促进加巴喷丁和普加巴林的吸收的组合物和剂型的制作方法

文档序号:1093749阅读:517来源:国知局
专利名称:促进加巴喷丁和普加巴林的吸收的组合物和剂型的制作方法
背景技术
本发明涉及用于释放加巴喷丁或普加巴林的组合物和剂型。更详细地讲,本发明涉及加巴喷丁或普加巴林和转运部分的络合物,其中该络合物促进药物在胃肠道且更特别是在下胃肠道中的吸收。
背景技术
关于神经性疼痛发病机理的科学理解在过去十年已得到发展,神经性疼痛动物模型的基础研究和人临床试验已揭示由于损伤或疾病使神经系统发生病理生理和生物化学改变(Backonja,M.M.,Clin.J.Pain,16(2)S67-72(2000))。神经性疼痛是慢性病,通常出现在癌症患者、中风受害者、老年人、糖尿病患者(如疼痛的糖尿病性神经病)、带状疱疹(带状疱疹)患者(如带状疱疹后神经痛)以及神经变性疾病患者(例如肌萎缩性侧索硬化(ALS))。神经性疼痛的临床特征包括烧灼感、自发性疼痛、闪痛和诱发痛(evoked pains)。不同的病理生理机制引起特异性感觉症状,例如动态机械异常性疼痛和冷痛觉过敏。
神经性疼痛的治疗方法包括用常规镇痛剂例如非甾体抗炎药、镇痛药、阿片全碱或三环抗抑郁药(Max,M.B.,Ann.Neurol.,35(Suppl)S50-S53(1994);Raja,S.N.等,神经病学,591015(2002);Galer,B.S.等,Pain,80533(1999))。因为这些药物及其它疗法不能充分缓解疼痛或具有不能忍受的副作用所以不被许多患者接受。
已证明抗惊厥剂加巴喷丁治疗神经性疼痛(且特别是治疗疼痛的糖尿病性神经病和带状疱疹后神经痛)具有明显镇痛作用(Wheeler,G.,Curr.Opin.Invest,Drugs,3(3)470(2002))。加巴喷丁还是控制一些类型癫痫发作尤其是癫痫引起的癫痫发作的有效药物(Johannessen,S.I.等,Ther.Drug Monitoring(药物监测),25347(2003))。类似地,普加巴林已显示有效治疗带状疱疹后神经痛和疼痛的糖尿病性神经病(Dworkin,R.H.等,神经病学,601274(2003))。
加巴喷丁通过L-氨基酸转运系统从近端小肠吸收入血流(Johannessen,supra在350页)。药物的生物利用度是剂量依赖的,明显是因为L-氨基酸转运系统饱和,限制了药物的吸收量(Stewart,B.H.等,Pharm.Res.,10276(1993))。例如,血清加巴喷丁浓度随剂量线性增加至最高达约1800mg/d,然后在更高但低于预期的剂量下继续增加,可能是因为从上胃肠道吸收的机制变得饱和(Stewart,同上(supra.))。
负责吸收加巴喷丁的L-氨基转运系统主要存在于小肠的上皮细胞(Kanai,Y.J.等,J.Toxicol.Sci.,28(1)1(2003)),从而限制药物的吸收。普加巴林也显示通过L-氨基转运系统和其它氨基酸转运系统吸收((Dworkin,supra,1282页)。
上胃肠道和下胃肠道细胞特征的差异也造成下胃肠道分子吸收的不足。

图1说明转运化合物通过胃肠道上皮的2种常规途径。由10a、10b、10c表示的个体上皮细胞沿小肠和大肠形成细胞屏障。个体细胞被水通道或紧密连接(例如12a、12b)分隔。通过上皮的转运既可经跨细胞通道也可经旁细胞通道或两者皆可。转运的跨细胞通道(如图1的箭头14)是指化合物通过被动扩散或载体介导的转运移动跨过上皮细胞壁和细胞体。转运的旁细胞通道是指分子移动通过各细胞间的紧密连接,如箭头16所示。旁细胞通道特异性较低但总容量大得多,部分是因为其存在于整个胃肠道。但是,紧密连接沿胃肠道分布不同,从近端至远端紧密连接的有效“紧密度”呈增加趋势。因此,上胃肠道的十二指肠比上胃肠道的回肠更“易漏”,回肠比下胃肠道的结肠更“易漏”(Knauf,H.等,Klin.Wochenschr.,60(19)1191-1200(1982))。
因为药物在上胃肠道的通常停留时间是从约4至6小时,所以结肠吸收差的药物在口服摄入后仅4至6小时时间段通过机体吸收。通常医学上希望的是出现在患者血流中的所给药物全天保持相对恒定浓度。用表现最少结肠吸收的常规药物制剂时为达到这一点,患者将需要每天服药3至4次。这种不便于患者的实践经验上面其并非最佳治疗方案。因此,需要获得这样的全天长期吸收并且每天1次给药的药物。
为提供恒定剂量的治疗,常规药物发展已提出多种控制释放药物系统。这样的系统通过在给药后一段延长时间内释放它们的药物有效负荷发挥作用。但是,在药物结肠吸收最小的情况下这些控制释放系统的常规形式无效。由于药物只在上胃肠道吸收并且由于药物在上胃肠道的停留时间只有4至6小时,所以提出的控制释放剂型在上胃肠道内剂型停留时间后仍可释放其有效负荷的事实不意味经过上胃肠道停留4至6小时后机体将继续吸收控制释放药物。相反,剂型已进入下胃肠道后控制释放剂型释放的药物通常不吸收,而是与下胃肠道的其它物质从机体排出。
如果加巴喷丁以药物有效浓度全天出现在患者血流中,那么该药控制癫痫发作或神经性疼痛的用途将极大改善。为在使用常规加巴喷丁制剂时达到这一点,患者将需要摄入加巴喷丁剂量每天3至4次。这种不便于患者的实践经验表明其并非最佳治疗方案。此外,真正每天1次的加巴喷丁疗法将提供超过便利的优点。患者血流中加巴喷丁相对恒定的剂量提供许多其它优点。因此,需要获得全天长期吸收的每天1次给药的加巴喷丁。
发明概述因此,一方面本发明包括含加巴喷丁或普加巴林和转运部分的物质、加巴喷丁或普加巴林和转运部分形成的络合物。
在一个实施方案中,转运部分是具有6-12个碳原子的烷基硫酸盐。优选的烷基硫酸盐是月桂基硫酸盐。
另一方面,本发明包括由加巴喷丁或普加巴林和转运部分组成的络合物以及药学上可接受的载体的组合物,其中该组合物在下胃肠道的吸收为加巴喷丁或普加巴林的至少5倍。
另一方面,本发明包括含有上文描述的组合物或上文描述的物质的剂型的一个实施方案。
在一个实施方案中,剂型是渗透剂型。在一个实施方案中,示例性剂型具有(i)推进层;(ii)含加巴喷丁-转运部分络合物或普加巴林-转运部分络合物的药物层;(iii)围绕推进层和药物层的半渗透壁;和(iv)出口。另一种示例性剂型具有(i)围绕渗透制剂加巴喷丁-转运部分络合物或普加巴林-转运部分络合物、渗透剂和渗透聚合物的半渗透壁;和(ii)出口。
在一个实施方案中,剂型提供200-3600mg之间的总日剂量。
另一方面,本发明提供含有加巴喷丁或普加巴林的改进剂型。该改进包括含加巴喷丁或普加巴林与转运部分以紧密离子对键缔合的络合物的剂型。
另一方面,本发明包括将加巴喷丁或普加巴林(包含上文描述的物质)给药于需要它们的患者的方法。
在一个实施方案中,该物质是口服给药的。
另一方面,本发明包括制备加巴喷丁或普加巴林和转运部分的络合物的方法,包括提供加巴喷丁或普加巴林;提供转运部分;使加巴喷丁或普加巴林与转运部分在介电常数低于水的溶剂中结合;从而所述结合形成加巴喷丁或普加巴林和转运部分的络合物。
在一个实施方案中,结合包括(i)使加巴喷丁或普加巴林与转运部分在水性溶剂中结合,(ii)将介电常数低于水的溶剂加入该水性溶剂中,和(iii)从该溶剂中回收络合物。
在另一个实施方案中,结合包括在介电常数低于水的介电常数至少二分之一的溶剂中接触。示例性溶剂包括甲醇、乙醇、丙酮、苯、二氯甲烷和四氯化碳。
另一方面,本发明包括改善加巴喷丁或普加巴林胃肠道吸收的方法,包括提供含有加巴喷丁或普加巴林和转运部分的络合物,该络合物的特征是紧密离子对键;并将络合物给药于患者。
在一个实施方案中,改善的吸收包括改善下胃肠道的吸收。
在另一个实施方案中,改善的吸收包括改善上胃肠道的吸收。
这些方面,与本发明的其它方面、特征和优点一样,从下文本发明详细的公开和所附的权利要求中将变得更清楚。
附图简述以下附图并非按比例绘制,而提出来是为了说明本发明的不同图1是胃肠道上皮细胞的简图,说明转运分子通过上皮的跨细胞通道和旁细胞通道;图2A表示加巴喷丁的化学结构;图2B表示普加巴林的化学结构;图3A表示制备加巴喷丁-转运部分或普加巴林-转运部分络合物的通用合成反应流程;图3B表示制备加巴喷丁-转运部分或普加巴林-转运部分络合物的通用合成反应流程,其中该转运部分包括硫酸根基团;图3C表示制备加巴喷丁-烷基硫酸盐络合物的合成反应流程;图3D表示制备普加巴林-烷基硫酸盐络合物的合成反应流程;图4A-4D是加巴喷丁(图4A)、月桂基硫酸钠(图4B)、加巴喷丁和月桂基硫酸钠的物理混合物(松散离子对)(图4C)以及加巴喷丁-月桂基硫酸盐络合物(图4D)的FTIR扫描;
图5表示加巴喷丁经静脉内(三角形)和经插管给药进入结肠(圆形)以及加巴喷丁月桂基硫酸盐络合物(菱形)经插管给药进入结扎的结肠时,作为时间(以小时表示)函数的大鼠中的加巴喷丁血浆浓度(ng/mL);图6A表示加巴喷丁静脉内给药(三角形)以及以5mg(圆形)、10mg(方形)和20mg(菱形)的剂量给药至十二指肠时,作为时间(以小时表示)函数的大鼠中的加巴喷丁血浆浓度(ng/mL);图6B表示加巴喷丁月桂基硫酸盐络合物静脉内给药(三角形)以及以5mg(圆形)、10mg(方形)和20mg(菱形)的剂量给药至十二指肠后,作为时间(以小时表示)函数的大鼠中的加巴喷丁血浆浓度(ng/mL);图6C是加巴喷丁(倒三角形)或加巴喷丁月桂基硫酸盐络合物(圆形)给药至大鼠十二指肠后,加巴喷丁生物利用度(%)的剂量函数的曲线图;图7说明剖视图所示的示例性渗透剂型;图8说明加巴喷丁每天1次剂量的另一种示例性渗透剂型,该剂型包含加巴喷丁-转运部分络合物或普加巴林-转运部分络合物,以及外层包衣中的任选的负荷剂量的络合物;图9说明每天1次加巴喷丁(或普加巴林)剂型的一个实施方案,该剂型既含有加巴喷丁(普加巴林)也含有加巴喷丁(或普加巴林)-转运部分络合物,以及包衣任选的负荷剂量的加巴喷丁(或普加巴林);图10A-10C说明给药于或者前剂量的实施方案,将加巴喷丁(或普加巴林)-转运部分络合物的络合物包含在基质中(图10A)、摄入胃肠道后运行(图10B)以及在基质的充分腐蚀已导致装置的带状部分分离之后(图10C)。
详述I.定义最好参考以下定义、附图和本文提供的示例性公告理解本发明。
用“组合物”是指一种或多种加巴喷丁-转运部分或普加巴林-转运部分络合物,任选与附加的活性药用成分结合,和/或任选与无活性成分(例如药学上可接受的载体、赋形剂、悬浮剂、表面活性剂、崩解剂、粘合剂、稀释剂、润滑剂、稳定剂、抗氧化剂、渗透剂、着色剂、增塑剂等)结合。
用“络合物”是指含有药物部分和转运部分通过紧密离子对键缔合的物质。可通过在辛醇/水中分配行为的差异区分药物-部分-转运部分络合物与药物部分和转运部分的松散离子对,具有以下特征关系;ΔLogD=LogD(络合物)-LogD(松散离子对)≥0.15(方程1)其中,D,分配系数(表观分配系数),是在设定pH(通常约pH=5.0至约pH=7.0)和在25℃下所有种类药物部分和转运部分在辛醇中与相同种类在水(去离子水)中的平衡浓度的比率。LogD(络合物)是用来确定根据本文所指制备的药物部分和转运部分的络合物。LogD(松散离子对)是用来确定去离子水中药物部分和转运部分的物理混合物。例如,可确定假定络合物(在去离子水中25℃)的辛醇/水表观分配系数(D=C辛醇/C水)并与在25℃去离子水中转运部分和药物部分的1∶1(mol/mol)物理混合物比较。如果确定假定络合物(D+T-)的Log D与1∶1(mol/mol)物理混合物(D+‖T-)的LogD之间的差异大于或等于0.15,那么就证实假定络合物是根据本发明的络合物。在优选的实施方案中,ΔLog D≥0.20,且更优选ΔLog D≥0.25,且仍更优选ΔLog D≥0.35。
剂型”是指在介质、载体、媒介物或适合给药于需要它们的患者的装置中的药用组合物。
“药物”或“药物部分”指当给予患者时提供某些药理作用的药物、化合物或药剂、或这些药物、化合物或药剂的残基。适合于在形成络合物中使用,药物包含酸性、碱性或两性离子结构成分(element),或酸性、碱性或两性离子残基结构成分。
“脂肪酸”指通式为CH3(CnHx)COOH的任何有机酸基团,其中烃链为饱和的(x=2n,如棕榈酸,C15H31COOH)或不饱和的(x=2n-2,如油酸,CH3C16H30COOH)。
“加巴喷丁”是指分子式为C9H17NO2且分子量为171.24的1-(氨甲基)环己烷乙酸。市场上可购买的商品名是Neurontin。其结构如图2A所示。
用“肠道”或“胃肠道”是指从胃的下开口延伸至肛门的消化道部分,包括小肠(十二指肠、空肠和回肠)和大肠(升结肠、横结肠、降结肠、乙状结肠和直肠)。
“松散离子对”是指在生理学pH和在水环境中,很容易与可能出现在松散离子对环境中的其它疏松配对或游离的离子相互交换的一对离子。用同位素标记和NMR或质谱分析,通过记录在生理学pH和水环境中松散离子对的成员与另一种离子的互换可在实验中发现松散离子对。也可用反相HPLC,通过记录在生理学pH和水环境中离子对的分离在实验中发现松散离子对。松散离子对也可以称为“物理混合物”,且通过使离子对在介质中一起物理混合形成。
用“下胃肠道”或“下G.I.道”是指大肠。
用“患者”是指需要治疗介入的动物,优选哺乳动物,更优选人。
“紧密离子对”指在生理pH和水性环境中,不容易与在紧密离子对环境中可存在的其他松散的自由离子对互换的离子对。紧密离子对可用实验方法检测,即通过使用同位素标记法和NMR或质谱记录生理pH和水性环境中紧密离子对的一个离子与另一个离子没有互换而测得。紧密离子对可用实验方法发现,即通过使用反相HPLC记录生理pH和水性环境中离子对分离的缺少而发现。
“转运部分”指能够与药物形成络合物的化合物或已与药物形成络合物的化合物的残基,其中转运部分与未络合药物的转运相比,改善了药物的跨上皮组织的转运。转运部分包含疏水部分和酸性、碱性或两性离子结构成分或者酸性、碱性或两性离子残基结构成分。在优选实施方案中,疏水部分包含烃链。在一个实施方案中,碱性结构成分或碱性残基结构成分的pKa大于约7.0,优选大于约8.0。
“药用组合物”指适合给予需要该组合物的患者的组合物。
普加巴林是指(S)-(+)-3-(氨甲基)-5-甲基己酸)。在文献中普加巴林也可以称为(S)-3-异丁基GABA或CI-1008。普加巴林的结构如图2B所示。
“结构成分”指(i)为大分子部分的化学基团,和(ii)具有可辨别的化学官能团的化学基团。例如,化合物上的酸性基团或碱性基团为结构成分。
“物质”指具有具体特征的化学实体。
“残基结构成分”指通过与另一种化合物、化学基团、离子、原子等的相互作用或反应而修饰的结构成分。例如,羧基结构成分(COOH)与钠相互作用以形成羧酸钠盐,COO-为残基结构成分。
“上胃肠道”或“上G.I.道”指包括胃和小肠的胃肠道部分。
II.络合物的形成和鉴定如上文所指,加巴喷丁有效抗惊厥和减轻神经性疼痛。图2A所示的加巴喷丁是两性离子化合物,pKa1为3.7和pKa2为10.7。它易溶于水及碱性和酸性水溶液。在pH 7.4中分配系数(正辛醇/0.05M磷酸盐缓冲液)的对数为-1.25。这些特性,与上文讨论的其被L-氨基酸转运系统吸附的事实一起导致该化合物在胃肠道中吸收少。胃肠道中从胃内约1.2的pH至远端回肠和大肠中约7.5的pH的pH梯度(Evans,D.F.等,Gut,291035-1041(1988))意味着经过胃肠道中pH的范围加巴喷丁被带上电荷,也促使其吸收少。图2B所示的普加巴林是加巴喷丁的结构类似物并且受相同特征的影响,导致在下胃肠道吸收少。
因此,一方面本发明提供明显改善下胃肠道吸收的含有加巴喷丁或普加巴林的化合物。该化合物是加巴喷丁和转运部分的络合物或普加巴林和转运部分的络合物。根据图3A所示的通用合成反应流程,可用药物的盐例如盐酸加巴喷丁或盐酸普加巴林制备所述化合物。简言之,使图3A中D+X-表示的盐形式的药物与图中T-M+表示的转运部分结合。示例性转运部分在上文列举,包括脂肪酸、脂肪酸盐、烷基硫酸酯、苯磺酸、苯甲酸、富马酸和水杨酸。使这两种物质在水中结合形成松散离子对(图中D+‖X-表示),然后如下文将讨论的在介电常数低于水的溶剂中溶剂化。该方法导致形成加巴喷丁-转运部分络合物或普加巴林-转运部分络合物,其中络合物中的物质以紧密离子对键缔合,如图3A中由D+T-表示。
图3B说明形成加巴喷丁(或普加巴林)-转运部分络合物的更具体的合成反应流程。在该流程中,转运部分表示为烷基硫酸酯的盐,(R-SO4)-(Y)+。烷基硫酸盐与药物盐在水中混合形成松散离子对,在图3B中由D+‖[(R-SO4)]-表示。将介电常数低于水的有机溶剂加入松散离子对的水溶液中并提取药物-转运部分络合物,其中药物和转运部分通过紧密离子对键缔合,在图中用D+[(R-SO4)]-表示。
实施例1A提供制备加巴喷丁-转运部分络合物步骤的具体实例,其中该转运部分是烷基硫酸酯且更特别是烷基硫酸盐,如图3C所示。例如,使加巴喷丁与盐酸结合制备加巴喷丁的盐形式,盐酸加巴喷丁。应该理解可形成加巴喷丁的其它盐。然后,加入烷基硫酸酯例如月桂基硫酸酯。在实施例1A中,虽然用月桂基硫酸酯的钠盐,但其它盐也是合适的,例如烷基硫酸钾或烷基硫酸镁。盐酸加巴喷丁与月桂基硫酸钠结合形成加巴喷丁和月桂基硫酸盐的离子对,如图3C中表示的物质之间的松散离子对。将介电常数低于水的溶剂加入含有加巴喷丁和月桂基硫酸盐的溶液并充分混合且任由其沉积。将加巴喷丁月桂基硫酸盐络合物从溶剂相(非水相)中提取,通常用适当技术除去溶剂包括但不限于蒸发、蒸馏等。
在实施例1A中,用烷基硫酸盐(月桂基硫酸盐)作为示例性转运部分形成络合物。应该理解月桂基硫酸盐只作为示例且制备步骤同样适用于适合作为转运部分的其它种类的物质以及任何碳链长度的烷基硫酸盐和脂肪酸。例如,形成加巴喷丁(或普加巴林)与不同烷基硫酸酯或脂肪酸或它们的盐的络合物,其中烷基硫酸盐或脂肪酸中的烷基链含有从6至18个碳原子,更优选8至16个碳原子且甚至更优选10至14个碳原子。烷基链可以是饱和或不饱和的。构思用于制备络合物的脂肪酸中示例性饱和烷基链包括丁酸(酪酸,4C);戊酸(缬草酸,5C);己酸(己酸,6C);辛酸(辛酸,8C);壬酸(壬酸,9C);癸酸(癸酸,10C);十二酸(月桂酸,12C);十四酸(豆蔻酸,14C);十六酸(棕榈酸,16C);十七酸(十七烷酸,17C)和十八酸(硬脂酸,18C),其中系统名之后的园括号内为俗名和脂肪酸中的碳原子数目。不饱和脂肪酸包括油酸、亚油酸和亚麻酸,所有酸具有18个碳原子。亚油酸和亚麻酸为多不饱和酸。示例性加巴喷丁络合物包括棕榈酸加巴喷丁、油酸加巴喷丁、癸酸加巴喷丁、月桂酸加巴喷丁、月桂基硫酸加巴喷丁、癸基硫酸加巴喷丁和十四烷基硫酸加巴喷丁。
示例性烷基硫酸酯和烷基硫酸酯的盐(例如钠、钾、镁等)含有从6至18个碳原子,更优选8至16且甚至更优选10至14个碳原子。优选的烷基硫酸酯包括辛基硫酸盐、月桂基硫酸盐、硫酸肉豆蔻盐。也可考虑形成加巴喷丁或普加巴林与苯磺酸、苯甲酸、富马酸和水杨酸或这些酸的盐的络合物。
加巴喷丁和普加巴林是两性离子化合物,使正负电荷基团可能发生相互作用。在一个实施方案中,选择能够与加巴喷丁和普加巴林的正电荷NH3+部分相互作用的转运部分,如关于图3A-3C所讨论的。脂肪酸和它们的盐、烷基硫酸酯(饱和或不饱和的)及它们的盐(特别包括辛基硫酸钠、癸基硫酸钠、月桂基硫酸钠和十四烷基硫酸钠)、苯磺酸及其盐、苯甲酸及其盐、富马酸及其盐、水杨酸及其盐、或含有至少一个羧基的其它药学上可接受的化合物及它们的盐与加巴喷丁或普加巴林的正电荷基团络合。
在备选实施方案中,选择能够与加巴喷丁或普加巴林的负电荷COO-基团相互作用的转运部分。例如,可用脂族伯胺(饱和及不饱和的)、二乙醇胺、乙二胺、普鲁卡因、胆碱、氨丁三醇、葡甲胺、镁、铝、钙、锌、烷基三甲铵氢氧化物、烷基三甲铵溴化物、苯扎氯铵和苄索氯铵与加巴喷丁和普加巴林的负电荷基团络合。
继续参考实施例1A,用二氯甲烷(氯仿)制备由加巴喷丁-月桂基硫酸盐组成的络合物。二氯甲烷只作为示例性溶剂,其它可溶解转运部分和药物的溶剂都是适合的。例如,脂肪酸可溶于氯仿、苯、环己烷、乙醇(95%)、乙酸和甲醇。在这些溶剂中癸酸、月桂酸、肉豆蔻酸、棕榈酸和硬脂酸的溶解度(g/L)如表1所示。
表1在20℃脂肪酸的溶解度(g/L)
在一个实施方案中,用于形成络合物所用的溶剂为介电常数小于水的溶剂,优选至少小于水的介电常数的二分之一,更优选至少小于水的介电常数的三分之一。介电常数为溶剂极性的测量法,示例性溶剂的介电常数如表2中所示。
表2示例性溶剂的特征
溶剂水、甲醇、乙醇、1-丙醇、1-丁醇和乙酸为具有连接至带负电荷原子(一般为氧原子)的氢原子极性质子溶剂。溶剂丙酮、乙酸乙酯、甲基乙基酮和乙腈为偶极非质子溶剂,在一个实施方案中,优选在形成加巴喷丁(或普加巴林)-转运部分络合物中使用。偶极非质子溶剂不包含OH键,但由于碳与氧或氮之间的多重键一般具有大的键的偶极距。大多数偶极非质子溶剂包含C-O双键。在表2中记录的偶极非质子溶剂的介电常数至少小于水的二分之一。
图3D表示形成月桂基硫酸普加巴林络合物的合成反应流程。如在实施例1B中所述,使普加巴林与盐酸的水溶液混合制备普加巴林的盐形式,例如盐酸普加巴林。应该理解可形成普加巴林的其它盐。然后,加入烷基硫酸盐,例如月桂基硫酸盐。虽然图3D显示的是月桂基硫酸酯的钠盐,但其它盐也适合,例如烷基硫酸钾或烷基硫酸镁。盐酸普加巴林与月桂基硫酸钠混合形成普加巴林和月桂基硫酸盐的离子对,在图3D中表示为所述物质之间的松散离子对。将介电常数低于水的溶剂加入含有普加巴林和月桂基硫酸盐的离子对的溶液中并彻底混合且任由其沉积。从溶剂相(非水相)中提取普加巴林-月桂基硫酸盐络合物,通常用适当技术除去溶剂,包括但不限于蒸发、蒸馏等。
用傅里叶变换红外光谱(FTIR)分析如实施例1A描述形成的加巴喷丁-月桂基硫酸盐络合物。FTIR/ATR方法学在下文方法部分描述。为进行比较,还产生加巴喷丁、月桂基硫酸钠以及加巴喷丁和月桂基硫酸钠的1∶1摩尔比物理混合物(使两个组分溶于甲醇并在空气中干燥成为固体薄膜)的FTIR/ATR光谱,且结果如图4A-4D所示。加巴喷丁的光谱如图4A所示,且标明对应于NH和COO部分的峰。月桂基硫酸钠的光谱如图4B所示,且在1300-1200cm-1之间观察到对应于S-O部分的主要的双峰。盐酸加巴喷丁和月桂基硫酸钠在水中的1∶1摩尔混合物如图4C所示,且显然加巴喷丁的特征峰明显衰减而观察到月桂基硫酸钠的S-O峰(1300-1200cm-1)增宽。图4D显示用实施例1A的步骤形成的络合物的FTIR光谱,其中对应于加巴喷丁的COO-基团的2个峰消失且被加巴喷丁月桂基硫酸盐络合物的COOH基团的峰替代,表明阻断了COO-的电荷。在加巴喷丁月桂基硫酸盐光谱中观察到加巴喷丁的N-H部分变形(有15cm-1的位移)。N-H键谱带的位移表明生成的络合物中N-H基团的质子化。如在加巴喷丁络合物的光谱中显示的,在月桂基硫酸钠光谱中表示S-O吸收的1250cm-1处的峰位移30cm-1,提示加巴喷丁与月桂基硫酸钠的硫酸根基团的相互作用。FTIR扫描显示加巴喷丁形成的络合物不同于两种组分的物理混合物。
不希望受机制的具体理解束缚,发明人的理由如下。当松散离子对置于极性溶剂环境中时,假定极性溶剂分子本身会插入被离子键占据的空间,从而促使键合的离子分开。在自由离子周围可形成溶剂化壳,溶剂化壳包含静电结合至自由离子上的极性溶剂分子。该溶剂化壳从而防止该自由离子与另一自由离子形成任何形式,但是是松散离子对的离子键。在多种类型相反离子存在于极性溶剂中的条件下,任何特定的松散离子对可能对相反离子竞争相对敏感。
这种作用当极性增强时更明显,极性以溶剂的介电常数表示。基于库仑定律,带电荷(q1)和(q2)并被介电常数(e)介质中的距离(r)隔开的两种离子之间的力为F=-q1q24πϵ0ϵr2]]>(方程式2)其中ε0为空间介电常数。方程式显示介电常数(ε)对溶剂中松散离子对稳定性的重要性。在高介电常数(ε=80)的水性溶液中,如果水分子进攻离子的结合并分开相反的荷电离子,则静电吸引力被显著减小。
因此,高介电常数溶剂分子一旦存在于离子键附近会进攻离子键并最终破坏该键。于是这种未键合的离子自由地在溶剂中移动。这些性质定义为松散离子对。
紧密离子对的形成与松散离子对不同,从而具有不同于松散离子对的性质。通过减少两个离子间键合空间内极性溶剂分子的数目形成紧密离子对。这使得离子紧密移动到一起,形成比松散离子对键显著更强的键,但仍认为是离子键。本文中更完整地公开,使用极性比水小的溶剂以降低离子间极性溶剂的包埋而获得紧密离子对。
至于松散和紧密离子对的另外的讨论,见D.Quintanar-Guerrero等,Pharm.Res.,14(2)119-127(1997)。
也可使用色谱方法观察松散和紧密离子对之间的差异。使用反相色谱,于不会分离紧密离子对的条件下可容易地分离松散离子对。
根据本发明也可通过选择阳离子和阴离子相对于彼此的浓度制备更强的化学键。例如在溶剂为水的情况下,可选择阳离子(碱)和阴离子(酸)以达到更强的相互吸引。如果需要较弱的键,则可选择较弱的吸引。
为了理解分子跨这类膜的转运,可将生物膜部分模拟成近似脂质双分子层的第一层(first order)。由于不宜分份,跨脂质双分子层部分的转运(与主动转运等相反)不利于离子。各研究者已建议中和这些离子的电荷可增加跨膜转运。
在“离子对”理论中,离子药物部分与转运部分相反离子配对以“隐藏”电荷并使所得离子对更易在脂质双分子层中移动。该方法已引起大量关注和研究,尤其关注提高经口给予药物跨肠上皮细胞的吸收。
尽管离子对已引起许多关注和研究,但一直没有获得许多成功。例如,发现两种抗病毒化合物的离子对引起吸收增加,不是由于离子对跨细胞转运的作用而是由于对单层完整性的作用(J.Van Gelder等,Int.J.of Pharmaceutics,186127-136(1999)。作者推断离子对的形成可能对提高荷电亲水性化合物的跨上皮细胞转运不是非常有效,因为在体内发现的与其他离子的竞争可破坏相反离子的有益作用。其他作者已指出离子对的吸收实验并不总是指向明确的机理(D.Quintanar-Guerrero等,Pharm.Res.,14(2)119-127(1997))。
发明人已意外地发现这些离子对吸收实验的问题为他们使用松散离子对而不是紧密离子对进行实验。确实,在本领域中公开的许多离子对吸收吸收实验甚至没有明确区分松散离子对和紧密离子对之间的差异。技术人员事实上不得不通过回顾制备离子对的公开方法区分所公开的松散离子对,并注明这些公开的制备方法针对松散离子对而非紧密离子对。松散离子对相对容许相反离子的竞争,并容易发生由溶剂介导(如水介导)的结合松散离子对的离子键的开裂。因此,当离子对的药物部分到达肠上皮细胞的膜壁时,可以或不可以与转运部分以自由离子对结合。膜壁附近存在离子对的几率依赖于保持离子在一起的离子键,但更多地依赖于两种离子各自的局部浓度。当它们接近肠上皮细胞膜壁时,如果两部分没有结合,非络合药物部分的吸收速度可能不会受非络合转运部分的影响。所以与单独给予药物部分相比,松散离子对可能对吸收仅有有限影响。
相反,本发明络合物在极性溶剂如水的存在下具有更稳定的键。因此发明人推论,通过形成络合物药物部分和转运部分在靠近膜壁的时候,这些部分将更可能以离子对形式缔合。这种缔合会增加上述部分的电荷被隐蔽(buried)的机会,使所得离子对更容易穿越细胞膜。
在一个实施方案中,络合物在药物部分和转运部分之间包含紧密离子对键。如本文讨论的,紧密离子对比松散离子对更稳定,从而增加药物部分和转运部分在接近膜壁时,所述部分会以离子对形式缔合的可能性。这种缔合会增加上述部分的电荷被隐蔽的机会,使紧密离子对键合的络合物更容易穿越细胞膜。
应注意相对于非络合的药物部分,本发明络合物可改善在整个胃肠道的吸收,而不只是改善下胃肠道的吸收,因为预期该络合物一般改善跨细胞通道转运,而不只是改善下胃肠道的转运。例如,如果药物部分为主要出现于上胃肠道中的活性转运蛋白的基质,则由药物部分形成的络合物仍可用作转运蛋白的基质。因此,总的转运可为由转运蛋白加上本发明所提供的改进的跨细胞所致转运量之和。在一个实施方案中,本发明络合物改善在上胃肠道、下胃肠道,以及上胃肠道与下胃肠道两部位的吸收。
在支持本发明开展的研究中,用大鼠冲洗结扎的(flush-ligated)结肠模型鉴定体内加巴喷丁-月桂基硫酸盐络合物在下胃肠道的吸收。如在实施例2中所述,以加巴喷丁-月桂基硫酸盐络合物或纯净加巴喷丁的形式将10mg加巴喷丁/大鼠的剂量插管至试验大鼠结扎的结肠(每组n=3)。第3组大鼠(n=3)静脉内给予1mg加巴喷丁。定期抽取血液样本分析加巴喷丁浓度。数据如图5所示。
参照图5,静脉内给药的加巴喷丁(三角形)起始血浆浓度高且经过前15分钟后浓度迅速下降。当加巴喷丁以结肠内推注(圆形)给药时可见药物吸收缓慢。相反,当药物以加巴喷丁-月桂基硫酸盐络合物形式(菱形)给予下胃肠道时,可见药物迅速吸收,插管1小时后观察到Cmax。
本研究的药代动力学参数如表3所示。根据每种加巴喷丁剂型的1mg加巴喷丁/大鼠从时间0点至时间无限大来确定曲线下的面积(AUC),其中通过假定对数线性衰减估计时间无限性。加巴喷丁生物利用度以静脉内给药产生的加巴喷丁浓度的百分数表示。
表3
当加巴喷丁和月桂基硫酸盐的络合物以络合物形式给予下胃肠道时,所述络合物的生物利用度相对于纯净药物明显改善,从而清楚地看到络合物提供了增强的结肠吸收。加巴喷丁-月桂基硫酸盐络合物的生物利用度相对于纯净药物的生物利用度改善了13倍。因此,本发明设计了由加巴喷丁(或普加巴林)和转运部分组成的络合物的化合物,其中相对于加巴喷丁(或普加巴林)的结肠吸收,该络合物提供至少5倍、更优选至少10倍、且更优选至少12倍的结肠吸收,这可由加巴喷丁(或普加巴林)血浆浓度确定的加巴喷丁(或普加巴林)生物利用度证明。因此,当加巴喷丁(或普加巴林)以加巴喷丁(或普加巴林)-转运部分络合物形式给药时明显促进加巴喷丁(或普加巴林)经结肠吸收入血液。
如实施例3所述,将加巴喷丁或加巴喷丁-月桂基硫酸盐络合物放于大鼠十二指肠内进行另一项研究。以5mg/大鼠、10mg/大鼠、20mg/大鼠的剂量给药并抽取血液样本,以时间为函数确定加巴喷丁浓度。另一组试验动物静脉内接受加巴喷丁或加巴喷丁-月桂基硫酸盐络合物。结果如图6A-6C所示。
图6A显示纯净加巴喷丁静脉内(三角形)以及以5mg(圆形)、10mg(方形)和20mg(菱形)剂量十二指肠内给药处理的动物中,以ng/mL表示的加巴喷丁血浆浓度。经插管进入十二指肠给药的动物观察到随剂量增加血浓度的增加。自然,静脉内处理(三角形)的动物较低的血浆药物浓度是由于较低的药物剂量。
图6B显示加巴喷丁-月桂基硫酸盐络合物静脉内(三角形)以及以5mg(圆形)、10mg(方形)和20mg(菱形)直接给予十二指肠的动物的结果。虽然接受加巴喷丁-月桂基硫酸盐络合物动物的绝对血浓度低于用加巴喷丁处理的动物,但数据显示相对于纯净药物的吸收,从络合物中吸收的加巴喷丁增加了,部分可能是由于L-氨基酸转运系统不饱和和/或络合物通过其它机制增加了转运。在图6A和6B中可清楚看到5mg和10mg剂量之间以及10mg和20mg剂量之间血液浓度的比较,其中加巴喷丁以络合物形式给药随剂量增加的血液浓度增加较大。
图6C显示加巴喷丁以纯净药物(倒三角形)或加巴喷丁月桂基硫酸盐络合物(圆形)给予大鼠十二指肠的生物利用度百分数。生物利用度百分数相对于加巴喷丁静脉内给药确定。在20mg剂量,加巴喷丁-月桂基硫酸盐络合物相对于纯净药物显示更高的生物利用度。在较高剂量处增加的生物利用度可能是由于络合物提供的吸收增加,其中在胃肠道的吸收不限于通过L-氨基酸转运系统对络合物的吸收,而且还通过跨细胞和旁细胞机制发生。
表4显示该研究的药代动力学分析,其中确定从0至4小时曲线下的面积,且标准化为1mg剂量加巴喷丁/大鼠。从前3小时测量数据假定相对于4小时点加巴喷丁(iv)的数据的对数线性衰减。生物利用度百分数是相对于静脉内给予加巴喷丁的生物利用度的百分数。
表4
*标准化为1mg加巴喷丁/kg剂量AUC和生物利用度数据显示当药物以加巴喷丁-转运部分络合物形式提供时,加巴喷丁的结肠吸收随剂量增加而改善。
虽然实验数据是以加巴喷丁为基础,但应该理解该发现扩展至普加巴林,加巴喷丁的类似物。实施例4和5描述确定普加巴林-月桂基硫酸盐络合物体内吸收的方法。
III.示例性剂型和使用方法上文描述的络合物提供在胃肠道且特别是在大鼠下胃肠道中增强的吸收。现将描述络合物剂型以及使用络合物和其增强的结肠吸收治疗的方法。应该理解下文描述的剂型只是示例。还应该理解所述剂型同样适用于加巴喷丁、普加巴林或它们的混合物。虽然在下文的讨论中,提及的是加巴喷丁;但应该理解该讨论也适用于普加巴林。
许多剂型适用于加巴喷丁-转运部分络合物。如上文所讨论,该剂型提供每天1次剂量以达到至少约12小时、更优选至少15小时、且仍更优选至少约20小时的治疗效果。可根据任何释放需要剂量的加巴喷丁的设计配置和配制剂型。通常,该剂型经口给予,其大小和形状类似常规的片剂或胶囊剂。根据各种不同的方法之一可制备可经口给予的剂型。例如,该剂型可制成扩散系统如贮库装置(reservoirdevice)或基质装置、溶解系统如包胶囊的溶解系统(包括如“定时微丸(tiny time pills)”和珠和基质溶解系统及扩散/溶解系统和离子交换树脂系统的联合,如Remington′s Pharmaceutical Sciences,18thEd.,pp.1682-1685(1990)中所述。
适用于加巴喷丁-转运部分络合物的剂型的具体实例是渗透剂型。通常,渗透剂型利用渗透压产生驱动力,使液体至少部分渗透至由半渗透壁形成的隔室中,所述壁允许液体自由扩散但不允许药物或渗透剂(如果存在)自由扩散。渗透系统的优势为它们的运转不依赖于pH,因而在整个延长时间段,即使当该剂型经过胃肠道并遇到具有显著不同pH值的不同微环境时,继续以渗透决定的速度运转。在Santus和Baker,″Osmotic drug deliverya review of the patentliterature(渗透药物的释放专利文献的回顾),″Journal of ControlledRelease,351-21(1995)中可发现有关这些剂型的评述。在如下美国专利中也详细介绍了渗透剂型,各文献通过引用结合到本文中Nos.3,845,770、3,916,899、3,995,631、4,008,719、4,111,202、4,160,020、4,327,725、4,519,801、4,578,075、4,681,583、5,019,397和5,156,850。
图11中显示在本技术领域中以初级渗透泵(elementary osmoticpump)剂型提及的示例性剂型。剖面图中所示的剂型20也以初级渗透泵剂型被提及,由环绕和围绕内部隔室24的半渗透壁22组成。内部隔室包含单一的成分层,在本文中称为药物层26,该药物层包含加巴喷丁-转运部分络合物28与所选赋形剂的混合物。调整赋形剂以提供渗透活性梯度,该梯度用于从外界吸引液体经壁22进入,一旦浸润液体就形成可释放的加巴喷丁-转运部分络合物制剂。赋形剂可包含合适的混悬剂(本文中也称为药物载体30)、粘合剂32、润滑剂34和称为渗透剂36的渗透活性剂。下面提供了这些成分中每一成分的示例性原料。
渗透剂型的半渗透壁22可以透过外部经过的液体,如水和生物流体,但基本上不能透过内部隔室中经过的成分。用于形成壁的原料在剂型使用期间本质上是不可侵蚀的且大体上不溶于生物液。形成半渗透壁的代表性聚合物包括均聚物和共聚物,如纤维素酯、纤维素醚和纤维素酯-醚。通道调节剂可与壁形成原料混合以调节壁的液体渗透性。例如,对液体如水的渗透产生显著增加的试剂常常基本是亲水的,而对水的渗透产生显著降低的那些试剂基本是疏水的。示例性通道调节剂包括多元醇、聚亚烷基二醇(glycol)、聚亚烷基二醇(polyalkylenediols)、亚烷基二醇聚酯等。
在运转中,由于渗透活性剂存在,跨壁22的渗透梯度引起胃液穿过壁被吸收,使药物层溶胀并在内部隔室中形成可释放的含有加巴喷丁-转运部分络合物的制剂(如溶液剂、混悬剂、浆液或其它可流动的组合物)。当液体继续进入内部隔室时可释放的加巴喷丁-转运部分络合物制剂通过出口38释放。即使在含络合物的制剂从剂型释放时,液体仍持续被吸入内腔,从而驱动继续释放。以这种方式,加巴喷丁-转运部分络合物在延伸的时间段以稳定、持续的方式释放。
实施例6A描述制备加巴喷丁-转运部分络合物以及实施例6B描述制备普加巴林-转运部分络合物的如图7所示的剂型。
图8为另一种示例性渗透剂型的简图。在美国专利第4,612,008、5,082,668和5,091,190号中详细描述了该剂型,以上专利通过引用结合到本文中。简单地说,截面图显示的剂型40具有界定内部隔室44的半渗透壁42。内部隔室44包含具有药物层46和推进层48的双层压缩芯(core)。下面将会描述,推进层48为置放在剂型中的转移渗漉(displacement)组合物,使用期间推进层膨胀,形成药物层的原料经一个或多个出口如出口50从剂型排出。推进层可置于与药物层接触的排列分层中,如图8中所示,或者推进层可具有隔离推进层和药物层的一个或多个中间层。
药物层46含有与选择的赋形剂(例如上文参考图7讨论的那些)混合的加巴喷丁-转运部分络合物。示例性剂型可包含由亚铁-月桂酯络合物组成的药物层、作为载体的聚环氧乙烷、作为渗透剂的氯化钠、作为粘合剂的羟丙基甲基纤维素和作为润滑剂的硬脂酸镁。
推进层48包含渗透活性成分,如吸取水液或生物液体并溶胀的一种或多种聚合物,在本领域中称为渗透聚合物。渗透聚合物为可溶胀的亲水聚合物,与水和水性生物液体互相作用、溶胀或扩大至很大程度,一般显示出2-50倍体积的增加。渗透聚合物可为非交联的或交联的,在优选实施方案中渗透聚合物至少轻度交联以产生聚合物网络,该网络很大并且缠结以便使用期间不容易从剂型中排出。可用作渗透聚合物的聚合物实例在上述详细描述渗透剂型的参考中提供。一般渗透聚合物为聚烯化氧,如聚环氧乙烷和聚羧甲基纤维素碱盐(poly(alkali carboxymethylcellulose)),其中碱为钠、钾或锂。其它赋形剂如粘合剂、润滑剂、抗氧化剂和着色剂也可包括在推进层中。使用中,当液体经半渗透壁吸收时,渗透聚合物溶胀并推动药物层促使药物从剂型中经出口释放。
推进层也可包括以粘合剂提及的成分,一般为纤维素或乙烯基聚合物如聚正乙烯基酰胺、聚正乙烯基乙酰胺、聚乙烯基吡咯烷酮、聚正乙烯基己内酯(caprolactone)、聚正乙烯基-5-甲基-2-吡咯烷酮等。推进层也可包括润滑剂如硬脂酸钠或硬脂酸镁,以及抑制成分氧化的抗氧化剂。代表性抗氧化剂包括,但不限于抗坏血酸、棕榈酸抗坏血酸酯、丁羟茴醚、2-和3-叔丁基-4-羟基苯甲醚的混合物和丁羟甲苯。
渗透剂也可掺入渗透剂型的药物层和/或推进层酯。渗透剂的存在建立起跨半渗透壁的渗透活性梯度。示例性渗透剂包括盐如氯化钠、氯化钾、氯化锂等,以及糖如棉子糖、蔗糖、葡萄糖、乳糖,及碳水化合物。
继续参考图8,剂型可任选包括外敷层(未显示)用于根据剂量着色标记剂型或提供加巴喷丁、普加巴林或其它药物的立即释放。
在使用时,水跨壁流过进入推进层和药物层。推进层吸取液体并开始膨胀,且接着推进药物层44使该层中的材料经出口排出进入胃肠道。推进层48被设计吸取液体且继续膨胀,从而使剂型在胃肠道内自始至终持续将药物从药物层排出。这样,剂型将加巴喷丁-转运部分络合物提供至胃肠道持续15至20小时,或基本上贯穿剂型通过胃肠道的整个期间。由于加巴喷丁-转运部分络合物在上和下胃肠道都吸收,所以该剂型通过胃肠道期间该剂型的给药将加巴喷丁传递至血流中。
另一种示例性剂型如图9所示。渗透剂型60具有三层的芯62,该芯包括三层第一层加巴喷丁64、第二层加巴喷丁-转运部分络合物66和称为推进层的第三层68。在美国专利第5,545,413、5,858,407、6,368,626和5,236,689号中详细描述了该类型的剂型,这些专利通过引用结合到本文中。如在实施例7中指出,制备的三层剂型第一层含有85.0wt%加巴喷丁、10.0%重量的100,000分子量的聚环氧乙烷、4.5wt%分子量约35,000至40,000的聚乙烯吡咯烷酮和0.5wt%硬脂酸镁。第二层包含93.0wt%加巴喷丁-转运部分络合物(按实施例1A描述制备)、5.0wt%分子量5,000,000的聚环氧乙烷、1.0wt%分子量约35,000至40,000的聚乙烯吡咯烷酮和1.0wt%硬脂酸镁。
推进层由63.67%重量的聚环氧乙烷、30.00%重量的氯化钠、1.00%重量的氧化铁、5.00%重量的羟丙基甲基纤维素、0.08%重量的丁羟甲苯和0.25%重量的硬脂酸镁组成。半渗透壁由具有39.8%乙酰基含量的80.0%重量的醋酸纤维素和20.0%聚环氧乙烷-聚环氧丙烷共聚物组成。
可根据实施例8提出的步骤确定剂型(例如图7-9所示的那些剂型)的溶出率。通常,药物制剂从剂型中的释放在接触水环境后开始,其中取决于剂型、含有加巴喷丁或加巴喷丁-转运部分络合物的药物制剂。例如,在图7表示的剂型中,加巴喷丁-转运部分络合物在接触水环境后释放并持续该装置的存在时间。图9表示的剂型最初释放邻近出口的药物层中的加巴喷丁,接着释放加巴喷丁-转运部分络合物。
图10A-10C说明另一种本领域已知的示例性剂型,在美国专利号5,534,263、5,667,804和6,020,000中有描述,其通过引用特别结合到本文中。简要地说,图10A显示摄入胃肠道之前的剂型80的横切面图。该剂型包含圆柱形基质82,其含有加巴喷丁-转运部分络合物。基质82的两端84、86优选为圆形凸面形状以便确保轻松摄取。带88、90和92同心地围绕圆柱基质,这些带由相对不溶于水性环境中的材料形成。在上面注明的专利和如下实施例9中列举了合适的材料。
在剂型80摄入之后,带88、90、92之间的基质82区域开始消蚀,如图10B所示。基质的侵蚀启动加巴喷丁-转运部分络合物释放入胃肠道的液体环境中。当剂型继续在胃肠道运输时,基质继续消蚀,如图10C所示。此时,基质的消蚀已发展到剂型破裂成三碎片94、96、98的程度。消蚀继续进行直至各碎片的基质部分已完全被消蚀。其后带94、96、98会从胃肠道排出。
应该理解图7-10描述的剂型只作为设计的且能够将加巴喷丁-转运部分络合物释放至下胃肠道的多种剂型的示例。制药领域的技术人员能确认合适的其它剂型。
另一方面,本发明提供通过给予含有加巴喷丁和转运部分的络合物的组合物将加巴喷丁给予患者的方法,该络合物的特征是加巴喷丁(或普加巴林)与转运部分之间的紧密离子对键。通常经口服给药将含有络合物和药学上可接受的媒介物的组合物给予患者。
考虑剂型和所需结果,给予的剂量一般根据患者的年龄、体重和病症进行调节。一般来说,加巴喷丁-转运部分络合物的剂型和组合物以加巴喷丁(Neurontin)治疗推荐的量给药,如在Physician′s DeskReference(医生手册)中提出的。控制癫痫患者癫痫发作的典型剂量是每天900-1800mg。用于缓解神经性疼痛的典型剂量是每天600-3600mg(Backonja,M.,Clinical Therapies,23(1)(2003))。应该理解这些剂量范围代表近似范围,并且络合物提供的增加的吸收将改变需要的剂量。
关于普加巴林,也将根据患者的年龄、体重和状态,结合考虑剂型和需要的结果调整给药的剂量。一般来说,提供至少每天约300mg的剂量且按需增加以缓解感知疼痛。可用数字化疼痛等级评定评定测量疼痛的减轻,例如Short-Form McGill Pain Questionnaire(Dworkin,R.H.等,Neurology,601274(2003))。
从前述内容可见,本发明的各种目的和特征得到了满足。含有加巴喷丁或普加巴林和转运部分的络合物(加巴喷丁(或普加巴林)与转运部分通过非共价的紧密离子对键缔合)促进药物在胃肠道的吸收。该络合物用新方法制备,其中加巴喷丁或普加巴林与溶于极性低于水的溶剂的转运部分(例如烷基硫酸盐或脂肪酸)接触,例如可通过低介电常数可证明其低极性。药物与转运部分-溶剂混合物的接触使药物(加巴喷丁或普加巴林)与转运部分之间形成络合物,其中两者通过紧密离子对键缔合。
IV.实施例以下实施例进一步说明本文描述的本发明,决不打算限制本发明的范围。
方法1.FTIR在配备衰减全反射(ATR)附件和液氮冷却MCT(碲化镉汞)检测器的Perkin-Elmer Spectrum 2000光谱系统上进行傅里叶转换分光光谱检查。
实施例1制备加巴喷丁-转运部分络合物和普加巴林-转运部分络合物制备加巴喷丁-转运部分络合物1.制备0.5mL 36.5%盐酸(5mmol HCl)在25mL去离子水中的溶液。
2.将5mmol加巴喷丁(0.86g)加入步骤1的溶液中。在室温搅拌混合物10分钟。形成盐酸加巴喷丁。
3.将5mmol月桂基硫酸钠(1.4g)加入步骤2的水溶液中。在室温搅拌混合物20分钟。
4.将50mL二氯甲烷加入步骤3的溶液中。在室温搅拌混合物2小时。
5.将步骤4的混合物转移至分液漏斗且允许其沉淀3小时。形成两相,低位相二氯甲烷和高位相水。
6.分离步骤5中的高位相和低位相。回收低位相二氯甲烷且在室温将二氯甲烷蒸发至干燥,接着在40℃真空干燥箱中干燥4小时。获得加巴喷丁-月桂基硫酸盐的络合物(1.9g)。相对于用加巴喷丁和月桂基硫酸钠起始量计算的理论量而言总产率是87%。
制备普加巴林-转运部分络合物1.制备0.5mL 36.5%盐酸(5mmol HCl)在25mL去离子水中的溶液。
2.将5mmol普加巴林(0.80g)加入步骤1的溶液中。在室温搅拌混合物10分钟。形成盐酸普加巴林。
3.将5mmol月桂基硫酸钠(1.4g)加入步骤2的水溶液中。在室温搅拌混合物20分钟。
4.将50mL二氯甲烷加入步骤3的溶液中。在室温搅拌混合物2小时。
5.将步骤4的混合物转至分液漏斗且允许其沉淀3小时。形成两相,低位相二氯甲烷和高位相水。
7.分离步骤5中的高位相和低位相。回收低位相二氯甲烷且在室温将二氯甲烷蒸发至干燥,接着在40℃真空干燥箱中干燥4小时。获得普加巴林-月桂基硫酸盐的络合物(2.1g)。
实施例2用大鼠冲洗结扎的结肠模型的体内结肠吸收采用通常已知是“冲洗结扎的结肠模型”或“结肠内结扎的模型”的动物模型。将禁食后的0.3-0.5kg Sprague-Dawley雄性大鼠麻醉并分离最接近结肠的节段。冲洗结肠的排泄物原料。将该结肠节段的两端结扎,同时将导管放置在腔中并从腹内取出取出置于皮肤上以便传递试验制剂。冲洗干净结肠的内容物并将结肠放回动物的腹腔。根据设定的实验,在节段中灌充1mL/kg pH7.4的20mM磷酸钠缓冲液之后加入试验制剂,更准确地模仿临床情况中的实际结肠环境。
允许大鼠(n=3)在手术准备后和暴露于每种测试制剂前平衡将近1小时。经结肠内推注给予加巴喷丁-月桂基硫酸盐络合物或加巴喷丁并以10mg加巴喷丁-月桂基硫酸盐或10mg加巴喷丁/大鼠传递。在0、15、30、60、90、120、180和240分钟从颈静脉导管获得血液样本并分析加巴喷丁浓度。在4小时测试期结束后,用过量戊巴比妥使大鼠安乐死。切断每只大鼠的结肠段并沿肠系膜对缘纵向打开。肉眼观察每个肠段的刺激和任何明显异常。将切断的结肠放于方格纸上并测量近似的结肠表面积。任何试验大鼠的粘膜肉眼均未见组织病理学改变。
对照组大鼠(n=3)用加巴喷丁静脉内处理,剂量为1mg/大鼠。在上文指出的相同时间抽取血液样本分析加巴喷丁浓度。
每只试验动物的加巴喷丁血浆浓度和每一测试组中动物平均血浆浓度如表A-C所示。图5显示为时间函数的每一试验组的平均加巴喷丁浓度。
表A
表B
表C
实施例3体内吸收将28只大大鼠随机分为7个试验组(n=4)。将按实施例1A描述制备的加巴喷丁或加巴喷丁-月桂基硫酸盐络合物经导管插管至大鼠十二指肠起始处,剂量分别为5mg/大鼠、10mg/大鼠和20mg/大鼠。剩余的试验组静脉内给予1mg/kg加巴喷丁。
经过4小时后抽取每只动物的血液样本并分析加巴喷丁含量。结果如表D-H和图6A-6C所示。
表D
表E
表F
表G
表H
表I
实施例4采用大鼠冲洗结扎的结肠模型的体内结肠吸收采用通常已知是“结肠内结扎的模型”的动物模型。将禁食后的0.3-0.5kg Sprague-Dawley雄性大鼠麻醉并分离最接近结肠的节段。冲洗结肠的排泄物原料。将该结肠节段的两端结扎,同时将导管放置在腔中并从腹内取出取出置于皮肤上以便传递试验制剂。冲洗干净结肠的内容物并将结肠放回动物的腹腔。根据设定的实验,在节段中灌充1mL/kg pH7.4的20mM磷酸钠缓冲液之后加入试验制剂,更准确地模仿临床情况中的实际结肠环境。
允许大鼠(n=3)在手术准备后和暴露于每种测试制剂前平衡将近1小时。经结肠内推注给予普加巴林-月桂基硫酸盐络合物或普加巴林并以10mg普加巴林/大鼠给药。在0、15、30、60、90、120、180和240分钟从颈静脉导管获得血液样本并分析普加巴林浓度。在4小时测试期结束后,用过量戊巴比妥使大鼠安乐死。切断每只大鼠的结肠段并沿肠系膜对缘纵向打开。肉眼观察每个肠段的刺激和任何明显异常。将切断的结肠放于方格纸上并测量近似的结肠表面积。
对照组大鼠(n=3)用普加巴林静脉内处理,剂量为1mg/大鼠。在上文指出的相同时间抽取血液样本。
实施例5体内吸收将28只大鼠随机分为7个测试组(n=4)。将按实施例1B描述制备的普加巴林或普加巴林-月桂基硫酸盐络合物经导管插管至大鼠十二指肠起始处,剂量分别为5mg/大鼠、10mg/大鼠和20mg/大鼠。剩余的测试组静脉内给予1mg/kg普加巴林。
经过4小时时期后抽取每只动物的血液样本并分析普加巴林含量。用类似于实施例3用于加巴喷丁的计算法确定剂量、AUC和生物利用度。
实施例6制备含有药物-转运部分络合物的剂型A.加巴喷丁-转运部分络合物如下制备图7所示的装置。使形成隔室的组合物混合在一起,该组合物包含重量百分数92.25%加巴喷丁-转运部分络合物、5%羧聚乙烯钾、2%分子量约5,000,000的聚环氧乙烷和0.5%二氧化硅。接着,使混合物通过40目不锈钢筛,然后于V-搅拌机中干式混合30分钟产生均匀混合物。接着,使0.25%硬脂酸镁通过80目不锈钢筛,并另外混合5至8分钟。然后,将均匀干燥混合的粉末放入漏斗中并供应给隔室成形压制机,并将已知量的混合物压紧为设计用于口服的5/8英寸椭圆形外观。接着在Accela-Cota壁成形涂布机中用壁成形组合物将椭圆形预隔室(precompartments)涂层(coated),该组合物含有91%乙酸纤维素(含有39.8%乙酰基)和9%聚乙二醇3350。涂层后,将壁涂层的药物隔室从涂布机移走并转移至干燥箱中以除去壁形成过程中使用的残留有机溶剂。接着,将涂层装置转移至50℃鼓风干燥箱中干燥约12小时。然后,用激光在装置的壁上形成1个或多个出口。
B.普加巴林-转运部分络合物如下制备图7所示的装置。使形成隔室的组合物混合在一起,该组合物包含重量百分数92.25%普加巴林-转运部分络合物、5%羧聚乙烯钾、2%分子量约5,000,000的聚环氧乙烷和0.5%二氧化硅。接着,使混合物通过40目不锈钢筛,然后于V-搅拌机中干式混合30分钟产生均匀混合物。接着,使0.25%硬脂酸镁通过80目不锈钢筛,并另外混合5至8分钟。然后,将均匀干燥混合的粉末放入漏斗中并供应给隔室成形压制机,并将已知量的混合物压紧为设计用于口服的5/8英寸椭圆形外观。接着在Accela-Cota壁成形涂布机中用壁成形组合物将椭圆形预隔室(precompartments)涂层(coated),该组合物含有91%乙酸纤维素(含有39.8%乙酰基)和9%聚乙二醇3350。涂层后,将壁涂层的药物隔室从涂布机移走并转移至干燥箱中以除去壁形成过程中使用的残留有机溶剂。接着,将涂层装置转移至50℃鼓风干燥箱中干燥约12小时。然后,用激光在装置的壁上形成1个或多个出口。
实施例7制备含有加巴喷丁-转运部分络合物的剂型如下制备含有加巴喷丁层和加巴喷丁-月桂基硫酸盐络合物层的剂型,如图9所示。
将10g加巴喷丁、1.18g分子量100,000的聚环氧乙烷和0.53g分子量约38,000的聚乙烯吡咯烷酮在常规混合器中干燥混合20分钟以产生均匀混合物。接着,伴随混合器继续搅拌下,将4mL变性无水乙醇缓慢加入3种组分的干燥混合物中。再继续混合5至8分钟。使混合的湿组合物通过16目筛并在室温干燥过夜。然后,使干燥粒料通过16目筛并加入0.06g硬脂酸镁且将所有成分干燥混合5分钟。新鲜粒料准备用于配制剂型中的起始剂量层。
如下制备剂型中含加巴喷丁-月桂基硫酸盐络合物层。首先,将9.30g按实施例1A描述制备的加巴喷丁-月桂基硫酸盐络合物、0.50g分子量5,000,000的聚环氧乙烷、0.10g分子量约38,000的聚乙烯吡咯烷酮在常规混合器中干燥混合20分钟以产生均匀混合物。接着,将变性无水乙醇缓慢加入混合物中,继续混合5分钟。使混合的湿组合物通过16目筛并在室温干燥过夜。然后,使干燥粒料通过16目筛并加入0.10g硬脂酸镁且将所有干燥成分干燥混合5分钟。
如下制备含渗透聚合物水凝胶组合物的推进层。首先,使58.67g分子量7,000,000的药学上可接受的聚环氧乙烷、5g Carbopol974P、30g氯化钠和1g氧化铁分别通过40目筛过筛。过筛的成分与5g分子量9,200的羟丙基甲基纤维素混合产生均匀混合物。接着,将50mL变性无水乙醇缓慢加入混合物并继续混合5分钟。然后,加入0.080g丁羟甲苯并继续混合。使新鲜制备的颗粒通过20目筛并在室温(环境温度)干燥20小时。使干燥的成分通过20目筛并加入0.25g硬脂酸镁且将所有成分混合5分钟。
如下制备3层剂型。首先,将118mg加巴喷丁组合物加入冲压机和模装置并捣固,然后将511mg加巴喷丁-月桂基硫酸盐组合物加入模具中作为第二层并再次捣固。接着,加入315mg水凝胶组合物并在1吨(1000kg)压缩力下将3层压紧至9/32英寸(0.714cm)直径的冲模装置中,形成紧密的3层芯(片剂)。
制备含80.0wt%乙酸纤维素(含39.8%乙酰基量)和20.0%分子量为7680-9510的聚环氧乙烷-聚氧丙稀共聚物的半渗透壁成形组合物是通过使成分以80∶20wt/wt组合物溶于丙酮以产生5.0%固体溶液。将壁成形组合物喷洒于3层的芯之上或周围,产生60至80mg厚的半渗透壁。
接着,在半渗透壁的3层片剂上用激光钻40mil(1.02mm)的出口,使加巴喷丁层与释放装置的外部接触。使剂型干燥以除去任何残留的溶剂和水。
实施例8含加巴喷丁-转运部分络合物的剂型的体外溶解在37℃恒温水浴中,通过将剂型放置于连接USP Type VII浴液测定仪(bath indexer)上的金属线圈的样品固定器中确定按实施例4和5描述制备的剂型的体外溶解率。将释放介质的等分试样注入色谱系统以确定每次测试间隔释放入介质刺激人工胃液(AGF)的加巴喷丁(或普加巴林)的量。
实施例9制备含加巴喷丁-转运部分络合物的剂型如下制备图10A-10C表示的剂型。如下制备延长释放加巴喷丁-月桂基硫酸盐络合物的单位剂量。使200g加巴喷丁-月桂基硫酸盐络合物形式的加巴喷丁通过每英寸40丝网的分级筛。使25g数均分子量9,200g/摩尔的羟丙基甲基纤维素和15g分子量242,000g每摩尔的羟丙基甲基纤维素通过每英寸40丝网的分级筛(sizing screen)过筛。每种纤维素各自含8重量百分数的平均羟基量和22重量百分数的平均甲氧基量。使分级的粉末滚动混合5分钟。边搅拌边加无水乙醇至混合物直至形成潮湿团块。使湿团块通过每英寸20丝网的分级筛。生成的潮湿粒料在空气中干燥过夜,然后再次通过20目筛。使2g压片的润滑剂、硬脂酸镁通过每英寸80丝网的分级筛。分级的硬脂酸镁与干燥粒料混合形成最后的颗粒。
将733mg最后的颗粒部分放于内径为0.281英寸的模穴中。在1吨压力头下用深凹面冲将该部分压紧形成纵向胶囊外观的片剂。
胶囊被输送入Tait Capsealer Machine(Tait Design and MachineCo.,Manheim,Pa.)内,在其中每个胶囊被印上3条带。形成带的材料是50wt%乙基纤维素分散体(Surelease,Colorcon,West Point,Pa.)和50wt%丙烯酸乙酯异丁烯酸甲酯(EudragitNE 30D,RohmPharma,Weiterstadt,Germany)。条带适用为水分散体且出现温暖空气时馏出过剩的水。条带的直径是2毫米。
虽然已用现有实施方案描述和指出本发明的特征和优点,但药学领域的技术人员将理解可不脱离本发明的主旨而对说明书描述的方法进行多种修饰、改变、添加和省略。
权利要求
1.一种含加巴喷丁或普加巴林和转运部分的物质,所述加巴喷丁或普加巴林和所述转运部分形成络合物。
2.权利要求1的物质,其中所述转运部分是含6-12个碳原子的烷基硫酸盐。
3.权利要求2的物质,其中所述烷基硫酸盐是月桂基硫酸盐。
4.一种组合物,它包含,由加巴喷丁或普加巴林和转运部分组成的络合物,和药学上可接受的媒介物,其中所述组合物在下胃肠道的吸收为加巴喷丁或普加巴林的至少5倍。
5.权利要求4的组合物,其中所述转运部分是含6-12个碳原子的烷基硫酸盐。
6.权利要求5的组合物,其中所述烷基硫酸盐是月桂基硫酸盐。
7.一种剂型,它包含权利要求4的组合物。
8.一种剂型,它包含权利要求1的物质。
9.权利要求8的剂型,其中该剂型是渗透剂型。
10.权利要求9的剂型,它包括以下部分(i)推进层;(ii)含加巴喷丁-转运部分络合物或普加巴林-转运部分络合物的药物层;(iii)围绕推进层和药物层提供的半渗透壁;和(iv)出口。
11.权利要求9的剂型,它包括以下部分(i)围绕渗透制剂加巴喷丁-转运部分络合物或普加巴林-转运部分络合物、渗透剂和渗透聚合物提供的半渗透壁;和(ii)出口。
12.权利要求9的剂型,其中该剂型提供200-3600mg之间的总日剂量。
13.一种含加巴喷丁或普加巴林的剂型的改进,所述改进包括含加巴喷丁或普加巴林和转运部分通过紧密离子对键缔合的络合物的剂型。
14.权利要求13的改进剂型,其中所述转运部分是含6-12个碳原子的烷基硫酸盐。
15.权利要求14的改进剂型,其中所述烷基硫酸盐是月桂基硫酸盐。
16.一种给予加巴喷丁或普加巴林的方法,该方法包括将权利要求1的物质给予有需要的患者。
17.权利要求16的方法,其中所述给予是经口服给予。
18.一种制备加巴喷丁或普加巴林与转运部分的络合物的方法,该方法包括提供加巴喷丁或普加巴林;提供转运部分;使加巴喷丁或普加巴林与转运部分在介电常数低于水的介电常数的溶剂中结合;从而所述结合导致加巴喷丁或普加巴林与转运部分的络合物的形成。
19.权利要求18的方法,其中所述结合包括(i)使加巴喷丁或普加巴林与转运部分在水性溶剂中结合,(ii)将介电常数低于水的介电常数的所述溶剂加入到所述水性溶剂中,和(iii)从所述溶剂中回收所述络合物。
20.权利要求18的方法,其中所述结合包括在介电常数至少小于水的介电常数的二分之一的溶剂中接触。
21.权利要求20的方法,其中所述溶剂选自甲醇、乙醇、丙酮、苯、二氯甲烷和四氯化碳。
22.一种改善加巴喷丁或普加巴林的胃肠道吸收的方法,该方法包括提供含加巴喷丁或普加巴林和转运部分的络合物;和将该络合物给予患者。
23.权利要求22的方法,其中所述改善的吸收包括改善的下胃肠道吸收。
24.权利要求22的方法,其中所述改善的吸收包括改善的上胃肠道吸收。
全文摘要
本发明描述含加巴喷丁或普加巴林和转运部分(例如烷基硫酸盐)的络合物。该络合物在胃肠道,特别在下胃肠道具有增强的吸收。该络合物,及用该络合物制备的组合物和剂型提供10至24小时对药物体的吸收,从而使加巴喷丁或普加巴林剂型能够每天1次给予。
文档编号A61K31/20GK1968680SQ200480039171
公开日2007年5月23日 申请日期2004年10月29日 优先权日2003年10月31日
发明者黄锡礼, 晏东, G·V·圭塔 申请人:阿尔扎公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1