具有涂层微凸体的经皮疫苗递送装置的制作方法

文档序号:1042382阅读:205来源:国知局
专利名称:具有涂层微凸体的经皮疫苗递送装置的制作方法
技术领域
本发明涉及施用以及增强穿过皮肤的疫苗经皮递送。更具体地,本发明涉及一种利用皮肤穿刺微凸体穿过角质层递送免疫活性剂的经皮疫苗递送系统,所述微凸体具有免疫活性剂的干燥涂层。所述干燥涂层由一种含有免疫活性剂的溶液和应用于微凸体的表面活性剂形成。当微凸体穿破病人的皮肤时促进了免疫活性剂的递送并且病人的组织间隙液体接触并溶解免疫活性剂。
背景药物大多数以口服或通过注射进行传统地用药。不幸地是,由于许多药物不被吸收或在进入血流之前受到不利地影响并因而不具有预期的活性,它们是完全无效的或功效受到根本减弱。在另一方面,尽管保证了递送过程中药物不被改变,药物直接注射入血流中是一种困难的、不便的、疼痛的和不适的方法,它有时导致病人的不配合。
将一般是形成细胞或病毒的膜或外壳蛋白质分子的疫苗导入生物中从而诱导对生物或病毒的抗体的生产。病毒一般是导入体内的弱化的或杀死的病毒。这使得能够在人和动物中避免疾病。
疫苗传统上通过肌肉注射或皮下注射进行用药。疫苗的IV注射既无效也不可行。由于皮肤的免疫应答,疫苗的经皮递送是一种可取的方法。
皮肤不仅是一种保护皮肤免受外部危害的物理屏障,也是免疫系统的组成部分。皮肤的免疫功能缘起自具有先天性和获得性免疫功能的活性表皮和真皮的固有细胞和体液组分的集合,总称为皮肤免疫系统。
皮肤免疫系统的一个最重要的组分是发现于活性表皮中的特定抗原呈现细胞郎格汉斯细胞(LC)。由于它们的树突在周围细胞之间的广泛分枝朗格汉斯细胞在活性表皮中形成半连续性网络。朗格汉斯细胞的正常功能是检测、捕获和呈现抗原以诱发对侵入病原体的免疫反应。朗格汉斯细胞通过内化抗原、运送至区域性皮肤引流淋巴结,并将处理的抗原呈现给T细胞。
皮肤免疫系统的有效性负责靶向皮肤的疫苗接种策略的成功和安全性。通过皮肤划痕用活力降低的天花疫苗进行免疫接种已成功地导致致命性天花病的全球性根除。使用各种疫苗标准IM剂量的1/5到1/10进行皮内注射在诱导与许多种疫苗的免疫反应中是有效的,同时一种低剂量的狂犬病疫苗已获商业许可进行皮内应用。
作为一种替代,经皮递送提供了一种施用疫苗的方法,否则就需要通过皮下注射和静脉注射进行递送。经皮疫苗递送在这些领域都提供了改进。当与口服递送相比时经皮递送避免了消化道的苛刻环境,避免了胃肠的药物代谢,减弱了第一通过效应,并避免了消化酶和肝酶可能的灭活作用。相反地,在经皮用药过程中消化道并不接受疫苗。但是,在许多情况下,通过被动经皮途径的许多疫苗的传递和流动速度太有限而在免疫学上是无效的。
单词“经皮”在此用作药剂穿过皮肤层的一般术语。单词“经皮”指一种药剂穿过皮肤到达局部组织或全身性循环系统的递送,而无需皮肤的实质性切割或穿透,如以手术刀切割或以皮下针头刺穿皮肤。经皮药剂递送包括通过被动扩散的递送以及基于包括电(例如,离子电渗)和超声波(例如,超声促渗)的外部能源的递送。尽管药物确实穿过角质层和表皮扩散,但通过角质层和表皮的扩散速度经常是限制步骤,特别是对于较大的蛋白质、肽、寡核苷酸和疫苗。为了获得免疫有效剂量,许多化合物需要比简单的被动经皮扩散所获速度更快的传递速度。当与注射相比时,经皮药剂递送消除了相关联的疼痛并减弱了感染的可能性。
经皮药物递送系统一般依赖被动扩散以施用药物而主动经皮药物递送系统则依赖外部能源(例如,电)来递送药物。被动经皮药物递送系统更加普遍。被动经皮系统具有一个含高浓度药物的药物储存器以用于与皮肤接触,药物通过皮肤进行扩散并进入身体组织或病人的血流。经皮药物流动依赖于皮肢的状况、药物分子的大小和物理/化学特性以及穿过皮肤的浓度梯度。由于皮肤对许多药物的低渗透性,经皮递送的应用受到限制。这种低渗透性主要归因于最外面的由脂双分子层所包围的皮肤层角质层,它由充满了角蛋白纤维(角质细胞)的扁平死细胞所组成。这种脂双分子层的高度有序的结构赋予角质层以相对不可渗透的特征。
一种增强被动经皮扩散药物流动的普遍方法包括以皮肤渗透增强剂预处理皮肤或将其与药物共递送。当应用于药物递送通过的体表时,药物增强剂增强药物通过该处的流动。但是,由于蛋白质的大小,这些方法在增强经皮蛋白质,至少是对于较大的蛋白质流动中的有效性受到限制。
主动转运系统利用外部能源辅助穿过角质层的药物流动。一种这样的经皮药物递送的增强称为“电迁移”。这种机制利用电位,它导致应用电流帮助药剂穿过身体表面如皮肤的转运。其它的主动转运系统利用超声(超声促渗)和热作为外部能源。
已经有过许多努力进行机械穿透或破坏最外层皮肤藉此产生进入皮肤的通路从而提高经皮递送的药剂量。称为划痕器的早期疫苗接种装置一般有多个应用于皮肤的齿或针以便在应用区进行刮擦或产生小的切口。疫苗既可以局部性地应用于皮肤上,如授权给Rabenau的美国专利号5,487,726或作为潮湿的液体应用于划痕器的齿上如授权给Galy的美国专利号4,453,926,或授权给Chacornac的美国专利号4,109,655,或授权给Kravitz的美国专利号3,136,314。划痕器已被建议部分用于皮内疫苗递送,因为仅需要递送极少量的疫苗至皮肤内以在免疫病人中有效。另外,由于过量也可实现满意的免疫,递送的疫苗量并不特别重要。但是,在使用划痕器递送疫苗中一个严重的缺点是难以测定递送的经皮剂量。还由于皮肤的弹性、变形性和弹回性,微小的穿刺元件经常不均一地穿透皮肤和/或在皮肤穿刺后药剂的涂层被擦掉。此外,由于皮肤的自身愈合过程,穿刺元件从角质层中移除后在皮肤中产生的刺孔或裂缝趋于愈合。因而,皮肤的弹性作用来在微小的穿刺元件刺入皮肤后去除活性药剂涂层,所述药剂已应用于这些微小的穿刺元件上。另外由穿刺元件形成的微小裂缝在装置移除后快速愈合,因而限制了药剂穿过通道并反过来限制了这些药剂的经皮流动,所述通道是由穿刺元件产生的。
其它利用微小皮肤穿刺元件增强经皮药物传递的装置公开于欧洲专利EP0407063A1、授予Godsha11等的美国专利号5,879,326、授予Ganderton等的3,814,097、授予Gross等的5,279,544、授予Lee等的5,250,023、授予Gerste等的3,964,482、授予Kravitz等的再版25,637和PCT公开号WO96/37155、WO96/37256、WO96/17648、WO97/03718、WO98/11937、WO98/00193、WO97/48440、WO97/48441、WO97/48442、WO98/00193、WO99/64580、WO98/28037、WO98/29298和WO98/29365;本文并入它们的全部内容作为参考。这些装置使用各种形状和大小的穿刺元件以穿透皮肤的最外层(即,角质层)。在这些参考文献中所公开的穿刺元件一般由一种薄而平的膜,如垫或板垂直地延伸。在这些装置的一些中穿刺元件极小,一些仅有约25-400μm长和约5-50μm厚的大小。这些微小的穿刺/切割元件在角质层相应地产生小的微裂缝/微切口以增强穿过其中的经皮药剂传递。
一般地,这些系统包括一个保有药物的储存器以及递送系统以通过角质层由储存器转运药物,如通过装置自身的空心齿。在WO93/17754中公开了这种装置的一个例子,它具有一种液体药物储存器。必须挤压储存器以推动液体药物通过齿管元件并进入皮肤。这类装置的缺陷包括为增加一种可挤压的液体储存器而增加的复杂化和费用以及由于压力驱动递送系统的存在导致的复杂化。
有可能让待递送的药物在微凸体上涂覆,而不使用物理储存器。这消除了一种储存器以及发展一种特异于该储存器的药品制剂或组合物的必要性。
当药剂应用于微凸体上时形成的涂层均一并得到均匀应用是重要的,优选限于微凸体本身。与分布于整个阵列上的涂层相比,一旦装置应用于皮肤并且角质层被刺穿,这使得药剂在组织间隙液体中更大的溶解成为可能。
此外,均一的涂层在保存期间和插入皮肤期间都提供了更大的机械稳定性。不牢固和不连续的涂层更可能在生产和保存期间脱落并在将微凸体应用于皮肤之内期间被皮肤擦除。
发明描述本发明的装置和方法通过利用一种微凸体装置经皮递送一种免疫活性剂克服了这些限制,所述微凸体装置具有覆以干燥均一涂层的微凸体。该涂层含有足量的表面活性剂,它提供包含有效量的疫苗的涂层并促进涂层导入皮肤时的溶解。本发明定向于一种装置和方法,它通过在角质层穿刺微凸体上施加均一涂层,穿过优选为一种哺乳类或最优选为人的角质层递送一种免疫活性剂。
这些表面活性剂分成几种类别。有那些带负电的如SDS等。它们也能够带正电,如氯化十六烷基吡啶(CPC)、TMAC、苯扎氯铵或中性的,如吐温、山梨聚糖或laureth。
表面活性剂可以整合入药物制剂中用于涂布微凸体。本发明的一个优选的实施方案由一种穿过角质层递送有效药剂的装置组成、所述有益药剂通过将免疫活性剂和一种表面活性剂的溶液应用于微凸体上而涂布于微凸体,所述药剂随后进行干燥以形成涂层。这种涂层溶液优选包含从大约1wt%到大约30wt%的表面活性剂。对微凸体进行随意地表面处理以增强在微凸体上形成的涂层的均一性。该装置包含一种具有多个,并优选具有许多个角质层穿刺微凸体的构件。每个微凸体具有小于600μm的长度,或如果长于600μm,随后提供措施以确保微凸体刺穿皮肤的深度不超过600μm。这些微凸体在其上具有一个干燥涂层。干燥前,该涂层含有免疫活性剂和表面活性剂的水溶液。免疫活性剂作为一种溶液应用于微凸体上,所述溶液足够浓从而能够将免疫有效的剂量应用于微凸体。量优选在大约1微克到大约500微克的范围。一旦涂布到微凸体的表面上,溶液就提供免疫有效剂量的免疫活性剂。利用本领域公知的干燥方法将涂层进一步干燥于微凸体上。
本发明的另一个优选的实施方案由生产经皮递送免疫活性剂的装置的方法组成。该方法包括提供具有多个角质层穿刺微凸体的构件。将免疫活性剂加表面活性剂的水溶液应用于微凸体上并随后进行干燥以在其上形成含有干燥药剂的涂层。在水溶液中免疫活性剂足够浓从而能够在涂层中包含免疫有效的剂量。能够在任何温度制备该组合物,只要免疫活性剂不因为条件而被灭活。一旦涂布到微凸体的表面上,该溶液就提供免疫有效量的免疫活性剂。
涂层厚度优选小于微凸体的厚度,更优选厚度小于50μm并且最优选小于25μm。一般地,涂层厚度是在微凸体上测量的平均厚度。
最优选的药剂选自传统疫苗、重组蛋白质疫苗和治疗性癌症疫苗。
能够利用公知的涂布方法将涂层应用于微凸体上。例如,可以如2002年3月15日提交的未决美国申请系列号10/099604所介绍的,将微凸体浸入或部分浸入药剂的含水涂布溶液中。或者可以将涂布液喷到微凸体上。优选喷雾具有大约10-200皮升的小滴大小。更加优选利用印刷技术精确控制小滴大小和定位从而将涂布溶液直接沉积在微凸体上而不在具有微凸体的构件的其它“非穿刺”部分上。
在发明的另一个方面,角质层穿刺微凸体由一个板形成,其中通过对板进行蚀刻或冲孔形成微凸体并且随后将微凸体折叠或弯出板的平面。尽管药学活性剂涂层能够在微凸体形成之前应用于板上,优选在微凸体被切割或蚀刻出来之后但在被折叠出板的平面之前应用涂层。更加优选在微凸体已从板的平面折叠或弯出后进行涂层。
附图简述现在相对于所附的图和图表例示的优选实施方案对发明进行更加详细的介绍。其中

图1是一种微凸体阵列的例子的一部分的透视图;图2是具有几种类型沉积于微凸体上的涂层的图1微凸体阵列的透视图。
图3是图1微凸体阵列的透视图,显示一种沉积于微凸体上的模式涂层。
图4是显示表面活性剂浓度对于蛋白质和肽溶解度的效果的图。
图5显示多种表面活性剂的化学结构。
图6是显示豚鼠对于HA的体内免疫反应的图表,所述HA已通过涂层微凸体阵列的方法施用于受试者。
实施发明的方式定义除非另外说明本文所用的下列术语具有如下意义。
术语“经皮”意为一种药剂进入和/或穿过皮肤以进行局部或系统治疗的药物递送。
术语“经皮流动”意为经皮递送的速度。
如本文所用的术语“共递送”意为在递送之前、药剂经皮流动之前或之中、药剂经皮流动之中、药剂经皮流动之中和之后,和/或药剂经皮流动之后经皮递送添加剂。此外,可以将两种或多种有益药剂涂布到微凸体上,导致有益药剂的共递送。
如本文所用的术语“免疫活性剂”指一种材料的组合物或含有疫苗或其它免疫活性剂的混合物,所述免疫活性剂当以免疫有效量递送时是免疫有效的。
术语“免疫有效量”或“免疫有效比率”指刺激或启动期望的免疫学的、经常是有益的结果所需的免疫活性剂的量或比率。用在涂层中的药剂量将是递送达到期望的免疫结果需要的药剂量的必需量。实际上,这将依赖于要递送的特定的免疫活性剂、递送位点和溶解度以及药剂由涂层向皮肤组织中的递送释放动力学而广泛变化。
术语“微凸体”或“微突”指用来穿刺或切割穿过角质层进入下面的活体动物,特别是哺乳类和更特别是人的皮肤的表皮层、或表皮和真皮层的穿刺元件。穿刺元件不应当穿刺皮肤到引起显著流血的深度。一般穿刺元件具有小于500微米的长度,优选小于250微米。微凸体一般具有大约5-50微米的宽度和厚度。微凸体可以形成为不同形状,如针、空心针、刀片、钉、穿刺器及其组合。
如本文所用的术语“微凸体阵列”或“微凸体构件”指多个以阵列排列的微凸体以穿刺角质层。微凸体阵列可以通过从一张薄板上蚀刻或冲孔多个微凸体并将微凸体折叠或弯出板的平面以形成一种如图1中所示的配置。微凸体阵列也可以以其它公知的方式形成,如通过如Zuck,美国专利号6,050,988中所介绍的形成一个或多个条带,沿着每个条带的边缘具有微凸体。微凸体阵列可以包括装有干燥药学活性剂的空心针。
板或构件的区域和关于板或构件的每个区域的一些特性是指由外环或板的边缘所限定的区域。
术语“模式涂层”指将一种药剂涂层到微凸体的选定区域上。可以将一种以上的免疫活性剂模式涂层到单个微凸体阵列上。利用公知的微流分样技术如微吸和喷墨涂层能够将模式涂层应用于微凸体上。尖部涂层,指将涂层应用于微凸体的尖端,是模式涂层的优选类型。
术语“溶液”不仅将包括充分溶解的组分的组合物还包括蛋白质病毒颗粒、灭活病毒和分裂的病毒体。
发明详述本发明提供一种将免疫活性剂对需要的病人进行经皮递送的装置。该装置具有多个从其中延伸出的角质层穿刺微凸体。使用微凸体刺透角质层进入下面的表皮层或真皮层,但不穿透深至毛细血管床并引起显著的流血。微凸体上具有包含免疫活性剂的干燥涂层。穿透皮肤的角质层后,含药剂的涂层为体液(细胞内液和细胞外液如组织间隙液体)所溶并释放到皮肤中。
含药剂涂层溶解和释放的动力学将依赖许多因素,包括免疫活性剂的性质、涂层方法、涂层厚度和涂层组分(例如,涂层制剂添加剂的存在)。依赖于释放动力学曲线,有必要将涂层的微凸体保持在与皮肤相关的穿刺中更长的时间(例如,多至大约8小时)。这能够通过使用胶粘剂将微凸体元件固定于皮肤上或通过使用WO97/48440中所介绍的锚定的微凸体实现,并入WO97/48440的全部内容作为参考。
图1图解了本发明所用的角质层穿刺微凸体元件5的一个实施方案。图1显示具有多个微凸体10的元件5元件的一部分。微凸体10以基本上90°的角度由具有开口14的板12中伸展出来。板12可以整合入一个包括板12的背板(backing)的递送贴剂,并且可以另外包括胶粘剂将背板粘附于皮肤上。在该实施方案中微凸体通过由一张薄金属板12上蚀刻或冲孔多个微凸体10并将微凸体10弯出板的平面而形成。优选金属如不锈钢和钛。金属微凸体构件公开于Trautman等,美国专利6,083,196;Zuck美国专利6,050,988;和Daddona等,美国专利6,091,975中;在此并入其内容作为参考。其它能够用于本发明的微凸体构件通过利用硅片蚀刻技术蚀刻硅或通过利用蚀刻微模铸造塑料来形成。在Godshall等,美国专利5,879,326中公开了硅和塑料微凸体构件,在此并入其内容作为参考。
图2图示了具有多个微凸体10的微凸体构件5,其中一些具有包含免疫活性剂的涂层16或20。这些涂层可以部分地(涂层19)或完全地(涂层20)覆盖微凸体10。涂层一般在微凸体形成后应用。
微凸体上的涂层能够通过各种公知的方法形成。一个这种方法是浸入涂层(dip-coating)。浸入涂层可以描述为一种通过部分地或全部地将微凸体浸入含药物的涂层溶液中来涂层微凸体的方法。备选地,能够将完整的装置浸入涂层溶液中。优选仅涂层微凸体构件的穿刺皮肤的那些部分。
通过利用上述的部分浸入技术,有可能将涂层仅仅限制于微凸体的尖端。还有一种滚轴涂层机制,它将涂层限制于微凸体的尖端。在美国专利(系列号10/099604,提交于2002年3月16日)中介绍了这种技术,在此将其全部并入作为参考。
其它涂层技术包括将涂层溶液喷雾在微凸体上。喷雾可以包括涂层组合物的喷雾悬浮液的形成。在一个优选的实施方案中将一种形成10-200皮升小滴大小的喷雾悬浮液喷雾在微凸体上并且随后进行干燥。在另一个实施方案中,如图3所示能够将极小量的涂层溶液沉积在微凸体10上作为模式涂层18。能够利用将沉积液定位于微凸体表面上的分样系统应用模式涂层18。沉积液的量优选在0.5-20纳升/微凸体的范围中。合适的精确计量液体分样器的例子在美国专利号5,916,524;5,743,960;5,741,554和5,738,728中进行了介绍,在此并入其内容作为参考。也能够利用使用已知的电磁阀分样器、任选的液体运动装置和定位装置的喷墨技术应用微凸体涂层溶液,所述定位装置一般通过使用电场进行控制。能够利用来自印刷工业的其它液体分样技术或本领域公知的类似液体分样技术应用本发明的模式涂层。
期望的涂层厚度依赖于每单位面积板的微凸体密度和涂层组合物的粘度和浓度以及所选择的涂层方法。通常,由于较厚的涂层趋于在角质层穿刺后从微凸体上脱落,涂层厚度应当小于50微米。如从微凸体表面所测量的,优选的涂层厚度小于25微米。一般涂层厚度指在涂层的微凸体上测量的平均涂层厚度。
本发明所用的免疫活性剂需要大约1微克到大约500微克的剂量。可以将在此范围内的量涂布到图1所示类型的微凸体阵列上去,其中板12具有高至10cm2的面积以及高至1000个微凸体/cm2的微凸体密度。
在所有情况下,在应用涂层后,通过各种方法将涂层溶液干燥于微凸体上。在一个优选的实施方案中涂层的装置在接近室内条件下进行干燥。但是,能够使用各种温度和湿度水平来将涂层溶液干燥于微凸体上。此外,该装置能够被加热、冻干、真空干燥或利用类似的技术来从涂层中去除水分。
其它公知的制剂佐剂都可以加入到涂层溶液中,只要它们不会不利地影响涂层溶液必需的溶解度和粘性以及干燥涂层的物理完整性。
此外,任何另外的制剂佐剂都不应当显著除低免疫活性剂的免疫原性刺激潜能。
下面给出的实施例使得本领域技术人员能够更清楚地理解和实施本发明。不应当认为它们限制本发明的范围,而仅仅是作为代表进行举例说明。
进行预研究以显示表面活性剂在溶解蛋白质方面的有效性。用在第一组研究中的三种蛋白质/肽是卵白蛋白(45Kd)、溶菌酶(14Kd)和环孢菌素A(1.2Kd)。
通过将溶液暴露于95℃15分钟对前两种蛋白质的每一种的10wt%水溶液进行热变性。作为变性作用的结果,两种变性的蛋白质显示极低的水溶性。环孢菌素A本来就显示低水溶性。
将三种蛋白质/肽样品的每种都用在具有不同SDS浓度的溶液的配制中。对表示为术语wt%的每种样品的溶解性进行测量并相对于该样品的SDS浓度进行绘图。该数据显示于图4。
对于三种试验蛋白质,溶解度随着升高的SDS浓度而升高是显而易见的,测试的SDS最高浓度为10wt%。
相对于0.5wt%的卵白蛋白溶液对其它的表面活性剂和浓度进行测试。数据在下面表1中给出。对于完全溶解卵白蛋白溶液有效的制剂以“+”表示,那些不能对于完全溶解有效的制剂以“-”表示。
表1

多种表面活性剂已在流感疫苗配制以通过微凸体阵列递送中进行了评估。使用单价″分裂的病毒体(split-varion)″流感疫苗(A/Panama/2007/99,H3N2)评估各种表面活性剂。为了制备这种疫苗,将源自卵胚的流感病毒颗粒分裂并根据标准规程以表面活性剂和有机溶剂进行提取。纯化后,由于它包含显著量的集聚蛋白质和不溶于水的脂类,疫苗溶液保持为悬浮液。
微凸体阵列涂层的液体制剂必须满足一些液体特性标准包括足够的固体成分(疫苗成分)、液体粘性、在液体制剂和微凸体表面之间良好的表面能,微凸体表面通常是钛。″分裂的病毒体″流感疫苗制剂是一种用于评估表面活性剂的良好的材料,因为浓缩的疫苗是高度混浊的(乳白色),这可能是分裂病毒颗粒和各种大小的聚集蛋白质悬浮的结果。使用高度混浊的起始材料令评估各种表面活性剂制剂溶解病毒颗粒的能力更为容易。
控制溶解过程从而促进在微凸体上的良好涂层是重要的。在悬浮液中的微粒,特别是大的颗粒(>10μm),可能会干扰甚至破坏涂层过程。第二个问题是在递送入皮肤的表皮层后,特别是在集聚的HA颗粒于组织间隙液体存在的情况下不能恢复为免疫活性形式时,减弱聚集的抗原蛋白质、血凝素(HA)或其它免疫刺激抗原表位的抗原性/免疫原性的可能性。
用于该实施例中的表面活性剂为1.Triton X 100(见图5中第1排的结构)。
2.Zwittergent(见图5中第2排的结构)。
3.十二烷基磺酸钠(SDS),CH3(CH2)11SO4-Na+。
4.吐温20或80,聚山梨酯20或80,(见图5中第3排的结构)。
5.PluronicF68,环氧丙烷(PO)和环氧乙烷(EO)的嵌段共聚物。环氧丙烷(PO)嵌段夹在两个环氧乙烷(EO)嵌段之间(见图5中第4排的结构)。
表面活性剂1-3是强烈的表面活性剂,已知它通过主动结合蛋白质分子引发蛋白质构象改变来使蛋白质变性。因而,尽管它们的溶解能力,它们使蛋白质变性的倾向引起了对HA降低的抗原性和免疫原性的关注。吐温和Pluronic与SDS、Triton和Zwittergent相比是较温和的,从而它们可以提供对抗原较好的长期稳定性。
各种表面活性剂的溶解能力利用紫外线/可视分光光度测定法于340nm测定吸光度来测定起始疫苗材料的混浊度。具有80μg/mL HA浓度的起始材料,为十分的乳白色(见表2,其中较高水平的吸光度代表较高的混浊度)。调整溶液使它们的表面活性剂浓度为0.1%时,疫苗溶液不同水平地澄清,提示这些表面活性剂的溶解力遵循下列顺序SDS≈Zwittergent 3-14>Triton X 100>吐温20≈PluronicF68。
表2

还对Zwittergent进行了评估。Zwittergent是一族表面活性剂,它们基于分子中的甲基数而存在有不同的疏水性(图5)。表3总结了含有1wt%所述Zwittergent的几种不同制剂的溶解力。由通过于340nm的混浊度测量所测定的,具有增强疏水性的Zwittergent表现出增强的溶解力。
表3

预配制过程评估商业疫苗制品一般含有来自至少三种不同流感株的HA。本文所述的起始疫苗材料仅含有一种单一类型和株型(A/Panama)。这种材料具有0.4mg/mL的HA浓度。
由于流感病毒培养于鸡蛋中,所以起始材料制剂不仅包含HA还包含未被去除的其它物质如来自鸡蛋的蛋白质和脂类。因为许多病人对鸡蛋过敏并且为了减少病人接触其它可能的敏感物,必须尽可能去除在起始材料中的非HA物质。
考虑到以上问题,将对起始疫苗材料进行缓冲交换和高度浓缩。对起始疫苗材料实施下列操作作为制备涂层制剂的必要条件通过切向流动过滤(TFF)的渗滤/浓缩相对于注射用水(WFI)进行渗滤。在TFF系统中,于TFF装置中将500mL的起始疫苗材料浓缩至50mL,随后将其以2×500mL的渗滤溶液进行渗滤并且接着浓缩到具有大约10mg/mL HA浓度的终体积。
冷冻干燥将以上溶液在糖存在的情况下进行冷冻干燥,所述糖可以是蔗糖或海藻糖二水合物。冷冻干燥材料的化学组分总结于表4中
表4冷冻干燥疫苗的化学组分

以一种含表面活性剂的液体制剂进行重构对表5(下)中所示的四种溶液的重构冷冻干燥材料的能力进行评估作为所需的适当重构溶液全部测定的部分,从而提供具有50mg/mlHA浓度的制剂。
表5

基于表5中所示各种重构制剂的评估,进行了进一步的研究并且下列制剂在重构冷冻干燥HA溶液至HA浓度为50mg/mL中是有效的。

干燥后,能够对上面的三种制剂的每种组分的构成进行评估,如下面表6中所示。
表6三种10%的表面活性剂重构的制剂的百分比构成

表面活性剂是每种制剂的主要组分,包含了全部固体的约50%。
液体特性(粘性、接触角度、固体含量)在涂层之前对各种制剂测定对于微凸体涂层关键的液体制剂参数。这些参数,包括粘度、吸湿度和固体含量,在表7中给出。
通过将已知体积的制剂放置于1cm2的钛盘表面对接触角度进行测量。接触角度能够定义为在基底支持表面和液体小滴与基底的接触点的正切线之间的角度。
与具有73°接触角度的纯水或非表面活性剂制剂相比,表面活性剂在制剂中的存在提高了液体制剂在钛表面上的吸湿度,这已为接触角度的减小所证明。进行微凸体涂层以理解这些表面活性剂是如何影响涂层进行的。
表7

涂层可行性利用250μL的涂层器进行所有的涂层实验。这种涂层器装备有水输入管线,它允许通过一个注射器泵加入新鲜水以在涂层过程中补偿水的损失/蒸发。加水的速率是3μL/分钟。线性涂层速率为1.15cm/秒。阵列具有2cm2的表面积。我们在所有的制剂/设计中应用12次涂层。
基于通过扫描电镜术的检查所有涂层都显示可接受的涂层形态。看来这些表面活性剂促进尖端涂层,即涂层的位置接近微凸体的顶端。这种涂层定位据认为是优选的,因为如果穿刺未携涂层部分足够远地进入皮肤以被组织间隙液体所溶,那么涂层离顶端太远可能无法递送。在缺少表面活性剂或存在不足的这些表面活性剂的情况下尖端涂层难以用制剂进行控制。
递送结果进行进一步的研究以便测定HA由微凸体递送入皮肤的效率,所述微凸体用各种HA制剂进行干燥涂布。在无毛的豚鼠上进行递送研究。以下面图8中所示的制剂涂布一系列微凸体阵列。制剂还含有一种荧光标记荧光素。
在将涂布的微凸体阵列应用于皮肤上预定的一段时间后,对由从三种来源收集的样品进行测定。第一种是在由微凸体阵列应用位点上所取的皮肤活检中测定荧光素。应用时间足够短以至于递送至皮肤上的荧光素没有时间移行出活检的皮肤区域。第二种来源是来自在微凸体阵列上发现的未溶解的残留物。第三种是来自用来在移除微凸体阵列后立即洗去皮肤应用位点上发现的表面物质的溶液。
将递送效率定义为皮肤中的荧光素相对于回收总量的百分比。进行递送研究并且将结果总结于表8中。
表8

全部制剂/递送条件都显示>45%的良好递送效率。这一递送效率水平可能归因于优选的涂布定位(顶端涂布),它允许大多数涂布充分刺入皮肤中。这些结果确认了这些表面活性剂的重要特性,它不仅促进流感疫苗的溶解还促进改进涂层制剂的液体特性以增强有效顶端涂层的能力。在有效渗透的范围内,顶端涂层提高了递送效率。最小的递送效率据认为是10%,它仍然提供足量的免疫活性剂。
HA效力分析除了能够接受的HA递送水平,还必须显示递送的HA尽管以各种表面活性剂进行处理仍然是抗原性的。在以各种表面活性剂制剂进行处理之后利用两种试验测量HA制剂的抗原性。这些试验为专有的ELISA测定以及蛋白质印迹。
ELISA如上所述制备HA制剂,产生几种表面活性剂制剂,既有液体状态也有干燥状态。对这些样品进行ELISA测定。结果在表9中进行总结。通过双金鸡纳酸(BCA)总蛋白分析测定HA含量。来自BCA分析的结果与目标HA浓度相一致(0.4mg/mL)。在几次重复分析之间于含SDS的制剂中看到显著的差异。因为ELISA分析很大部分依赖于加入蛋白质结合试验样品中的抗原的能力,总体上,ELISA结果表明在这些表面活性剂制剂中的HA保持着抗原性。
样品1是如上所述处理的起始HA材料。样品2-液体到5-液体是样品1的复制,其已在第二栏中所指出的四种制剂之一中进行了重构。样品2固体到5-固体是样品2-液体到5-液体的复制,它已在1cm2的钛盘上进行了空气干燥并随后在水中进行了重构。样品2-固体到5-固体打算模拟在钛微凸上涂层的条件。样品2-固体到5-固体的总蛋白在下面BCA分析的可检测性阈值之下。
表9

蛋白质印迹相对于HA的5种制剂(上面表9中所示的前5个样品)测试羊抗HA抗体。在SDS-PAGE凝胶上跑样品并以考马斯亮兰进行染色。将分子量标记和起始疫苗材料与5种制剂一起跑胶。所有5个样品的条带模式与起始疫苗材料非常相似,表明作为接触表面活性剂制剂的后果在样品中没有显著的改变。
在PAGE凝胶上进行蛋白质印迹以后,在不同制剂之间没有注意到差异。一系列反映蛋白质和羊抗HA抗体之间结合的条带主要在高分子量处出现。有三个具有约75kD、150kD和225kD估计分子量的条带,推测其为HA单体、二聚体和三聚体。因此,基于匹配的条带和条带亮度(相对于起始疫苗),我们得出结论即已被冻干并接触高浓度的强表面活性剂的制剂中的抗原HA保持了其抗原性。
ELISA和蛋白质印迹分析都显示HA在这些表面活性剂存在的情况下保持了其抗原性。但是,还需要证实其免疫原性的保留。
体内免疫分析最后的试验是测定含有各种目标表面活性剂的HA制品的体内免疫原性。制剂在下面表10中给出。
试验的每组都由5只动物组成并且每组都在0天时给与最初疫苗接种以及在28天给与加强疫苗接种。每种情况下的抗原剂量都是由BCA分析所测定的5μgHA并通过IM注射递送。在28天、35天和42天收集血清。
表10免疫制剂

HA进行浓缩后并在表面活性剂存在情况下,将5μL(即,200-260μgHA)溶液等分至灭菌管中(即,“液体”)。将另一个5μL等分至1cm2钛盘上并进行空气干燥(即,“干燥涂层”)。将“液体”和“干燥涂层”制品都保存于-80℃。为了通过ELISA测定HA含量,将样品在1mL无菌生理盐水中融解并进行重构。利用0.5mL的这种材料进行ELISA分析。剩余的0.5mL溶液保存于-80℃。在预定的免疫日期那天将剩余的0.5mL样品在无菌生理盐水中融解并进行重构至0.05mg HA/mL的浓度。
基于由BCA分析所产生的数据,0.5mL的溶液应当包含100-130μgHA,所述HA由每种制剂所制备。通过ELISA测量的所有制剂(起始制品[d0]和加强制品[d28])的HA含量可见于表11中。如能够见到的(最后两栏),由ELISA所测量的HA活性通常低于基于BCA分析的估测(d0组8除外)。当然,BCA分析测量总蛋白质含量;因此是对HA的间接测量。
因为ELISA作为HA量化的测定还未得到完全地确认,我们选择利用BCA数据来确定溶解HA至50μg/mL所需要的生理盐水体积。一旦将制剂稀释,就将每种制品的5μg HA(0.1mL)肌肉注射进每一HGP中(表10)。
表11

计算来自每个处理组的平均抗HA效价并示于图6中(d42;加强注射后14天)。
由液体进行重构的材料显示为实心条形而在钛盘上进行干燥涂布并随后重构的材料显示为空心条形。
进行一些初步的统计分析(将个体效价值进行对数变换)。ANOVA显示在起始材料四种“液体”制剂之间没有显著性。但是ANOVA显示在“干燥”制剂之间有显著性。最小显著差异试验显示10%的SDS“干燥涂层”制剂与起始材料(p<0.01);10%Zwittergent (p<0.01);5%Zwittergent,pH10(p<0.05);和10%Triton X-100(p<0.05)
是有统计学显著性的。
最小显著差异试验还显示10% Zwittergent SDS“干燥涂层”制剂(组3)与10%TritonX-100是统计学显著性的(p<0.05)。t-检验(成组的)分析显示了在含有10%SDS的“液体”与“干燥涂层”制剂之间(组8与组9对比,p<0.05)的显著性。
总之,尽管接触到各种表面活性剂,所有含表面活性剂的制剂,液体或干燥物,都保持了免疫原性。此外,除了含SDS的制剂以外,与起始疫苗的免疫反应相比,这些制剂都诱发了免疫反应。由SDS制剂显示的较低的免疫可能归因于按照ELISA分析所测定而给与的较低HA剂量(表10)。
尽管引证的实施例具有含一种表面活性剂的制剂,本发明应当理解为还包括含两种或多种表面活性剂组合的制剂。
尽管本发明相对于特定实施例进行了介绍,应当理解本领域普通技术人员能够轻易地进行各种改进和变化而不背离发明的精神和范围。因此,前述内容应当仅仅理解为例证性的而不应以限制性意义进行理解。本发明仅为下面权利要求书的范围所限。
权利要求
1.一种经皮递送免疫活性剂的装置,该装置包括具有多个角质层穿刺微凸体的构件和在所述构件上的干燥涂层;所述涂层在干燥之前含有一定量免疫活性剂和表面活性剂的水溶液;其中所述表面活性剂在所述水溶液中以大约1wt%到大约30wt%存在。
2.权利要求1的装置,其中所述的免疫活性剂在所述水溶液中以至少大约1wt%的浓度存在。
3.根据权利要求2的装置,其中所述涂层仅应用于一个或多个所述微凸体。
4.根据权利要求2的装置,其中微凸体的长度等于或小于大约600微米。
5.根据权利要求2的装置,其中在所述构件上涂层的所述免疫活性剂的总量在大约1微克到大约500微克之间。
6.根据权利要求2的装置,其中所述涂层的厚度等于或小于大约50微米。
7.根据权利要求2的装置,其中所述涂层的厚度等于或小于大约25微米。
8.根据权利要求2的装置,其中所述免疫活性剂选自传统疫苗、重组蛋白疫苗和治疗性癌症疫苗。
9.根据权利要求2的装置,其中所述水溶液进一步包含一种或多种组分的悬浮液,所述组分选自蛋白质病毒颗粒、灭活的病毒和分裂的病毒体。
10.根据权利要求2的装置,其中所述构件具有小于或等于大约10cm2的面积。
11.根据权利要求2的装置,其中所述构件具有小于或等于大约1000个微凸体/cm2的微凸体密度。
12.根据权利要求2的装置,其中所述免疫活性剂含有来自至少一株流感病毒的血凝素。
13.根据权利要求2的装置,其中所述表面活性剂选自癸基磺酸钠、十二烷基磺酸钠、月桂酸钠、氯化十六烷基吡啶、Zwittergent3-10,Zwittergent 3-12,Zwittergent 3-14,Triton X-100,聚山梨酯20、聚山梨酯80和Pluronic F68。
14.一种经皮药物递送装置,其包括具有多个微凸体的微凸体阵列;所述微凸体被设计用来当将微凸体阵列应用于体表时对角质层进行穿刺;一个或多个至少部分地覆以基本干燥涂层的所述微凸体,所述涂层含有至少一种疫苗和至少一种表面活性剂;含有预定量所述疫苗的所述涂层;其中所述预定量为从大约1微克到大约500微克的所述疫苗;由含有大约1wt%到大约30wt%所述表面活性剂的溶液形成的所述涂层;当所述疫苗进行经皮递送时足以引发免疫应答的所述预定量的所述疫苗;以及其中所述免疫活性剂的递送效率为大于或等于大约10%。
15.权利要求14的装置,其中所述疫苗以至少大约1wt%的浓度存在于所述水溶液中。
16.根据权利要求14的装置,其中所述涂层仅仅应用于一个或多个所述微凸体。
17.根据权利要求14的装置,其中微凸体的长度等于或小于600微米。
18.根据权利要求14的装置,其中所述涂层的厚度等于或小于大约50微米。
19.根据权利要求14的装置,其中所述涂层的厚度等于或小于大约25微米。
20.根据权利要求14的装置,其中所述疫苗选自传统疫苗、重组蛋白疫苗和治疗性癌症疫苗。
21.根据权利要求14的装置,其中所述水溶液进一步包含一种或多种组分的悬浮液,所述组分选自蛋白质病毒颗粒、灭活的病毒和分裂的病毒体。
22.根据权利要求14的装置,其中所述构件具有小于或等于大约10cm2的面积。
23.根据权利要求14的装置,其中所述构件具有小于或等于大约1000个微凸体/cm2的微凸体密度。
24.根据权利要求14的装置,其中所述疫苗含有来自至少一株流感病毒的血凝素。
25.根据权利要求14的装置,其中所述表面活性剂选自癸基磺酸钠、十二烷基磺酸钠、月桂酸钠、氯化十六烷基吡啶、Zwittergent3-10,Zwittergent 3-12,Zwittergent 3-14,Triton X-100,聚山梨酯20、聚山梨酯80和Pluronic F68。
全文摘要
提供一种经皮递送免疫活性剂的装置和方法。将该药剂与适当的表面活性剂混合并溶于水中以形成一种具有涂布极微小皮肤穿刺元件的适当浓度的涂层水溶液。利用公知的涂层技术将涂层溶液应用于皮肤穿刺元件并且随后进行干燥。将该装置应用于活体动物的皮肤,引起微凸体刺穿角质层并对动物递送免疫学有效剂量的免疫活性剂。
文档编号A61K9/00GK1691938SQ03823971
公开日2005年11月2日 申请日期2003年8月8日 优先权日2002年8月8日
发明者Y·-F·马, M·J·N·科尔米尔, J·马特里亚诺, W·林 申请人:阿尔扎公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1