应用电容器和电感器储能电路来提高有源医学器件的磁共振成像兼容性的带阻滤波器的制作方法

文档序号:1127114阅读:206来源:国知局

专利名称::应用电容器和电感器储能电路来提高有源医学器件的磁共振成像兼容性的带阻滤波器的制作方法
技术领域
:本发明一般涉及新式EMI储能滤波器组件,尤其涉及用在诸如心脏起搏器、心脏复律除颤器、神经刺激器、外戴动态心电图监视器等的有源医学器件中的那种类型的新式EMI储能滤波器组件,其在诸如磁共振成像(MRI)仪器的RF脉冲场的一个或几个所选频率上,使医学器件的引线和/或电子部件与不期望的电磁干扰(EMI)信号解耦。
背景技术
:心脏起搏器、可植入除颤器和其它类型的有源可植入医学器件与磁共振成像(MRI)和其它类型的医院诊断仪器的兼容性已经成为一个主要课题。如果去包括St,JudeMedical、Medtronic和BostonScientific(以前叫Guidant)的美国主要心脏起搏器制造者的网站浏览一下,你将会看到一般禁止将MRI与起搏器和可植入除颤器一起使用。还可以参见(1)"SafetyAspectsofCardiacPacemakersinMagneticResonanceImaging",提交给瑞士FederalInstituteofTechnologyZurich的由苏黎世的RogerChristophLttchinger发表的论文,2002;(2)"I.DielectricPropertiesofBiologicalTissues:LiteratureSurvey",C.Gabriel,S.Gabriel和E.Cortout所著j(3)"H.DielectricPropertiesofBiologicalTissues:MeasurementsandtheFrequencyRange0Hzto20GHz",S.Gabriel,R.W.Lau和C.Gabriel所著;(4)"IILDielectricPropertiesofBiologicalTissues:ParametricModelsfortheDielectricSpectrumofTissues",S.Gabriel,R.W.Lau和C.Gabriel所著;(5)"AdvancedEngineeringElectromagnetics",C.A.Balanis,Wiley,1989;(6)SystemsandMethodsforMagnetic-Resonance-GuidedInterven-tionalProcedures,专利申请公开US2003/0050557,Susil和Halperin等人,在March13,2003公开;(7)MultifunctionalInterventionalDevicesforMRI:ACombinedElectrophysiology/MRICatheter,byRoberC.Susil,HenryR.Halperin,ChristopherJ.Yeung,AlbertC.Lardo和ErginAtalar,MRIinMedicine,2002;和(8)MultifunctionalInterventionalDevicesforUseinMRI,U.S.专利申请系列号No.60/283,725,April13,2001提交。上述全部内容在这里通过引用而并入。但是,广泛查阅文献表明,MRI的确常常用于带心脏起搏器、神经刺激器和其它有源可植入医学器件(AIMD)的病人。MRI用于带心脏起搏器病人的安全性和可行性是一个越来越重要的课题,MRI对病人起搏器系统的影响只有在一些病例报告中回顾性地分析过。有大量论文指出,MRI对新一代起搏器的影响可以导致高达0.5特斯拉(T)。MRI是医学上最有价值的诊断工具之一。MRI当然可广泛用于成像,但也可以用于介入治疗(外科)。另外,MRI还用于实时引导消融导管、神经刺激器尖端、深度脑探针等。绝对禁止带起搏器病人使用意味着起搏器和ICD佩戴者被排除在MRI之外。对胸部和腹部的扫描尤其如此。由于作为使器官和其它身体组织成像的诊断工具的MRI的令人难以置信的值,许多医生只是冒险对带起搏器的病人进行MRI。文献指出了医生在这种情况下应该采取的许多预防措施,包括限制MRIRF脉冲场的功率(特定吸收率-SAR水平),将起搏器编程成固定或异步起搏模式,然后在该过程之后仔细地重新编程和评估起搏器和病人。已经有人报告了心脏起搏器和其它AIMD有时在MRI过程之后的许多天之后才发生的潜在问题。此外,最近有大量论文指出,SAR水平不能完全预测将在植入引线或器件中发现的发热。例如,对于在相同磁场强度下以及在相同SAR水平下工作的磁共振成像设备,就植入引线的发热而言,发现变化相当大。可以推测,SAR水平独自不是植入器件或它的相关引线系统是否将过热的良好预报者。用在MRI单元中的电磁场有三种类型。第一种类型是用于排列身体组织中的质子的指定为Bo的主静磁场。在用于临床的大多数当前可用的MRI单元中,场强从0.5变化到3.0T。一些较新的MRI系统的磁场可以高达4到5T。在2005年11月5日和6日举行的最近的"InternationalSocietyforMagneticResonanceinMedicine(ISMRM)"会议上,有人报告了某些研究系统打算上升到11.7T,并且将在2006年的某个时候成为现实。这超过地球的磁场强度100,000倍。静磁场可以在植入病人体内的任何磁性材料上感应出强大的机械力和转矩。这将包括心脏起搏器本身内的某些部件和/或引线系统。静MRI磁场不可能感应出流入起搏器引线系统并因此流入起搏器本身的电流(除了突然关闭系统以外)。物理学的基本原理是,为了感应出电流,磁场必须在它穿过导体时随时间而变,或导体本身必须在磁场内运动。磁共振成像所产生的第二种场是由身体线團或头部线團生成的脉沖RF场。它用于改变来自组织的质子和非MRI信号的能量状态。RF场在中心区域中是均匀的,并且具有两种主要分量(l)磁场在实际平面内是圆偏振的;和(2)电场通过麦克斯韦方程与磁场相关。一般说来,在测量期间施加和去除RF场,以及根据静磁场强度,RF场通常具有21MHz到64MHz再到128MHz的频率。RF脉冲的频率随主静场的场强而变,其中以MHz为单位的RF脉沖频率==(42.56)(以特斯拉为单位的静场强度)。第三种电磁场是用于空间定位的指定为Bi的时变磁梯度场。这些改变它们沿着不同取向的强度和1kHz数量级的工作频率。在X、Y和Z方向上的磁场梯度的矢量由三组正交定位的线團产生,并且只有在测量期间施加。在一些情况下,梯度场表现为使自然心律(心跳)升高。这还没有完全被人们理解,但它是可重复现象。许多研究人员并不认为梯度场能产生任何其它负面影响。注意到电压和EMI如何感应植入引线系统是有启发性的。在很低频率(VLF,verylowfrequency)下,随着电流在病人体内循环,在心脏起搏器的输入端上感应出电压,产生电压降。由于起搏器外壳与例如TIP电极之间的矢量位移,可以根据欧姆定律和RF信号的循环电流感测出身体组织的电阻两端的电压降。在较高频率下,植入引线系统实际上作为沿着它们的长度感应出电流的天线。由于身体组织的阻尼效应,这些天线不是非常有效;但是,这常常可以通过极高功率场(诸如MRI脉冲场)和/或身体谐振来弥补。在很高频率(诸如蜂窝式电话频率)下,EMI信号只感应引线系统的第一区域(例如,在心脏起搏器的底座上)。这与涉及的以及与系统有效耦合的信号的波长有关。磁场与植入引线系统耦合基于环路面积。例如,在心脏起搏器中,由于引线从心脏起搏器外壳引到它例如位于右心室的远侧TIP,存在由引线形成的环路。返回路径是一般通过体液和組织直接从右心室中的TIP电极返回到起搏器机壳或外壳。这样就形成了可以以平方厘米为单位从病人X射线中测量的封闭面积。平均环路面积是200到225平方厘米,这是平均值,存在极大的统计偏差。例如,在植入腹部的大成年病人中,植入环路面积要大得多(大于450平方厘米)。现在与MRI的特定情况相关,将通过封闭环路面积感应磁梯度场。但是,由身体线围生成的脉沖RF场将主要通过天线作用感应到引线系统中。存在许多由MRI带来的潜在问题,包括(1)起搏器簧片开关的闭合也可以是霍尔效应器件的起搏器簧片开关被设计成检测保持在病人胸腔附近的永磁体。这种磁体放置使医生或甚至病人都可以使可植入医学器件进入所谓的"磁体模式响应"。"磁体模式响应"随制造者而异,但是,一般说来,使心脏起搏器进入固定速率或异步起搏模式。这通常在短时间内完成,并且非常适用于诊断和临床目的。但是,在一些情况下,当起搏器被带到内腔中或与MRI扫描器接近时,MRI静场可以使起搏器内部簧片开关闭合,从而使心脏起搏器进入固定速率或异步起搏模式。更糟糕的是,簧片开关可能反弹或振动。异步起搏可能与病人固有心律竟争。这是一般忠告病人不要去接受MRI的一个原因。固定速率或异步起搏对于大多数病人来说不成问题。但是,对于处在诸如心肌局部缺血的不稳定状况下的病人,在异步起搏期间存在心室纤维颤动的严重风险。在大多数现代起搏器中,磁性簧片开关(或霍尔效应器件)功能是可编程的。如果关闭磁性簧片开关响应,那么,即使在强磁场下,也仍然可以同步起搏。不能排除在主磁场中通过梯度场打开和重新闭合簧片开关的可能性。但是,一般觉得,由于强大的静磁场,簧片开关将保持闭合。理论上,对于簧片开关在梯度场的某些取向,能够重复地闭合和重新打开簧片开关。(2)簧片开关损害对簧片开关的直接损害在理论上是可能的,但在任何已知文献中还没有报告过。在苏黎世(Zurich)的RogerChristophLiichinger所写的文章中,他对簧片开关暴露在MRI仪器的静磁场中的测试作了报告。在持久地暴露在这些静磁场中之后,簧片开关通常在与测试前相同的场强附近的场强下起作用。(3)起搏器位移起搏器的一些部件,诸如电池和簧片开关包含铁磁材料,因此在MRI期间受机械力作用。响应于磁力或磁矩,可能发生起搏器位移。最近有几个报告报导了对于高达3T的MRI系统,力和转矩无关紧要的现代心脏起搏器和ICD。U)射频场在MRI感兴趣的频率上,可以吸收RF能量并将它转换成热。在MRI期间由RF脉沖沉积的功率是复杂的,并取决于RF脉冲的功率(特定吸收率(SAR,SpecificAbsorptionRate)水平)和持续时间、发送频率、单位时间施加的RF脉冲的数量、和使用的RF发送器线圏的配置类型。发热量还取决于成像组织的体积、组织的电阻率和成像解剖学区域的结构。还存在许多取决于AIMA及其相关引线在人体中的布置的其它变量。例如,对于是左胸植入还是右胸植入,在心脏起搏器引线系统中感应多少电流将带来差异。另外,引线的路由和引线长度对于感应的电流量和将引起的发热量也是非常关键的。此外,由于远侧TIP本身可以作为它自己的其中涡流可以引起发热的天线,所以远侧TIP设计也非常重要。在MRI环境下发热的原因有两种(a)RF场与引线耦合可以引起明显的局部发热;和(b)在MRIRF脉沖发送序列期间在远侧TIP和组织之间感应的电流可以在植入引线的远侧TIP电极附近的组织中引起局部欧姆定律发热。MRI扫描器的RF场可以产生足够的能量,感应出足以破坏一些邻近心肌组织的引线电流。还观察到组织消融。这种发热的效应不容易通过在MRI期间进行监视检测到。引起发热的指示将包括起搏阈值的增加、静脉消融、喉或食道消融、心肌穿孔和引线穿透、或甚至疤痕组织所引起的心律不齐。人们还没有针对所有类型的AIMD引线几何形状认真地研究过MRI的这种长期发热效应。除了TIP电极之外,还可能存在与各种类型的电极有关的局部发热问题。这包括RING电极或PAD电极。RING电极通常用于包括心脏起搏器、神经刺激器、探针、导管等的多种植入器件。PAD电极在神经刺激器应用中极其常见。例如,脊髄刺激器或深度脑刺激器可以包括多个与神经組织接触的PAD电极。这方面的好例子还存在于耳蜗植入物之中,在典型的耳蜗植入物中,将存在通过将电极推入耳蜗中而放置的16个RING电极。这些RING电极的几个与听觉神经接触。(S)由施加的射频场引起的起搏速率变化人们已经观察到,RF场可能引起不期望的快速起搏(QRS复合)速率。人们提出了各种机制来说明迅速起搏直接组织刺激、对起搏器电子线路的干扰或起搏器重新编程(或重置)。在所有这些情况下,人们非常希望提高引线系统阻抗(在MRIRF脉冲频率下)以使EMI滤波器馈通电容器更有效,并从而使对AIMD电子线路的保护程度更高。这将使心脏起搏器起搏速率和/或起搏器重新编程的变化更多不可能。(6)时变磁梯度场时变梯度对MRI磁场的总强度的贡献可忽略不计,但是,因为这些场被迅速施加和除去,所以可以影响起搏器系统。磁场的时间变化率直接与多少电磁力并因此可以在引线系统中感应出多少电流有关。Liichinger报导了即使使用时变场高达50T/s(特斯拉每秒)的目前梯度系统,感应电流可能处在心脏纤维颤动的生物阈值以下。时变磁梯度场所引起的感应电压的理论上限是20伏特。在超过0.1毫秒的期间内,这样的电压可以是直接使心脏起搏的足够能量。(7)发热时变磁梯度场所感应的电流可以导致局部发热。研究人员感到,与RF场所引起的发热效应相比,计算的梯度场的发热效应要小得多,因此,对于本文来说,可以忽略不计。存在可能由可植入复律除颤器(ICD,implantablecardioverterdefibrillator)带来的其它问题。ICD使用可以引起较大磁力的不同和较大电池。ICD的可编程灵敏度通常比起搏器的灵敏度高得多(更加灵敏),因此,ICD可能错误地检测到心室过速性心律不齐并不适当地给予治疗。在这种情况下,治疗可以包括抗心动过速起搏、复律或除纤颤(高压电击)治疗。MRI磁场可能阻止危险的心室心律不齐或纤维颤动的检测。也可能存在预计与起搏器引线相当的ICD引线的发热问题。血管壁的消融是另一个关注点。幸运的是,ICD具有一种内在自动防故障机制。也就是说,在MRI过程中,如果它们不小心将MRI场感测成危险的心室心律不齐,则ICD将试图充电并给予高压电击。然而,在ICD内包含必须起作用以便对ICD内的高能存储电容器充电的变压器。在存在MRI的主静场的情况下,这个变压器的铁芯往往达到饱和,从而阻止了对高压电容器充电。这使接受MRI的ICD病人接受不适当的高压电击治疗的可能性变得非常小。虽然在MRI期间,由于它们铁磁变压器的饱和,不能对ICD充电,但电池将显著缩短并丧失它的寿命。这是非常不希望的状况。总之,许多研究已经表明,带有诸如心脏起搏器的有源可植入医学器件的MRI病人可以处在潜在危险影响的风险之中。但是,在文献中许多报告都报导了对于起搏器病人的成像,当采取许多预防措施时(只有当MRI被认为是绝对有必要的诊断时),MRI可以是安全的。这些轶事性的报告是令人感兴趣的,但是,他们没有在科学上有把握地证明所有MRI都是安全的。如前所述,仅仅起搏器导线长度的变化都可以严重地影响产生了多少热。从外行的观点来看,通过观察与老式汽车上更常见的垂直杆状天线相比蜂窝式电话上的天线的典型长度,就可以容易地说明这一点。蜂窝式电话上的天线被设计得相当短,以便有效地与蜂窝式电话信号的高频波长(大约950MHz)耦合。在汽车中的典型AM和FM收音机中,这些波长的信号不能有效地与蜂窝式电话的相当短天线耦合。这是汽车上的天线相对较长的原因。MRI系统中的AIMD病人存在类似的状况。如果采用例如RF脉冲频率为128MHz的3.0特斯拉的MRI系统,则存在将作为128MHz波长的几分之一而有效耦合的某些植入引线长度。通常医院将保存各种引线的存货,以及植入医生根据病人的大小、植入位置和其它因素作为选择。因此,植入或有效引线长度可能相当大地变化。某些植入引线长度恰好不会有效地与MRI频率耦合,而其它植入引线长度将非常有效地耦合,从而造成发热的最坏情况。MRI系统对起搏器、ICD和神经刺激器的功能的影响取决于各种因素,包括静磁场的强度、脉冲序列(使用的梯度和RF场)、成像的解剖学区域、和许多其它因素。更加复杂的是,存在每个病人的状况和生理都不同,以及每个制造者的起搏器和ICD也都设计和表现得不一样的事实。大多数专家仍然断定,对起搏器病人进行MRI不应该认为是安全的。似非而是的是,这也并不意味着病人就不应该接受MRI。医生必须对起搏器病人的状况作出评估并权衡MRI的潜在风险与这种有力诊断工具的好处。随着MRI技术不断进步,包括在更迅速成像中应用于更薄组织切片的更高场梯度随时间变化,这种状况将继续演变和变得更加复杂。这种似非而是的例子是被怀疑得了肺癌的起搏器病人。这种胂瘤的RF消融治疗可能需要只有通过实时准确聚焦成像才有可能的定向成像。对于生命真正有风险的病人,尽管考虑了所有对起搏器系统的前述附带风险,医生也要得到病人的同意才可以作出进行MRI的决定。由于没有重要天线部件(诸如植入引线),胰岛素药泵系统似乎不是当前主要关注点。但是,一些可植入泵工作在磁蠕动系统上,并且必须在MRI之前被去激。一些较新(未公开)的系统基于存在类似问题的螺线管系统。显然,MRI将继续用在带有外部和有源植入医学器件的病人中。存在许多起搏器病人也可以面对的医疗过程,包括电烙术、碎石术等。因此,需要将提高有源可植入医学器件系统对于诸如MRI的诊断过程的免疫力的AIMD系统和/或电路保护器件。正如你看到的那样,植入引线系统中来自MRI或其它医学诊断过程的许多不期望影响与引线系统和/或它的远侧TIP(或RING)中的不期望感应电流有关。这可以导致引线中和/或远侧TIP处的身体组织处的过热。对于起搏器应用,这些电流也可以直接将心脏刺激成有时危险的心律不齐。因此,需要一种可以放置在沿着有源可植入医学器件引线系统的各位置、可以防止电流在医学治疗器件的所选频率上循环的新式谐振储能带阻滤波器组件。最好,这样的新式储能滤波器被设计成在64MHz上谐振,以便用于在1.5T下工作的MRI系统(或者,对于3T系统,为128MHz)。本发明满足这些需要并提供了其它相关优点。
发明内容本发明包含放直在沿着包括其远侧TIP的有源医学器件(AMD)引线系统的一个或多个位置上的谐振储能电路/带阻滤波器。这些带阻滤波器防止了电流在医学治疗器件的所选频率上循环。例如,对于在1.5T下工作的MRI系统,脉沖RF频率是64MHz。本发明的新式带阻滤波器可以设计成在64MHz上谐振,并因此在那个所选频率上在引线系统中形成开路。例如,当放置在远侧TIP上时,本发明的带阻滤波器将防止流过远侧TIP,防止电流在引线中流动,并且还防止电流流入身体組织。对于本领域的普通技术人员来说,显而易见,本文器件,包括深、度脑杀;激5器、脊髓刺激器、耳蜗植二二、心室辅:器件、人工心脏、药泵、动态心电图监视器等。本发明满足了与减小或消除植入引线系统中的不期望电流和相关发热有关的所有需要。本文所述的带阻滤波器结构还可广泛应用于其它领域,包括远程通信、军事、太空等。在电工学上,将电容器与电感器并联称为储能电路。此外,众所周知,当储能电路处在它的谐振频率上时,它将呈现极高的阻抗。这是所有无线电接收器的基本原理。事实上,常常使用多个储能电路来提高无线电接收器的选择性。你可以通过调整电容器值、电感器值或两者来调整储能电路的谐振频率。由于能够产生极强场的医学诊断仪器在分立频率下工作,这是特定储能或带阻滤波器的理想状况。对于消除单个频率,带阻滤波器比宽带滤波器更有效。因为带阻滤波器以这个频率或频率范围为目标,所以它可以小得多并在容积上更有效。另夕卜,从MRFRF脉沖场与引线系统耦合的方式来看,各种环路和相关环路电流沿着引线的各个部分形成。例如,在心脏起搏器的远侧TIP处,可以产生导致经过远侧TIP并进入相关心肌的电流环路的直接电磁力(EMF)。这个电流系统在很大程度上与在有源可植入医学器件附近,例如在心脏起搏器附近感应的电流解耦。在那里,MRI可以建立存在其相关电流的分立环路。因此,可能需要一个或多个带阻滤波器以便完全控制引线系统中的所有各种感应EMI和相关电流。旨在带阻滤波器的本发明还被设计成与通常用在有源可植入医学器件的引线入口和出口点上的EMI滤波器合作。例如,参见特此全文引用以供参考的发明名称为"FEEDTHROUGHFILTERCAPACITORASSEMBLYFORHUMANIMPLANT,,的美国专利第5,333,095号;发明名称为"INDUCTORCAPACITOREMIFILTERFORHUMANIMPLANTAPPLICATIONS,,的美国专利第6,999,818号;2005年3月31日提出的发明名称为"APPARATUSANDPROCESSFORREDUCINGTHESUSCEPTIBILITYOFACTIVEIMPLANTABLEMEDICALDEVICESTOMEDICALPROCEDURESSUCHASMAGNETICRESONANCEIMAGING"的美国专利申请第11/097,999号;和2005年11月3日提出的发明名称为"PROCESSFORTUNINGANEMIFILTERTOREDUCETHEAMOUNTOFHEATGENERATEDINIMPLANTEDLEADWIRESDURINGMEDICALPROCEDURESSUCHASMAGNETICRESONANCEIMAGING,,的美国专利申请第11/163,915号。所有这些专利文件都描述了用于低通EMI滤波器电路的新式电感器电容器組合。特别感兴趣的是,通过增加电路元件的数量,可以降低处于可植入医学器件的输入端的总电容值。重要的是降低电容值,以提高有源可植入医学器件的输入阻抗,使得也可以减小将流入引线系统的与诸如MRI的医疗过程相关的电流量。因此,本发明的特征;i将新式带阻滤波器设计成与描述在上面提及的三个专利申请中的结构合作使用。如美国专利公布第2003/0050557号和美国专利申请第60/283,725号所述,本发明还可应用于探针和导管。例如,消融探针用于有选择地烧灼或消融心脏内外的組织,以控制不规律的电脉冲。这些过程在实时荧光透视或MRI成像期间进行最佳。然而,主要关注点是由于从MRI系统感应的电流,远侧TIP在不适当时间的过热.对于本领域的普通技术人员来说,显而易见,本发明的新式带阻滤波器可以适用于用在人体中的任何探针、TIP或导管。此外,本发明还可应用于在MRI期间可以放置在病人身上的许多外部引线。例如,病人经常佩戴动态心电图监视器数天,以监视他们的心脏活动。医生将病人送到MRI部门并从病人身体上去除所有这些细心放置的电极是一种负担。通常,MRI技术人员在MRI期间关心让这些引线接通,因为他们不想让它们过热并在病人皮肤上引起表面烧伤。问题在于,在MRI过程之后,MRI技术人员常常将这些电极或皮肤贴片重新放回在不同位置上或甚至在错误位置上。这给心脏病医生造成极大混乱,因为现在动态心电图监视器结果不再一致。本发明的特征是,在MRI过程期间可以由病人将储能滤波器放置在任何外戴引线中,使得不需要去除它们。在一个实施例中,本发明提供了一种医学治疗器件,包括有源医学器件(AMD)、从AMD延伸到它的远侧TIP的引线、和用于在所选频率上衰减流过引线的电流的与引线相关的带阻滤波器。AMD可以包含耳蜗植入物、压电声桥换能器、神经刺激器、脑刺激器、心脏起搏器、心室辅助器件、人工心脏、药泵、骨生长刺激器、骨融合刺激器、小便失禁器件、疼痛减轻脊髄刺激器、抗震颤刺激器、胃刺激器、可植入复律除颤器、pH探针、充血性心力衰竭器件、药丸摄像机、神经调节器、心血管支架、整形外科植入物、外部胰岛素泵、外部药泵、外部神经刺激器、以及外部探针或导管等。带阻滤波器本身包含与电感器(和它的寄生电阻)并联的电容器(和它的寄生电阻或附加电阻),所述并联电容器和电感器组合与医学器件引线串联地放置,其中,电容和电感的值被选择成使得带阻滤波器在所选频率(诸如MRI脉冲频率)上谐振。在优选实施例中,使电感器的Q值相对最大化并使电容器的Q值相对最小化,以便减小带阻滤波器的总Q值。通过使电感器中的寄生电阻性损耗最小化而使电感器的Q值相对最大化,以及通过增大电容器的等效串联电阻(ESR,equivalentseriesresistance)(或通过与带阻储能滤波器的电容器元件串联地加入电阻或电阻性元件)而使电容器的Q值相对最小化。这样就减小了带阻滤波器的总Q值,以便使它的3dB点变宽,并从而沿着所选频率范围衰减流过引线的电流。在AIMD或外部医学器件应用中,所选频率范围包括多个MRI脉冲频率。电容器的等效串联电阻通过如下手段的任何一种增大减小电容器中的电极板的厚度;使用较高电阻率电容器电极材料;在电容器的电极板中提供缝隙、间隙、狭缝或辐条;提供与电容器串联的单独分立电阻;将电阻性电附着材料用于电容器;或利用在所选频率上具有高介电损耗因数的电容器介电材料。使用较高电阻率电容器电极材料的方法包括,例如,使用铂取代银电极。铂与纯银相比具有更高的体积电阻率。降低电容器电极板电阻率的另一种方式是,在被丝网遮蔽和烧结之前,将陶乾粉末加入电极墨中。在烧结之后,这具有通过提高电极板的总电阻率的绝缘介电区来分离导电电极部分的效应。正如本文定义的那样,提高电容器ESR包括加入与带阻滤波器的电容元件串联的电阻的任何一种或所有上述方法。应该注意到,故意提高电容器ESR与传统/现有电容器技术背道而驰。事实上,电容器制造者一般努力制造ESR尽可能低的电容器。这是为了使能量损耗等达到最小。本发明的特征是,在储能滤波器电路中以受控方式提高电容器Q值,以便调整它的Q值和调整MRI脉沖频率范围内的带阻频率宽度。最好,将带阻滤波器布置成与引线的远侧尖端相邻并集成在TIP电极内。也可以将它集成在一个或多个RING电极内。引线也可以包含外戴引线,或可以来自外戴电子模块,其中所述引线穿过皮肤表面到达植入的远侧电极。本发明还提供了在所选频率上衰减流过有源医学器件引线的电流的新式方法,它包含如下步骤选择在所选频率上谐振的电容器;选择在所选频率上谐振的电感器;使用所述电容器和电感器形成储能滤波器电路;以及与所述引线串联地放置所述储能滤波器电路。储能滤波器电路的总Q值可以通过增大电感器的Q值和减小电容器的Q值来减小。关于这一点,使电感器中的电阻性损耗最小化使电感器的Q值最大化,以及提高电容器的等效串联电阻使电容器的Q值最小化。净效应是减小储能滤波器电路的总Q值,使带阻宽度变宽,以便沿着所选频率范围衰减流过引线的电流。正如本文所讨论的那样,所选频率范围可以包括多个MRI脉沖频率。通过结合通过例子例示本发明原理的附图对本发明的示范性实施例进行如下更详细描述,本发明的其它特征和优点将变得显而易见。附图例示了本发明。在这样的图形中图1是示出许多有源可植入医学器件(AIMD,activeimplantablemedicaldevice)的一般人体的网线图;图2是包括引向病人心脏的引线的现有有源可植入医学器件(AIMD)的透视和有点示意的图;图3是一般沿着图2的3-3线取出的放大剖面图;图4是一般沿着图3的4-4线取出的视图;图5是如图3和4所示那种类型的现有长方形四极馈通电容器的透视/等距图;图6是一般沿着图5的6-6线取出的剖面图;图7是一般沿着图5的7-7线取出的剖面图;图8是单极有源可植入医学器件的图形;图9是例示双极AIMD系统的与图8类似的图形;图10是例示通常用在心脏起搏器中的带有远侧TIP和RING的双极引线系统的与图8和9类似的图形;图ll是示出与图8-10的引线系统串联地放置的电感器L和电容器C的并联组合的示意图;图12是例示图11的并联储能电路的谐振频率计算的流程;图13是示出图ll的并联储能带阻电路的阻抗与频率关系的曲线图;21图14是与电容器并联的电感器的阻抗方程;图15是例示图ll的并联储能电路的电感器和电容器的电抗方程的流程;图16是例示除了在这种情况下,电感器和电容器具有串联电阻性损耗之外,图11的并联储能电路的示意图;图17是例示加在远侧电极附近的储能电路/带阻滤波器的与图8类似的图形;图18是在各种频率上使用开关来例示它的功能的本发明的新式带阻储能滤波器的示意性表示;图19是例示带阻滤波器的低频模型的与图18类似的示意图;图20是例示本发明的带阻滤波器在其谐振频率的模型的与图18和19类似的示意图;图21是例示带阻滤波器在比谐振频率高相当多的高频上的模型的与图18-20类似的示意图;图22是例示设计本发明的带阻滤波器的过程的判定树方块图;图23是具有高Q值电感器和不同品质因数"Q"的带阻滤波器的插入损耗与频率关系的曲线图;图24是示出植入起搏器和复律除颤器和相应引线系统的示范性病人X射线的描图;图25是双心室引线系统的示范性病人心脏X射线的素描;图26例示了示出远侧TIP和远侧RING电极的双极心脏起搏器引线;和图27是图26中的27-27线所例示的区域的放大分段示范性例示。具体实施方式图1例示了当前使用的各种类型的有源可植入和外部医学器件100。图l是示出许多植入医学器件的一般人体的网线图。IOOA是可以包括一组助听器、耳蜗植入物、压电声桥换能器等的外部和可植入听觉器件的系列。100B包括全部多种多样的神经刺激器和脑刺激器。神经刺激器用于刺激迷走神经,例如以治疗癫痫症、肥胖症和抑郁症。脑刺激器与起搏器状器件类似,并包括深植入大脑中以感测疾病的发作并且还将电刺激提供给脑组织以防止实际发生疾病的电极。来自深度脑刺激器的引线常常利用实时成像来放置。最常见的是,在实时MRI期间放置这样的引线。100C示出在现有技术中众所周知的心脏起搏器。100D包括左心室辅助器件(LVAD)和包括称为Abiocor的最近引入的人工心脏的人工心脏的系列。100E包括可以用于调剂胰岛素、化疗药品、止痛药物的药泵的整个系列。胰乌素泵正从无源器件演变成具有传感器和闭环系统的器件。也就是说,将进行血糖水平的实时监视。这些器件往往比不含感测电路或外部植入引线的无源泵对EMI更敏感。100F包括迅速治愈骨折的多种外部或可植入骨生长刺激器。100G包括小便失禁器件。100H包括疼痛减轻脊髄刺激器和抗震颤刺激器的系列。100H还包括用于阻止疼痛的其它类型神经刺激器的整个系列。1001包括可植入复律除颤器(ICD)器件的系列,并且还包括充血性心力衰竭器件(CHF)的系列。这在现有技术中还被称为心脏重新同步治疗器件,要不然被称为CRT器件。100J例示了外戴部件。这个部件可以是外部胰岛素泵、外部药泵、外部神经刺激器、带有皮肤电极的动态心电图监视器或甚至心室辅助器件电源组,100K例示了外部探针或导管的插入。这些探针可以插入例如股动脉中或人体中的任何其它许多位置中。现在参照图2,图中例示了现有技术的有源可植入医学器件(AIMD)100。一般说来,AIMD100可以是例如由所指的钬外壳102封装的心脏起搏器100C。钛外壳是密封的,但是,存在引线104必须进出密封盒的点。这是通过配备密封端组件106来实现的。密封端组件是众所周知的,一般由与AIMD100的钛外壳激光焊接的金属环108组成。密封端组件106及其相关EMI滤波器在图3中被更好地示出。再次参照图2,图中示出了由引线对104a和104b以及引线对104c和104d组成的四条引线。这是典型的所谓双室双极心脏起搏器。被设计成插入底座112中的IS1连接器110是遵从ANSI/AAMI标准IS-1的低压(起搏器)连接器。诸如可植入复律除颤器的较高压器件遵从被称为ANSI/AAMIDF-1的标准。正在开发的新标准将把高压和低压连接器整合成被称为IS-4系列的新小型连接器系列。这些连接器在起搏器应用中通常向下路由到心脏114的右心室和右心房中。还存在将引线与左心室的外部耦合的已经进入市场的新一代器件。这些都被称为双心室器件,在心脏重新同步治疗(CRT,cardiacresynchronizationtherapy)和治疗充血性心力衰竭(CHF,congestiveheartfailure)方面非常有效。再次参照图2,你可以看到,例如,可以路由到例如进入右心室的远侧TIP和RING的双极引线104a和104b。双极引线104a和104b可以路由到右心房中的远侧TIP和RING。还存在不与IS-l或DS-1连接器块连接的RF遥测杆状天线116,它作为拾取从器件100的外部发送的遥测信号的短截线天线。本文的所有描述可平等地应用于其它类型的AIMD,这对于本领域的普通技术人员来说也应该是显而易见的。这些AIMD包括可植入复律除颤器(ICD)、包括深度脑刺激器、脊髄刺激器、耳蜗植入物、失禁刺激器等的神经刺激器、和药泵。本发明也可应用于多种最低程度侵入AIMD。例如,在某些医院的导管室过程中,可以插入诸如ICD的AIMD临时使用。心室辅助器件也可以属于这种范畴。这个列表并不意味着限制,而只是本文当前所述的新式技术的应用例子。图3是一般沿着图2的3-3线取出的放大分段剖面图。这里,你可以在剖面中看到RF遥测杆116、和通过将这些引线与IS-l底座112(图2)的内部连接器118连接而将被路由到心室的双极引线104a和104b。这些连接器被设计成接纳使医生可以将引线穿过静脉系统下到心脏114的适当心室的插头110。深度脑电极或神经刺激器的隧穿是等效的,这对于本领域的普通技术人员来说是显而易见的。回头参照图3,可以看到已经与密封端组件106接合的现有馈通电容器120。这些馈通电容器在现有技术中是众所周知的,例示在美国专利第5,333,095、5,751,539、5,978,204、5,905,627、5,959,829、5,973,906、5,978,204、6,008,980、6,159,560、6,275,369、6,424,234、6,456,481、6,473,291、6,529,103、6,566,978、6,567,259、6,643,903、6,675,779、6,765,780和6,882,248中。在这种情况下,例示了具有外部金属化终止面122的长方形四极馈通电容器120。它包括嵌入式电极板组124和126。电极板组124被称为接地电极板組并在电容器120的外部终止在终止面122处。这些接地电极板124利用热固性导电聚酰亚胺或等效材料128(等效材料将包括锡焊料、铜焊料、导电环氧树脂等)与密封端組件106的金属环108电连接和机械连接。密封端组件106再被设计成让它的钛金属环108与AIMD100的整个外壳102激光焊接130。这样就形成了连续密封,从而防止体液透入并对AIMD的电子线路造成伤害。诸如通过金焊料或玻璃密封材料132和134将引线104和绝缘体136密封也是基本的。金焊料132从钛金属环108浸润到氧化铝陶瓷绝缘体136。接着,氧化铝陶瓷绝缘体136也在134处与每条引线104金焊接。RF遥测杆116也在138处与氧化铝陶瓷绝缘体136金焊接。对于本领域的普通技术人员来说,显而易见,存在多种其它方式构成这样的密封端。这可以包括直接将引线玻璃密封到金属环中而无需金焊料。如图3所示,RF遥测杆116未包括在馈通电容器120的区域中。这样做的原因是馈通电容器120是将消除所需遥测频率的极宽带单个元件EMI滤波器。图4是一般沿着图3中的4-4线取出的底视图。可以看到完全将密封端绝缘体136密封到整个钛金属环108中的金焊料132。还可以看到与形成密封端106的金焊料132接触的被显示为热固性导电粘合剂128的电容器附着材料的重叠。图5是馈通电容器的等距图。正如看到的那样,终止面122与电容器的内部接地板组124连接。这在图6中看得最清楚,其中,通常丝网印刷到陶瓷层上的接地板组124被引出来并暴露于终止面122。电容器的四个(四极)有源电极板组126例示在图7中。在图6中可以看到,引线104不与接地电极板组124电通信。但是,在图7中可以看到,每条引线104与它的相应有源电极板组126电接触。由有源电极板区126在接地电极板区上方的重叠来确定电容量。可以通过增大有源电极板组126的区域来增大电容量。也可以通过加入附加层来增大电容。在这个特定应用中,只示出六个电极层三个接地板124和三个有源电极板组126(图3)。但是,可以平行地放置10个、60个或甚至超过100个这样的組,从而极大地增大电容值。电容值也与介质厚度或接地电极板组124与有源电极板组126之间的间隔有关。减小介质厚度使电容显著增大,同时降低它的额定电压。这给予设计人员许多自由度来选择电容值。在如下描述中,在各种实施例中示出的功能等效元件常常用相同标号引用。图8是单极有源可植入医学器件系统100的一般图形。图8也可以代表诸如动态心电图监视器的外戴医学器件。在动态心电图监视器的情况下,远侧电极140通常是扫描或贴片电极。有源可植入医学器件100的外壳102通常是钛、陶瓷、不锈钢等。器件外壳的内部是AIMD电路。通常,AIMD包括电池,但未必是这样。例如,对于生命单元,它可以接收来自外部脉冲磁场的能量。引线104从AIMD100路由到嵌入身体组织中或贴在身体组织上的点140。在脊髄刺激器100H的情况下,远侧TIP140可以在脊髓内。在深度脑刺激器100B的情况下,远侧电极140被深度放在大脑等中。在心脏起搏器100C的情况下,远侧电极140通常放在心脏右心室内。图9除了是双极系统之外,非常类似于图8。在这种情况下,电路返回路径在两个远侧电极140和140'之间。在心脏起搏器100C的情况下,这被称为双极引线系统,一个电极被称为远侧TIP142,以及浮在血池中的另一个电极被称为RING144(参见图10)。相反,图8中的电返回路径从远侧电极140经过身体組织到可植入医学器件100的导电外壳102。图10例示了通常如用在心脏起搏器100C中的带有远侧TIP142和RING144的双极引线系统。在所有这些应用中,病人可以暴露于在医学诊断过程中使用的MRI扫描器或其它强大发射器的场。在引线系统104中直接感应的电流可以通过引线系统中的fR损耗或通过流入身体组织的电流引起的发热引起发热。如果这些电流变得过大,则相关发热可以对身体组织造成伤害或甚至破坏性消融。远侧TIP142被设计成植入心脏的实际心肌组织中或贴在心脏的实际心肌组织上。RING144被设计成浮在血池中。因为血液是流动的和导热的,所以RING144结构得到充分冷却。但是在理论上,如果引线弯曲,RING144也可以与身体组织接触并被身体組织包住。另一方面,远侧TIP142总是被周围身体组织热绝缘,并且由于MRI场的RF脉沖电流,可以容易地被加热。图11是示出要放置在如前所述的引线系统104中的电感器L和电容器C的并联组合的示意图。这种组合形成将在特定频率(fr)上谐振的并联储能电路或带阻滤波器146。图12给出了图11的并联储能电路146的谐振方程的频率fr,其中fr是以赫兹为单位的谐振频率,L是以亨利为单位的电感,以及C是以法拉为单位的电容。MRI系统的静场强从0.5T—直变化到3T,较新研究机的静场强要高得多。这是主静磁场的强度。与MRI相关的脉冲RF场的频率通过将以特斯拉为单位的静场乘以42.45求出。于是,3特斯拉MRI系统具有近似128MHz的脉沖RF场。再次参照图11可以看到,如果适当地选择电感器和电容器的值,就可以获得128MHz的并联储能谐振频率。对于1.5特斯拉的MRI系统,RF脉沖频率是64MHz。参照图12可以看到假设电感器值L等于1毫微亨的计算。1毫微亨来自考虑到人体的内部所涉及的小几何结构,非常大的电感器将不可能的事实。另外的事实是,由于如下两个原因,将铁氧体材料或铁心用于这样的电感器是不切实际的1)来自MRI扫描器的静磁场将排列这种铁氧体中的磁偶极子(饱和),并因此使电感器失效;和2)铁氧体材料的存在将造成严重的MRI图像假象。这意味着,如果正在对例如心脏的右心室成像,则由于这些铁氧体材料的存在以及它与MRI场交互的方式,图像的相当大区域将变暗或图像失真。电感值在存在主静场的时候不变也是重要的。并联电感器L和电容器C之间的关系也是非常重要的。可以使用例如导致非常小电容值的非常大电感值,以便在例如64MHz的MRI频率上谐振。但是,使用非常高电感值导致匝数很多的非常细的导线。由于两个原因,使用匝数很多的直径非常小的导线是净皮禁止的。第一个原因是直径相对小的导线的很长长度导致电感器的DC电阻非常高。这个电阻是非常不期望的,因为低频起搏或神经刺激器脉冲将损失掉通过相对高串联电阻的能量。在AIMD正在感测生物信号的场合,这也是不期望的。例如,在起搏器或深度脑刺激器的情况下,需要连续感测低频生物信号。引线系统中的太大串联电阻将衰减这样的信号,从而使AIMD不那么有效。于是,本发明的优选特征是,与相对小电感值并联地使用相对大电容值,例如,应用可在非常小的空间内形成很大电容的高容积效率陶瓷介电电容器。还应该注意到,在谐振频率以下,尤其在很低的频率上,并联L-C带阻滤波器中的电流流过电感器元件。于是,电感器元件的寄生电阻相当小是重要的。相反,在很低频率上,没有电流流过电容器元件。在高频上,电容器元件的电抗下降到很低的值。但是,由于不存在实际希望让高频通过储能滤波器的情况,电容器的寄生电阻性损耗不是特别重要。这也被称为电容器的等效串联电阻(ESR)。电容器的ESR分量是电容器的耗散因数(低频现象)。在远离谐振的情况下,当用作如本文所述的并联储能电路146的分量时,电容器的耗散因数或总ESR有多大不是特别重要。于是,空心电感器是理想选择,因为它不受MRI信号或场的影响。但是,由于空间局限性,该电感器在容积上不是非常有效。由于这个原因,最好保持相对小的电感值(l到100毫微亨的数量级)。再次参照图12,可以看到代数求解为C所示的谐振频率fr方程的电容计算。假设电感值是1毫微亨,可以看到需要6毫微法的电容。6毫微法的电容是相对高的电容值。但是,提供非常高介电常数的陶瓷介质在现有技术中是众所周知的,并且在容积上非常有效。它们也可以由使它们成为用在本发明中的理想选择的生物适应材料制成。图13是示出图11的并联储能带阻滤波器电路146的阻抗与频率关系的曲线图。正如看到的那样,当使用理想电路部件时,在如图11所示的并联储能电路146的A点与B点之间测量的阻抗非常小(零),直到接近谐振频率fr。在谐振频率上,这些理想部件组合在一起,看起来像非常大,或理想地,无穷大阻抗。其原因在于如图14所示的电感器与电容器并联的阻抗的方程Zab的分母。当感抗等于容抗时,两个虛向量相互抵消变成零。参照图14和15中的方程,可以在阻抗方程Zab中看到,当XL-Xc时,在分母中将出现零。这产生了随着分母接近零,使阻抗接近无穷大的效应。实际上,不会真正获得无穷大阻抗。但是,试验表明,可以实现对来自MRI的RF脉沖电流提供巨大衰减和保护的几百欧姆。这意味着,在一个独特频率上,图11中的A点与B点之间阻抗将非常高(与打开开关类似)。于是,例如,在心脏起搏器的情况下,可以设计出与单个流行MRI系统兼容的心脏起搏器。例如,在AIMD病例文献和医生手册中,注明起搏器引线系统已经被设计成与3特斯拉MRI系统兼容。于是,通过这种特殊器件,将包含L和C值被细心选择成在128MHz上谐振的远侧TIP带阻滤波器146,从而在MRI脉沖频率上提供很高或几乎无穷大的阻抗。图16是除了在这种情况下,电感器L和电容器C不是理想的之外,其它与图11相同的并联储能电路146的示意图。也就是说,电容器C具有它自己的内部电阻Rc,在工业领域中被称为耗散因数或等效串联电阻(ESR)。电感器L也具有电阻RL。对于无源部件有经验的那些人来说,他将认识到,电感器L也将具有某个并联电容。这个寄生电容来自与相邻匝相关的电容。但是,预期的电感值如此低,以致于可以假设在MRI脉冲频率上,电感器的并联电容可忽略不计。也可以指出电容器C也具有以串联形式出现的某个内部电感。但是,如下所述的新式电容器非常小或是同轴的,并具有可忽略不计的串联电感。于是,如图16所示的电路是如本文所述的新式并联储能电路146的非常好近似模型。通过在频率极值上考察图16的电路146可以最好地理解这一点。在很低频率上,电感器电抗方程是XL-27rfL(参照图15)。当频率f接近零时(DC),这意味着电感器看起来像短路。一般情况下,生物信号是低频的,通常在10Hz和1000Hz之间。例如,在心脏起搏器100C中,感兴趣的所有频率都出现在10Hz和1000Hz之间。在这些低频上,感抗Xl将非常接近零欧姆。另一方面,在这个范围上,具有方程Xc=1/(2TifC)的容抗Xc看起来像无穷大或开路(参照图15)。这样,在低频,图16中的A点与B点之间的阻抗将等于R。于是,电感器的电阻(Rj应该保持尽可能小,以便使生物信号的衰减或对身体组织的刺激脉冲的衰减达到最小。这将使生物信号自由地通过带阻滤波器146。这还指明了电容性损耗量Rc不是特别重要。事实上,希望那个损耗相当高,以便不让很高频率信号自由通过(诸如来自蜂窝电话的不期望EMI)。还希望让如图16所示的电路的Q值相对寸氐,使得带阻频带可以更宽一点。换句话说,在优选实施例中,可以让带阻频带宽得足以阻止64MHz和128MHz频率两者,从而4吏医学器件可兼容地用在1.5特斯拉和3特斯拉的MRI系统两者中。图17是将本发明的带阻滤波器146加在远侧电极140附近的如前面图8所示的单极AIMD引线系统的图形。如上所述,储能电路146的存在将在一个或多个特定MRIRF脉沖频率上呈现很高的阻抗。这将防止电流在这个所选频率上循环通过远侧电极140而到达身体组织内.这将对病人提供非常重要的保护,以便过热不会引起组织损伤。图18是使用在各种频率上打开和闭合的开关来例示它的功能的新式带阻储能滤波器146的表示。电感器L已经被开关Sl取代。当电感器的阻抗相当低时,开关SL将闭合。当电感器的阻抗或感抗高时,开关SL将被显示成打开。电容器元件C也存在相应类比。当容抗看起来像很低的阻抗时,电容器开关Sc将被显示成闭合。当容抗显示出很高阻抗时,电容器开关Sc将被显示成打开。通过参照图19、20和21可以最好地理解这种类比。图19是带阻滤波器146的低频模型。在低频上,电容器往往看起来像开路,而电感器往往看起来像短路。于是,开关SL是闭合的而开关Sc是打开的。这是在低于带阻滤波器146的谐振频率的频率上,电流将只流过电感器元件和它的相应电阻Rl的指示。这是低频生物信号不被衰减的本发明的重要考虑。例如,在心脏起搏器中,感兴趣的频率一般在10Hz与1000Hz之间。起搏器起搏^冲落在这个一般的频率范围内。另外,可植入医学器件也感测在相同频率范围内的生物频率。于是,这样的信号必须能够容易地流过带阻滤波器的电感器元件。应该对电感器设计给予极大关注,以便具有很高的品质因数(Q)和很低的寄生串联电阻值R"图20是新式带阻滤波器146在其谐振频率的模型。按照定义,当并联储能电路谐振时,它呈现出对整个电路的很高阻抗。于是,开关Sl和Sc两者都被显示成打开。例如,这是带阻滤波器146如何在所选MRIRF脉冲频率上防止MRI电流流过起搏器引线和/或流入身体组织中。图21是带阻滤波器146在高频上的模型。在高频上,电感器往往看起来像开路。于是,开关St被显示成打开。在高频上,理想电容器往往看起来像短路。因此,开关Sc被显示成闭合。应该注意到,实际电容器不是理想的,并且往往在高频上性能下降。这是由于电容器的等效串联电感和等效串联电阻。幸运的是,对于本发明,电容器元件C在高频上如何损耗(电阻性)并不重要。这将只用于衰减不想要的电磁千扰流入引线系统中。于是,就生物信号而言,等效串联电阻Rc和电容器元件C的所得品质因数几乎没有电感器元件L的品质因数那么重要。感抗(Xl)的方程在图15中给出。容抗方程(Xc)也在图15中给出。正如可以看到的那样,当代入零或无穷大频率时,将得出在很低频率上,电感器往往看起来像短路而电容器往往看起来像开路的事实。通过将很高频率代入相同方程中时可以看到,在很高频率上,理想电感器看起来像无穷大或开路阻抗,而理想电容器看起来像很低或短路阻抗。图22是更好地例示本文的设计过程的判定树方块图。方块148是设计人员必须执行的初始判定步骤。为了例示起见,从方便的电容值开始。这个电容值一般与可用在AIMD引线系统中的空间量和其它因素有关。实际上,这些值一般在几十皮法到大约10,000皮法的电容值范围内。这将实际边界设在可在本发明的范围内有效覆盖的电容量上。但是,这无意限制本发明的一般原理,而仅仅描迷了一个优选实施例。于是,在优选实施例中,将选择一般在100皮法到大约4000皮法范围内的电容值,然后求解要求在所选遥测频率上自"^皆振的相应电感值。回头参照图22,要作出首先设计C还是首先设计L的判定。如果作出首先假设电容值C的判定,那么,将被引向左边的方块1S0。在方块150中,对带阻滤波器146的远侧TIP142的总封装要求进4亍评估,然后假设可实现的电容值。因此,在判定方块150中,假设电容值。然后,在方块152中,从图12中为电感(L)的所需值求解谐振储能方程fr。然后,考察许多电感器设计,来看看所迷电感值在空间、寄生电阻Rc、和其它设计约束内是否可实现。如果所述电感值可实现,那么,继续转到方块154,并且结束设计。如果所述电感值在物理和实际约束内不可实现,那么需要回到方块150并假设新的电容值。可能在这个循环内往返许多次,直到最后得到相容的电容器和电感器设计。在一些情况下,将不能只利用这种手段来取得最后设计。换句话说,可能不得不使用定制电容值或设计,以便实现满足所有设计准则的结果。也就是说内部损耗Rc足够高的电容器设计和内部损耗Rd氐的电感器设计,使得带阻滤波器146具有所需品质因数(Q)、尺寸足够小、具有充分的电流和高压管理能力等。换句话说,在穿过这个判定树时需要考虑所有设计准则。在已经穿过由方块150、152和154组成的左侧判定树许多次,并且继续得出"否定,,的情况下,接着,不得不假设一个可实现的电感值,并转到从方块156开始的右侧判定树。然后,假设电感器的串联电阻R^足够低的可实现电感值(L),以便它能工作并与设计空间和方针相适应。在假设了电感值之后,接着转到判定块158,为所需电容量求解图12中的方程C。在求出所需电容量C之后,接着确定定制电容值是否与设计参数相适应。如果在步骤S160中确定的电容值是可实现的,那么,将继续下去并且结束设计。但是,如果是不可实现的,那么,可以返回到步骤156,假设不同的L值,并且再次穿过判定树。反复进行下去,直到找出可实际用于整个设计的L和C組合。对于本发明来说,可以使用串联分立电感器或并联分立电容器来实现相同的总结果。例如,在电感器元件L的情况下,可以串联地使用两个、三个或甚至更多(n)个独立电感器元件。对出现在并联储能滤波器146中的电容器元件也是这样。通过并联地加入或减去电容器,还能够调整与电感并联终止谐振的总电容。还可以使用在其相邻匝之间具有明显寄生电容的单个电感部件。细心的设计人员可以使用多匝来形成足够的寄生电容,使得线圏在预定频率上自谐振。在这种情况下,预定频率将是MRI脉沖频率。总储能电路146的效率也利用品质因数Q测量,但这个因数被定义成与以前针对分立电容器和电感器提到的那个不同。电路Q通常利用如下方程表达其中,fr是谐振频率,以及在图23中显示成a点和b点的Af3dB是带阻滤波器146的带宽。带宽通常取作如在插入损耗图上测量的3dB损耗点处的两个测量频率&和f2之间的差值,以及谐振频率是fi和f2之间的平均值。从这个关系中可以看出,较高的Q值导致较窄的3dB带宽。当设计储能滤波器时,必须考虑材料和应用参数。大多数电容器介电材料的电容值每经过十年时间老化1%-5%,这可以导致谐振频率漂移2.5%以上。在高Q值滤波器中,这可以导致带阻滤波器性能的显著和有害下降。低Q值滤波器将使谐振频率漂移的效应最小化,并且允许较宽的频带通过滤波器。但是,很低Q值滤波器在所需带阻频率上显示出低于期望的衰减行为(参见图23中的曲线162)。由于这个原因,本发明的带阻滤波器的最佳Q值将体现导致如图23的曲线164所示的中等Q值储能滤波器的高Q值电感器L和相对低Q值电容器C。于是,储能电路的"Q"值或品质因数非常重要。如上所述,最好在低频具有很低损耗电路,以便不会不期望地衰减生物信号。品质因数不仅决定滤波器的损耗,而且影响它的3dB带宽。如果画出了滤波器响应曲线(Bode(波德)图),3dB带宽决定滤波器将如何急剧地升降。参照图23的曲线166,对于在128MHz上谐振的储能电路,理想响应将是在128MHz具有无限衰减,但在低于1kHz的低频具有零衰減的响应。显然,考虑到空间局限性和部件内的寄生损耗的现实性,这是不可能的。换句话说,不可能(除了在低温下之外)构建具有零内部电阻的电感器。另一方面,也不可能构建完美(理想)的电容器。电容器具有被称为等效串联电阻的内部电阻,并且还具有少量电感。于是,实际实现达到本发明目的的电路是一种4^战。电路的性能直接与电感器和电容器两者的效率有关每个部件的效率越低,导致的热损耗就越高,并且这可以通过将电阻元件加入理想电路图中来表达。储能电路中较低Q值的效应是使谐振频率附近的谐振峰变宽。通过故意使用低Q值电容器,可以加宽谐振,使得在多个MRIRF频率,例如,64MHz和128MHz上呈现高阻抗(高衰减)。再次参照图23,可以看到结合相对高ESR低Q值电容器使用低电阻性损耗高Q值电感器的曲线164。这具有非常合乎需要的效应,因为在很低频率上,储能电路146的阻抗基本上是零欧姆(或零dB损耗)。这意味着,生物信号不会不期望地衰减。但是,可以看到3dB带宽要大得多。这是人们希望的,因为它将阻止多个RF频率。随着频率变得更高,曲线164将合乎需要地衰减诸如来自蜂窝电话、微波炉等的那些的其它高频EMI信号。于是,常常希望将很低损耗电感器与相对高损耗(和/或高电感)电容器结合在一起使用,以实现中等或低Q值带阻滤波器。再次参照图23可以看到,如果总电路或各个部件的Q值变得太低,那么,在MRI脉沖频率上,带阻滤波器的总衰减将严重恶化。于是,必须在部件设计和储能电路Q值之间仔细平衡。再次参照图17,还可以通过加入与电容器元件串联的单独分立部件来增大Rc的值。例如,可以安装具有很低等效串联电阻的小电容器芯片,并将它与电阻器芯片串联放置。这可以通过故意提高如图17所示的电路中的Rc值来完成。通过细心调整这个Rc值,那么可以实现如图23所示的理想曲线164。图24是实际病人X射线的描图。这个特定病人需要心脏起搏器100C和可植入复律除颤器1001两者。正如看到的那样,相应引线系统104造成了非常复杂的天线和环路耦合状况。读者可以参照AAMI起搏器EMC任务組提供的名称为"EstimationofEffectiveLeadLoopAreaforImplantablePulseGeneratorandImplantableCardioverterDefibrillators"的文章。再次参照图24可以看到,在右心房和右心室中存在来自起搏器100C的电极。这两者涉及TIP和RING电极。在工业领域中,这衫L称为双室双极引线系统。于是,本发明的带阻滤波器146需要至少放在远离心脏起搏器的右心房中的远侧TIP中和右心室中的远侧TIP中。还可以看到,可植入复律除颤器(ICD)IOOI直接植入右心室中。它的电击TIP以及也许它的上腔静脉(SVC,supervenacava)电击线圏也需要本发明的带阻滤波器,以便MRI暴露不能感应过大电流进入相关引线系统(S)。现代可植入复律除颤器(ICD)包含起搏和复律(电击)特征两者。于是,病人具有如图24的X射线所示的引线布局是相当罕见的。但是,电极的数量保持相同。也存在包括双心室起搏器(左心室的起搏)的较新组合起搏器/ICD系统。这些系统可以具有多达9条到甚至12条的引线。图25是带有如示的各种类型电极TIP的较新双心室引线系统的实际病人心脏X射线的素描。新的双心室系统正用于治疗充血性心力衰竭,并且可以将引线植在左心室的外部。这构成非常有效的起搏系统;但是,引线系统104相当复杂。当诸如描述在图8、9、lO和ll中的那些的引线系统104暴露于时变电磁场时,在这样的引线系统中可以感应出电流。对于双心室系统,将在三个远侧TIP的每一个上,并且可选地在RING和SVC位置上需要带阻滤波器146。图26例示了示出远侧TIP142和远侧RING144电极的单室双极心脏起搏器引线。这是RING线圏104环绕TIP线圏104,的螺旋缠绕系统。存在这两条引线布置成相互平行(被称为双线引线系统)的其它类型的起搏器引线系统。图27是图26中的区域27-27的示意性例示。在远侧TIP142和RING144电极的区域中,已经与各个TIP和RING电路的每一个串联地放置了带阻滤波器146和146,。于是,在MRI脉冲频率上,将存在开路,从而阻止不期望的RF电流的流动。尽管为了例示了目的,已经描述了本发明的几个实施例,但可以不偏离本发明的精神和范围地作出各种各样的修改。于是,除了受权利要求书限制之外,本发明不受其它限制。权利要求1.一种医学诊断或治疗器件,包含包括从中延伸出来并与生物细胞接触的引线的医学器件;和与引线相关的带阻滤波器,用于在所选频率上衰减流过引线的电流,其中,所述带阻滤波器包含与电感器并联的电容器,所述并联电容器和电感器与引线串联地放置,其中,电容和电感的值被选择成使得所述带阻滤波器在所选频率上谐振。2.根据权利要求1所述的器件,其中,所述AMD包含耳蜗植入物、压电声桥换能器、神经刺激器、脑刺激器、心脏起搏器、心室辅助器件、人工心脏、药泵、骨生长刺激器、骨融合刺激器、小便失禁器件、疼痛减轻脊髓刺激器、抗震颠刺激器、胃刺激器、可植入复律除颤器、pH探针、充血性心力衰竭器件、药丸摄像机、神经调节器、心血管支架、整形外科植入物、外部胰岛素泵、外部药泵、外部神经刺激器、动态心电图监视器、和外部探针或导管。3.根据权利要求l所述的器件,其中,使电感器的Q值相对最大化以及使电容器的Q值相对最小化,以便减小带阻滤波器的总Q值。4.根据权利要求3所述的器件,其中,通过使电感器中的电阻性损耗最小化来使电感器的Q值相对最大化。5.根据权利要求3所述的器件,其中,通过增大电容器的等效串联电阻来使电容器的Q值相对最小化。6.根据权利要求3所述的器件,其中,减小带阻滤波器的总Q值,以便沿着所选频率范围衰减流过引线的电流。7.根据权利要求6所述的器件,其中,所选频率范围包括多个MRI脉沖频率。8.根据权利要求5所述的器件,其中,通过如下手段的任何一种或组合来增大电容器的等效串联电阻减小电容器中的电极板的厚度;使用高电阻率电容器电极材料;将介电粉末加入电极墨中;在电容器的电极板中提供孔隙、间隙、狭缝或辐条;提供与电容器串联的单独分立电阻器;将电阻性电附着材料用于电容器;或利用在所选频率上具有高介电损耗因数的电容器介电材料。9.根据权利要求1所述的器件,其中,将带阻滤波器布置在引线的远侧尖端附近。10.根据权利要求9所述的器件,其中,将带阻滤波器集成到TIP电极中。11.根据权利要求9所述的器件,其中,将带阻滤波器集成到RING电极中。12.根据权利要求l所述的器件,其中,所述引线包含外戴引线。13.根据权利要求l所述的器件,其中,所述引线包含植入引线。14.根据权利要求l所述的器件,其中,所述医学器件包含探针或导管,所述带阻滤波器与探针或导管的TIP或RING电极相关,以及其中,减小带阻滤波器的总Q值,以便沿着所选频率范围衰减流过引线的电流。15.—种用于有源医学器件(AMD)的引线的带阻滤波器,该滤波器包含与电感器并联的电容器,所述并联电容器和电感器组合与引线串联地放置,其中,电容和电感的值被选择成使得带阻滤波器在所选频率上谐振。16.根据权利要求15所述的带阻滤波器,其中,所述AMD包含耳蜗植入物、压电声桥换能器、神经刺激器、脑刺激器、心脏起搏器、心室辅助器件、人工心脏、药泵、骨生长刺激器、骨融合刺激器、小便失禁器件、疼痛减轻脊髄刺激器、抗震颠刺激器、胃刺激器、可植入复律除颤器、pH探针、充血性心力衰竭器件、药丸摄像机、神经调节器、心血管支架、整形外科植入物、外部胰岛素泵、外部药泵、外部神经刺激器、动态心电图监视器、和外部探针或导管。17.根据权利要求15所述的带阻滤波器,其中,所述引线包含外戴引线。18.根据权利要求15所述的带阻滤波器,其中,将带阻滤波器布置在引线的远侧尖端附近,在沿着引线的长度的所选位置,或在AMD的外壳内。19.根据权利要求18所述的带阻滤波器,其中,将带阻滤波器集成到TIP电极内。20.根据权利要求19所述的带阻滤波器,其中,将带阻滤波器集成到RING电极内。21.根据权利要求15所述的带阻滤波器,其中,使电感器的Q值相对最大化以及使电容器的Q值相对最小化,以便减小带阻滤波器的总Q值。22.根据权利要求21所述的带阻滤波器,其中,通过使电感器中的电阻性损耗最小化来使电感器的Q值相对最大化;以及其中,通过增大电容器的等效串联电阻来使电容器的Q值相对最小化。23.根据权利要求22所述的带阻滤波器,其中,减小带阻滤波器的总Q值,以便沿着所选频率范围衰减流过引线的电流。24.根据权利要求23所述的带阻滤波器,其中,通过如下手段的任何一种或组合来增大电容器的等效串联电阻减小电容器中的电极板的厚度;使用高电阻率电容器电极材料;将介电粉末加入电极墨中;在电容器的电极板中提供孔隙、间隙、狭缝或辐条;提供与电容器串联的单独分立电阻器;将电阻性电附着材料用于电容器;或利用在所选频率上具有高介电损耗因数的电容器介电材料。25.根据权利要求23所述的带阻滤波器,其中,所选频率范围包括多个MRI脉冲频率。26.—种在所选频率上衰减流过医学器件引线的电流的方法,包含如下步骤选择在所选频率上谐振的电容器;选择在所选频率上谐振的电感器;使用所述电容器和电感器来形成储能滤波器电路;和与引线串联地放置所述储能滤波器电路。27.根据权利要求26所述的方法,包括通过增大电感器的Q值以及减小电容器的Q值,来减小储能滤波器电路的总Q值的步骤。28.根据权利要求27所述的方法,包括使电感器中的电阻性损耗最小化以便使电感器的Q值最大化的步骤。29.根据权利要求27所述的方法,包括增大电容器的等效串联电阻以便使电容器的Q值最小化的步骤。30.根据权利要求27所述的方法,包括减小带阻滤波器电路的总Q值,以便沿着所选频率范围衰减流过引线的电流的步骤。31.根据权利要求30所述的方法,其中,所选频率范围包括多个MRI脉沖频率。32.根据权利要求26所述的方法,包括将带阻滤波器电路放置在引线的远侧尖端处的步骤。33.根据权利要求32所述的方法,包括将带阻滤波器电路集成到TIP、RING或PAD电极内的步骤。34.根据权利要求33所述的方法,其中,所述TIP、RING或PAD电极与探针或导管相关。35.—种在整个所选频率范围上衰减流过有源医学器件(AMD)引线的电流的方法,包含如下步驟选择具有被相对最小化以便基本上在整个所选频率范围上谐振的Q值的电容器;选择具有被相对最大化使得电感器将基本上在整个所选频率范围上谐振的Q值的电感器;使用所选电容器和所选电感器来形成储能滤波器电路;以及与引线串联地放置所述储能滤波器电路,其中,减小储能滤波器电路的总Q值,以便在整个所选频率范围上衰减流过引线的电流。36.根据权利要求35所述的方法,其中,所选频率范围包括多个MRI脉沖频率。37.根据权利要求35所述的方法,包括增大电容器的等效串联电阻以便使电容器的Q值相对最小化的步骤。38.根据权利要求36所述的方法,包括使电感器中的电阻性损耗最小化以便使电感器的Q值相对最大化的步骤。39.根据权利要求37所述的方法,包括通过如下手段的任何一种或组合来增大电容器的等效串联电阻的步骤减小电容器中的电极板的厚度;使用高电阻率电容器电极材料;将介电粉末加入电极墨中;在电容器的电极板中提供孔隙、间隙、狭缝或辐条;提供与电容器串联的单独分立电阻器;将电阻性电附着材料用于电容器;或利用在所选频率上具有高介电损耗因数的电容器介电材料。40.根据权利要求35所述的方法,包括将储能滤波器电路放置在引线的远侧尖端处的步骤。41.根据权利要求40所述的方法,包括将储能滤波器电路集成到TIP、RING或PAD电极内的步骤。42.根据权利要求35所述的方法,其中,所述AMD包含耳蜗植入物、压电声桥换能器、神经刺激器、脑刺激器、心脏起搏器、心室辅助器件、人工心脏、药泵、骨生长刺激器、骨融合刺激器、小便失禁器件、疼痛减轻脊髄刺激器、抗震颤刺激器、胃刺激器、可植入复律除颤器、pH探针、充血性心力衰竭器件、药丸摄像机、神经调节器、心血管支架、整形外科植入物、外部胰岛素泵、外部药泵、外部神经刺激器、动态心电图监视器、和外部探针或导管。43.—种医学器件,包含具有与生物细胞接触的TIP、RING或PAD电极的探针或导管;和与导管或探针电极相关的带阻滤波器,用于在所选频率上衰减流过探针或导管的电流,其中,所述带阻滤波器包含与电感器并联的电容器,所述并联电容器和电感器与探针或导管电极串联地放置,其中,电容和电感的值被选择成使得带阻滤波器在所选频率上谐振,其中,减小带阻滤波器的总Q值,以便沿着所选频率范围衰减流过引线的电流。44.根据权利要求43所述的器件,其中,使电感器的Q值相对最大化以及使电容器的Q值相对最小化,以便减小带阻滤波器的总Q值。45.根据权利要求44所述的器件,其中,通过使电感器中的电阻性损耗最小化来使电感器的Q值相对最大化。46.根据权利要求44所述的器件,其中,通过增大电容器的等效串联电阻来使电容器的Q值相对最小化。47.根据权利要求43所述的器件,其中,所选频率范围包括多个MRI脉沖频率。48.根据权利要求46所述的器件,其中,通过如下手段的任何一种或组合来增大所述电容器的等效串联电阻减小电容器中的电极板的厚度;使用高电阻率电容器电极材料;在电容器的电极板中提供孔隙、间隙、狭缝或辐条;将电阻性电附着材料用于电容器;或利用在所选频率上具有高介电损耗因数的电容器介电材料。全文摘要为有源医学器件的引线提供带阻滤波器。带阻滤波器包括与电感器并联的电容器。并联电容器和电感器与AMD的引线串联地放置,其中,电容和电感的值被选择成使带阻滤波器在所选频率上谐振。可以使电感器的Q值相对最大化以及可以使电容器的Q值相对最小化,以便减小带阻滤波器的总Q值,以便沿着所选频率范围衰减流过引线的电流。在优选形式中,将带阻滤波器集成到TIP和/或RING电极中用于有源可植入医学器件。文档编号A61N1/00GK101325985SQ200680046479公开日2008年12月17日申请日期2006年11月8日优先权日2006年6月8日发明者H·R·哈尔帕林,R·A·史蒂文森申请人:格雷特巴奇有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1