或G蛋白的基因敲低的DMSG盒的鉴定。基因的降低表达或抑制表达可以通过测定基因表达水平的任意方法而检测出来,包括如检测细胞的表型改变。在一个实施方案中,该方法提供了在表现出病理性疾病的细胞中,而不是在相应的未表现出病理性疾病的细胞中鉴定基因表达的方法,通过检测其中一种细胞而不是另外细胞的表型变化,例如在诸如乳腺癌细胞的癌细胞中而不是在相应的诸如正常乳房上皮细胞的正常细胞中。相应地,RNAi微阵列方法提供了在多种DMSG盒中鉴定能降低或抑制含有DMSG盒的细胞中基因表达的DMSG盒的方法。同样,该方法可以进一步包括分离DMSG盒并且,所以,本发明还提供了由此种方法鉴定并分离DMSG盒,此类DMSG盒是有用的,例如,可作为治疗剂。因此,本发明还进一步提供了包含用于敲低病理性疾病相关基因的表达的DMSG盒的药物。
附图简述

图1A和1B以线性形式图示2种DMSG盒。DMSG-TM盒(图1A)中显示了增强子、启动子、模板序列、2个终止序列(“Term”;“TM”),图1B为突然终止的脱落型盒(“RO”)。
图2以环状(如质粒)形式图示DMSG盒。
图3以组装的线性形式图示DMSG盒(见实施例3)。寡核苷酸被表示为形成具有切口的双链(“ds”)DNA的粗线。
图4图表说明DMSG对lacZ表达的影响(见实施例4)。包括siRNA作为对照。仅编码正链、仅编码负链、或编码正负链的DMSG盒被用于沉默报告基因的表达。在最后两个实验中将DMSG正盒与组装的DMSG负盒共转染,其中以合成的正义DNA(s1s2)或反义DNA(a1a2)用作这两种寡核苷酸。每一s2和a2的3′端碱基用异硫氰酸荧光素(FITC)标记。
图5图示载体pDMSG1上的DMSG盒(见实施例6)。图的上部代表质粒,显示了模板克隆位点周围的序列(“TCS接头”)。下部描述将模板序列插入克隆位点。
图6表示第二种载体pDMSG2上的DMSG盒,该载体与pDMSG1(图5)相似除了它含有一个可留下4个核苷酸突出端的限制性核酸内切酶识别位点(见实施例6)。图的上部代表质粒,显示了模板克隆位点周围的序列(“TCS接头”)。下部描述将模板序列插入克隆位点。
发明详述RNA干扰(RNAi)是dsRNA(小干扰RNA;siRNA)诱导的转录后基因沉默过程,并且已经用于调节基因表达。通常,通过将细胞与双链siRNA相接触已经可以实施RNAi。然而,由于RNA易于降解,细胞外RNA操作是非常繁琐的。通过提供编码小干扰RNA(siRNA)分子或含有siRNA一条链的中间体siRNA分子的脱氧核糖核酸(DNA)组合物,本发明免除了操作RNA的需要。因此,本发明提供了分离的DNA分子,它包括编码中间体siRNA的至少约16个核苷酸的可表达模板核苷酸序列,其中中间体siRNA作为siRNA的组分可介导对靶RNA进行RNA干扰(RNAi)。
在一个实施方案中,中间体siRNA是核糖核苷酸序列,它包括含有与靶RNA的有意链或反义链互补的至少约15个核苷酸的5’部分,和含有不分别与靶RNA的有意链或反义链互补的约1-5个核苷酸的3’端部分,其中与靶RNA有意链互补的siRNA可选择性地与靶RNA有意链杂交,并且其中与靶RNA序列有意链互补的第一中间体siRNA和与同一靶RNA序列反义链互补的第二中间体siRNA可以选择性地彼此杂交。在另一实施方案中,siRNA包括含有与靶RNA的有意链或反义链互补的至少约15个核苷酸的5’部分,和任选地3’端部分,当存在3’端部分时,其可以是长度为约1-5个核苷酸,并且可以但不必分别与靶RNA的有意链或反义链互补,其中与靶RNA有意链互补的siRNA可以选择性地与靶RNA有意链杂交,并且其中与靶RNA序列有意链互补的第一中间体siRNA和与同一靶RNA序列反义链互补的第二中间体siRNA可以选择性地彼此杂交。当这两种siRNA分子,每一siRNA分子包含一个3’端部分,选择性杂交形成双链siRNA时,该双链siRNA在每个末端都包含3′突出端。
如此处所使用,术语“模板”或“模板核苷酸序列”是指本发明DNA分子的核苷酸序列(或DMSG盒的核苷酸序列;见下),它们编码的核糖核苷酸序列含有与靶RNA的有意链或反义链互补的5’部分,和任选地能够,但不必要,分别与靶核苷酸序列的有意链或反义链互补的3’端部分。照这样,模板核苷酸序列编码含有双链siRNA中的一条链的中间体siRNA。
术语“中间体”,当用于指siRNA时,意思是指双链siRNA中的一条链,或者是有意链或者是反义链或其部分。为了便于讨论,术语“有意”链(或“正”链)和“反义”链(或“负”链)在此处如它们所相关的mRNA那样使用,其中,有意(正)链包含编码肽的信息并且反义(负)链与它们互补。应该认识到,实际上在细胞中通常不产生反义mRNA序列。然而,应进一步认识到siRNA不是必须针对mRNA分子,其可以针对任意RNA分子,包括细胞或样本中任意内源或外源RNA。例如,siRNA可以针对结构RNA分子,例如诸如那些参与剪接复合体的核糖体RNA或小核RNA(snRNA);已转录的内含子的核苷酸序列,其存在于核不均一RNA(hnRNA);X-染色体调节物;或微小RNA;或可针对RNA病毒的核苷酸序列或DNA病毒(它含有正链和负链)RNA形式的核苷酸序列,后者包括编码或非编码RNA序列;或可针对能够与带菌的宿主共生的细菌或具有感染性的细菌特别是致病菌所表达的RNA。
中间体siRNA一般是长度为16-30个核苷酸,通常约20-25个核苷酸,特别是21、22或23个核苷酸。为了便于讨论,谈到了中间体siRNA的5’部分和3’端部分。术语“5’部分”是指这样的中间体siRNA的核苷酸序列(通常长度约15-29个核苷酸,通常长度约18-25个核苷酸,特别的是20-23个核苷酸长),该核苷酸序列与靶RNA的有意链或反义链序列互补;术语“3′端部分”是指这样的中间体siRNA的任选核苷酸序列(当其存在时,通常长度为1-5个核苷酸,特别是2、3或4个核苷酸长),它包括3′端核苷酸。通常,siRNA包括3′端部分,以至于当中间体siRNA与互补siRNA选择性杂交形成siRNA时,中间体siRNA的3′端部分可以形成3′突出端。为了便于讨论本发明的组合物,文中往往谈到了与靶RNA相应序列不互补的、含有1-5个核苷酸的3’端部分的模板核苷酸序列。像这样,应该认识到本发明的分离DNA分子不包含诸如天然存在的多核苷酸的任何已分离的核苷酸序列或限制性片段(如基因序列),并且也应该认识到本发明的DMSG盒不包含连接到任何异源核苷酸序列的任一上述核苷酸序列。
本发明的分离DNA分子可以是单链或双链。如果分离的DNA分子是单链,它能够编码有意链或反义链中间体siRNA;或者能够编码有意链和反义链这两种中间体siRNA,当表达时,这两种中间体siRNA能够选择性杂交以形成siRNA。如果分离的DNA分子是双链时,它可以在一条链上编码有意或反义的中间体siRNA;或可以在一条链上编码有意和反义的中间体siRNA这两条链,当表达时,这两条链可以选择性杂交以形成siRNA;或在一条链上编码有意的中间体siRNA而在第二条链上编码反义的中间体siRNA,当表达时,它们能够选择性杂交以形成siRNA。本发明的分离DNA分子能够编码两种或多种中间体siRNA分子,它们中的两种或多种分子能够选择性地彼此杂交以形成siRNA,或者能够特异针对两种或多种不同的靶RNA分子。
分离的DNA分子还可以是线性DNA分子,它具有第一个末端和第二个末端,或着是环状的。此外,分离的DNA分子可以是例如在溶液中的游离形式,以冷冻干燥形式,或以沉淀形式;或者包含于载体中,例如,表达载体。此类分离DNA,它可以,但不是必须,存在于载体上,它还可以存在于细胞中,例如宿主细胞、靶细胞、或经遗传学修饰含有整合到其基因组中的该DNA分子的细胞。
本发明还提供了多种分离DNA分子。正如此处所应用的那样,当用于指DNA分子、DMSG盒、或siRNA或中间体siRNA分子时,术语“多种”指两种或多种(例如2、3、4、5、6、7、8种等)不同的分子,包括两种或多种不同的此类分子群。照这样,本发明的多种DNA分子包括至少两种此类分离的DNA分子。例如,多种DNA分子可以包括第一种分离的DNA分子,该分子编码包含与靶RNA的有意链互补的5’部分的中间体siRNA;和至少第二种分离的本发明DNA分子(例如第二种;第二种和第三种;第二种、第三种和第四种;等)。应该认识到,术语“第一种”、“第二种”、“第三种”等等仅被用于区别本发明不同的分离DNA分子而并非指,例如顺序或重要性或其他此类特性。
当本发明中的多种DNA分子包括第一种分离的DNA分子,该分子编码包含与靶RNA有意链互补的5’部分的中间体siRNA(“第一中间体siRNA”),并还包括,例如,至少第二种分离的DNA分子,该分子编码包含与第一中间体siRNA所针对的靶RNA反义链互补的5’部分的第二中间体siRNA,其中,在表达时,第一和第二中间体siRNA分子能选择性杂交形成siRNA。作为选择,或另外,该多种DNA分子可至少包括第二(或第三)分离的DNA分子,该分子编码包括与第二靶RNA有意链互补的5’部分的中间体siRNA,并且还可至少包括第三(或第四)分离的DNA分子,该分子编码包括与第二靶RNA反义链互补的5’部分的中间体siRNA。
多种分离的DNA分子还可包括第一分离的DNA分子,该分子编码具有与靶RNA的反义链互补的5’部分的中间体siRNA;和至少包括第二分离的DNA分子,该分子编码具有与靶RNA的有意链互补的5’部分的中间体siRNA,其中编码的第一和第二中间体siRNA可以但非必须彼此互补,这样在表达时,它们可以选择性杂交形成siRNA。此外,还考虑到其它的成分组合,这些成分是诸如那些编码针对一种或多种其它靶RNA分子或第一靶RNA其他区域的中间体siRNA的成分。
如此处所公开,本发明的DNA分子编码可表达的模板核苷酸序列。术语“可表达的”,当用于指模板核苷酸序列时,是指模板核苷酸序列可以被转录成RNA分子,特别是中间体siRNA。这样,可表达的模板核苷酸序列通常,或可以,被可操作连接于一个或多个转录调控元件,其中转录调控元件包括例如,一个或多个包含转录起始位点的启动子;分别可以增强或降低可表达核苷酸序列转录水平的增强子或沉默子;沉默子;或含有转录终止位点的终止子。
相应地,本发明还提供了DNA介导的基因沉默(DMSG)盒,它包括可操作地连接到至少一个异源核苷酸序列上的本发明分离的DNA分子(其编码中间体siRNA)。异源核苷酸序列可以是,例如,一个或多个可操作连接的转录调控元件如启动子、增强子、终止子、或其组合;克隆位点如限制性核酸内切酶识别位点、重组酶识别位点、拓扑异构酶识别位点、或其组合;或一个或多个其它部分。例如,本发明的DMSG盒可以包括可操作连接的启动子、编码中间体siRNA的模板核苷酸序列、和终止子,并且此外还可包括增强子。此种DMSG盒在此处以含有可操作连接于人U6基因增强子、启动子和终止子元件上的模板核苷酸序列的DMSG盒为例证,它由RNA聚合酶III(pol III)直接转录。此外,DMSG盒也可包含于载体中,并且相同的或不同的两个或多个DMSG盒可被可操作地连接到一起,并且可以是线性的或环状的并且可以,但非必须,包含于载体中。
可以用于驱动有意中间体siRNA或反义中间体siRNA转录的启动子和增强子可以是组成型的(例如病毒启动子诸如巨细胞病毒启动子或SV40启动子)、可诱导的(例如金属硫蛋白启动子)、可抑制的、组织特异性的、发育阶段特异性的等等。因此,例如2个不同的可诱导启动子可以用于驱动有意中间体siRNA和反义中间体siRNA的转录。在此种例子中,如所预期的,启动子活化可用于诱导有意中间体siRNA、反义中间体siRNA或两者的产生。此外,可以选择转录调控元件以至于它们可指导由真核RN A聚合酶I、II或III(pol I、II或III)转录或由原核RNA聚合酶,如α-pol、β-pol或γ-pol转录。调控元件诸如真核RNA聚合酶III启动子、增强子和终止子,例如存在于人U6基因的这些元件,能够在表达中间体siRNA时尤其有用,因为聚合酶III能够产生大量的转录子拷贝。
正如此处所使用的,术语“可操作地连接的”是指调控元件定位于与可表达核苷酸序列相关的位置,从而元件可以发挥它的调控作用。具有增强子活性的转录调控元件可以位于一定的距离,例如相邻或相距长达数千核苷酸的距离、和位于启动子和预转录核苷酸序列的上游或下游,并且仍能对编码的报告分子的表达水平施加可检测的增强效应。转录调控元件包括真核和原核启动子、终止子、增强子和沉默子,这在本领域是熟知的,并且能够化学合成、从天然存在的核酸分子得到、或从商业渠道购得。
启动子包括,例如来源于巨细胞病毒、莫洛尼鼠白血病病毒和疱疹病毒的启动子,还有来源于编码金属硫蛋白、骨骼肌动蛋白、磷酸烯醇丙酮酸羧化酶、磷酸甘油酸、二氢叶酸还原酶和胸苷激酶基因的启动子,还有来源于病毒长末端重复(LTRs)如劳斯肉瘤病毒LTR的启动子。增强子包括,例如组成型激活增强子如免疫球蛋白增强子,或可诱导增强子如SV40增强子;等等。金属硫蛋白启动子是组成型激活启动子,当存在金属离子,如铜、镍或镉离子时,它也可以被诱导至较高水平表达。作为比较,四环素诱导的启动子是启动子的一个例子,它被存在的四环素或四环素类似物诱导,否则就没有活性。转录调控元件也可以是组织特异性调控元件,例如肌细胞特异性调控元件,从而使所编码产物的表达限制于个体的肌细胞,或培养例如器官培养中的混合细胞群中的肌细胞。肌细胞特异的调控元件包括,如肌肌酸激酶启动子(Sternberg等,Mol.Cell.Biol.82896-2909,1988,此处引用作为参考)和肌球蛋白轻链增强子/启动子(Donoghue等,Proc.Natl.Acad.Sci.,USA 885847-5851,1991,此处引用作为参考)在本领域是熟知的。其它组织特异的启动子,还有只在细胞或有机体特定发育阶段表达的调控元件,在本领域是熟知的。
此类调控元件或者是组成型的或者是可调节的(即可诱导的或可去抑制的)。组成型启动子的例子包括噬菌体λ的启动子int、pBR322上β-内酰胺酶基因序列的启动子bla、pPR325上氯霉素乙酰转移酶基因序列的启动子CAT、等等。可诱导的原核启动子的例子包括噬菌体主要的右和左启动子(PL和PR)、大肠杆菌(E.coli)trp,recA,LacZ,LacI和gal启动子、枯草杆菌(B.subtilis)α淀粉酶(Ulmanen等,J.Bacteriol.162176-182,1985)和σ-28-特异启动子(Gilman等,Gene 3211-20,1984)、芽孢杆菌属噬菌体启动子(Gryczan,The Molecular Biology of the Bacilli(AcademicPress,Inc.,NY 1982))、链霉菌启动子(Ward等,Mol.Gen.Genet.203468-478,1986)、等等。Glick(J Ind.Microbiol.1277-282,1987);Cenatiempo(Biochimie 68505-516,1986)和Gottesman(Ann.Rev.Genet.18415-442,1984)综述了原核启动子范例。
转录调控元件例如启动子和增强子可以是组成型活化元件,该元件以相对稳定的活性水平维持着可操作性地连接的可表达核苷酸序列的表达,或者是可诱导的调控元件。组成型活化调控元件包括,例如肌动蛋白启动子如肌动蛋白2启动子,或延伸因子(EF)启动子如EF1α启动子,其中每一启动子在大范围的不同细胞类型中是活化的;或者是在一种或少数几种细胞类型中表达的组织特异调控元件,或者是只在有机体特定发育或生长中表达的发育阶段特异性调控元件。当谈及调控元件特别是启动子或增强子时,术语“组织特异性”或“发育阶段特异性”时是指能够只在一种或少数几种细胞类型、或只在一种细胞类型或有机体生长、发育或分化的一个或少数几个阶段指导转录的核苷酸序列。
象此处使用的那样,术语“可诱导的调控元件”是指这样一种调控元件,当暴露于诱导剂时,能够实现可操作性地连接的核苷酸序列,特别是编码中间体siRNA的模板核苷酸序列提高的转录水平,使其与在不存在诱导剂时的,转录水平相比有所提高。可诱导的调控元件可以是那些没有基础活性或组成型活性,并且只在暴露于诱导剂的情况下才有效转录的调控元件,或者是那些有基础活性或组成型活性,但当暴露于诱导剂的情况下能提高转录活性的调控元件。有基础水平或组成型水平表达的可诱导调控元件在如下情况下有特别的用途,即诱导后的转录水平显著地高于基础或组成型表达水平,例如至少提高约2倍,或至少提高约5倍。特别有用的可诱导调控元件不具有基础或组成型表达活性,或与调控元件相关的基础或组成型转录水平相比转录水平提高至少约10倍。
当使用术语“诱导剂”时是指通过可诱导调控元件能够影响转录的化学的、生物的或物理的试剂。对暴露于诱导剂时的反应,从可诱导调控元件的转录通常为从头开始转录或比基础或组成型表达水平有所提高。此种诱导可用此处公开的方法进行鉴定,包括检测编码生物发光多肽的mRNA水平的增高。可诱导调控元件在本发明重组核酸分子中的应用提供了一种只在预定时间表达生物发光多肽的方法,因此阻止了植物细胞中无关的转录或翻译活性。
用于调控特定的可诱导元件表达的诱导剂可以基于特定的可诱导调控元件进行选择。例如,可诱导调控元件可以是金属硫蛋白(MT)调控元件诸如MT2B调控元件,铜诱导的调控元件,或为四环素诱导的调控元件,从这些调控元件的转录可以通过分别对各种金属离子、铜或四环素做出反应而实现(Furst等,Cell 55705-717,1988;Mett等,Proc.Natl.Acad.Sci.,USA 904567-4571,1993;Gatz等,Plant J.2397-404,1992;Roder等,Mol.Gen.Genet.24332-38,1994,每一个在此处引用作为参考)。可诱导调控元件还可以是蜕皮素调控元件或糖皮质激素调控元件,从这些调控元件的转录可以通过对蜕皮素或其它类固醇做出反应而实现(Christopherson等,Proc.Natl.Acad.Sci.,USA 896314-6318,1992;Schena等,Proc.Natl.Acad.Sci.,USA,8810421-10425,1991,每一个在此处引用作为参考)。此外,调控元件可以是冷应答调控元件或热休克调控元件,从这些调控元件的转录可以分别通过对暴露于冷或热做出反应而实现(Takahashi等,PlantPhysiol.99383-390,1992,此处引用作为参考)。
此处使用的术语“可操作地连接”在谈及诸如限制性核酸内切酶或重组酶识别的克隆位点时,在每种情况下,该术语是指这样的克隆位点,它定位于第一核苷酸序列例如模板核苷酸序列,从而使第二核苷酸序列能够被与其连接并实现它的与第一核苷酸序列相关的功能。例如,第一核苷酸序列,如可表达模板核苷酸序列,可以含有可操作地与其连接的克隆位点,从而使第二或更多核苷酸序列,如具有相似克隆位点的启动子和终止子,可以通过克隆位点被连接于第一核苷酸序列,其中连接单元的每一成分都维持其功能并且两个或多个连接单元共同起作用。同样地,含有增强子、启动子和终止子的表达载体可以包含位于启动子和终止子元件之间的模板克隆位点,从而使含有合适终止的模板核苷酸序列可以可操作地插入克隆位点,也就是插入后使得模板核苷酸序列的表达由增强子、启动子和终止子调控(见,例如图5和6)。本发明组合物的模式特性特别适合于含有便于进行可操作连接的成分的试剂盒的生产,一个或多个不同的或组合的调控元件、检测标记、靶向部分等的可操作连接包括插入、替代或缺失,从而使可表达模板核苷酸序列能够在预期的一种或多种特定细胞类型中表达。
限制性核酸内切酶识别位点以及它们相应的限制性核酸内切酶在本领域中是孰知的并且是商业可得的。本发明的组合物中有用的限制性位点包括那些存在3′或5′突出端的位点,从而使得具有这些位点的两个或多个核苷酸序列便于进行可操作性连接。例如,在模板核苷酸序列侧翼加上限制位点,从而使启动子和终止子能够可操作地与其连接,在每一个模板的末端使用不同的限制性位点有利于将启动子和终止子以正确的位置和方向可操作性地连接到编码中间体siRNA的核苷酸序列上,从而使连接在单一反应混合物中完成。在本领域重组酶识别位点也是熟知的,它包括如可被Cre重组酶有效连接的lox识别位点,可被λInt和IHF蛋白质有效连接的att序列。
此处所用术语“可操作性连接”在谈及含有模板核苷酸序列的DNA分子如DMSG盒和与其连接的分子时,在每种情况下,该术语是指能够使DNA分子或DMSG盒和所述分子的功能得以维持的连接。因此,DNA分子或DMSG盒能够可操作性地连接到可检测标记或诸如多核苷酸、肽、模拟肽、小的有机分子等能在DNA分子或DMSG盒上赋予预期特性的其它分子。例如,DMSG可以被可操作性地连接到诸如细胞区室化结构域的部分上,它能够靶向DMSG盒进入细胞或特定的细胞区室。在本领域细胞区室化结构域是熟知的并且包括如质膜定位结构域、核定位信号、线粒体膜定位信号、内质网膜定位信号等等,或蛋白质转导结构域如人免疫缺陷病毒TAT蛋白质转导结构域,它们利于与其连接的肽转位进入细胞(见Schwarze等,Science 2851569-1572,1999;Derossi等,J.Biol.Chem.27118188,1996;Hancock等,EMBOJ.104033-4039,1991;Buss等,Mol.Cell.Biol.83960-3963,1988;U.S.专利号5,776,689此处引用作为参考)。
使易于鉴定本发明组合物或含有该组合物的样本或细胞的可检测标记可以是便于检测的肽、多肽、或化学分子或小的有机或无机分子。例如,可检测标记可以是诸如生物素的分子,它可以用亲和素或链亲和素检测;荧光化合物(如Cy3、Cy5、Fam、荧光素或罗丹明);放射性核素(如硫35、锝99、磷32、或氚);顺磁旋转标记(如碳13);生物发光物如虫萤光素;酶如碱性磷酸酶;或化学发光化合物。如果期望,荧光化合物如AAN、JOE、FAM、或TET可单独或与淬灭剂如BHQ组合(见例如Molecular Probes,Eugene),用于进行荧光共振能量转移(FRET)反应,由此例如可以检测由此处公开的DMSG盒表达的发夹siRNA的形成。
将可检测标记或其它分子可操作连接于核苷酸序列的方法在本领域是熟知的(见,例如,Hermanson,″Bioconjugate Techniques″(AcademicPress 1996),此处引用作为参考)。除了提供例如检测含有DMSG盒的细胞的方法,可检测标记或其它分子也可用于分离此种细胞。例如,当DMSG含有荧光化合物时,通过诸如荧光激活细胞分选(FACS)方法,能够容易地将含有DMSG盒的细胞从不含DMSG盒的细胞中分离出来。同样的,当可检测标记是肽标签,如myc表位、FLAG表位等时,本身可以被标记的标签特异的抗体或其它结合伙伴可用于分离或鉴定DMSG盒,包括例如含有该盒的细胞。
DMSG盒,或两个或多个连接后的DMSG盒,可以是线性表达盒或环状表达盒形式,任意一种形式都可以但非必需含有载体序列。此外,可以存在于载体中的DMSG盒还可以存在于细胞中,该细胞可以是用于维持和/或扩增DMSG盒的宿主细胞,并且DMSG盒可以是在细胞中游离存在的或整合到细胞基因组DNA中的。
本发明分离的DNA分子或DMSG盒可以包含于载体,这有利于核酸分子的操作,包括将其导入靶细胞。载体可以是克隆载体,它有利于维持DMSG盒的DNA分子,或者可以是表达载体,它含有用于表达多核苷酸的调控元件并且,根据需要,有利于连接到载体的DNA分子或DMSG盒或核苷酸序列所编码的肽的翻译。表达载体可以包含一些实现例如编码中间体siRNA的可表达模板核苷酸序列持续转录的表达元件,或者在其被克隆进载体之前,可操作连接于模板核苷酸序列的调控元件,即通过构建DMSG盒的全部或一部分而连接。
表达载体(或多核苷酸)通常含有或编码可以提供编码的寡核苷酸的组成型或,如果期望,可诱导或组织特异或发育阶段特异表达的启动子序列、多聚A识别序列或其它转录终止位点、其它转录调控元件如增强子(可以是组织特异性的),并且,如果期望,还包括核糖体识别位点或内部核糖体进入位点。如果期望,载体还可以包含在原核或真核宿主系统或两者中复制所必需的元件。此类载体包括质粒载体和病毒载体,如噬菌体、杆状病毒、逆转录病毒、慢病毒、腺病毒、痘苗病毒、塞姆利基森林病毒(Semliki forest virus)和腺伴随病毒载体,是众所周知的并且可以从商业供应(Promega,Madison WI;Stratagene,La Jolla CA;GIBCO/BRL,Gaithersburg MD)中买到或由本领域的技术人员构建(见,例如,Meth.Enzymol.,Vol.185,Goeddel编辑(Academic Press,Inc.,1990);Jolly,Canc.Gene Ther 151-64,1994;Flotte,J Bioenerg.Biomemb.2537-42,1993;Kirshenbaum等,J.Clin.Invest.92381-387,1993;每篇文献此处引用作为参考)。
病毒表达载体,对于将一种或多种位于相同或不同载体上的DMSG盒导入细胞,特别是受试者体内的细胞,是特别有用的。这些病毒载体为它们相对高效地感染宿主细胞和感染特异细胞类型提供了便利。病毒载体也可以来源于感染目的生物的细胞的病毒,例如,诸如哺乳动物、禽类或鱼类宿主细胞的脊椎动物宿主细胞。病毒载体对于将DMSG盒导入靶细胞以实践本发明的方法是特别有用的。已经研发出用于特定宿主系统特别是哺乳动物系统的病毒载体,并且包括例如逆转录病毒、其它慢病毒载体如那些基于人免疫缺陷病毒(HIV)的载体、腺病毒载体、腺伴随病毒载体、疱疹病毒载体、痘苗病毒载体等等(见Miller和Rosman,BioTechniques 7980-990,1992;Anderson等,Nature 39225-30 Suppl.,1998;Verma和Somia,Nature 389239-242,1997;Wilson,New Engl.J Med.3341185-1187,1996,每篇文献此处引用作为参考)。
例如,当将逆转录病毒用于基因转移时,由于在用来产生逆转录病毒载体的包装细胞系中将逆转录病毒载体和病毒基因序列重组,从而理论上可以产生复制性逆转录病毒。包装细胞系,其中通过重组复制性病毒的产生已经被降低或去除,可以被用于降低产生复制性逆转录病毒的可能性。用标准方法,如PCR和逆转录酶分析,对用于感染细胞的逆转录病毒载体上清进行复制性病毒筛选。逆转录病毒载体允许将异源基因整合入宿主细胞基因组,这就允许基因随着细胞分裂而传递给子代细胞。
使用本领域熟知的各种方法中的任何一种,可以将包含于载体中的多核苷酸如DMSG盒导入细胞(Sambrook等,“Molercular CloningALabortory Manual”(Cold Spring Harbor Laboratory Press 1989);Ausubel等,“Current Protocols in Molecular Biology”,John Wiley和Sons,Baltimore,MD(1987,和1995的增刊),每篇文献此处引用作为参考)。此类方法包括,例如,转染、脂质转染、微注射、电穿孔和用病毒载体的感染;还可能包括脂质体、微乳剂等的使用,此类物质能够促进将多核苷酸导入细胞并且能保护多核苷酸在导入细胞前不被降解。具体方法的选择依赖于,例如,欲将多核苷酸导入的细胞,以及细胞是在培养基中独立培养,还是在培养的或原位的组织或器官中培养。
通过使用病毒载体感染将多核苷酸导入细胞是特别有利的,因为它能够有效地在体外或体内将核酸分子导入细胞(见,例如,美国专利号5,399,346,此处引用作为参考)。而且,病毒是非常特异的并且可以根据它对一种或少数几种特定细胞类型的感染并在其中增殖的能力而选择用作载体。因此,它们这种天然特异性可以用于将包含于载体的核酸分子靶向进入特定细胞类型。照这样,基于HIV的载体可以用于感染T细胞,基于腺病毒的载体可以用于如感染呼吸道上皮细胞,基于疱疹病毒的载体可以用于感染神经细胞,等等。其他载体,诸如腺伴随病毒可以具有较广的宿主细胞范围并且,因此,可以用于感染多种细胞类型,虽然病毒或非病毒载体也可以用特异受体或配体进行修饰以通过受体介导事件改变靶向特异性。
本发明的DMSG盒此处以“脱落式”DMSG盒进行例证,“脱落式(run off)”DMSG盒缺乏转录终止子元件(见图1B),例如针对靶RNA正链(如编码链)的DMSG盒序列(如SEQ ID NO1和2所示)或针对靶RNA负链(如非编码链)的DMSG盒序列(如SEQ ID NO5和6所示;也见实施例1)。此外,本发明的DMSG盒以含有一个或多个转录终止子的DMSG盒序列(见图1A)进行例证,例如针对靶RNA正链的DMSG盒序列(SEQ ID NO3和4)或针对靶RNA负链的DMSG盒序列(SEQID NO7和8;也见实施例1)。尽管作为例证的DMSG盒含有针对绿色荧光蛋白(GFP)的靶有意链或反义链的模板核苷酸序列,应该认识到,本发明包括编码中间体siRNA的模板核苷酸序列,其中所述中间体siRNA针对由任一基因或cDNA等编码的RNA分子,或针对任一靶RNA分子。
于是,本发明还提供了例如这样的DMSG盒,它包括可操作连接的含有SEQ ID NO1的6-13位核苷酸、SEQ ID NO1的27-46位核苷酸、SEQ ID NO1的66-69位核苷酸和编码中间体siRNA的至少约16个核苷酸的模板核苷酸序列的有意多核苷酸序列;与上述有意多核苷酸互补的反义多核苷酸;或通过上述有意或反义多核苷酸杂交形成的双链多核苷酸。此类DMSG盒可缺乏终止子(见,例如,图1B),或进一步在可操作连接中包括至少一个转录终止子,例如在有意多核苷酸中至少一个四胸腺嘧啶核苷(TTTT)或至少一个五胸腺嘧啶核苷(TTTTT)序列;或在反义多核苷酸中至少一个四腺嘌呤核苷(AAAA)或至少一个五腺嘌呤核苷(AAAAA)序列。
应该注意到人U6基因终止子的天然序列包括五胸腺嘧啶核苷序列(TTTTT),它的最开始的两个胸腺嘧啶核苷残基与编码序列(见SEQ IDNO48)的最后两个T重叠。由于当3’端部分含有UU突出端时siRNA是非常有效的,并且pol III转录通常在五胸腺嘧啶核苷终止子序列的第二或第三胸腺嘧啶核苷后终止,所以如公开的那样,DMSG盒的转录提供了一种产生几乎完美的siRNA分子的方法。
在许多情况下,期望例如在一个细胞中表达两种DMSG盒,从而使有意和反义中间体siRNA能够选择性杂交形成功能性双链siRNA。然而,也可以构建这样的DMSG盒,以产生有意和反义中间体siRNA这两者,在一个实施方案中,当有意和反义中间体siRNA序列含有单一转录本,其中有意和反义序列能够选择性杂交形成可加工成功能性双链siRNA的发夹结构。此外,本发明还提供了这样的DMSG盒,它包括编码第一中间体siRNA的第一模板核苷酸序列,并且其中DMSG盒的异源核苷酸序列包括编码第二中间体siRNA的至少约16个核苷酸的第二可表达模板核苷酸序列,其中第二中间体siRNA的5′部分与第一中间体siRNA的5′部分互补,从而,当表达时,第一中间体siRNA的5′部分选择性地与第二中间体siRNA的5′部分杂交形成发夹结构。此类DMSG盒可以进一步包括至少一个RNA聚合酶III转录调控元件,例如,至少一个人U6基因转录调控元件如启动子、增强子、终止子、或它们的组合。
考虑到本发明所公开的内容,应该认识到本发明的组合物,特别是DMSG盒,可以被整合进入细胞基因组并且,因此,本发明的组合物对于产生遗传修饰细胞或含有此类细胞的非人转基因生物是有用的。此类遗传修饰细胞和非人转基因生物是有用的,例如,作为以基因表达降低或缺乏为特征的疾病的动物模型,或作为鉴定试剂对影响基因表达是否有用的工具。例如,可以制备转基因啮齿类动物如转基因小鼠、大鼠、或仓鼠,或者其他转基因动物如转基因绵羊或山羊或其他实验动物,从而通过表达来自DMSG盒的特异于靶基因的siRNA敲低一种或多种靶基因,并且可以直接检查非人转基因生物以测定基因敲低产生的效果,并且检测某种试剂的效果,其中该试剂被怀疑能够改善生物体中基因敲低所产生的效果。尽管转基因有机体此处是以非人转基因动物进行例证的,但应该认识到含有一种或多种DMSG盒的转基因植物也同样被考虑到。
对于产生转基因动物有多种已知的方法。在一种方法中,从雌性收获处于前核期的胚胎(“单细胞胚胎”)并将转基因微注射入胚胎,在这种情况下,转基因将被染色体性整合进入生殖细胞或所得到的成熟动物的体细胞。在另一种方法中,分离胚胎干细胞并通过电穿孔、质粒转染或微注射将转基因掺入干细胞;然后将干细胞再次导入胚胎,在那里它们进行克隆化并形成生殖系。将多核苷酸微注射入哺乳类动物的方法被叙述于如美国专利号4,873,191中,此处引用作为参考。又在另一种方法中,用含有转基因的逆转录病毒感染细胞,从而使胚胎的生殖细胞具有整合于染色体中的转基因。
当制备转基因的动物是禽类时,微注射入受精卵的前核存在问题,因为禽类受精卵通常在输卵管内头20小时进行细胞分裂并且因此前核是难以得到的。因此对于制备转基因禽类物种,逆转录病毒感染方法是优选的(见美国专利号5,162,215,此处引用作为参考)。然而,如果打算将微注射用于禽类物种,可以从前次产卵大约2.5小时后的供体母鸡中获得胚胎,转基因被微注射入胚盘的细胞质并且胚胎被培养于宿主壳内直至成熟(Love等,BioTechnology 12,1994)。当被转基因的动物是牛或猪时,卵不透明可能妨碍微注射,因此通过常规的鉴别性干扰-相差显微术很难辨别细胞核。为了克服该问题,首先将卵离心以分离前核以便更好的观察。
非人转基因动物可以是小鼠、牛、猪、羊、禽或其它动物。可以在不同的发育阶段将转基因导入胚胎靶细胞,并且不同方法的选择依赖于胚胎靶细胞的发育阶段。对于微注射受精卵是最好的靶。受精卵用作基因转移的靶具有的主要优点为注射的DNA能够在第一次分裂前掺入宿主基因(Brinster等,Proc.Natl.Acad.Sci.,USA 824438-4442,1985)。作为结果,转基因非人动物的所有细胞都携带所掺入的转基因,因此有助于转基因从起始转基因动物向其后代有效传递,因为50%的生殖细胞携有转基因。
通过两个嵌合动物的交配可以产生转基因动物,其中在每一个嵌合动物的用于生殖的细胞中含有外源遗传物质。所得后代的25%将是带有纯合子外源遗传物质的转基因动物,50%将是杂合子,剩余的25%缺乏外源遗传物质并具有野生型的表型。
在微注射方法中,消化转基因并例如通过凝胶电泳纯化,使不含任何的载体DNA。转基因可以包括可操作连接的启动子,它与参与转录的细胞蛋白质相互作用,并提供组成性表达、组织特异性表达、发育阶段特异性表达等等。此类启动子包括那些来源于巨细胞病毒(CMV)、莫洛尼鼠白血病病毒(MLV)和疱疹病毒的启动子,还包括那些来源于编码金属硫蛋白、骨骼肌动蛋白、磷酸烯醇丙酮酸羧化酶(PEPCK)、磷酸甘油酸(PGK)、二氢叶酸还原酶(DHFR)和胸苷激酶(TK)的基因的启动子。来源于病毒长末端重复(LTR)如劳氏肉瘤病毒LTR的启动子也可以被应用。当用于转基因的动物是禽类时,优选的启动子包括那些针对鸡β-珠蛋白基因、鸡溶菌酶基因、和禽类造白细胞组织增生病毒的启动子。用于对胚胎干细胞进行质粒转染的构建体使用了额外的调控元件,包括,例如,刺激转录的增强子元件、剪接受体、终止密码子和多聚腺苷酸信号、允许翻译的核糖体进入位点等等。
在逆转录病毒感染方法中,处于发育期的非人胚胎可以在体外培养至囊胚泡期。在这段时间内,卵裂球可以作为逆转录病毒感染的靶(Jaenich,Proc.Natl.Acad.Sci,USA 731260-1264,1976)。通过酶处理去除透明带以得到对卵裂球的有效感染(Hogan等,″Manipulating the MouseEmbryo″(Cold Spring Harbor Laboratory Press,1986)。用于导入转基因的病毒载体系统一般是携带转基因的复制缺陷型逆转录病毒(Jahner等,Proc.Natl.Acad.Sci.,USA 826927-6931,1985;Van der Putten等,Proc.Natl.Acad.Sci.,USA 826148-6152,1985)。通过在单层产病毒细胞上培养卵裂球实现简单有效的转染(Van der Putten等,supra,1985;Stewart等,EMBO J.6383-388,1987)。此外,还可以在较后的时期进行感染。可以将病毒或产病毒细胞注射进入囊胚腔(Jahner等,Nature 298623-628,1982)。大多数起始转基因个体将是转基因嵌合体因为掺入仅仅发生于形成转基因非人动物的一部分细胞。而且,起始转基因个体可含有在基因组不同位点的多种转基因的逆转录病毒的插入,这些插入的转基因通常会在子代中发生分离。此外,通过对妊娠中期胚胎进行子宫内逆转录病毒感染,将转基因导入生殖系也是可能的,虽然效率较低(Jahner等,见上文,1982)。
胚胎干细胞(ES)也可以作为导入转基因的靶细胞。ES细胞可以从体外培养的植入前胚胎得到并且与胚胎进行融合(Evans等,Nature 292154-156,1981;Bradley等,Nature 309255-258,1984;Gossler等,Proc.Natl.Acad.Sci.,USA 839065-9069,1986;Robertson等,Nature 322445-448,1986)。通过DNA转染或逆转录病毒介导的转导可以将转基因有效地导入ES细胞。此类转化了的ES细胞此后可以与来源于非人动物的胚囊胚泡结合。此后,ES细胞克隆化形成胚胎并且有助于所得到的嵌合动物的生殖系形成(见Jaenisch,Science 2401468-1474,1988)。
本发明还提供了多种DMSG盒,其包括至少两种本发明的DMSG盒。其中第一DMSG盒的可表达模板核苷酸序列可以编码含有与靶RNA有意链互补的5’部分的第一中间体siRNA。在多种DMSG盒中,此种第一DMSG盒含有至少第二DMSG,其中第二DMSG盒的可表达模板核苷酸序列编码例如含有与靶RNA反义链互补的5’部分的第二中间体siRNA。在一个实施方案中,第一DMSG盒的可表达模板核苷酸序列编码的第一中间体siRNA的5’部分可以与第二中间体siRNA的5’部分互补,其中第一和第二中间体siRNA分子选择性杂交形成活性siRNA,它能够介导RNAi。
在另一个实施方案中,多种DMSG盒中至少第二DMSG盒的可表达模板核苷酸序列编码含有与第二靶RNA有意链互补的5’部分的第二中间体siRNA。在进一步的实施方案中,多种DMSG盒中至少第二DMSG盒的可表达模板核苷酸序列编码含有与第二靶RNA反义链互补的5’部分的第二中间体siRNA,由此第一和第二经编码的中间体siRNA分子能够选择性杂交形成功能双链siRNA。
还提供了这样的多种DMSG盒,其中第一DMSG盒的可表达模板核苷酸序列编码含有与靶RNA反义链互补的5’部分的中间体siRNA,并且其中至少第二DMSG盒的可表达模板核苷酸序列编码含有与靶RNA有意链互补的5’部分的siRNA。在另一个进一步的实施方案中,本发明提供了这样的多种DMSG盒,其中,第一DMSG盒编码的siRNA的5’部分与第二DMSG盒编码的siRNA的5’部分互补。在另一个进一步的实施方案中,在多种DMSG盒中,至少第二DMSG盒的可表达模板核苷酸序列编码含有与第二靶RNA的反义链互补的5’部分的siRNA,并且至少第二DMSG盒的可表达模板核苷酸序列编码含有与第二靶RNA的有意链互补的5’部分的siRNA。
在另一个实施方案中,提供了这样的多种DMSG盒,其中DMSG盒被印刷在、固定在、或者以其他方式放置在固体支持物上。固体支持物可以是一般用作核酸分子支持物的任一材料,包括,例如,微芯片如硅片;载玻片;或珠子。多种的DMSG盒可以被放置在固体支持物上从而使多种DMSG盒的单一群体(即编码相同siRNA)基本上彼此分开。此外,通常将样本排列成阵列或其它可重复的模式,从而使每个样本都被赋予一个地址(即阵列上的位置),因此通过鉴定特定位置上的信号、表型等等,允许使用常规的方法鉴定DMSG盒。将多种DMSG盒点印在阵列特别是可寻址阵列上的另一个优点是自动系统可用于在不同的时间点从一个或多个位置上添加或去除试剂,或用于将不同的试剂添加在特定位置上。除了便于在同一时间检测多样本,此类高通量测定法提供了一种这样的方法,该方法用于检测两份、三份或多份的单一样本,从而增加所得到的结果的可靠性,并且该方法用于在与测试样本相同的条件下检测对照样本,从而提供了内部标准以比较来源于不同分析方法的结果。
如此处所公开,DMSG盒的微阵列可以用于反向转染细胞,从而提供了一种鉴定能够通过RNAi多样化地影响细胞表型的DMSG盒的方法。此种方法在此处称为“RNAi的微阵列”(MAR),此类方法是基于使本发明方法和组合物适用于细胞微阵列(反向转染)方法(Ziauddin和Sabatini,Nature 411107-110,2001;美国专利申请号US 2002/0006664 A1,2002年1月17日,每篇文献此处引用作为参考),其中将核酸分子置于固体支持物上,在允许核酸分子进入细胞的条件下,将细胞与支持物上含有该核酸分子的位置相接触(见实施例8)。如此处所公开,使用多种DMSG盒可以实施MAR,其中,当细胞与含有DMSG盒的支持物相接触时,对于表型的改变可以通过检测细胞的一种或多种表型。当检测到表型改变了的细胞(即表型不同于与支持物/DMSG盒接触之前细胞的表型)时,就可得知在该位点的DMSG盒,从而鉴定出该DMSG盒影响参与该表型的基因的表达。
能够根据MAR方法检测的细胞的表型可以是任意表型,并且可以是基于敲低参与该表型的基因的表达的由DMSG盒编码的siRNA。照这样,多种的DMSG盒可以代表多种基因中的任意一种基因,包括,例如,基因家族如生长因子或生长因子受体基因家族,或G蛋白基因家族;具有共同功能的一组基因如编码蛋白激酶的一组基因(例如蛋白激酶A基因、蛋白激酶C基因、钙-钙调蛋白依赖的蛋白激酶基因等等,还有此类基因的组合),或编码转录因子的一组基因;以特殊方式被调控的一组基因,如以组织特异方式或发育阶段特异方式被调控的基因,或当细胞与刺激物如毒素(例如有毒金属离子或化学治疗试剂)接触时,或受到环境条件刺激时(例如热、紫外线或电离辐射)所诱导的一组基因。
DMSG盒的阵列可以在固体支持物上的两个或多个位点上包括相同或不同的DMSG盒。当在两个或多个位点上的DMSG盒相同时(即编码相同的siRNA),每一个位点可以与不同的细胞类型接触或与具有不同表型的相似细胞类型接触,从而允许该方法用于鉴定不同细胞中RNAi的不同效应。例如,在含有相同DMSG盒的阵列的两个或多个位点上所接触的细胞可以是正常细胞(即从健康个体如人来源的细胞)和相应的异常细胞(即与正常细胞为相同类型的细胞,但是是来自患有病理性疾病的个体的细胞如癌细胞、病毒或细菌感染细胞、来自患有先天性疾病、自身免疫疾病的个体的细胞等等),其中该方法允许鉴定能够差异影响异常细胞而不是相应的正常细胞(或反之亦然)表型的DMSG盒,此种具有这种潜能的DMSG盒可用作治疗剂。相比较而言,当在两个或多个位点上DMSG盒不同(即编码不同的siRNA分子)时,每个位点可能,但非必需,与相同细胞类型接触,细胞可以是上面例举的正常或异常细胞,因此提供了鉴定沉默一个或多个目的基因的DMSG盒的方法。
相应地,本发明提供了含有点印于固体支持物优选地是在阵列中,特别是在可寻址阵列中的多种DMSG盒的组合物,其中多种的DMSG盒可以是相同的或不同的或它们的组合(即它们的一些,但不是全部,是一样的),并且其中不同的多种DMSG盒可以是随机的(即编码任意序列的siRNA-例如利用所有四种脱氧核糖核苷酸通过组合方法而产生的序列)、偏性的(即编码具有优选序列的siRNA-例如仅利用三种脱氧核糖核苷酸通过组合方法而产生的序列)、或富于变化的(即编码基于已知siRNA序列,但在一个或几个特定位点上变化了的siRNA;见,例如美国专利号5,571,698;美国专利号5,998,142,每个专利此处引用作为参考)。在一个实施方案中,多种的DMSG盒被点印在微芯片或载玻片上,优选的是在可寻址阵列上。在一方面,此种微阵列中的多种DMSG盒被点印,从而,当与适当的试剂(例如转染试剂)和细胞相接触时,DMSG盒能够穿过细胞膜进入细胞,从而允许反向转染。另一方面,提供了含有此种微阵列的试剂盒。
如此处所公开的,本发明的组合物被用于通过靶向一种或多种RNA分子介导RNAi,其中所述RNA分子可以是核糖体RNA分子、mRNA分子、病毒RNA分子等等。相应地,本发明提供了在细胞内介导靶RNA的RNA干扰(RNAi)的方法。通过将至少一种DMSG盒导入细胞可以实现此种方法,由于含有被该至少一种DMSG盒编码的中间体siRNA的siRNA的表达引发靶RNA的降解,从而在所述细胞内介导RNA干扰。在一个实施方案中,该至少一种DMSG盒编码与靶RNA有意链互补的中间体siRNA。在另一个实施方案中,至少两种DMSG盒被导入细胞,其中该至少两种DMSG盒的第一DMSG盒编码含有与靶RNA有意链互补的5’部分的第一中间体siRNA,并且其中该至少两种DMSG盒的第二DMSG盒编码含有与靶RNA反义链互补的5’部分的第二中间体siRNA。在进一步的实施方案中,与靶RNA有意链互补的第一中间体siRNA的5’部分与与靶RNA反义链互补的第二中间体siRNA的5’部分互补,由此第一中间体siRNA和第二中间体siRNA选择性杂交形成siRNA。
如此处所公开,靶RNA可以是存在于样本或细胞中的任意RNA分子,包括内源或外源RNA和编码或非编码RNA。例如,当RNA病毒已经感染细胞时,可以设计siRNA使其靶向RNA病毒的编码或非编码部分,从而介导病毒RNA的RNAi。靶RNA也可以是snRNA、hnRNA或mRNA分子,由此siRNA能够敲低编码hnRNA和mRNA的靶基因的表达,或阻止hnRNA到mRNA的加工。照这样,应该认识到本发明的方法能够用于介导细胞中内源基因表达的RNA分子或外源RNA分子的RNAi。相应地,本发明还提供了通过RNAi在样本或细胞中敲低靶基因表达的方法。如此处所应用,当谈及RNAi对于基因表达的效果时,术语“敲低”是指基因表达的水平被抑制、或降低至低于通常在基本上相同但缺乏RNAi的条件下检测时所观察到的水平。
例如将样本与至少一种本发明的DMSG盒接触,可以进行敲低基因表达的方法,其中表达含有由DMSG盒编码的中间体siRNA的siRNA引发靶基因编码的靶RNA分子的降解,从而敲低样本中靶基因的表达。靶基因可以是内源基因或者可以是被导入细胞并在细胞中瞬时或稳定存在的外源基因。
用于实践此种方法的样本可以是反应混合物,其中RNAi是利用基本上纯化的试剂如纯化的靶RNA分子和酶以及需要的话还有为中间体siRNA分子表达所需的其它因子在体外进行的,其中所述靶RNA分子可以是分离的天然存在的RNA分子(如细胞提取物中的RNA分子),或者可以是化学合成的或重组产生的RNA分子,其中所述酶包括例如适当的RNA聚合酶。例如,反应混合物可以是体外偶联的转录/翻译反应,其中含有由DMSG盒编码的中间体siRNA的siRNA能够减少所产生的翻译产物的量。样本也可以是细胞样本,它可以是分离的细胞如培养基中的细胞或生物组织或器官样本中的细胞,或者是生物体中原位的细胞。当样本含有一个细胞时,可以将DMSG盒与该细胞相接触从而将DMSG盒导入细胞,从而表达所编码的中间体siRNA。当细胞在生物体原位时,例如可以通过将含有DMSG盒的组合物施用于细胞的位点或给该细胞群提供循环的血管内将该DMSG盒靶向特定细胞或细胞群。
例如通过将至少两种DMSG盒与样本相接触,如导入含有靶基因的细胞,可以实施敲低靶基因表达的方法,其中至少两种DMSG盒的第一DMSG盒编码含有与靶RNA(由靶基因编码)有意链互补的5’部分的第一中间体siRNA,并且其中至少两种DMSG盒的第二DMSG盒编码含有与靶RNA反义链互补的5’部分的第二中间体siRNA。在另一个实施方案中,与靶RNA有意链互补的第一中间体siRNA的5’部分与与靶RNA反义链互补的第二中间体siRNA的5’部分互补,从而第一中间体siRNA和第二中间体siRNA选择性杂交形成siRNA。
本发明还涉及在个体内通过诱导针对介导疾病的靶RNA的RNAi改善RNA介导的疾病的方法。如此处所使用,“RNA介导的疾病”是指以存在参与这种疾病相关的迹象或症状的RNA分子为特点的病理性疾病。通过举例的方式,RNA介导的疾病可以是遗传性疾病,其中内源基因的突变或其他变化导致编码异常多肽的mRNA的产生。通过细菌感染例举RNA介导的疾病,其中从感染性细菌表达的RNA编码对被感染个体具有有害作用的多肽。本发明的方法能够通过分别降低或抑制异常多肽或细菌多肽的表达改善此类RNA介导的疾病。进一步通过病毒感染例举RNA介导的疾病,其中病毒表达的RNA编码病毒复制和/或感染所需的多肽。本发明的方法能够通过降低或抑制病毒的复制和/或扩散改善由于此种感染性病毒引起的RNA介导的疾病。由这些例子应该认识到根据本发明的方法可以改善多种疾病。
例如通过将表现出(或敏感于)RNA介导的疾病的个体细胞与至少一种DMSG盒相接触,可以实施改善RNA介导的疾病的方法,其中含有由DMSG盒的模板核苷酸序列编码的一种或多种中间体siRNA分子的siRNA的表达能够介导针对靶RNA的RNAi。个体可以是患有此类疾病的任意一种生物,包括脊椎动物有机体,例如哺乳动物,诸如宠物的家养动物或诸如牛、马、猪或绵羊的商业重要动物,并且特别是人。
可以离体(ex vivo)将个体细胞与DMSG盒相接触,然后回施至受试者体内。此种方法可能是有用的,例如,对于杂合型疾病如镰状细胞性贫血,其中疾病是由于一个或两个血红蛋白基因突变引起的,并且其中患有疾病的个体杂合型表达一种正常血红蛋白和一种缺陷型血红蛋白。通过从此种杂合子个体获得骨髓细胞,将细胞与编码针对突变RNA序列的siRNA的DMSG盒离体接触,并且将细胞返回性重新导入病人,其中异常血红蛋白分子的表达将被敲低。如果期望,可以将DMSG盒可操作连接于荧光化合物,从而可以选择含有DMSG盒的骨髓细胞。此种方法的一个优点是,当骨髓细胞群体中的白细胞前体细胞和红细胞前体细胞是经遗传修饰而含有DMSG盒时,编码的siRNA的任一表达如果对来源于经此种经遗传修饰的白细胞前体细胞的成熟白细胞中有影响的话,影响也是很小的,因为白细胞不表达血红蛋白基因。
还可以通过将DMSG盒施与受试者从而在体内使它接触到含有靶RNA的细胞的方式,将个体细胞与DMSG盒接触。靶RNA可以是内源RNA,包括编码RNA(如hnRNA或mRNA)或非编码RNA(如X-染色体调节子,或其它结构或功能RNA如snRNA),或者靶RNA可以是外源RNA,例如,由于个体的感染而存在于细胞中的细菌或病毒RNA。本发明的体内基因治疗的方法的优点是靶向异常RNA或个体细胞中非正常表达的RNA,并且因此没必要考虑如DMSG盒进入正常(健康)细胞并在其中表达的影响,因为含有DMSG编码的中间体siRNA的siRNA在缺乏靶RNA的细胞中是没有效果的。
为了施用于个体,通常将DMSG盒制剂为适于施用于个体的组合物。因此本发明还提供了含有至少一种DMSG盒并适合施用于活的个体的组合物。照这样,DMSG盒可用作治疗患有RNA介导疾病的受试者的药物。
用于制备施用于个体的组合物的可药用载体是熟知的,并且包括,例如,水溶液如水或生理性缓冲盐水,或其它溶剂或介质如乙二醇、甘油、油如橄榄油或可注射的有机酯类。可药用载体可以包括生理可接受化合物,它们具有如稳定或增加DMSG盒的吸收的作用。此类生理可接受化合物包括,例如糖类(如葡萄糖、蔗糖或葡聚糖),抗氧化剂如抗坏血酸或谷胱甘肽,螯合剂,低分子量蛋白质或其它稳定剂或赋形剂。应该认识到可药用载体包括生理可接受化合物的选择依赖于,例如,组合物的施用方式,它可以是诸如口服的或肠胃外施用如静脉内注射,和注射、插管、体表涂药或本领域已知的其它此类方法。含有该DMSG盒,或多种DMSG盒的组合物也可含有第二种试剂,如诊断试剂、营养物质、毒素或治疗剂,例如,当DMSG盒被施用用于治疗癌症时第二种试剂为癌症化疗剂(例如,DSMG盒通过敲低癌基因如Ras或p53的表达)。
可以将DMSG盒掺入包封材料中,如掺入水包油乳剂、微乳剂、微胶粒、混合微胶粒、脂质体、微球体或其它多聚体基质(见,例如,Gregoriadis,Liposome Technology,Vol.1(CRC Press,Boca Raton,FL 1984);Fraley等,Trends Biochem.Sci.,677(1981),每篇文献此处引用作为参考)。例如,脂质体由磷脂或其它脂类组成,是无毒的,对于制造和施用者而言脂质体是相对简单的生理可接受并可代谢的载体。“隐形(stealth)”脂质体(见,例如,美国专利号5,882,679;5,395,619和5,225,212,每一专利此处引用作为参考)是此类包封材料的例子,特别是用于制备实践本发明方法的组合物,并且其它“masked”脂质体同样可以被使用,此类脂质体延长了DMSG盒在循环中存留的时间。例如,还可以用特异受体或配体对阳离子脂质体进行修饰(Morishita等,J.Clin.Invest.,912580-2585,1993,此处引用作为参考)。此外,利用如腺病毒-多聚赖氨酸DNA复合物,可以将DMSG盒导入细胞(见,例如,Michael等,J.Biol.Chem.2686866-6869,1993,此处引用作为参考)。
此处公开的组合物可以分别通过多种途径施用于个体,包括例如口服或肠胃外施用,如静脉内施用、肌肉内施用、皮下施用、眼内施用、囊内施用、腹腔内施用、直肠内施用、池内施用,或通过被动的易于通过皮肤吸收的方式施用,如皮肤贴片或经皮离子电渗。此外,组合物还可以通过注射、插管、口服或体表途径被施用,其中后者可以是被动的,例如通过软膏直接施用,或者是主动的,例如使用鼻喷雾器或吸入器,其中组合物中的一种成份是适当的推进剂。药物组合物也可以施用于RNA介导的疾病部位,例如,静脉内或动脉内施用入供给肿瘤的血管。
在进行本发明方法时施用的DMSG盒的总量可以作为单一剂量、或作为大丸剂或通过输液在相对短的时间内施用于受试者,或者应用分步治疗法施用,其中在延长的时间期间施用多剂量。应该认识到用于治疗个体中RNA介导的疾病的药物组合物的量依赖于多种因素,包括受试者的年龄和总体健康情况以及施用途径和被施用的治疗次数。考虑到这些因素,熟练的技术人员将调整所需的特定剂量。一般而言,最初是利用一期和二期临床试验来确定组合物的剂型和施用的途径和频率。
组合物可以制成口服制剂的形式,如片剂,或溶液或悬液形式;或者组合物可以包含与适于肠道或非肠道应用的有机或无机载体或赋形剂的混合物,并且组合物可以与如通常无毒的、可药用的载体混合制成片剂、丸剂、胶囊剂、栓剂、溶液、乳剂、悬液或其它可使用形式。除了上述的载体外,载体还包括葡萄糖、乳糖、甘露糖、阿拉伯树胶、明胶、D-甘露醇、淀粉糊、三硅酸镁、滑石、玉米淀粉、角蛋白、胶体硅、马铃薯淀粉、脲、中等链长甘油三酯、葡聚糖,以及其它适合用于生产固体、半固体或液体形式制品的载体。此外可使用辅剂、稳定剂、增稠剂或着色剂以及香料,例如稳定干燥剂如triulose(见,例如,美国专利号5,314,695)。
本发明还提供在细胞群中示踪经历DNA介导的基因沉默的特异细胞或特异细胞群。此种方法可通过如下进行,例如通过将含有可检测标记的至少一种DMSG盒导入特异细胞(或特异细胞群中的每一个细胞),并且检测可检测标记,从而在细胞群体中示踪经历DNA介导基因沉默的特异细胞或特异细胞群。在一个实施方案中,将第一DMSG盒和第二DMSG盒导入特异细胞或特异细胞群,其中第一DMSG盒编码含有与靶RNA有意链互补的5’部分的第一中间体siRNA,其中第二DMSG盒编码含有与靶RNA反义链互补的5’部分的第二中间体siRNA,并且其中第一DMSG盒编码的第一中间体siRNA的5’部分与第二中间体siRNA的5’部分互补。
本发明还提供了鉴定经历DNA介导的基因沉默的细胞的方法。此种方法可通过如下进行,例如在足以将DMSG盒导入细胞的条件下将至少一个细胞与至少一个可操作连接到可检测标记上面的DMSG盒接触,并且检测细胞中至少一个DMSG盒的可检测标记。在一个实施方案中,该方法包括将至少一个细胞与第一DMSG盒和第二DMSG盒接触,其中第一DMSG盒编码含有与靶RNA有意链互补的5’部分的第一中间体siRNA,其中第二DMSG盒编码含有与靶RNA反义链互补的5’部分的第二中间体siRNA,并且其中第一DMSG盒编码的第一中间体siRNA的5’部分与第二中间体siRNA的5’部分互补。在本发明方法的另一个实施方案中,第一DMSG盒的可检测标记不同于第二DMSG盒的可检测标记,并且检测步骤包括监测第一DMSG盒的可检测标记和/或第二DMSG盒的可检测标记。当在单个细胞中鉴定出第一和第二可检测标记时,该细胞被鉴定为经历DNA介导基因沉默的细胞。示踪和/或鉴定包含含有可检测标记的DMSG盒的细胞的方法提供了选择含有一种或多种DMSG盒的细胞,或鉴定当施用DMSG盒(或细胞)于受试者后含有一种或多种DMSG盒的细胞的一种手段。
本发明还提供了评价测试细胞中基因功能的方法。此种方法可通过如下进行,例如将至少一个DMSG盒导入测试细胞,并且观察当由DMSG盒编码的siRNA表达时测试细胞的表型,由此将测试细胞与对照细胞的表型进行比较而指示靶基因的功能,从而评估测试细胞中靶基因的功能。测试细胞可以是能够预期表达siRNA以确定通过siRNA介导的RNAi如何影响基因表达的任何细胞。所检测的表型一般是靶基因介导的表型,通常是由基因编码的RNA介导的表型,并且特别是由基因编码的多肽所介导的表型。照这样,应该认识到待检测的表型将依赖于特定靶基因。在一个实施方案中,该方法提供了鉴定靶基因赋予的表型的一种手段。
本发明还提供了鉴定一种试剂是否有效应或影响测试细胞中特异基因的方法。用于此处的术语“影响”和“效应”是指由试剂引起的作用(“效应”)和此种作用的结果(“影响”)。虽然在此处一般是指由于试剂引起的效应,还应该认识到确定为“效应物”试剂的试剂影响靶基因的表达。确定一种试剂是否对细胞中特异基因有效应的方法可以按如下方法进行,例如,通过在测试细胞中表达含有由本发明的至少一个DMSG盒编码的中间体siRNA的siRNA,其中中间体siRNA含有与测试细胞中特异基因编码的RNA分子互补的5’部分,将测试细胞和对照细胞与试剂相接触,并且比较测试细胞的表型和对照细胞的表型,从而评价该试剂是否对测试细胞中的特异基因有效应。在一个实施方案中,该方法包括在细胞内表达第一DMSG盒编码的第一中间体siRNA和第二DMSG盒编码的第二中间体siRNA,其中第一中间体siRNA含有与靶RNA有意链互补的5’部分,其中第二中间体siRNA含有与靶RNA反义链互补的5’部分,并且其中第一中间体siRNA的5’部分与第二中间体siRNA的5’部分互补。与对照细胞的表型相比测试细胞表型的变化可鉴定该试剂是否能作为影响特异基因的试剂。
本发明的筛选方法提供了下述优点,即它能够用于高通量分析并且,因此,可被用于筛选测试制剂的组合文库以鉴定那些对靶基因表达有效应的试剂。制备用于预期活性测定的分子的组合文库的方法在本领域是已知的并且包括,例如,制备肽的噬菌体展示文库的方法,其中所述肽可以是限制肽(见,例如,美国专利号5,622,699和5,206,347;Scott和Smith,Science 249386-390,1992;Markland等,Gene 10913-19,1991;每篇文献此处引用作为参考);肽文库(美国专利号5,264,563,此处引用作为参考);肽模拟物文库(Blondelle等,Trends Anal.Chem.1483-92,1995);核酸文库(O′Connell等,Proc.Natl.Acad.Sci.,USA 935883-5887,1996;Tuerk和Gold,Science 249505-510,1990;Gold等,Ann.Rev.Biochem.64763-797,1995;每篇文献此处引用作为参考);寡糖文库(York等,Carb.Res.28599-128,1996;Liang等,Science 2741520-1522,1996;Ding等,Adv.Expt.Med.Biol.376261-269,1995;每篇文献此处引用作为参考);脂蛋白文库(de Kruif等,FEBS Lett.399232-236,1996,此处引用作为参考);糖蛋白和糖脂文库(Karaoglu等,J.Cell Biol.130567-577,1995,此处引用作为参考);或包括例如药物或其它药用试剂的化学文库(Gordon等,J.Med.Chem.371385-1401,1994;Ecker和Crooke,BioTechnology13351-360,1995,每篇文献此处引用作为参考)。多核苷酸作为能够影响基因表达的试剂是特别有用的,因为核酸分子对细胞内的靶具有结合特异性,其中所述细胞内的靶包括天然存在的细胞多肽,并且因为具有此种特异性的合成分子能够容易地制备和鉴定(见,例如美国专利号5,750,342,此处引用作为参考)。
本发明还提供了试剂盒,它们含有至少一个本发明分离的DNA分子、至少一个本发明的DMSG盒、或者它们的组合。本发明的试剂盒还可以含有,例如,用于将此种核酸分子导入细胞的试剂,例如,转染辅助剂,或者可以含有对于扩增核酸分子或将核酸分子(例如,一种或多种DMSG盒)导入特定细胞类型有用的一个或供选择的不同载体。当试剂盒含有至少一个这样的DMSG盒时,所述DMSG盒包括含有限制性核酸内切酶识别位点或重组酶识别位点或它们的组合的异源核苷酸序列,该试剂盒可进一步包括至少一个启动子或终止子,或它们的组合,其中启动子或终止子含有足以可操作连接至编码中间体siRNA的核苷酸序列上的末端。照这样,本发明的一种试剂盒可以包含多种不同的启动子、增强子等等,例如,允许在细胞内或特定细胞类型、或在特定条件下如暴露于诱导剂时,以预期水平表达编码的中间体siRNA的启动子和增强子等。
在另一个进一步的实施方案中,该试剂盒含有DMSG盒,其中异源核苷酸序列包括至少一个启动子、至少一个终止子、或它们的组合。在一个实施方案中,异源核苷酸序列包含人U6基因启动子或RNA聚合酶III启动子。在另一个实施方案中,异源核苷酸序列包含至少一个增强子元件。
在一个实施方案中,试剂盒含有至少两种本发明的DNA分子或DMSG盒,其中由两种核酸分子编码的中间体siRNA分子能够选择性杂交形成功能双链siRNA分子。照这样,该试剂盒可以含有用于介导RNAi的试剂。
在本发明公开之前,由于化学合成RNA的高成本和低稳定性,RNA介导的基因沉默曾经是困难的并且是昂贵的。本发明通过提供DNA介导的基因沉默克服了以前RNA介导的基因沉默的局限,其中如此处所公开的DNA分子被用作运载工具以携带用于RNAi的序列信息,并且DNA分子还作为介导子被导入细胞用于特异基因的沉默。包括dsDNA分子在内的DNA分子提供了另外一个优点,即它们能够整合入宿主细胞的染色体,从而产生稳定的并且基本上永久的效应。此种特性允许产生具有永久RNAi效应的转基因生物,包括植物和动物,因此提供了这样的模型系统,它允许研究例如基因或基因组合的功能,并且它能够模拟病理性疾病,特别是与基因或基因产物的功能异常缺乏相关的疾病。DNA分子比RNA易于产生和操作并且是廉价的。尽管对RNA的修饰冒丧失RNAi功能的危险,但对DNA的修饰,如用荧光标记物标记或在末端或不改变DNA分子功能的其它位点连接用于靶向递送的多肽,不改变编码的中间体RNA分子或,因此,不改变介导RNAi的能力。此类修饰使得可选择已经接受RNAi处理的细胞而与没有接受RNAi处理的细胞分开,或者使得可靶向生物体中的特定细胞类型。
如此处所公开,编码靶RNA分子有意链和相应的反义链的DNA分子,如DMSG盒,可介导基因沉默(见实施例)。通常,编码的siRNA分子具有短于约30个核苷酸的长度,因此使非特异性抑制被活化的可能性降到最低,并且通常是长度约为20-25个核苷酸,特别是约21个核苷酸,它能够有效地诱导RNAi(Elbashir等,EMBO J.,236877-88,2001)。同样,siRNA链和靶RNA链之间的错配通常被最小化,从而使选择性最大化;通常,在RNAi的两条RNA链之间或反义链与靶mRNA之间没有错配。
含有增强子元件、启动子、编码有意或反义RNA链的模板序列、和两个转录终止子的DMSG盒示例于图1A。根据设计为能够在靶细胞内从DMSG盒转录出短RNA的RNA聚合酶(在该例子中为pol III)的需求设计这些元件。通过利用强或弱的增强子和启动子元件、多重增强子元件、或其它能够调节RNA聚合酶活性的元件能够达到预期的表达水平。在如图1所描述的例子中,选择人RNA聚合酶III用于从DMSG盒转录短RNA,并且使用人U6基因启动子。当天然位于距离U6基因启动子的转录起始位点约224个核苷酸的位置时可通过聚合酶III刺激转录的增强子即人远侧序列元件(“DSE”;ATTGCAT)在作为例子的DMSG盒中定位于转录起始位点上游大约79核苷酸处。在人U6基因中DSE下游是近侧序列元件(“PSE”;CTTACCGTAACTTGAAAGTA;SEQ ID NO34;比较小鼠PSE;CTCACCCTAACTGTAAAGTA;SEQ ID NO35,它也可用于DMSG盒)和如在U6基因中那样的TATA盒(也见,SEQ ID NO36,人U6基因上游调控序列,包括DSE、PSE和TATA调控元件)。U6基因启动子的一个优点是它完全处于编码中间体siRNA的模板核苷酸序列的外部,并且使用聚合酶III系统的优点在于聚合酶III能够从基因的仅仅几个拷贝转录出大约100,000个RNA拷贝(Weinberg和Penman,J.Mol.Biol.3289-304,1968)。
如此处所公开,中间体siRNA可以通过下面方法由DMSG盒产生,可以通过将终止子序列包含于盒中从而使中间体siRNA具有合适的长度并且含有预期的3′突出端,或者通过构建使转录本从模板上“脱落”的DMSG盒而产生。可以通过下述“脱落式”机制终止转录,例如,通过将DMSG盒构建成线性表达盒(见图1B),其中该盒在模板序列的最后一个核苷酸处终止。同样地,通过将限制性核酸内切酶识别位点引入盒中的预期的位置并且,用适当的限制性酶剪切包含DMSG盒的核酸分子(例如含有所述盒的环状载体)能够实现脱落。以这样的方式,正在进行转录的RNA聚合酶在到达模板末端之后将脱离模板,因此产生预期的中间体siRNA转录本。此类方法与使用如噬菌体RNA聚合酶如T7、T3或Sp6 RNA聚合酶或细菌RNA聚合酶如大肠杆菌RNA聚合酶进行体外转录的标准方法相似。
含有位于模板序列之后的终止子元件的DMSG盒图示于图1A。U6基因的聚合酶III终止子元件是一段可以在一个胸腺嘧啶(“T”)碱基处有效终止转录的短序列。与利用这种终止元件相关的是,可以选择用于基因沉默的RNA序列以至于最后几个碱基是与终止子重叠的尿嘧啶(“U”)。为了防止渗漏终止事件发生而得到长的RNA,第二个终止子可以位于第一个终止子之后(下游)(图1A)。含有终止子元件的DMSG盒可以方便地串联放置在线性或环状核酸分子如载体上(见图2)。
含有三到五个连续胸腺嘧啶核苷残基的核苷酸序列可以作为RNA聚合酶III转录的终止子。例如,人U6基因RNA聚合酶III(polIII)终止子包括核苷酸序列TTTTTACATCA(SEQ ID NO48),尽管终止子的末端还没有清楚的定义,并且含有非T的序列可以影响终止。同样地,小鼠U6基因聚合酶III终止子含有核苷酸序列TTTTgTTcc(SEQ ID NO49)。如以上所讨论,毕竟这些天然存在的终止子可能被渗漏,以至于终止不总是在特定碱基处发生。如此处所公开,已经设计出经修饰的聚合酶III终止子以更加有效地终止聚合酶III转录,以至于在终止子区域内终止事件发生的百分率更高。具体而言,从天然存在的人U6基因终止子设计的经修饰聚合酶III终止子具有核苷酸序列TTTTTacagTTTTTg(SEQ IDNO50;也见,实施例1,和SEQ ID NO3),并且从天然存在的小鼠U6基因终止子设计的经修饰聚合酶III终止子具有核苷酸序列TTTTGTTcgTTTTTg(SEQ ID NO51;也见,实施例4,和SEQ ID NO18)。
为了广泛应用,期望将DMSG盒的所有元件以与那些用于基因转移例如转染和感染相似的方式放置在一个载体上。在一个实施方案中,DMSG盒被设计于具有一个或多个下面特性的载体骨架上。载体可有模板克隆位点以至于对应于特定靶基因的模板序列的dsDNA寡核苷酸常规地被插入到载体中而不干扰盒的整体功能。可以设计限制性位点从而使,当消化时,不从启动子或终止子添加或删除额外的核苷酸。此外,在使用聚合酶III启动子的情况下,第一个碱基是鸟嘌呤(“G”)或腺嘌呤(“A”),酶需要它作为起始核苷酸(Goomer和Kunkel,Nucleic Acids Res.,184903-4912,1992)。在本发明的一个实施方案中,BsmI限制性核酸内切酶识别位点在启动子和终止子之间被串联使用,并且是以相反方向串联(图3和实施例6)。在另一个实施方案中,启动子和/或终止子两侧是限制性核酸内切酶识别位点以至于不同的启动子/终止子可被插入,从而代替例举的启动子/终止子。当用限制酶消化时,用于插入模板序列、启动子、终止子等等的选择性设计的粘性末端保持完整。通过这种设计,如果鸟嘌呤和胞嘧啶被分别选择作为模板序列的第一个和最后一个碱基,可避免“额外碱基”并达到最大的RNAi效应。
使用其它限制酶位点也可以实现相似的设计。启动子和终止子可以是任意天然或人工的序列,它携带能被任意天然或人工设计的聚合酶转录的预期特征。载体可以是任意可商业获得的载体或特别设计的质粒、病毒、噬菌体、噬菌粒、线性表达载体、或任意其它类型的用于转移遗传信息的运载工具。
DMSG盒可以通过转染技术递送,转染技术包括但不限于钙沉淀、电穿孔、阳离子脂质体复合物、DEAE-葡聚糖复合物、多聚季胺(polybrene)试剂等等。使用机械方法如通过微注射或使用生物弹道射击颗粒,也可以将DMSG盒导入细胞。通过病毒感染可以将携带于病毒载体上的DMSG盒导入细胞。通过连接DNA分子于转导进入细胞的信号肽上也能递送DMSG盒。例如,可以将DMSG分子偶联到指导DNA进入细胞的HIVTAT转导结构域或细胞渗透肽上(Becker-Hapak等,Methods 3247-256,2001;Gallouzi和Steitz,Science 55481895-1901,2001)。
DNA分子可以被修饰而不影响基因沉默的介导RNA。一些应用可以来源于此类修饰,其包括但不限于鉴定和选择已经获得了一个或多个基因沉默信号的细胞、将DMSG试剂靶向特定细胞群、与DMSG分子一起递送其它信号或效应分子等等。
通过将DNA分子直接与有颜色的标记物进行标记,如荧光素(FITC)、藻红蛋白、Cy3、Cy5、得克萨斯红、或其它可得的标记物,或间接与能够通过偶联其它有色标记物进行标记的标记试剂如生物素或地高辛配基进行标记,以实现对DMSG处理细胞群的选择。直接标记适合用荧光辅助的细胞分选(FACS)或荧光显微镜的方法追踪活细胞。间接标记则要求在第二次标记之前对细胞或组织进行固定。在一个实施方案中,编码有意或反义RNA分子的dsDNA的单链或双链的3′末端在合成时用FITC进行标记。当将此类DNA分子导入细胞时,可以通过荧光跟踪那些接收DMSG分子并且经受基因沉默效应的细胞。这使得能够选择特异细胞群、组织、或有机体以进行基因功能研究,而可以避免通过混合的细胞群产生的假象并因此得到可靠的数据。DNA分子的修饰可以在双链核DNA分子3′末端、5′末端、或两者、和任意一条链上,或者可以使用此处公开的或本领域已知的方法在任何一个或多个内部核苷酸上进行修饰。
用不同的标记物标记不同的DMSG盒而不影响它们的RNA编码能力的潜能和导入多种DMSG盒的便利可以用于产生多基因敲低。基因经常在多基因产物参与的途径和网络中起作用。一个基因的敲低仅能够揭示部分或有限的基因功能,而相关基因网络的敲低能够导致对基因功能和关系的更系统的理解。多基因敲低也被用于治疗的实际应用中。
DMSG分子可以用于靶向特异细胞类型。这种细胞特异的靶向可以通过将DMSG分子偶联到能够指导转导入或内吞入特异细胞群的肽或多肽或其它靶向分子而实现。
用于偶联的DNA分子的简单性和可进入性也使将DMSG分子与一个或多个效应分子连接成为可能,所述效应分子如能够在细胞内引起效应的放射性同位素、化学试剂、肽或多肽、其它多核苷酸分子等等。这些与DMSG共递送的分子的效应可以获得并且与一个细胞中的基因沉默联合进行研究。
本发明提供了研究真核系统特别是哺乳动物细胞或生物体中一个或多个基因功能的方法。将靶向目的基因的DMSG盒导入细胞或生物体,即测试细胞或测试生物体。根据需要,将对照DMSG盒、缓冲液或者其它空白处理应用于对照细胞或生物体。将测试或对照细胞或生物体维持在基因沉默发生的条件下。观察测试细胞或生物体的表型,并将其与适当的对照细胞或生物体的表型相比较。此种与对照细胞或生物体的比较可以在上述的经选择的细胞群之间进行。对于此种比较,对照细胞是用对照DMSG盒处理的,对照DMSG盒与非对照DMSG盒在包括标记物标记的所有方面是相同的,除了对照分子中的模板序列不针对靶基因外。对照分子中的模板序列可以针对相关的或不相关的具有相同或不同物种特异性的第二个基因,或者针对非天然存在的基因。测试和对照细胞或生物体表型间的不同提供了关于靶基因功能的信息。这些信息单独是有价值的,或者可以与从其它鉴定或定义基因功能的测定或分析中获得的信息联合使用。
本发明还包括确定一个基因产物是否是药物发明或研发的靶的方法。将能够诱导基因沉默的DMSG盒导入细胞或生物体。细胞或生物体被维持在基因沉默发生的条件下,并且可以通过导入的DMSG分子上携带的标记物选择被靶向的细胞或生物体。确定基因表达的降低是否对细胞或生物体具有影响,其中如果基因表达的降低有影响,那么该基因产物可作为药物发明或研发的靶。效应可以是细胞死亡、分化、细胞分裂变化、或任何其它细胞反应。靶基因可以是,任意细胞来源的天然基因,例如信号转导或细胞周期控制中的基因,或病毒或其它致病原的天然基因,例如参与肝炎病毒、HIV或其它病毒生命周期的基因等。
还提供了用于产生经遗传修饰的生物体的方法,其中一种或多种DMSG盒通过染色体的复制从一代传到下一代。在一个实施方案中,通过微注射可以将针对任意特定基因或多个基因的DMSG分子导入早期胚胎并且成为其染色体的一部分。源于该具有整合的DMSG分子的生殖细胞的动物能够将转基因DMSG DNA作为其染色体的整合部分传递给后代,从而建立具有由所述DNA插入物所编码的中间体RNA干扰的靶基因的动物。与目前基因敲除方法相比较,DMSG敲低不依赖于同源重组并且以极高的成功率进行。值得注意地是,由于通过常规方法进行的多基因敲低若不是不可能的话,实际上是非常困难的,而多重DMSG基因的敲低是可行的。DMSG基因敲低没必要克隆基因组序列和如传统基因敲低方法所需要的那样操作较大DNA构建体。原则上,可以将编码中间体dsRNA有意链和反义链的小DMSG盒插入染色体的任意位置用于每个基因敲低。此外,由于存在一些对于转录而言失活或难以进入的染色体区域(Izumi和Gilbert,J Cell Biochem.2280-289,1999),隔离元件(insulator element)(能够阻断位于其中的序列受到相邻染色质结构域或元件的调节效应的结构域边界)可以被包含于DMSG中以保证所编码的中间体dsRNA分子的连续转录。
可以将DMSG盒微注射进入前核胚胎。具有整合的DMSG分子的被注射胚胎中的一些细胞将发育形成生殖系细胞。来源于这些生殖系细胞的第二代动物将携带DMSG盒作为它们的染色体的部分。其它动物如具有整合的DMSG分子的蝇、蠕虫、或斑马鱼也可以通过适当的转基因方法产生,同样也可以产生植物。
本发明还提供了控制基因敲低的方法。基因敲低的时间和水平可以通过控制DMSG DNA的转录来操纵。在一个实施方案中,DMSG盒处于外源RNA聚合酶的控制之下,例如转基因的T7、T3、Sp6、或大肠杆菌RNA聚合酶。编码聚合酶的基因反过来被可诱导启动子控制,如当存在诱导制剂(诱导剂)如四环素或蜕皮素时仅通过内源聚合酶II转录的启动子。实际上,当在特异的时间点如某个发育阶段期望基因敲低时加入诱导剂使外源RNA聚合酶被表达,它随后转录DMSG盒编码的中间体RNA。在另一个实施方案中,外源RNA聚合酶处于组织特异性启动子的控制之下,并且因此仅在特异的组织或器官,例如胰腺外分泌细胞、心脏成肌细胞或神经细胞中表达。结果,DMSG基因沉默仅在特异组织或器官中被激活。该方法可以与可诱导的和多种DMSG基因敲低联合使用。
本发明还提供了用于治疗性或预防性治疗疾病的组合物和方法。可以将DMSG分子导入生物体以沉默靶基因,从而逆转或阻止异常或疾病。可以通过直接施用于生物体表面或通过诸如基因枪的方法施用于表面下的细胞来递送单独或包含于治疗组合物如适当缓冲剂和其它试剂中的DMSG分子。递送也可以是内部施用,例如通过注射或以适当的组合物口服递送,从而保护DNA分子的完整性并且产生基因沉默效应。如果DNA分子被整合入宿主染色体,DMSG分子通过生殖系的治疗可以是永久的。
鉴定已知功能的基因传统上是通过遗传筛选或通过生物化学方法分离基因产物进行的。然而,此类鉴定也可以通过“分子进化”实现,即从DNA或RNA分子库中富集和选择预期的遗传信息,或者通过反向遗传学实现,即改变所有或一组基因并检测在研究条件下具有功能的基因。一个实例是用于从RNA或DNA序列变体库中选择靶蛋白的高亲和力配体的SELEX(通过指数富集而系统进化配体)方法(Gold,Harvey Lect,47-57,1995;Wang等,J Bol Chem.3522227-22235,1997;White等,J Clin.Invest.8929-934,2000)。通过如用于从随机或优选的库中选择具有预期结合能力的蛋白质的噬菌体展示和核糖体展示的例子也可以证明这种概念(Crameri和Kodzius,Comb.Chem.High Throughput Screen 2145-155a,2001;Schaffitzel等,J.Immunol.Methods 1-2119-125,1999)。DMSG盒上的基因沉默信号是以短的模板序列的形式存在的并,因此,适于作为可以进行选择的简并库而变化。为了产生随机DMSG盒库,具有简并模板序列的经化学合成的单链DNA寡核苷酸被DNA聚合酶(如T7 DNA聚合酶;T7聚合酶启动子以5′-TAATACGACTCACTAT-3′(SEQ ID NO37)为例)转换成dsDNA。该dsDNA模板序列或者被连接到DMSG盒上,此时两条链都可用于转录时,或者以相反的方向被克隆进入双盒DMSG分子上的每个盒。与RNA介导的RNAi的dsRNA相反,DMSG盒的dsDNA本质有利于任意所选择序列的分子克隆。因此,涉及设计和使用DMSG盒的方法实际上可以被应用于鉴定这样的基因,即当它们被敲低时能够改变细胞事件并因此产生特异表型,如阻滞细胞周期、细胞凋亡、细胞分化、癌样转化和对药物的反应或抗性等。
因此本发明涉及鉴定具有特异功能并且当被敲低时表现出特异表型的基因的方法。在一个实施方案中,模板核苷酸序列的每个碱基都是4个天然碱基即A、C、G或T中的任意一个,因此产生具有与细胞中任意基因匹配的潜能DMSG盒的库。然后将除了模板区域(随机寡核苷酸合成的区域)外其它区域相同的DNA分子转染进入足够数量的细胞。可以进行一步或多步骤的细胞选择以分离表现出所寻找表型的细胞。可以从这些细胞中获得双链DNA分子,并且或扩增用于下一轮富集和选择或克隆并测序。从分离的DMSG盒上的模板序列可以鉴定具有目的功能的候选基因。然后将此类基因通过分子克隆方法克隆或者利用生物信息学方法进行鉴定。
本发明还提供了分离具有特定功能的RNA分子的方法。与上面所述的基因鉴定方法相似,可以将编码候选RNA库或组合的DMSG盒导入细胞群或生物体,并从它们当中选择在研究条件下具有表型的细胞。通过克隆dsDNA和测序模板区域获得了功能RNA序列。可以以这种手段选择的功能RNA包括,但不限于,具有高效性和特异性siRNA分子、除了能产生RNAi效应的siRNA分子之外的RNA(如那些具有发夹结构的分子)、反义RNA、和功能复合体如染色体失活复合体的RNA成分(Meller等,Cell4445-457,1997)。
本发明进一步涉及研究真核细胞中非编码RNA的生物学功能的方法。已经报道在许多动物中存在天然小RNA(microRNA;miRNA)分子,它们通过与RNAi相关的途径被加工(Grishok等,Cell 123-34,2001;Hutvagner等,Science 5531834-838,2001;Ketting等,Genes Devel.202654-2659,2001;Lagos-Quintana等,Science 5543853-858,2001;Lau等,Science 5543858-862,2001;Lee和Ambros,Science 5543862-864,2001)。编码此类RNA(或它们的反义链或变体)的DMSG盒可以用于转染的细胞以研究这些RNA的功能。在这方面,应该认识到,象任意RNA一样,miRNA能够做为siRNA的靶。此外,miRNA和siRNA是相似的,因为它们中的每一种都是缺乏多聚(A)尾并被参与RNAi过程的因子识别的短RNA分子。因为DMSG盒被设计用于转录短的、确定的RNA,包括如可操作连接于增强子、启动子、终止子或它们的组合的模板克隆位点的此类盒的框架适于通过用miRNA模板代替siRNA模板来表达miRNA。
DNA介导的RNAi被用于在人或其它真核细胞中敲低基因特异表达。如此处公开,通过DNA介导物所实现的基因沉默在等摩尔的基础上比相应的通过RNA介导物即siRNA所实现的基因沉默效率要高,这可能是由于靶基因的正义和反义序列的中间体siRNA分子的持续产生,从而能够在细胞内形成功能双链siRNA并活化针对特异基因的RNAi。相应地,本发明涉及含有用于特异基因抑制的遗传信息的DNA分子。含有对应于靶基因的模板序列的DNA分子能够通过RNAi介导基因抑制。虽然本发明的DNA分子使用天然存在的核苷酸进行了例证,应该认识到核苷酸类似物,包括非天然存在的合成核苷酸或经修饰的天然存在的核苷酸,也能够被用于构建核酸分子,如DMSG盒。此类核苷酸类似物在本领域是熟知的并可经商业获得,含有此类核酸类似物的多核苷酸也是这样(Lin等,Nucl.Acids Res.225220-5234,1994;Jellinek等,Biochemistry 3411363-11372,1995;Pagratis等,Nature Biotechnol.1568-73,1997,每篇文献此处引用作为参考)。同样地,虽然连接多核苷酸的核苷酸的共价键通常是磷酸二酯键,该共价键也可以是大量其它键中的任意一种,包括硫代二酯键、硫代磷酸酯键、肽样键或任意其它在本领域用于连接核苷酸以产生合成多核苷酸的键(见,例如Tam等,Nucl.Acids Res.22977-986,1994;Eclcer和Crooke,BioTechnology 13351-360,1995,每篇文献此处引用作为参考)。当DMSG盒处于含有核酸水解活性的环境中,包括例如组织培养基或当施用于活的受试者时,非天然存在的核苷酸类似物或连接核苷酸的键的掺入可能是特别有用的,因为经修饰的核酸分子对降解较不敏感。
模板核苷酸序列是本发明对应于靶基因序列至少一部分的分离DNA分子(或DMSG盒)的元件。照这样,模板编码能够形成siRNA并通过细胞RNAi机械复合体激发RNA的降解的中间体siRNA分子。靶mRNA和靶RNA此处是指那些通过导入DMSG分子被阻止功能的RNA。此种RNA能够从内源或外源基因转录,或通过转染或其它从细胞或生物体外部向内部转移的方法作为RNA被导入,并且能够,但非必需,编码多肽。从DMSG盒转录的中间体siRNA能够形成部分或全部指导RNA,它能够与靶RNA进行碱基配对并指导靶RNA降解。
本发明涉及含有设计的模板序列的DNA分子,模板序列能够被转录成短于30个核苷酸的RNA。使用DNA介导的基因特异沉默的一个主要的关注点是将表达的RNA(有意或反义)控制在有限的长度内,例如短于30个核苷酸,这样在产生RNAi的条件下不导致宿主细胞内干扰素和PKR介导的普遍关闭。在哺乳动物RNA聚合酶中,聚合酶III通过转录终止结束RNA延伸。在本发明的一个实施方案中,天然来源的或经修饰的聚合酶III终止位点被用于DMSG盒,以获得RNA长度的有限性。该机制可以用于线性或环状形式的盒中。在另一个实施方案中,DMSG盒被设计成线性形式,其中模板序列后部不跟随其它序列。结果,靶细胞内的正在转录的RNA聚合酶将“脱离”模板而产生短RNA。对于此种脱离DMSG盒的正在转录的RNA聚合酶可以是任何内源的或外源性导入的RNA聚合酶。
本发明还涉及编码靶基因区域的有意或反义序列的DMSG盒。为了在适于在哺乳动物细胞内诱导RNAi的水平和形式将模板序列转录成RNA,此种DMSG盒可以包括特定RNA聚合酶的增强子,特定RNA聚合酶包括但不限于哺乳动物细胞的RNA聚合酶I、II、和III。为了转录模板序列,该盒还可以包括RNA聚合酶的启动子。增强子帮助驱动从启动子起始的模板序列的转录。模板序列前面的增强子和启动子可以作为独立的盒以线性顺序排列,或者是携带于环状载体上,如质粒或病毒或其它能够增殖的载体。
本发明涉及在线性形式中包含所有必需DMSG元件的DMSG盒。在一个实施方案中,每条有意或反义中间体RNA链被含有优选的DMSG盒的dsDNA编码。该盒含有最少量的元件,为启动子、模板序列,随后是终止子或突然终止。DMSG盒可以含有在靶细胞中帮助产生预期水平转录本的增强子。在该实施方案中,从两条合成的DNA链的复性产生dsDNA,其中合成的DNA链是用化学合成法产生的一个连续的分子。
本发明还涉及编码有意或反义中间体RNA而不是连续DNA链的线性形式的DMSG盒。在一个实施方案中,通过复性合成的DNA寡核苷酸组装线性盒,它们中的每一个是DMSG dsDNA的两条链中的任意一条链的一部分。通过其它方法也可以产生此种DMSG的dsDNA,它包括,但不限于,产生连续dsDNA分子的此类寡核苷酸的连接(用连接酶)或用分子生物学方法如聚合酶链式反应(“PCR”)进行的扩增。通过分子克隆或重组技术也可以产生此类dsDNA分子,这些技术包括加工或剪接DNA片断,其中所述这些DNA片段如果经转染进入细胞或生物体它们自身不能介导RNAi。
进一步,本发明还涉及编码有意和反义中间体RNA这两者的线性形式的DMSG盒。此种dsDNA可以被描述成具有两套盒的dsDNA的一个组装体(具有或不具有切口),其中每一套盒编码有意或反义中间体RNA。此种“双盒”DNA可以由化学合成(或重组合成)的长DNA寡核苷酸退火形成,或者从较短的寡核苷酸退火形成的,这些短的寡核苷酸随后被组装和连接并通过PCR进行扩增。
本发明还涉及携带于载体上的DMSG盒,载体可以是质粒、噬菌体、病毒、或能够用于携带遗传信息进入靶细胞的任意其它类型的载体,还涉及携带于能携带插入的DNA部分的任意通用设计或特殊设计的DNA构建体上的DMSG盒。这可以使用分子方法(包括但不限于连接和重组),通过将所述的盒插入载体得以进行。相应地,本发明还涉及经修饰的载体和修饰载体的方法,其中插入了编码有意或反义siRNA序列的模板序列。这可以通过首先将上述的DMSG元件,即增强子或启动子,插入载体而实施,其中DMSG元件后面是模板克隆位点,在那里限制性酶位点可用于线性化载体以进行模板序列的插入。模板克隆序列的后面是终止子区域。具体而言,如此处公开,位点是经过选择和设计的以至于插入到该位点的模板序列将在靶细胞中被转录,其中没有任何或仅有有限数量的非模板序列编码的核苷酸。不期望非模板序列编码的核苷酸,因为它们能够降低或破坏特异RNAi效应(Elbashir等,EMBO J.236877-6888,2001;Parrish等,MolCell 51077-1087,2000)。
本发明还涉及在细胞或生物体或组织,包括例如生物体的心脏、肺、结肠、肾、或皮肤中,介导基因的RNA干扰的方法。在一个实施方案中,将DMSG盒导入细胞或生物体,其中所述该DMSG盒具有指导转录能够激发靶mRNA降解的有意和反义RNA的能力。细胞或生物体被维持在靶mRNA降解发生的条件下,从而在细胞或生物体介导RNAi。
本发明还涉及靶基因部分地或全部地敲低的方法,该方法提供了基因敲除方法或先前使用RNA分子进行基因敲低方法的可选择的方法。术语敲低或敲除还用来指当与相应的正常(即未被修饰)的细胞或生物体相比基因功能被消除(抑制)或减弱(降低)对细胞或生物体的影响。本发明还涉及产生敲低细胞或生物体的方法,该方法包括向其中有欲敲低靶基因的细胞或生物体导入编码能靶向所述基因的RNA的DMSG盒,在基因沉默发生的条件下维持细胞或生物体,和产生敲低或敲除的细胞或生物体。
本发明还涉及从一群细胞中追踪经历DMSG处理的特异细胞群。在一个实施方案中,编码有意或反义RNA的dsDNA的一条或两条链用标记物进行标记。当将此种DNA分子导入细胞时,那些接受DMSG并随后发生基因沉默效应的细胞可以通过标记物被追踪。该方法能够选择特异的细胞群或部分组织或生物体,而由细胞的混合群体产生的假象可以避免。通过这种方法选择的基因沉默效应随后发生的细胞群或组织也是本发明的主题。
本发明进一步涉及研究进一步选择的细胞群体中基因沉默效应的方法,其中一个以上的基因分别作为单独的DMSG盒的靶,而DMSG盒的DNA分子用可区别的标记物进行了标记。多基因被敲低的选择的细胞群或组织或生物体也是本发明的主题。
此外,本发明还涉及检测或评价含有DMSG盒的细胞或生物体中基因功能的方法。在一个实施方案中,将含有特异模板序列并诱导基因沉默的DMSG盒导入细胞或生物体。细胞或生物体是指测试细胞或生物体。测试细胞或生物体被维持在基因沉默发生的条件下。然后观察测试细胞或生物体的表型并与适当的用相同DMSG盒不产生靶向的对照细胞或生物体的表型相比较。测试与对照细胞或生物体表型之间的不同提供了关于靶基因功能的信息。
本发明还涉及确定一种试剂对特异基因是否有作用的方法。在该方法中,将诱导基因沉默的DMSG盒导入细胞或生物体。细胞或生物体被维持在基因沉默发生的条件下并通过携带于导入的DNA分子上的标记物选择所靶向的细胞或生物体。可以是任意分子或组合物的测试试剂包括但不限于肽、蛋白质、化学试剂或组合物、基因治疗载体或组合物,将测试试剂导入测试细胞或生物体,并将其导入不发生基因沉默的对照细胞或生物体中。试剂处理后,测试细胞或生物体和对照细胞或生物体的表型用于确定试剂和靶基因之间的功能关系。
本发明还涉及从一随机序列库中鉴定具有特异功能的RNA分子的方法。对于从简并库中进行的任一选择方法,高回收率是关键的。然而,短RNA如siRNA的直接克隆需要多步较难的步骤,包括RNA分离和与结头连接,和逆转录PCR,它们一起导致了低的回收率。DMSG盒的dsDNA的本质利于选择后短RNA分子序列的高效回收。可以选择的具有特异功能的RNA分子包括但不限于siRNA分子、诸如那些含有发夹结构并具有RNAi效应的非siRNA分子的RNA分子、反义RNA分子、诸如染色体失活复合体的功能复合体中的RNA成分。本发明还包括鉴定特别适用于DMSG盒的在靶RNA内的区域的方法,以及评估携带于DMSG盒上的任意序列的介导基因沉默能力的方法。因此,本发明还提供了用此种方法鉴定的DMSG盒。
本发明还涉及使用含有此类DNA分子的DNA分子或组合物用于研究和治疗性或预防性治疗的方法,例如产生疾病状态的研究模型、寻找药物发明和研发的靶、或治疗与蛋白质或非编码的功能RNA存在相关的疾病。它们包括但不限于使用DMSG盒、含有DMSG盒的组合物、施用此种盒的试剂盒、和用于研究或治疗目的的含有此种盒和适当载体的药用组合物。
本发明进一步涉及通过特异的将DMSG盒递送入所选择的靶细胞在特异细胞群或组织类型中诱导基因沉默的方法。dsDNA可以与信号分子偶联,其中所述信号分子如肽或多肽(如细胞因子)、抗体、或仅仅对靶细胞表面上表达的蛋白质具有特异亲和性的化学基团。该细胞表面蛋白质可以是受体、细胞外基质结合蛋白质、或其它细胞表面分子。当结合在表面分子上后,信号分子可通过内吞或其它机制转移入靶细胞。偶联的DMSGdsDNA分子与信号分子一起被内化。其它不表达特异表面分子的细胞不经历DMSG介导的基因沉默效应。DMSG盒一旦进入靶细胞内,就表达能够诱导基因沉默的中间体RNA。此类方法具有用于研究和治疗的潜能。本发明还包括通过对DMSG盒上模板序列进行序列测定所鉴定的基因,其中所述DMSG盒为当其导入细胞时产生特异表型。此外,本发明还提供了对不同基因的细胞或组织功能的网络关系进行绘图的方法。
以下实施例意在阐明本发明但不用于限制本发明。
实施例由于RNAi在敲低靶向基因表达方面的有效性和特异性,它已经成为功能基因组研究的受欢迎技术。目前的方法包括dsRNA或siRNA(21-23个核苷酸的小干扰RNA)介导的基因沉默,并且长dsRNA分子似乎表现出更强的效应。然而,在较高等的动物中,RNAi介导的基因沉默可能仅能通过短dsRNA分子完成,因为长dsRNA可引起PKR活化和干扰素效应。此处公开的系统通过特异设计的DNA盒利用了活细胞中靶基因区域的两条链的连续转录。
本发明的有效性是在实施例1中使用绿色荧光蛋白(“GFP”)作为靶基因的形式进行证明的;组合物和方法的特异性是在实施例2中证明的。实施例3证明了将DMSG技术与组装的表达盒联合的可行性。由于长的寡核苷酸(如>80个核苷酸)难以合成,这种变化使产生盒更加实际可行。实施例4举例说明了在小鼠细胞系中用lacZ作为靶基因的经修饰DMSG盒。实施例5和6证明了可以被携带于常规环状载体上的DMSG盒。
实施例1通过线性DMSG盒降解靶mRNADMSG盒特异于编码绿色荧光蛋白(GFP)的核苷酸序列的寡核苷酸在Core Faciltiy of Allele Biotechnology and Pharmaceuticals公司(SanDiego CA)合成。一般而言,表达盒(从5’到3’)由增强子区域、U6基因(人)聚合酶III的远侧序列元件(DSE,对于盒中的转录起始位点而言为-79到-72)、人U6基因聚合酶III的近侧序列元件(PSE,-66到-47)、TATA盒(-31到-26)、后面是模版序列(21个核苷酸)、U6基因终止子、和人工终止子(“TM”或“Term”)组成。对于RO盒,省略终止子。单一表达盒由复性结合到一起的两条DNA链(有意链和反义链)组成。通过将两条DNA链在复性缓冲液(50mM NaCl和50mMTris-HCl,pH7.4)中90℃孵育1分钟,然后室温15分钟进行复性。
表达有意或反义转录本的DMSG盒分别指定为(+)或(-)。为了便于以后的克隆,将Bgl II和Nhe I限制性酶切位点的粘末端分别加入到“TM”盒(122bp)的5′和3′末端,并加到RO盒(109bp)的5′末端(Bgl II)。对于TM DMSG(+),将编码GFP基因部分序列有意RNA的dsDNA的有意链hP3GFP(+)TMs与编码同一有意RNA的dsDNA的反义链hP3GFP(+)TMas一起复性。将编码GFP靶序列的反义RNA的两条DNA链复性产生TM DMSG(-)。这两个TM DMSG盒被一起用于诱导基因沉默。同样地,应用各自的DNA链(hP3GFP(+)s与hP3GFP(+)as复性,hP3GFP(-)s与hP3GFP(-)as复性)产生RO DMSG(+)和(-)盒并用于敲低GFP表达。
使用以下寡核苷酸hP3GFP(+)ROs5′-gatcTATTTGCATggactatcatatgcttaccgtaacttgaaagtatttcgatttcttggctttatatatcttgtggaaaggacgaaacaccGAACGGCATCAAGGTGAACTT-3′(SEQ ID NO1;113个核苷酸);hP3GFP(+)ROas5′-AAGTTCACCTTGATGCCGTTCggtgtttcgtcctttccacaagatatataaagccaagaaatcgaaatactttcaagttacggtaagcatatgatagtccATGCAAATA-3′(SEQ ID NO2;109个核苷酸);hP3GFP(+)TMs5′-gatcTATTTGCATggactatcatatgcttaccgtaacttgaaagtatttcgatttcttggctttatatatcttgtggaaaggacgaaacaccGAACGGCATCAAGGTGAACTTtttacaGTTTTTg-3′(SEQ ID NO3;126个核苷酸);hP3GFP(+)TMas5′-CTAGcAAAAACtgtaaaAAGTTCACCTTGATGCCGTTCggtgtttcgtcctttccacaagatatataaagccaagaaatcgaaatactttcaagttacggaagcatatgatagtccATGCAAATA-3′(SEQ ID NO4;126个核苷酸);hP3GFP(-)ROs5′5′-gatcTATTTGCATggactatcatatgcttaccgtaacttgaaagtatttcgatttcttggctttatatatcttgtggaaaggacgaaacaccGTTCACCTTGATGCCGTTCTT-3′(SEQ ID NO5;113个核苷酸);
hP3GFP(-)ROas5′-AAGAACGGCATCAAGGTGAACggtgtttcgtcctttccacaagatatataaagccaagaaatcgaaatactttcaagttacggtaagcatatgatagtccATGCAAATA-3′(SEQ ID NO6;109个核苷酸);hP3GFP(-)TMs5′5′-gatcTATTTGCATggactatcatatgcttaccgtaacttgaaagtatttcgatttcttggctttatatatcttgtggaaaggacgaaacaccGTTCACCTTGATGCCGTTCTTtttacaGTTTTTg-3′(SEQ ID NO7;126个核苷酸);和hP3GFP(-)TMas5′-CTAGcAAAAACtgtaaaAAGAACGGCATCAAGGTGAACggtgtttcgtcctttccacaagatatataaagccaagaaatcgaaatactttcaagttacggtaagcatatgatagtccATGCAAATA-3′(sEQ ID NO8).
细胞培养和转染293T(人胚肾)细胞生长于添加了10%FBS、100单位/ml青霉素和100μg/ml链霉素的Dulbecco′s改良Eagle培养基(Life Technologies,Rockville,Maryland)中CO2培养箱37℃培养。细胞常规传代以维持生长。转染前24小时,胰蛋白酶消化细胞并将其铺在含上述培养基不含抗生素的24-孔板中(500μl/孔)。使用LIPOFECTIN 2000转染试剂按照进行了较小修改的制造商提供的方法(INVITROGEN,Carlsbad)转染70-80%汇片的细胞对于每个转染反应,将2μl LIPOFECTAMINE 2000转染试剂与50μl无血清、无抗生素DMEM混合,并室温孵育5分钟。DMSG DNA或siRNA连同GFP编码质粒一起也与50μl无血清、无抗生素DMEM混合。然后将稀释的LIPOFECTAMINE 2000转染试剂逐滴加入稀释的DNA或RNA中,并在室温孵育20分钟后加入细胞。每孔使用1μgpEGFP载体质粒(CLONTECH)。用荧光显微镜检测转染效率。用不同浓度(3pmole或45pmole)的线性表达盒(“RO”或“TM”)与pEGFP质粒共转染。用GFP siRNA作为阳性对照。本试验的对照还包括用无质粒转染或无转染试剂转染。转染48小时后,在倒置荧光显微镜(Zeiss)下分析细胞。
为了评估产生于DMSG盒的针对GFP表达的转录本是否能特异性阻断基因表达,在共转染研究中将pEGFP质粒用作报告子。在GFP siRNA转染的细胞中GFP表达降低。重要的是,在用3pmole(+)和(-)DMSG盒转染的细胞中都能观察到可比水平的GFP下调。而且,用45pmole两种盒转染的细胞GFP表达完全是阴性的。在这些细胞中GFP的表达被检测超过2周并且在这段时间内DMSG的基因沉默作用是持续的。用pEGFP和两种盒转染的一些细胞仅在20天后出现绿色荧光,推测来自于通过细胞分裂维持的共转染pEGFP质粒。这可能是由于这样一个事实,线性dsDNA比质粒DNA更易于降解,这表明在mRNA水平GFP表达的沉默与其他效应如pEGFP质粒的重排或缺失相反。
通过siRNA的基因沉默效果低于DMSG盒,尽管GFP siRNA的摩尔量大约比所用的低浓度DMSG盒的摩尔量(3pmole)高10倍。这些观察表明线性DMSG盒更有效并且能产生比siRNA更深远的基因沉默效果,这可能是由于DMSG盒介导持续产生dsRNA。值得注意的是,编码相应GFP基因dsRNA的正链或负链的DMSG盒能轻微降低GFP表达,这可能是由于在其他物种如真菌中观察到的未知“共抑制”作用(Cogoni和Macino,Nature 6732166-169,1999),或关于负链盒的反义作用。还可以观察到,用无关DNA或RNA共转染延迟了靶基因的表达,这可能是通过干扰转染和异位表达过程中的某些步骤。这也对用(+)或(-)盒在观察期间降低基因表达起作用。
利用表达靶向编码dsRed荧光蛋白多核苷酸的siRNA的DMSG盒也得到了相似的结果。当通过荧光缺失测定时,用编码有意和反义dsRedsiRNA的DMSG盒处理细胞能抑制dsRed表达。此外,利用DMSG介导的RNA干扰,已经获得了对外源基因,包括如GsαG蛋白、β-连环蛋白、SRPK1和T-盒l9不超过90%的表达。结果证明dsDNA分子(即DMSG盒)能在真核细胞中介导基因沉默。
实施例2DMSG盒反义链上的错配影响基因沉默编码有意RNA链的dsDNA与实施例1中的相同(SEQ ID NO3和SEQ ID NO4)。编码反义RNA链的dsDNA的有意链也与实施例1中的相同(SEQ ID NO7),而与GFP序列相比dsDNA的反义链含有错配。如实施例1中通过将DNA寡核苷酸hP3GFPTM(+)s和hP3GFPTM(+)as复性产生了编码GFP部分序列的有意RNA的TM DMSG(+)盒。通过将hP3GFPTM(-)s分别与hP3GFPTM(-)as M1、M2、M3或M4复性产生了编码靶GFP序列反义RNA的具有不同突变的DMSG(-)盒。转染操作如其中错配碱基为粗体并斜体的寡核苷酸如下hP3GFPTMasM15′-CTAGcAAAAACtgtaaaAAGAACGGCATgAAGGTGAACggtgtttcgtcctttccacaagatatataaagccaagaaatcgaaatactttcaagttacggtaagcatatgatagtccATGCAAATA-3′(SEQ ID NO9;126个核苷酸);hP3GFPTMasM25′-CTAGcAAAAACtgtaaaAAGAACGGgATgAAGGTGAACggtgtttcgtcctttccacaagatatataaagccaagaaatcgaaatactttcaagttacggtaagcatatgatagtccATGCAAATA-3′(SEQ ID NO10;126个核苷酸);bP3 GFPTMasM35′-CTAGcAAAAACtgtaaatAGAACGGCATCAAGGTGAAgggtgtttcgtcctttccacaagatatataaagccaagaaatcgaaatactttcaagttacggtaagcatatgatagtccATGCAAATA-3′(SEQ ID NO11;126个核苷酸);和hP3GFPTMasM45′-CTAGcAAAAACtgtaaaAAGAACGGCATCAAGGTGAtgggtgtttcgtcctttccacaagatatataaagccaagaaatcgaaatactttcaagttacggtaagcatatgatagtccATGCAAATA-3′(SEQ ID NO12;126个核苷酸)。
为了评估DMSG的机制和特异性,将单一或双点突变在线性DMSG盒反义链上的不同位置导入模板序列区域。观察到了基因沉默程度与突变数量之间的紧密相关性。同样,模板序列中间附近的突变可能比末端附近的突变对基因沉默具有更强的作用。这些结果表明靶向识别过程是序列特异性的而且并非模板序列上的所有位置对靶向识别作用都是等同的。
实施例3
由短寡核苷酸组装的DMSG盒介导基因沉默实验方法如前面的实施例,除了dsDNA是由较短的寡核苷酸组装(图3)。与从连续的长序列相比,从较短的寡核苷酸能更容易地制备DMSG盒。从短的寡核苷酸组装DMSG盒具有实际意义,因为,对于每一基因沉默,可能仅需要合成一对对应于模板序列的短寡核苷酸,然后将它与DMSG盒其他成分的其他通用寡核苷酸组装。
短的寡核苷酸,hP3GFPTM(-)s1、s2、s3、as1、和as2,用于组装靶向GFP的TM DMSG(-)盒。将等摩尔的这些寡核苷酸混合并如实施例1复性,然后用于与pEGFP和靶向GFP的TM DMSG(+)盒共转染。转染和细胞培养方法同实施例1。
寡核苷酸如下hP3GFPTM(-)s15′-gatcTATTTGCATggactatcatatgcttaccgtaacttgaa-3′(SEQ ID NO13);hP3GFPTM(-)s25′-agtatttcgatttcttggctttatatatcttgtggaaaggacga-3′(SEQ ID NO14);hP3GFPTM(-)s35′-aacaccGTTCACCTTGATGCCGTTCTTtttacaGTTTTTg-3′(SEQ ID NO15);hP3GFPTM(-)as15′-CTAGcAAAAACtgtaaaAAGAACGGCATCAAGGTGAACggtgtttcgtcctttccacaagata-tat-3′(SEQ ID NO16);和hP3GFPTM(-)as25′-aaagccaagaaatcgaaatactttcaagttacggtaagcatatgatagtccATGCAAATA-3′(SEQ ID NO17).
由这些短寡核苷酸组装的DMSG盒与实施例1中合成的连续盒产生相似水平的基因沉默结果。本实施例的结果表明不连续的寡核苷酸,当设计合理时,可以用作基因沉默的转录本模板。
实施例4标记的DMSG盒在小鼠细胞和人细胞中引起基因沉默等同于那些用于实施例1中hp3GFPTm DMSG盒的元件,小鼠U6基因元件被设计到靶向lacZ基因的连续或组装的盒上。将DNA寡核苷酸复性并且,或转染入稳定表达lacZ基因的NIH3T3细胞系,或与lacZ报告质粒pCMVβ(Clontech)共转染入293T细胞。DSE、PSE、TATA盒和终止子在小鼠和人U6基因之间高度保守。
转然后48-72小时,用PBS洗涤细胞,室温用1%戊二醛溶液(溶于PBS)固定15分钟。用溶于PBS的1mM MgCl2溶液洗细胞2次,然后加入X-GAL染色液(1mg/ml N,N-二甲基甲酰胺、5mM K3Fe(CN)6、5mMK4Fe(CN)6·3H2O、1mM MgCl2溶于PBS、24孔板中0.3ml/孔)。将反应混合物与经固定细胞37℃孵育10分钟到3小时直到颜色变为预期的水平。用水将细胞洗3次并于4℃贮于暗处。然后在显微镜下观察盖玻片上蓝色的细胞。对于FITC标记的DNA,也在荧光显微镜下观察细胞。
将DNA寡核苷酸mP3LacTM(+)s和MP3LacTM(+)as如实施例1复性以产生靶向lacZ的TM DMSG(+)盒。将DNA寡核苷酸mP3LacTM(-)s和mP3LacTM(-)as复性以产生靶向lacZ的TM DMSG(-)盒。在为组装的TM DMSG(-)盒的情况下,将mP3LacTM(-)s1和s2F与mP3LacTM(-)as复性,或mP3LacTM(-)as1和as2F与mP3LacTM(-)s复性。“F”表示在标准偶联反应中使用FITC-CPG进行DNA合成而将FITC标记在寡核苷酸的3’末端。
寡核苷酸如下mP3LacTM(+)s5′-gatcTATTTGCATacaaaaggaaactcaccctaactgtaaagtaattgtgtgttttgagactataaatatcccttggagaaaagccttgtttGGTAAACAGTTGATTGAACTTttgttcGTTTTFg-3′(SEQ ID NO18;126个核苷酸);mP3LacTM(-)s5′-gatcTATTTGCATacaaaaggaaactcaccctaactgtaaagtaattgtgtgttttgagactataaatatcccttggagaaaagccttgtttGTTCAATCAACTGTTTACCTTttgttcGTTTTTg-3′(SEQ ID NO19;126个核苷酸);
mP3LacTM(+)as5′-CTAGcAAAAACgaacaaAAGTTCAATCAACTGTTTACCaaacaaggcttttctccaagggatatttatagtctcaaaacacacaattactttacagttagggtgagtttccttttgtATGCAAATa-3′(SEQ ID NO20;126个核苷酸);mP3LacTM(-)as5′-CTAGcAAAAACgaacaaAAGGTAAACAGTTGATTGAACaaacaaggcttttctccaagggatatttatagtctcaaaacacacaattactttacagttagggtgagtttccttttgtATGCAAATa-3′(SEQ ID NO21;126个核苷酸);mP3LacTM(-)s15′-gatTATTTGCATacaaaaggaaactcaccctaactgtaaagtaattgtgtgttttgagacta-3′(SEQ IDNO22);mP3LacTM(-)s2F5′-taaatatcccttggagaaaagccttgtttGTTCAATCAACTGttTACCTTttgttcGTTTTTt-FTTC-3′(SEQ ID NO23);mP3LacTM(-)as15′-CTAGcAAAAACgaacaaAAGGTAAACAGTTGATTGAACaaacaaggcttttctccaagggat-3′(SEQ ID NO24);和mP3LacTM(-)as2F5′-tttatagtctcaaaacacacaattactttacagttagggtgagtttccttttgtATGCAAAt-FITC-3′(SEQ IDNO25);mP3LacTM(-)s1和mP3LacTM(-)s2是mP3LacTM(-)s的两个部分;mP3LacTM(-)as1和mP3LacTM(-)as2是mP3LacTM(-)as的两个部分。跟在寡核苷酸名称后面的“F”表示寡核苷酸3′端用FITC标记。
与将GFP基因在人细胞中用作靶标的实验相似,上述mP3DMSG盒在lacZ报告基因稳定转染的小鼠细胞中或与报告基因共转染的293T细胞中降低相匹配的lacZ基因的表达。图4显示共转染的结果。与实施例1的观察结果一致,编码相应lacZ基因dsRNA的正链或负链的DMSG盒轻微降低lacZ基因的表达,这可能是由于在其他情况如真菌中观察到的未知“共抑制”作用(Cogoni和Macino,Nature 6732166-169,1999),或在只有负链盒情况下的反义作用。然而,当使用编码RNA两条链的DMSG盒时,基因沉默效果是更加显著的。
这些结果显示FITC标记的DMSG DNA分子具有引起基因沉默的功能。当FITC标记的DNA寡核苷酸用于组装盒时,一些细胞具有绿色荧光,同时它们不被染成蓝色。这证明导致靶细胞具有绿色荧光的DMSG分子转染诱导lacZ基因沉默。带有标记DNA分子的DMSG提供了跟踪转染细胞以观察基因沉默效果的方法。
实施例5环状载体上的DMSG盒DMSG盒可以存在于环状载体。将具有Bgl II和Nhe I突出端的hP3GFPTM(+)盒插入pIND/V5-HisA载体(Invitrogen)的Bgl II和Nhe I位点之间。将具有Bgl II和Nhe I突出端的hP3GFPTM(-)盒插入到相同载体Bam HI和Xba I限制酶的可兼容位点之间。该质粒,pDMSGGFP(+/-),带有hP3GFPTM(+)盒和hP3GFPTM(-)盒并可用于以GFP表达沉默为目的的转染。仅将一个盒(+或-)插入到Bgl II和Nhe I位点之间建立pDMSGGFP(+)或pDMSGGFP(-)。如果仅将一个盒(编码(+)或(-)RNA链)插入到Bgl II和Nhe I位点之间,则产生含有任一盒的质粒,称为pDMSGGFP(+)或pDMSGGFP(-)。
在与实施例1相似的转染实验中,不用线性DMSG盒,而是pDMSGGFP(+/-)单独或pDMSGGFP(+)和pDMSGGFP(-)一起用于沉默GFP的表达。由于环状dsDNA通常比线性盒更稳定,所以基因沉默的作用预期比线性盒的作用持续时间更长。
实施例6DMSG载体的一般用途本实施例描述可以被用于导入和表达用于基因沉默的多种模板核苷酸序列的DMSG载体的构建。
如实施例5中的质粒pDMSGGFP(+)用于例证说明DMSG载体。用核苷酸序列CATTCN25GAATGC(SEQ.ID.NO26;只显示有意链,N代表A、T、C和G四个碱基中的任意一个)代替质粒pDMSGGFP(+)的启动子最后一个碱基和5′终止子的第一个碱基之间的序列,以产生载体pDMSG1(也见,SEQ ID NO44;图5)。为了将针对靶基因的模板序列插入载体,用Bsm I消化pDMSG1并且将相应于正义或反义靶RNA序列的dsDNA寡核苷酸(具有Bsm I粘性末端)连接入载体(见图5)以产生含有单一盒的质粒(也见SEQ ID NO45)。可以将两个此类编码正义或反义中间体siRNA的质粒组合共转染进入细胞,以沉默siRNA特异的任意靶基因。靶基因的模板序列(正义方向)可以是约15-30个核苷酸(例如17个核苷酸)区域,它以AAG开始以C结尾,并且一般跟着约1-5个核苷酸的突出端,例如1、2、3、4或5个胸腺嘧啶核苷残基。
其他限制性位点可以用于制备其它具有不同序列需求的载体。例如,可以用核苷酸序列GAGACG-N25-CGTCTC(SEQ.ID.NO27;仅显示有意链)代替质粒pDMSGGFP(+)(实施例5)的启动子最后一个碱基和5′终止子第一个碱基之间的序列,以产生载体pDMSG2(见图6;也见,SEQID NO46)。当将针对靶基因的模板序列插入载体时,用BsmB I(同切点酶如ESPI3,它具有相同的限制性内切酶识别位点ACCTGC(N)4/8,SEQID NO33)消化DMSG2并且将具有BsmB I粘性末端相应于正意或反义RNA的dsDNA寡核苷酸,它们不支持自连,连接于载体(图4)以产生含有单一盒的质粒(也见,SEQ ID NO47)。通过使用两种不同的插入位点,可以将正盒和负盒都被一个载体所携带。
实施例7T7启动子控制下的DMSG盒利用例如含有特异于T7 RNA聚合酶的转录调控元件的DMSG盒可以在细胞内产生足量siRNA,其中所述T7 RNA聚合酶可以由与DMSG盒共转染进入细胞的编码质粒来表达,并且它利用“脱落式”机制。
按照实施例1中描述的方法并利用下面显示的包含GFP特异的模板核苷酸序列的寡核苷酸可以制备含有T7 RNA聚合酶启动子的DMSG盒
T7GFP(+)ROs5′-taatacgactcactataGGAACGGCATCAAGGTGAACTT-3′(SEQ ID NO28;39个核苷酸);T7GFP(+)ROa5′-AAGTTCACCTTGATGCCGTTCCtatagtgagtcgtatta-3′(SEQ ID NO29;39个核苷酸);T7GFP(-)ROs5′-taatacgactcactataGGTTCACCTTGATGCCGTTCTT-3′(SEQ ID NO30;38个核苷酸);T7GFP(-)ROa5′-AAGAACGGCATCAAGGTGAACCtatagtgagtcgtatta-3′(SEQ ID NO31;38个核苷酸)。
备选地,通过T7聚合酶的siRNA的转录可以由一个或串联的多个II类终止子(ATCTGTT,SEQ ID NO32;(He等,J Biol.Chem.3018802-18811,1998))终止。由于实际终止通常发生于该信号下游的3-7个核苷酸,这将产生与靶mRNA正意或反义序列不匹配的3′部分。然而,当通过发夹中间体产生siRNA时,3′末端的突出端不影响RNAi效应(Paul等,Nat.Biotechnol.5505-508,2002)。由噬菌体RNA聚合酶如Sp6和T7聚合酶进行的转录也终止于含有阻滞位点的多聚(T)处,其中阻滞位点如位点Ia(GGGACGTTTTTTTCCC;SEQ ID NO42)或相关位点II(TTTTTTC;SEQ ID NO43)(Mote和Reines,J;Biol.Chem.2716843-16852,1998),这种特点适合用于产生siRNA或shRNA。利用此处公开的构建体和方法,可通过从诸如组织特异性或发育阶段特异性启动子表达T7聚合酶进一步控制T7聚合酶的表达,从而使DMSG盒介导的RNAi可成功地以时间的、空间的和细胞类型特异的方式起作用。
实施例8RNAi微阵列本实施例描述了RNAi微阵列(MAR)方法学,其中公开的基于DNA的RNAi技术适用于细胞微阵列形式,由此允许高通量基因功能研究和药物筛选测定。
微阵列技术已经改革了多种生物医学研究领域,包括监测基因表达、单核苷酸多态性(SNP)基因分型和测序。已经研发出几种类型的微阵列,其中特殊分子(如DNA、抗体、重组蛋白质)被物理性连接于固体支持物上的确定位置。此类微阵列允许高通量测定和高分辨率分析。DNA微阵列包括那些点在芯片上的cDNA分子,其中所述cDNA分子可以通过如PCR方法产生并且能代表大量基因产物中的任意一种,并且还包括那些在支持物表面如硅表面合成的寡核苷酸,它们的序列是特异的或是随机的、偏性的或富于变化的。后一方法可用于生产高密度微阵列,以GeneChipTM微阵列(Affymetrix)为例。此类DNA分子通常以特定的方式(阵列)排列于支持物表面上,从而通过对例如杂交于支持物上特定位置的未知核酸分子的检测提供关于未知核酸分子识别的指示。此类可寻址阵列提供了鉴定样本中特定核酸分子,或鉴定特定细胞类型中基因表达模式的适合方法,例如包括,当与标准或对照模式相比时,提供鉴定特定疾病的模式。
最近已经确立了细胞微阵列的原理(Ziauddin和Sabatini,见上文,2001;美国专利申请号US 2002/0006664 A1),其中在允许将寡核苷酸导入与微阵列特定位置相接触的细胞的条件下,将寡核苷酸(如cDNA分子)阵列与细胞簇相接触。此类微阵列对于鉴定药物靶点和表达克隆改变细胞生理的基因是有用的。这些方法的成功需要将寡核苷酸点在固体支持物上使它们可以从支持物上被移开,还需要处理寡核苷酸从而使它们可以被与它们相接触的细胞内化。Ziauddin和Sabatini所描述的方法在将寡核苷酸点在玻片上之前先用明胶溶液与cDNA分子混合。干燥后,将DNA斑点暴露于转染试剂,然后将玻片放置于培养皿中并用培养基中的贴壁哺乳动物细胞覆盖(Ziauddin和Sabatini,见上文,2001)。由于DNA分子和细胞的加入是颠倒顺序的,所以该方法被称为反向转染。
如此处所公开,细胞微阵列可适用于本发明的LineSilenceTM盒。最初,通过制备稳定且均一表达荧光蛋白质,如GFP、EGFP、dsRed或短半寿期的d2EGFP变体,可以产生模型系统。已经制备得到了表达中等水平EGFP的Hela细胞系,并且单独或同时永久表达dsRed、d2EGFP的Hela和293正在用双药物筛选进行选择。可以筛选多核苷酸数据库,包括含有编码相关多肽如转录因子的多核苷酸的数据库,以选择可以用此处公开的DNA介导的基因表达沉默进行RNAi的靶序列。
按照本发明的方法所使用的细胞类型的例子包括如Hela细胞和293细胞,在这些细胞中RNAi已经被验证(见实施例1)。象293细胞一样,Hela细胞表现出高的RNAi效率,所述细胞为表达提供了额外的好处,因为它以高水平表达目的基因p53。因为RNAi实验的目的是以从一定的可检测水平降低基因的表达,并且理想上降低到零,所以以高水平稳定表达诸如GFP、dsRed等等的蛋白质的细胞对于微阵列斑点中的定量评价是特别有用的。在此类细胞中表达的任何稍微的不均衡可以通过对每一个靶基因多点数据的平均来降低。而且,随后的内部对照系统允许校正靶基因的表达误差,并且还能够监测和校准非特异的RNAi效应。
对于内部对照和数据分析,采用了能够稳定表达GFP和dsRED这两者的细胞系。这些细胞用编码不针对GFP和dsRED、针对两者之一、或针对两者的siRNA的LineSilenceTM盒进行反向转染。在不同时间点,用激光荧光扫描仪检测绿色和红色荧光强度,并且对样品进行照相以便用适当的软件进行分析。用针对两者之一的基因特异LineSilenceTM盒处理所获得的细胞中绿/红荧光比值用于评估沉默效应的特异性。处理和未处理细胞之间的荧光强度比提供了有关沉默效率的数据。对同一玻片上多点的数据进行采集,并且用几张玻片进行重复采集以得出统计学意义的结论。
方法使用转染试剂如FuGene6(Roche),用pDsRED-N1和pd2EGFP、或pEGFP转染Hela或293细胞,然后用潮霉素B(pEGFP)或G418(pDsRED-N1)筛选细胞。按标准方法挑取表达预期荧光蛋白质的单克隆,并增殖,然后,选择细胞之间表达水平差异最小的克隆。
按此处所公开的方法或使用商业可得的试剂盒(LineSilenceTM试剂盒;Allele Biotechnology)并使用制造商提供的方法产生LineSilenceTM盒,然后纯化、定量并贮存于TE缓冲液中。制备三种剂量的含大约0.17%明胶的LineSilenceTM盒DNA溶液(Ziauddin和Sabatini,见上文,2001),0.1、0.033或0.001μg/μl,并且使用自动阵列仪点在玻片上。将玻片干燥并用转染试剂如FuGene6转染试剂或EffecteneTM转染试剂(Qiagen)处理,然后将细胞铺在玻片上(Ziauddin和Sabatini,见上文,2001)。
转染效率很大程度上可以决定使用RNAi技术沉默基因的有效性。一些细胞系,特别是培养基中的原代细胞,对如钙沉淀、阳离子脂质体、DEAE-葡聚糖和多聚季胺等传统转染试剂有相当的抗性。虽然电穿孔在一些情况下会导致细胞的死亡,但它对于一些细胞类型而言能够提高转染效率。微注射能够提供一种将DNA直接递送到细胞或细胞核的手段,然而,该方法不方便使用,许多实验室不能够开展,并且也不适于产生大量的改变细胞。
蛋白质转导结构域(PTD)是通过非受体依赖的机制横跨生物膜的短肽,并且可以递送大量生物分子进入细胞(Becker等,Methods 24247-256,2001,此处引用作为参考)。PTD来源于HIV Tat蛋白质(命名为TAT)、果蝇转录因子触角足的同源结构域、HSV蛋白质VP22和碱性成纤维细胞生长因子(Becker等,supra,2001)。此外,通过设计一些肽可以具有相似的特性,所述肽包括例如MPG、Pep-1和L-或D-精氨酸、赖氨酸和组氨酸的寡聚体。TAT已经用于递送大的融合蛋白质进入各种细胞和成体动物,并可以高效地穿过血-脑屏障。照这样,PTD对于将DMSG盒导入细胞是有用的,因此这就提供了一种在实际上所有细胞类型和动物模型中完成RNAi的方法。
由于DMSG盒可以线性形式产生,例如通过PCR或全长DNA合成,所以本发明的RNAi表达盒特别适用于与PTD结合,因此允许大范围和高效地转染。如果期望,在寡核苷酸合成过程中或之后,可以将氨基、巯基或生物素基团连接于DMSG盒末端,然后利用化学交联剂通过功能基团将PTD肽连接于DMSG盒。
本发明的DMSG盒也可以连接于双功能肽,其中所述双功能肽含有PTD结构域和第二种“货物”结合结构域。通过将载体肽与货物分子如DMSG盒混合,可以形成可直接应用于细胞的复合体,因此绕过结合步骤。该方法可用于此处公开的DNA-介导的RNAi,并且特别适用于低成本快速地进行高通量测定以产生稳定且可测量的效应。已经研发出大量人工肽如KALA和ppTGl,它们在螺旋的一侧是疏水的,以透过膜,并且在另一侧是具正电的,以结合多核苷酸(Rittner等,Mol.Ther.5104-114,2002,此处引用作为参考)。这些人工肽的两个缺点是它们是pH依赖的(质子化态影响带电氨基酸和DNA之间主要的静电相互作用),并且它们不能从单链DNA、RNA或其它带电分子中区别出双链DNA,因此理论上可作为相对非特异的载体递送非预计货物分子进入细胞。
以非静电相互作用结合dsDNA的一种短肽是噬菌体HK022 Nun蛋白质的C-末端9个氨基酸区域(Watnick等,Genes Devel.14731-739,2000,此处引用作为参考)。该肽区域与dsDNA直接相互作用,并且Nun蛋白质不能够使聚合酶停滞在单链DNA模板上,这表明它的DNA结合基序仅结合双链DNA。C-末端区域的点突变已经证明它在结合双链DNA方面是有作用的,并且精确地指出倒数第二个残基色氨酸(W108)对于此种结合是最关键的残基。W108仅仅能够被其它芳香族氨基酸(如酪氨酸)进行功能替代的事实表明结合发生在色氨酸残基插入双链DNA时。所述结合似乎没有任何可检测的序列偏好。
将九个残基的Nun C-末端肽(NCP)与TAT融合,之间只间隔一个甘氨酸残基。如此处所公开,融合蛋白质(称为TAN)结合双链DNA形成多聚体,解离常数大约为1×10-5M。将0.1μg双链DNA与递增量(0.05、0.1、0.2或0.4μg)TAN肽(或0.1、0.2或0.4μg对照肽,Ht31)在20μl 0.9%NaCl溶液中进行孵育。室温孵育20分钟后,取一小份液体用1%琼脂糖凝胶进行分析。条带迁移凝胶分析显示TAN肽以相对浓度依赖的方式结合双链DNA(即随着TAN量的增加结合的DNA的量也增加)。
快速扩大的蛋白酶和肽酶家族被描述为能够水解膜脂双层疏水环境中的底物蛋白质和肽。此类酶称为膜内剪切蛋白酶(I-CliPs),并且将它们的底物称为跨膜结构域(TMDs;见Wolfe和Selkoe,Science 2962156-2157,2002,此处引用作为参考)。如此处所公开,对于MAR利用载体蛋白质如明胶将LineSilenceTM盒点在固体支持物上而言,作为备选的是通过TMD肽将盒连接到支持物的表面,这样当与细胞接触时,TMD肽能够被细胞膜中的I-CliP水解,从而允许LineSilenceTM盒移动进入细胞。I-CliP以早老因子(早老因子1和早老因子2)为例,它们能够剪切细胞膜内的TMD肽,因此释放底物的胞质部分入细胞质(见Wolfe和Selkoe,见上文,2002)。当将TMD肽连接到DMSG盒上时,肽的剪切释放所述盒进入细胞质,以至于DMSG盒能够随后进入细胞核。使用能够被早老因子剪切的TMD肽的优点是早老因子在所有组织和细胞类型中普遍表达,因此允许基于早老因子剪切的LineSilenceTM盒的MAR适用于各种各样的哺乳动物细胞(见Lee等,J.Neurosci.16P7513-7525,1996,此处引用作为参考)。
作为早老因子底物的TMD肽的例子包括β-淀粉样前体蛋白的TMD;果蝇蛋白质notch、Sevenless、Torso和δ,以及它们的哺乳动物同系物的TMD;人血型糖蛋白-A的TMD(Struhl和Adachi,Mol.Cell 6625-635,2000,此处引用作为参考)。照这样,这些或其它TMD可以被结合在固体支持物表面,DMSG盒可以被连接到它们上面,并且,如果期望,还可以将PTD结构域(如TAN)进一步连接到DMSG盒上,因此有利于进行MAR分析。
如上所述的表达荧光蛋白质的细胞的用途允许RNAi微阵列(MAR)方法学的优化,然后可以应用于功能基因的分析,特别是那些当敲低时表现出可检测效应的基因。两个级别的实验次序进行,一个使用已知的系统用于方法的验证,第二个用于筛选鉴定先前未描述的基因功能。
系统验证Fas介导的凋亡途径基因可用作靶基因检测基因功能,因为该途径涉及的许多基因是已知的(例如FADD和caspase 8),因此它们可被点样至玻片上的LineSilenceTM盒靶向。Fas介导的凋亡是可诱导过程并且适于MAR,因为正常细胞能够在玻片上生长、能够内化DNA和在刺激前达到预期的密度。通过用Fas配体或活化抗体处理来激活凋亡。能够对Fas介导的信号发生反应的细胞是可得的并且易于转染,如Hela-Fas细胞。凋亡反应是快速的并且能够在约24小时之内检测到。重要的是,使用这种方法刺激细胞在以前开展过,用于筛选核酶文库(Kawasaki和Taira,NucleicAcids Res.303609-3614,2002,此处引用作为参考)。照这样,已经建立了诱导和检测的条件,并且鉴定了新的靶点。
按如下方法产生Fas途径LS微阵列。针对如下的每一基因设计4个靶位点,其中所述基因是先前已知的或由Kawasaki和Taira(supra,2002)鉴定的-Fas、FADD、easpase 8、Bik、caspase 3、caspase 9、apaf-1和CAD。如上述的方法将LineSilenceTM盒DNA点印来制备MAR玻片。Hela-Fas细胞在所制备的MAR玻片上生长并且24小时之后用Fas特异的抗体处理细胞。36小时后固定细胞(Kawasaki和Taira,supra,2002)。用TUNEL法检测凋亡;荧光信号作为数据读出。作为选择,使用如ApoAlert凋亡试剂盒(Clontech)通过GFP偶联的annexin V检测凋亡。进入凋亡途径的进程的减缓(以TUNEL-阳性细胞减少为证据)和已知的前凋亡Fas途径介导物表达降低之间的相关性(或负相关)表明MAR适于此类功能分析。
该系统的三个条件对于实验的成功是至关重要的。第一,RNAi介导的基因沉默的成功率必须高,意思是说选择作为靶的大多数位点能够发生RNAi。当前来自于本领域研究和本发明实验的一致意见表明大约50-80%的靶提供了明确可以检测的近乎完全沉默的效果。可以选择最佳的靶位点,例如通过设计编码siRNA的DMSG盒,其中所述该siRNA能够与靶基因中RNA结合蛋白质结合位点外的区域相互作用。此外,对于每个转录本使用多于1个,如2、3、4或更多靶点能够增加每一基因在至少一个设计的点上产生沉默的可能性。因为阴性的点不能够解释为无关基因,通过针对每一个siRNA同时设计一个错配对照,在错配对照中21个核苷酸的siRNA的中间核苷酸是突变的,来控制假阳性的发生。通过观察一致发现该位点的错配导致siRNA无功能。
对于本发明系统成功的第二个标准是需要细胞高效摄入DNA。上面讨论的并用上述方法进行优化的条件,包括使用Hela-Fas细胞,将有助于决定如何最大地获得有效的DNA摄入。然而,如果转染效率极其低,可以将蛋白质转导结构域(PTD)偶联到DMSG盒上以增加转染效率。PTD已显示出有利于试剂跨细胞膜高效率转移并且同样可用于增强LineSilenceTM盒摄取进入细胞。
对于最好地实现当前叙述的MAR系统的第三个标准是需要可清楚检测的表型以测定RNAi。使用上述的模型系统作为例子,Fas活化诱导的细胞死亡需要测定MAR数据的信号对背景的比率。从使用相同途径的瞬时核酶文库筛选试验相关的报告可以得到有关该课题的大量信息(见Kawasake和Taira,supra,2002)。然而,如果实验被Fas介导的凋亡途径的内在困难所阻碍,其它可选择的途径如TNF和TNFR相关的细胞死亡途径或生长因子介导的增殖可以基于相似的实验设计进行使用。
作为功能性筛选影响启动子活性基因的工具,MAR方法特别有用。照这样,该方法提供了功能性选择基因的手段,这些基因包括先前未知的参与改变细胞表型或特定基因表达的基因,特别是那些先前未知的具有此功能的基因。通过在靶向大约2000个已知人转录因子(其序列可由数据库获得)的微阵列上建立基因沉默盒,并筛选调节目的启动子活性的基因,可以进行利用RNAi微阵列的转录调控相关分析。对于这种筛选,MAR微阵列是基于如上述建立的条件且以容纳所有候选基因的较高密度而制备的。如果必要,可以使用多个玻片。
已进行了广泛研究的基因的相对简单的启动子可用来证实MAR测定结果的有效性。照这样,可以使用人p53基因启动子,这是因为它被定义为位于转录起始位点5’部分的大约85个碱基对序列(对于本研究也可以使用该5′序列的300个碱基对区域),还因为结合到该区域并参与调控p53基因表达的因子,包括p53本身,是已知的(Tuck和Crawford,Mol.Cell.Biol.92163-2172,1989;Albor等,Mol.Carc.11176-183,1994;Hudson等,DNA Cell Biol.14759-766,1995,每一文献此处引用作为参考)。作为DNA损伤的反应,p53蛋白质可起增强G1期细胞周期阻断的作用,这是预防肿瘤的重要过程。然而,通过何种方法调控p53基因并不是完全清楚的。例如,最近的研究表明参与细胞周期进程和增殖的转录因子E2F出乎意料地调控p53,而与p53启动子区域没有明显的结合位点(Ren等,Genes Devel.15245-256,2002,此处引用作为参考)。此外,其它因子可以在转录水平直接或间接调控p53的表达。
PCR和标准克隆技术用于设计报告基因上游所定义的p53启动子区域。可以使用为启动子研究设计的质粒如pd2EGFP-Basic(Clontech)。按如上所述的方法建立表达所述构建体的稳定细胞系,并生长于点了LineSilenceTM盒的玻片上。根据它们在玻片上的坐标确定引起报告物表达显著改变的基因,并通过独立的试验,使用标准的过表达或RNAi介导基因沉默的方法以证实对内源性p53表达有影响,来确定它们的功能。
对数据的统计学分析将利用现有的惯例,这些惯例来源于对其他使用熟知的或先前描述的方法的微阵列如ChIPTM阵列或GeneChipTM阵列的分析。如果期望,可以进行额外的实验以提高该方法的灵敏性和可靠性。例如,在较后的阶段,可以建立基于β-内酰胺酶系统的报告子系统并利用荧光共振能量转移(FRET)技术,从而提供比荧光蛋白质报告物灵敏性更高的系统(Zlokarnik等,Science 27984-88,1998,此处引用作为参考)。
尽管已经以上述实施例作为参考对本发明进行了描述,仍然可以理解对其进行的修饰和改变仍包含于本发明的精神和范围之内。因此,本发明仅由下述权利要求所限制。
序列表<110>美国绿阳生物技术及医药公司<120>用于DNA介导基因沉默的组合物<130>ALLELE1100-2WO<140>PCT/US 02/41642<141>2002-12-26<150>US 10/217,564<151>2002-08-12<150>US 10/202,479<151>2002-07-23<150>US 60/343,697<151>2001-12-27<160>51<170>PatentIn版本3.1<210>1<211>113<212>DNA<213>人工序列<220>
<223>合成的寡核苷酸<400>1gatctatttg catggactat catatgctta ccgtaacttg aaagtatttc gatttcttgg60ctttatatat cttgtggaaa ggacgaaaca ccgaacggca tcaaggtgaa ctt 113<210>2<211>109<212>DNA<213>人工序列<220>
<223>合成的寡核苷酸<400>2aagttcacct tgatgccgtt cggtgtttcg tcctttccac aagatatata aagccaagaa60atcgaaatac tttcaagtta cggtaagcat atgatagtcc atgcaaata 109<210>3<211>126<212>DNA<213>人工序列<220>
<223>合成的寡核苷酸<400>3gatctatttg catggactat catatgctta ccgtaacttg aaagtatttc gatttcttgg60ctttatatat cttgtggaaa ggacgaaaca ccgaacggca tcaaggtgaa ctttttacag 120tttttg 126<210>4<211>126<212>DNA<213>人工序列<220>
<223>合成的寡核苷酸<400>4ctagcaaaaa ctgtaaaaag ttcaccttga tgccgttcgg tgtttcgtcc tttccacaag60atatataaag ccaagaaatc gaaatacttt caagttacgg taagcatatg atagtccatg 120caaata 126<210>5<211>113<212>DNA<213>人工序列
<220>
<223>合成的寡核苷酸<400>5gatctatttg catggactat catatgctta ccgtaacttg aaagtatttc gatttcttgg60ctttatatat cttgtggaaa ggacgaaaca ccgttcacct tgatgccgtt ctt 113<210>6<211>109<212>DNA<213>人工序列<220>
<223>合成的寡核苷酸<400>6aagaacggca tcaaggtgaa cggtgtttcg tcctttccac aagatatata aagccaagaa60atcgaaatac tttcaagtta cggtaagcat atgatagtcc atgcaaata 109<210>7<211>126<212>DNA<213>人工序列<220>
<223>合成的寡核苷酸<400>7gatctatttg catggactat catatgctta ccgtaacttg aaagtatttc gatttcttgg60ctttatatat cttgtggaaa ggacgaaaca ccgttcacct tgatgccgtt ctttttacag 120tttttg 126<210>8<211>126<212>DNA<213>人工序列
<220>
<223>合成的寡核苷酸<400>8ctagcaaaaa ctgtaaaaag aacggcatca aggtgaacgg tgtttcgtcc tttccacaag60atatataaag ccaagaaatc gaaatacttt caagttacgg taagcatatg atagtccatg 120caaata 126<210>9<211>126<212>DNA<213>人工序列<220>
<223>合成的寡核苷酸<400>9ctagcaaaaa ctgtaaaaag aacggcatga aggtgaacgg tgtttcgtcc tttccacaag60atatataaag ccaagaaatc gaaatacttt caagttacgg taagcatatg atagtccatg 120caaata 126<210>10<211>126<212>DNA<213>人工序列<220>
<223>合成的寡核苷酸<400>10ctagcaaaaa ctgtaaaaag aacgggatga aggtgaacgg tgtttcgtcc tttccacaag60atatataaag ccaagaaatc gaaatacttt caagttacgg taagcatatg atagtccatg 120caaata 126
<210>11<211>126<212>DNA<213>人工序列<220>
<22>合成的寡核苷酸<400>11ctagcaaaaa ctgtaaatag aacggcatca aggtgaaggg tgtttcgtcc tttccacaag60atatataaag ccaagaaatc gaaatacttt caagttacgg taagcatatg atagtccatg 120caaata 126<210>12<211>126<212>DNA<213>人工序列<220>
<223>合成的寡核苷酸<400>12ctagcaaaaa ctgtaaaaag aacggcatca aggtgatggg tgtttcgtcc tttccacaag60atatataaag ccaagaaatc gaaatacttt caagttacgg taagcatatg atagtccatg 120caaata 126<210>13<211>42<212>DNA<213>人工序列<220>
<223>合成的寡核苷酸<400>13gatctatttg catggactat catatgctta ccgtaacttg aa 42
<210>14<211>44<212>DNA<213>人工序列<220>
<223>合成的寡核苷酸<400>14agtatttcga tttcttggct ttatatatct tgtggaaagg acga 44<210>15<211>40<212>DNA<213>人工序列<220>
<223>合成的寡核苷酸<400>15aacaccgttc accttgatgc cgttcttttt acagtttttg 40<210>16<211>66<212>DNA<213>人工序列<220>
<223>合成的寡核苷酸<400>16ctagcaaaaa ctgtaaaaag aacggcatca aggtgaacgg tgtttcgtcc tttccacaag60atatat 66<210>17<211>60<212>DNA<213>人工序列<220>
<223>合成的寡核苷酸<400>17aaagccaaga aatcgaaata ctttcaagtt acggtaagca tatgatagtc catgcaaata60<210>18<211>126<212>DNA<213>人工序列<220>
<223>合成的寡核苷酸<400>18gatctatttg catacaaaag gaaactcacc ctaactgtaa agtaattgtg tgttttgaga60ctataaatat cccttggaga aaagccttgt ttggtaaaca gttgattgaa cttttgttcg 120tttttg 126<210>19<211>126<212>DNA<213>人工序列<220>
<223>合成的寡核苷酸<400>19gatctatttg catacaaaag gaaactcacc ctaactgtaa agtaattgtg tgttttgaga60ctataaatat cccttggaga aaagccttgt ttgttcaatc aactgtttac cttttgttcg 120tttttg 126<210>20<211>126<212>DNA<213>人工序列<220>
<223>合成的寡核苷酸<400>20ctagcaaaaa cgaacaaaag ttcaatcaac tgtttaccaa acaaggcttt tctccaaggg60atatttatag tctcaaaaca cacaattact ttacagttag ggtgagtttc cttttgtatg 120caaata 126<210>21<211>126<212>DNA<213>人工序列<220>
<223>合成的寡核苷酸<400>21ctagcaaaaa cgaacaaaag gtaaacagtt gattgaacaa acaaggcttt tctccaaggg60atatttatag tctcaaaaca cacaattact ttacagttag ggtgagtttc cttttgtatg 120caaata 126<210>22<211>62<212>DNA<213>人工序列<220>
<223>合成的寡核苷酸<400>22gattatttgc atacaaaagg aaactcaccc taactgtaaa gtaattgtgt gttttgagac60ta 62<210>23<211>63<212>DNA<213>人工序列
<220>
<223>合成的寡核苷酸<400>23taaatatccc ttggagaaaa gccttgtttg ttcaatcaac tgtttacctt ttgttcgttt60ttt 63<210>24<211>62<212>DNA<213>人工序列<220>
<223>合成的寡核苷酸<400>24ctagcaaaaa cgaacaaaag gtaaacagtt gattgaacaa acaaggcttt tctccaaggg60at 62<210>25<211>62<212>DNA<213>人工序列<220>
<223>合成的寡核苷酸<400>25tttatagtct caaaacacac aattacttta cagttagggt gagtttcctt ttgtatgcaa60at 62<210>26<211>36<212>DNA<213>人工序列<220>
<223>合成的寡核苷酸<220>
<221>misc_feature<222>(1)..(36)<223>n为任一种核苷酸<400>26cat tcnnnnn nnnnnnnnnn nnnnnnnnnn gaatgc 36<210>27<211>37<212>DNA<213>人工序列<220>
<223>合成的寡核苷酸<220>
<221>misc_feature<222>(1)..(37)<223>n为任一种核苷酸<400>27gagacgnnnn nnnnnnnnnn nnnnnnnnnn ncgtctc 37<210>28<211>39<212>DNA<213>人工序列<220>
<223>合成的寡核苷酸<400>28taatacgact cactatagga acggcatcaa ggtgaactt 39<210>29<211>39<212>DNA<213>人工序列
<220>
<223>合成的寡核苷酸<400>29aagttcacct tgatgccgtt cctatagtga gtcgtatta 39<210>30<211>39<212>DNA<213>人工序列<220>
<223>合成的寡核苷酸<400>30taatacgact cactataggt tcaccttgat gccgttctt 39<210>31<211>39<212>DNA<213>人工序列<220>
<223>合成的寡核苷酸<400>31aagaacggca tcaaggtgaa cctatagtga gtcgtatta 39<210>32<211>7<212>DNA<213>人工序列<220>
<223>合成的寡核苷酸<400>32atctgtt 7
<210>33<211>14<212>DNA<213>人工序列<220>
<223>合成的寡核苷酸<220>
<221>misc_feature<222>(7)..(14)<223>n为任一种核苷酸<220>
<221>misc_feature<222>(11)..(14)<223>核苷酸11-14任选地存在<400>33acctgcnnnn nnnn 14<210>34<211>20<212>DNA<213>人(Homo sapiens)<400>34cttaccgtaa cttgaaagta20<210>35<211>20<212>DNA<213>鼠<400>35ctcaccctaa ctgtaaagta20<210>36<211>265<212>DNA<213>人
<400>36aaggtcgggc aggaagaggg cctatttccc atgattcctt catatttgca tatacgatac60aaggctgtta gagagataat tagaattaat ttgactgtaa acacaaagat attagtacaa 120aatacgtgac gtagaaagta ataatttctt gggtagtttg cagtttttaa aattatgttt 180taaaatggac tatcatatgc ttaccgtaac ttgaaagtat ttcgatttct tggctttata 240tatcttgtgg aaaggacgaa acacc 265<210>37<211>16<212>DNA<213>T7噬菌体<400>37taatacgact cactat16<210>38<211>87<212>DNA<213>人工序列<220>
<223>经修饰的U6基因增强子<220>
<221>misc_feature<222>(8)..(67)<223>n为任一种核苷酸<220>
<221>misc_feature<222>(18)..(67)<223>核苷酸18-67位任选地存在<400>38attgcatnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn60nnnnnnnctt accgtaactt gaaagta87
<210>39<211>87<212>DNA<213>人工序列<220>
<223>经修饰的U6基因增强子<220>
<221>misc_feature<222>(8)..(67)<223>n为任一种核苷酸<220>
<221>misc_feature<222>(18)..(67)<223>核苷酸18-67位任选地存在<400>39attgcatnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn60nnnnnnnctc accctaactg taaagta87<210>40<211>40<212>DNA<213>人工序列<220>
<223>经修饰的U6基因增强子<220>
<221>misc_feature<222>(1)..(40)<223>n为任一种核苷酸<400>40attgcatnnn nnnnnnnnnn cttaccgtaa cttgaaagta 40<210>41
<211>40<212>DNA<213>人工序列<220>
<223>经修饰的U6基因增强子<220>
<221>misc_feature<222>(1)..(40)<223>n为任一种核苷酸<400>41attgcatnnn nnnnnnnnnn ctcaccctaa ctgtaaagta 40<210>42<21>16<212> DNA<213>SP6噬菌体<400>42gggacgtttt tttccc16<210>43<211>7<212>DNA<213>SP6噬菌体<400>43ttttttc 7<210>44<211>43<212>DNA<213>人工序列<220>
<223>合成的寡核苷酸<220>
<221>misc_feature
<222>(1)..(43)<223>n为任一种核苷酸<400>44accgcattcn nnnnnnnnnn nnnnnnnnnn nnnngaatgc ttt 43<210>45<211>24<212>DNA<213>人工序列<220>
<223>合成的寡核苷酸<220>
<221>misc_feature<222>(5)..(20)<223>n为任一种核苷酸<220>
<221>misc_feature<222>(19)..(20)<223>核苷酸19-20位任选地存在<400>45accgnnnnnn nnnnnnnnnn cttt 24<210>46<211>47<212>DNA<213>人工序列<220>
<223>合成的寡核苷酸<220>
<221>misc_feature<222>(1)..(47)<223>n为任一种核苷酸<400>46acaccgagac gnnnnnnnnn nnnnnnnnnn nnnnnncgtc tcttttt 47
<210>47<211>28<212>DNA<213>人工序列<220>
<223>合成的寡核苷酸<220>
<221>misc_feature<222>(7)..(22)<223>n为任一种核苷酸<220>
<221>misc_feature<222>(21)..(22)<223>核苷酸21-22位任选地存在<400>47acaccgnnnn nnnnnnnnnn nncttttt 28<210>48<211>11<212>DNA<213>人<400>48tttttacatc a 11<210>49<211>9<212>DNA<213>Mouse<400>49ttttgttcc 9<210>50<211>15
<212>DNA<213>人工序列<220>
<223>经修饰的人RNA聚合酶III终止子<400>50tttttacagt ttttg 15<210>51<211>15<212>DNA<213>人工序列<220>
<223>经修饰的小鼠RNA聚合酶III终止子<400>51ttttgttcgt ttttg 1权利要求
1.分离的脱氧核糖核酸(DNA)分子,其包含编码中间体小干扰核糖核酸(RNA)分子(siRNA)的至少约16个核苷酸的可表达模板核苷酸序列,所述分离的DNA分子介导靶RNA的RNA干扰,所述中间体siRNA包含a)含有与靶RNA有意链互补的至少约15个核苷酸的5′部分和含有不与靶RNA有意链互补的约1-5个核苷酸的3’端部分,其中该siRNA选择性地与靶RNA有意链杂交;或b)含有与靶RNA反义链互补的至少约15个核苷酸的5’部分和含有不与靶RNA反义链互补的约1-5个核苷酸的3’端部分,其中该siRNA选择性地与靶RNA反义链杂交。
2.权利要求1的分离的DNA分子,其中中间体siRNA长度约为16-30个核苷酸。
3.权利要求1的分离的DNA分子,其中中间体siRNA长度约为20-25个核苷酸。
4.权利要求1的分离的DNA分子,其中中间体siRNA长度约为21个核苷酸。
5.权利要求1的分离的DNA分子,其中中间体siRNA的3′端部分长度约为2-4个核苷酸。
6.权利要求1的分离的DNA分子,其中中间体siRNA的3′端部分长度约为2或3个核苷酸。
7.权利要求1的分离的DNA分子,其为双链DNA分子。
8.权利要求7的分离的DNA分子,其中双链DNA分子的一条链编码与靶RNA有意链互补的第一中间体siRNA,并且其中双链DNA分子的第二条链编码与靶RNA反义链互补的第二中间体siRNA。
9.权利要求1的分离的DNA分子,它是具有第一末端和第二末端的线性DNA分子。
10.载体,其包含权利要求1的分离的DNA分子。
11.权利要求10的载体,其为表达载体。
12.细胞,其包含权利要求1的分离的DNA分子。
13.多种分离的DNA分子,其包含至少两种权利要求1的分离的DNA分子。
14.权利要求13的多种分离的DNA分子,其中第一分离的DNA分子编码包含与靶RNA有意链互补的5’部分的中间体siRNA。
15.权利要求14的多种分离的DNA分子,其中至少第二分离的DNA分子编码包含与靶RNA反义链互补的5’部分的中间体siRNA。
16.权利要求15的多种分离的DNA分子,其中第一分离的DNA分子编码的中间体siRNA的5’部分与第二分离的DNA分子编码的中间体siRNA的5’部分互补。
17.权利要求14的多种分离的DNA分子,其中至少第二分离的DNA分子编码包含与第二靶RNA的有意链互补的5’部分的中间体siRNA。
18.权利要求14的多种分离的DNA分子,其中至少第二分离的DNA分子编码包含与第二靶RNA的反义链互补的5’部分的中间体siRNA。
19.权利要求13的多种分离的DNA分子,其中第一分离的DNA分子编码包含与靶RNA反义链互补的5’部分的中间体siRNA。
20.权利要求19的多种分离的DNA分子,其中至少第二分离的DNA分子编码包含与靶RNA有意链互补的5’部分的中间体siRNA。
21.权利要求20的多种分离的DNA分子,其中第一分离的DNA分子编码的中间体siRNA的5’部分与第二分离的DNA分子编码的中间体siRNA的5’部分互补。
22.权利要求19的多种分离的DNA分子,其中至少第二分离的DNA分子编码包含与第二靶RNA的反义链互补的5’部分的中间体siRNA。
23.权利要求19的多种分离的DNA分子,其中至少第二分离的DNA分子编码包含与第二靶RNA的有意链互补的5’部分的中间体siRNA。
24.DNA介导的基因沉默(DMSG)盒,其包含可操作地连接于至少一个异源核苷酸序列的权利要求1的分离DNA分子。
25.权利要求24的DMSG盒,其中异源核苷酸序列包含限制性核酸内切酶识别位点、重组酶识别位点、或它们的组合。
26.权利要求24的DMSG盒,其中异源核苷酸序列包含至少一个转录调控元件。
27.权利要求26的DMSG盒,其中至少一个转录调控元件包含启动子、增强子、终止子、或它们的组合。
28.权利要求24的DMSG盒,其包含可操作连接的启动子、权利要求1的DNA分子和终止子。
29.权利要求26的DMSG盒,其中转录调控元件包含RNA聚合酶III转录调控元件。
30.权利要求29的DMSG盒,其中RNA聚合酶III转录调控元件包含人U6基因RNA聚合酶III转录调控元件。
31.权利要求27的DMSG盒,其中转录调控元件是诱导型启动子、诱导型增强子、组成型的活化启动子、组成型的活化增强子、或它们的组合。
32.权利要求27的DMSG盒,其中转录调控元件是组织特异性启动子或发育阶段特异性启动子。
33.权利要求24的DMSG盒,其中可表达的模板核苷酸序列编码第一中间体siRNA,并且其中异源核苷酸序列包含编码第二中间体siRNA的至少约16个核苷酸的第二可表达模板核苷酸序列,其中第二中间体siRNA的5’部分与第一中间体siRNA的5’部分互补,因此,当表达时,第一中间体siRNA的5’部分选择性地与第二中间体siRNA的5’部分杂交,从而形成发夹结构。
34.权利要求33的DMSG盒,其进一步包含至少一个RNA聚合酶III转录调控元件。
35.权利要求33的DMSG盒,其进一步包含至少一个人U6基因转录调控元件。
36.权利要求24的DMSG盒,其包含可操作连接的a)有意多核苷酸序列,所述有意多核苷酸序列包含SEQ ID NO1的核苷酸6-13、SEQ ID NO1的核苷酸19-38、SEQ ID NO1的核苷酸66-69、和编码中间体siRNA的至少约16个核苷酸的模板核苷酸序列;b)与a)的核苷酸序列互补的反义多核苷酸;或c)包含a)的有意多核苷酸和b)的反义多核苷酸的双链多核苷酸。
37.权利要求36的DMSG盒,其中a)的有意多核苷酸进一步包含可操作连接的至少一个含有TTTTT五核苷酸序列的转录终止子;其中b)的反义多核苷酸进一步包含可操作连接的AAAAA五核苷酸序列;或其中a)的有意多核苷酸进一步包含可操作连接的至少一个含有TTTTT五核苷酸序列的转录终止子,并且b)的反义多核苷酸进一步包含可操作连接的AAAAA五核苷酸序列。
38.权利要求24的DMSG盒,它是线性表达盒。
39.权利要求24的DMSG盒,它是环状表达盒。
40.权利要求24的DMSG盒,其进一步包含可检测标记。
41.权利要求40的DMSG盒,其中可检测标记是荧光标记、放射性核素、酶、顺磁性标记、生物发光标记、或化学发光标记。
42.权利要求41的DMSG盒,其中所述的荧光标记是荧光素、R-藻红素、Cy3、Cy5、或德克萨斯红。
43.权利要求24的DMSG盒,其进一步包含靶向部分。
44.权利要求43的DMSG盒,其中靶向部分是多核苷酸、肽、肽模拟物、或小的有机分子。
45.权利要求43的DMSG盒,其中靶向部分包括细胞受体的配体、细胞配体的受体、或抗体。
46.载体,其包含权利要求24的DMSG盒。
47.细胞,其包含权利要求24的DMSG盒。
48.多种DMSG盒,其包含至少两种权利要求24的DMSG盒。
49.权利要求48的多种DMSG盒,其中第一DMSG盒的可表达模板核苷酸序列编码包含与靶RNA有意链互补的5’部分的中间体siRNA。
50.权利要求49的多种DMSG盒,其中至少第二DMSG盒的可表达模板核苷酸序列编码包含与靶RNA反义链互补的5’部分的中间体siRNA。
51.权利要求50的多种DMSG盒,其中由第一DMSG盒的可表达核苷酸序列编码的中间体siRNA的5’部分与第二DMSG盒的可表达核苷酸序列编码的中间体siRNA的5’部分互补。
52.权利要求49的多种DMSG盒,其中至少第二DMSG盒的可表达模板核苷酸序列编码包含与第二靶RNA的有意链互补的5’部分的中间体siRNA。
53.权利要求50的多种DMSG盒,其中至少第二DMSG盒的可表达模板核苷酸序列编码包含与第二靶RNA的反义链互补的5’部分的中间体siRNA。
54.权利要求48的多种DMSG盒,其中第一DMSG盒的可表达模板核苷酸序列编码包含与靶RNA的反义链互补的5’部分的中间体siRNA。
55.权利要求54的多种DMSG盒,其中至少第二DMSG盒的可表达模板核苷酸序列编码包含与靶RNA的有意链互补的5’部分的中间体siRNA。
56.权利要求55的多种DMSG盒,其中由第一DMSG盒编码的中间体siRNA的5’部分与第二DMSG盒编码的中间体siRNA的5’部分互补。
57.权利要求54的多种DMSG盒,其中至少第二DMSG盒的可表达模板核苷酸序列编码包含与第二靶RNA的反义链互补的5’部分的中间体siRNA。
58.权利要求54的多种DMSG盒,其中至少第二分离的DNA分子的可表达模板核苷酸序列编码包含与第二靶RNA的有意链互补的5’部分的中间体siRNA。
59.细胞内介导靶RNA的RNA干扰的方法,该方法包括将至少一种权利要求24的DMSG盒导入细胞,因此包含由DMSG盒编码的中间体siRNA的siRNA的表达引发靶RNA的降解,从而在所述的细胞中介导RNA干扰。
60.权利要求59的方法,其中至少一种DMSG盒编码与靶RNA有意链互补的中间体siRNA。
61.权利要求59的方法,其包括将至少两种DMSG盒导入细胞。
62.权利要求61的方法,其中至少两种DMSG盒中的第一DMSG盒编码包含与靶RNA有意链互补的5’部分的第一中间体siRNA,并且其中至少两种DMSG盒中的第二DMSG盒编码包含与靶RNA反义链互补的5’部分的第二中间体siRNA。
63.权利要求62的方法,其中与靶RNA有意链互补的第一中间体siRNA的5’部分与与靶RNA反义链互补的第二中间体siRNA的5’部分互补,由此第一中间体siRNA和第二中间体siRNA选择性杂交形成siRNA。
64.权利要求59的方法,其中靶RNA是信使RNA(mRNA)。
65.权利要求64的方法,其中mRNA是由细胞内的内源基因编码的。
66.权利要求59的方法,其中靶RNA是病毒RNA。
67.权利要求66的方法,其中病毒RNA是双链RNA。
68.样本中敲低靶基因表达的方法,该方法为将样本与至少一种权利要求24的DMSG盒接触,其中包含由DMSG盒编码的中间体siRNA的siRNA的表达引发靶基因编码的靶RNA分子的降解,从而部分或完全敲低样本中靶基因的表达。
69.权利要求68的方法,其包括将样本与至少两种DMSG盒接触。
70.权利要求69的方法,其中至少两种DMSG盒的第一DMSG盒编码包含与靶RNA有意链互补的5’部分的第一中间体siRNA,并且其中至少两种DMSG盒的第二DMSG盒编码包含与靶RNA反义链互补的5’部分的第二中间体siRNA。
71.权利要求70的方法,其中第一中间体siRNA的5’部分与第二中间体siRNA的5’部分互补,由此第一中间体siRNA和第二中间体siRNA选择性杂交形成siRNA。
72.权利要求68的方法,它是在体外进行的。
73.权利要求68的方法,其中样本包括细胞,所述的方法包括将至少一种DMSG盒导入细胞,由此包含由DMSG盒编码的中间体siRNA的siRNA的表达引发RNA分子的降解,从而敲低细胞中靶基因的表达。
74.权利要求73的方法,其中细胞是培养的细胞。
75.权利要求73的方法,其中细胞包含原位细胞。
76.权利要求73的方法,其中靶基因是细胞中的内源基因。
77.权利要求73的方法,其中细胞是生殖细胞。
78.在细胞群中跟踪经历DNA介导的基因沉默的特异细胞或特异细胞群的方法,该方法包括将至少一种权利要求35的DMSG盒导入特异细胞或特异细胞群体中的每个细胞;以及检测可检测标记,从而在细胞群中跟踪经历DNA介导的基因沉默的特异细胞或特异细胞群。
79.权利要求78的方法,其包括将第一DMSG盒和第二DMSG盒导入特异细胞或特异细胞群,其中第一DMSG盒编码包含与靶RNA有意链互补的5’部分的第一中间体siRNA,其中第二DMSG盒编码包含与靶RNA反义链互补的5’部分的第二中间体siRNA,且其中第一中间体siRNA的5’部分与第二中间体siRNA的5’部分互补。
80.鉴定经历DNA介导的基因沉默的细胞的方法,该方法包括在足以将DMSG盒导入细胞的条件下,将至少一个细胞与至少一种权利要求35的DMSG盒接触;以及检测细胞中至少一种DMSG盒的可检测标记,从而鉴定经历DNA介导的基因沉默的细胞。
81.权利要求80的方法,其包括将至少一个细胞与第一DMSG盒和第二DMSG盒接触,其中第一DMSG盒编码包含与靶RNA有意链互补的5’部分的第一中间体siRNA,其中第二DMSG盒编码包含与靶RNA反义链互补的5’部分的第二中间体siRNA,且其中第一中间体siRNA的5’部分与第二中间体siRNA的5’部分互补。
82.权利要求81的方法,其中第一DMSG盒的可检测标记不同于第二DMSG盒的可检测标记,且其中所述的检测步骤包括检测第一DMSG盒的可检测标记和第二DMSG盒的可检测标记。
83.评估测试细胞中基因功能的方法,该方法包括将至少一种权利要求24的DMSG盒导入测试细胞,以及当表达DMSG盒编码的siRNA时,观察测试细胞的表型,由此将测试细胞与对照细胞的表型进行比较而指示靶基因的功能,从而评估测试细胞中基因的功能。
84.确定试剂是否影响测试细胞中特异基因的方法,该方法包括在测试细胞中表达包含被至少一种权利要求24的DMSG盒编码的中间体siRNA的siRNA,其中中间体siRNA包含与测试细胞中特异基因编码的RNA分子互补的5’部分;将测试细胞和对照细胞与试剂相接触,以及比较测试细胞的表型和对照细胞的表型,从而评估试剂是否影响测试细胞中的特异基因。
85.权利要求84的方法,其包括在细胞中表达由第一DMSG盒编码的第一中间体siRNA和由第二DMSG盒编码的第二中间体siRNA,其中第一中间体siRNA包含与靶RNA有意链互补的5’部分,其中第二中间体siRNA包含与靶RNA反义链互补的5’部分,且其中第一中间体siRNA的5’部分与第二中间体siRNA的5’部分互补。
86.权利要求84的方法,其中由测试细胞的表型相对于对照细胞的表型的变化确定所述试剂为影响特异基因的试剂。
87.通过诱导针对靶RNA介导的疾病的RNAi改善个体中RNA介导的疾病的方法,该方法包括将表现RNA介导的疾病个体的细胞与至少一种DMSG盒接触,其中表达包含由DMSG盒的模板核苷酸序列编码的一种或多种中间体siRNA分子的siRNA能够介导针对靶RNA的RNAi。
88.权利要求87的方法,其中在体外将个体细胞与DMSG盒接触,从而产生经遗传修饰的细胞,该方法进一步包括将经遗传修饰的细胞回施与受试者。
89.权利要求87的方法,其中在体内将个体细胞与DMSG盒接触,该方法包括在一些条件下将包含DMSG盒的组合物施与个体,从而使表现出RNA介导的疾病的细胞与DMSG盒接触。
90.权利要求87的方法,其中靶RNA是内源RNA。
91.权利要求87的方法,其中靶RNA是外源RNA。
92.权利要求91的方法,其中内源RNA是细菌RNA或病毒RNA。
93.一种试剂盒,其包含至少一种权利要求1的分离的DNA分子。
94.一种试剂盒,包含至少一种权利要求24的DMSG盒。
95.权利要求94的试剂盒,其中异源核苷酸序列包含限制性核酸内切酶识别位点、重组酶识别位点、或它们的组合。
96.权利要求95的试剂盒,其进一步包含至少一个启动子、至少一个终止子、或它们的组合,其中启动子或终止子包含足以可操作连接于编码中间体siRNA的核苷酸序列上的末端。
97.权利要求94的试剂盒,其中异源核苷酸序列包含至少一个启动子、至少一个终止子、或它们的组合。
98.权利要求94的试剂盒,其中异源核苷酸序列包含人U6基因启动子或RNA聚合酶III启动子。
99.权利要求94的试剂盒,其包含经修饰的U6基因增强子,所述增强子包含下述核苷酸序列5′-ATTGCAT-N(10-60)-CTTACCGTAACTTGAAAGTA-3′(SEQ IDNO38);或5′-ATTGCAT-N(10-60)-CTCACCCTAACTGTAAAGTA-3′(SEQ IDNO39).
100.权利要求99的试剂盒,其中经修饰的U6基因增强子被可操作连接于启动子。
101.权利要求94的试剂盒,其中异源核苷酸序列包含至少一个增强子元件。
102.权利要求94的试剂盒,其中试剂盒进一步包含转染辅助物。
103.权利要求94的试剂盒,其包含第一DMSG盒和至少第二DMSG盒。
104.权利要求94的试剂盒,其包含第一DMSG盒和第二DMSG盒。
105.权利要求103的试剂盒,其中第一DMSG盒编码包含与靶RNA有意链互补的5’部分的第一中间体siRNA,其中第二DMSG盒编码包含与靶RNA反义链互补的5’部分的第二中间体siRNA,且其中第一中间体siRNA的5’部分与第二中间体siRNA的5’部分互补。
106.分离的经修饰U6基因增强子,其包含5′-ATTGCAT-N(10-60)-CTTACCGTAACTTGAAAGTA-3′(SEQ IDNO38);或5′-ATTGCAT-N(10-60)-CTCACCCTAACTGTAAAGTA-3′(SEQ IDNO39).
107.权利要求106的分离的经修饰U6基因增强子,其包含5′-ATTGCAT-N(13)-CTTACCGTAACTTGAAAGTA-3′(SEQ ID NO40);或5′-ATTGCAT-N(13)-CTCACCCTAACTGTAAAGTA-3′(SEQ ID NO41).
108.权利要求106的分离的经修饰U6基因增强子,其包含SEQ IDNO1的6-46位核苷酸。
109.非人的转基因生物,其包含权利要求24的DMSG盒。
110.权利要求109的转基因生物,其中转基因生物是哺乳动物。
111.权利要求109的转基因生物,其中转基因生物是转基因啮齿类动物。
112.权利要求109的转基因生物,其中转基因生物是转基因小鼠。
113.权利要求109的转基因生物,其中DMSG盒包含组织特异的启动子、诱导型启动子、或发育阶段特异的启动子。
114.DNA介导的基因沉默(DMSG)盒,其包含可操作连接的RNA聚合酶III(pol III)启动子、可表达的模板核苷酸序列、和至少一个pol III终止子,其中可表达模板核苷酸序列与pol III启动子是异源的,其中可表达模板核苷酸序列由编码中间体小干扰核糖核酸(RNA)分子(siRNA)的至少约16个核苷酸组成,它介导靶RNA的RNA干扰,所述的中间体siRNA包含a)含有与靶RNA有意链互补的至少约15个核苷酸的5’部分,和任选地含有约1-5个核苷酸的3′端部分,其中该中间体siRNA选择性地与靶RNA的有意链杂交;或b)含有与靶RNA反义链互补的至少约15个核苷酸的5’部分,和任选地含有约1-5个核苷酸的3′端部分,其中该中间体siRNA选择性地与靶RNA的反义链杂交。
115.权利要求114的DMSG盒,其中中间体siRNA长度约为21-23个核苷酸。
116.权利要求114的DMSG盒,其中中间体siRNA的3′端部分长度约为1-4个核苷酸。
117.权利要求114的DMSG盒,其中pol III启动子或pol III终止子包含哺乳动物U6基因pol III启动子或pol III终止子。
118.权利要求117的DMSG盒,其中哺乳动物U6基因是人U6基因或小鼠U6基因。
119.权利要求114的DMSG盒,其还包含可操作连接的增强子。
120.权利要求119的DMSG盒,其中增强子是组成型的活化增强子或诱导型增强子。
121.权利要求114的DMSG盒,其是双链DNA分子。
122.权利要求121的DMSG盒,其中双链DNA分子的一条链编码与靶RNA有意链互补的第一中间体siRNA,其中双链DNA分子的第二条链编码与靶RNA反义链互补的第二中间体siRNA,并且其中第一中间体siRNA与第二中间体siRNA选择性杂交形成双链siRNA。
123.权利要求122的DMSG盒,其中双链siRNA在每一3′末端包含1-4个核苷酸的3′突出端。
124.一种载体,其包含权利要求114的DMSG盒。
125.一种细胞,其包含权利要求114的DMSG盒。
126.权利要求114的DMSG盒,其中可表达的模板核苷酸序列编码第一中间体siRNA,并且其中可表达模板核苷酸序列被可操作连接于编码第二中间体siRNA的第二可表达模板核苷酸序列,其中第二中间体siRNA的5’部分与第一中间体siRNA的5’部分互补,由此当表达时,第一中间体siRNA的5’部分选择性地与第二中间体siRNA的5’部分杂交,从而形成发夹结构。
127.权利要求114的DMSG盒,其包含可操作连接的a)有意多核苷酸序列,其包含SEQ ID NO1的核苷酸6-13、SEQ IDNO1的核苷酸19-38、SEQ ID NO1的核苷酸66-69、模板核苷酸序列、和至少一个含有TTTT四核苷酸序列的转录终止子;b)与a)的核苷酸序列互补的反义多核苷酸;或c)包含a)的有意多核苷酸和b)的反义多核苷酸的双链多核苷酸。
128.权利要求127的DMSG盒,其中转录终止子包含SEQ ID NO48或SEQ ID NO49。
129.权利要求127的DMSG盒,其中转录终止子包含SEQ ID NO50或SEQ ID NO51。
130.权利要求114的DMSG盒,其进一步包含可检测标记、靶向部分、或它们的组合。
131.多种DMSG盒,其包含至少两种权利要求114的DMSG盒。
132.权利要求131的多种DMSG盒,其中第一DMSG盒的可表达模板核苷酸序列编码包含与靶RNA有意链互补的5’部分的中间体siRNA。
133.权利要求132的多种DMSG盒,其中至少第二DMSG盒的可表达模板核苷酸序列编码包含与靶RNA反义链互补的5’部分的中间体siRNA。
134.多种分离的脱氧核糖核酸(DNA)分子,其中每一DNA分子被固定在固体支持物上,并且其中每一DNA分子都包含编码中间体小干扰核糖核酸(RNA)分子(siRNA)的至少约16个核苷酸的可表达模板核苷酸序列,其介导靶RNA的RNA干扰,所述中间体siRNA包含a)含有与靶RNA有意链互补的至少约15个核苷酸的5’部分,和含有不与靶RNA有意链互补的约1-5个核苷酸的3′端部分,其中所述siRNA选择性地与靶RNA有意链杂交;或b)含有与靶RNA反义链互补的至少约15个核苷酸的5’部分,和含有不与靶RNA反义链互补的约1-5个核苷酸的3′端部分,其中所述siRNA选择性地与靶RNA反义链杂交。
135.权利要求134的多种DNA分子,其中每一DNA分子进一步包含可操作连接于可表达模板核苷酸序列上的RNA聚合酶III(pol III)启动子,并且其中可表达模板核苷酸序列相应于pol III启动子而言是异源的。
136.权利要求135的多种DNA分子,其中pol III启动子是人U6基因pol III启动子。
137.权利要求134的多种DNA分子,其中每一DNA分子包含可操作连接的RNA聚合酶III(pol III)启动子、可表达的模板核苷酸序列、和至少一个pol III终止子,并且其中可表达的模板核苷酸序列相应于polIII启动子而言是异源的。
138.权利要求137的多种DNA分子,其包含可操作连接的a)有意多核苷酸序列,其包含SEQ ID NO1的核苷酸6-13、SEQ IDNO1的核苷酸19-38、SEQ ID NO1的核苷酸66-69、模板核苷酸序列、和至少一个含有TTTT四核苷酸序列的转录终止子;b)与a)的核苷酸序列互补的反义多核苷酸;或c)包含a)的有意多核苷酸和b)的反义多核苷酸的双链多核苷酸。
139.权利要求138的多种DNA分子,其中转录终止子包含SEQ IDNO48或SEQ ID NO49。
140.权利要求138的多种DNA分子,其中转录终止子包含SEQ IDNO50或SEQ ID NO51。
141.权利要求134的多种DNA分子,其中可表达模板核苷酸序列编码第一中间体siRNA,其中可表达模板核苷酸序列被可操作连接于包含编码第二中间体siRNA的至少约16个核苷酸的第二可表达模板核苷酸序列的核苷酸序列上,并且其中第二中间体siRNA的5’部分与第一中间体siRNA的5’部分互补,由此当表达时,第一中间体siRNA的5’部分选择性地与第二中间体siRNA的5’部分杂交,从而形成发夹结构。
142.权利要求134的多种DNA分子,其中每一DNA分子都被固定在固体支持物的特定位置上。
143.权利要求134的多种DNA分子,其中DNA分子定位在阵列上。
144.权利要求143的多种DNA分子,其中阵列是可寻址阵列。
145.权利要求134的多种DNA分子,其中用明胶将多种的DNA分子固定在固体支持物上。
146.权利要求134的多种DNA分子,其中多种的DNA分子进一步包含可操作连接的跨膜结构域肽,其中跨膜结构域肽是膜内剪切蛋白酶的底物。
147.权利要求146的多种DNA分子,其中DNA分子通过跨膜结构域肽被固定在固体支持物上。
148.权利要求146的多种DNA分子,其中跨膜结构域肽包括β-淀粉样前体蛋白质的肽、果蝇Sevenless蛋白质或其哺乳动物同系物的肽、果蝇torso蛋白质或其哺乳动物同系物的肽、果蝇δ蛋白质或其哺乳动物同系物的肽、或人血型糖蛋白-A蛋白质的肽。
149.权利要求146的多种DNA分子,其中跨膜结构域肽是早老因子的底物。
150.权利要求146的多种DNA分子,其中多种的DNA分子进一步包含可操作连接的蛋白质转导结构域。
151.权利要求134的多种DNA分子,其中多种的DNA分子进一步包含可操作连接的蛋白质转导结构域。
152.权利要求151的多种DNA分子,其中蛋白质转导结构域包括人免疫缺陷病毒TAT结构域、果蝇触角足同源结构域、单纯疱疹病毒VP22转导结构域、或成纤维细胞生长因子转导结构域。
153.权利要求134的多种DNA分子,其中固体支持物包括微芯片、玻片、或珠子。
154.一种试剂盒,它包含权利要求134的多种DNA分子。
155.将DNA介导的基因沉默(DMSG)盒导入细胞的方法,其包括在足以使DMSG盒进入细胞的条件下,将固定于固体支持物上的权利要求24的DMSG盒与细胞接触,从而将DMSG盒导入细胞。
156.权利要求155的方法,其中DMSG盒进一步包含可操作连接的跨膜结构域肽,并且其中跨膜结构域肽是膜内剪切蛋白酶的底物。
157.权利要求156的方法,其中DMSG盒通过跨膜结构域肽被固定于固体支持物上。
158.权利要求156的方法,其中跨膜结构域肽包括β-淀粉样前体蛋白质的肽、果蝇sevenless蛋白质或其哺乳动物同系物的肽、果蝇torso蛋白质或其哺乳动物同系物的肽、果蝇δ蛋白质或其哺乳动物同系物的肽、或人血型糖蛋白-A蛋白质的肽。
159.权利要求156的方法,其中跨膜结构域肽是早老因子的底物。
160.权利要求155的方法,其中DMSG盒进一步包含可操作连接的蛋白质转导结构域。
161.权利要求155的方法,其中DMSG盒进一步包含可操作连接的蛋白质转导结构域。
162.权利要求161的方法,其中蛋白质转导结构域包括人免疫缺陷病毒TAT结构域、果蝇触角足同源结构域、单纯疱疹病毒VP22转导结构域、或成纤维细胞生长因子转导结构域。
163.权利要求155的方法,其中DMSG盒包括多种DMSG盒中的DMSG盒,并且其中多种中的每一DMSG盒都被固定于固体支持物上。
164.权利要求163的方法,其中多种的DMSG盒定位在阵列上。
165.权利要求164的方法,其中阵列是可寻址阵列。
166.权利要求155的方法,其中DMSG盒是用明胶固定在固体支持物上的。
167.权利要求155的方法,其中固体支持物包括微芯片、玻片、或珠子。
168.权利要求155的方法,其中,当在包含DMSG盒的细胞中表达DMSG盒的可表达核苷酸序列时,细胞中基因的表达降低或被抑制。
169.权利要求168的方法,其中基因降低的或被抑制的表达是通过检测细胞的表型变化而检测的。
170.权利要求168的方法,其中基因编码转录因子、生长因子、生长因子受体、蛋白激酶、或G蛋白。
171.权利要求168的方法,其中基因为在呈现病理疾病的细胞中表达,而在相应的不呈现病理疾病的细胞中不表达的基因。
172.权利要求171的方法,其中呈现病理疾病的细胞是癌细胞。
173.权利要求163的方法,其进一步包括从多种DMSG盒中,鉴定能够降低或抑制包含DMSG盒的细胞中基因表达的DMSG盒。
174.通过权利要求173的方法分离的DMSG盒。
全文摘要
提供了通过RNA干扰介导基因沉默的DNA组合物。DNA组合物包括驱动编码中间体小干扰RNA分子的核苷酸序列表达的RNA聚合酶III启动子和RNA聚合酶III终止子。
文档编号A61K48/00GK1636010SQ02828345
公开日2005年7月6日 申请日期2002年12月26日 优先权日2001年12月27日
发明者王继武 申请人:美国绿阳生物技术及医药公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1