超声波图像取得装置的制作方法

文档序号:1133079阅读:189来源:国知局
专利名称:超声波图像取得装置的制作方法
技术领域
本发明涉及在根据用超声波进行扫描而得到的信号生成图像时, 得装置。 'a 、 ,— 、,' ;背景技术超声波图像取得装置是通过重复进行从内置于超声波探头中的压 电振子向被检体内的超声波的发送接收,并进行各种处理,从而根据 被检体内的超声波图像得到身体信息的装置。在超声波图像取得装置中,能够进行基于超声波断层法的诊断、基于超声波多普勒(Doppler) 法的诊断。基于超声波断层法的诊断通过用超声波对被检体内的断面进行扫 描,将反射波信号的振幅变换为亮度,来得到被检体的二维断层像. 通过超声波断层法得到的二维断层像被称为B模式(mode)图像。将 作为作成该B模式图像的基础的数据(data)称为B模式数据。另外,基于超声波多普勒法的诊断是利用超声波的多普勒效果测 量被检体内的血流和组织的速度,或彩色地将血流显示为二维图像(以 下也有称为彩色多普勒(color Doppler)像的时候)的方法。在超声 波多普勒法中,特别将检测血流速度而彩色地显示血流的方法称为彩 色多普勒法。在此,在接收到的超声波信号以设定了的速度以上通过了抽出其 中运动的部分的MTI (Moving Target Indicator)滤波器后,如果设 所得到的复数多普勒信号为xp x2、 x3.......xN,则如下能量(power) P - E I Xi I 2自相关函数C广i:x,xw (在此,乂*为共轭复数)
速度V-tan —,d 分布T-1- I d I /P。进而,将通过彩色多普勒法得到的彩色多普勒像重叠在通过超声 波断层法得到的B模式像上进行显示的方法被称为彩色多普勒断层 法。这样,在超声波图像取得装置中,通过压电振子使超声波波束 (beam)大致从固定点向规定的方向偏向而进行发送和接收,使该方 向顺序地变化而进行超声波扫描,由此得到二维断面内或三维空间内 的数据。然后,为了根据基于取得数据时的座标系(该座标系是(扫 描方向,距离)的座标系。以下,将该座标系称为"处理座标系" (scanning coordinate system), 将座标称为"处理座标"(scanning coordinate))进行超声波扫描而得到的采样(sample)点(参考图 1A)而显示在图像显示用的监视器上,必须变换为作为显示监视器的 栅格的正交座标系(参考图IB)。在此,图IA是用处理座标表示的 超声波信号的图。图IB是作为变换的目标的正交座标的图。另外, 图1C是将处理座标和正交座标重叠了的座标变换的概念图。另外, 如在图1C中重叠表示的那样,必须通过座标变换将处理座标的点表 示为正交座标的点,这些超声波图像取得装置中的座标变换和内插的处理在以前通过 被称为DSC (Digital Scan Converter)的专用硬件进行(特开平11 一 9603号>^^1)。以下,说明通过DSC进行的内插处理。在对B模式数据、或作为血流信息的血流的速度、分布以及能量 的各数据(以下在不对这些数据进行区别的情况下,也有将任意一个 或多个数据称为超声波数据的情况)进行内插的情况下,进行双线性 (bi-linear)内插。例如是以下这样的方法在进行核心大小(kernel size)(核心大小是指施加用于进行内插的滤波器的大小。在此,滤波 器表示所谓的平均化的程度,其平均化的程度依存于内插点的个数。) 为2x2的双线性内插的情况下,将4点分为X或Y方向的2组,以通 常的比例进行内插(线性内插),利用通过该内插求出的2点进而进 行线性内插,由此进行原来的4点间的内插。换一种说法,是以下这 样的方法在将相邻的4点数据设为A、 B、 C、 D的情况下,根据(1 -P) { (l-a) A + aB} + P{ (l-a) C + aD }这样的公式计算内插值。 在此,a、 p是处理座标中的距离方向和方位方向(X和Y)的从内插 中心的偏离的比例。进而,根据生成B模式图像的情况说明进行核心大小2x4的内插 的情况下的内插处理。图2是用于说明B模式数据的内插的图,该图 被称为构造(texture)。图2A是表示处理座标中的取得的B模式数 据的图。图2B是表示变换的目标的正交座标的图。图2C是放大了处 理座标系中的取得的B模式数据的图。参考图2A所示的取得的B模 式数据的处理座标、图2B所示的变换目标的正交座标的信息,为了 从处理座标变换到正交座标,而将对应的顶点存储在暂时存储部件中. 即,对应的顶点是指(0, 0)与(xq, yo)的对应、(0, 1)与(xo, y0)的对应、(1, 0)与(Xl, yi)的对应、(1, 1)与(x2, y2)的 对应这样的组合。在此,如图2A所示那样,用将扫描方向(v)作为 纵轴,将距离(u)作为横轴的图来表示B模式数据的处理座标。另 外,如图2B所示那样,用将横轴设为X座标、将纵轴设为Y座标的 图,来表示变换后的正交座标。在此,考虑抽出正交座标中的(x, y)作为内插的点的情况。说 明在该情况下,计算出与正交座标系的点(x, y)对应的处理座标系 的点(u, v)的方法。接收点(u, v),根据核心大小2x4,舍去为了求出点(u, v) 所需要的点以外的点,由此得到与点(u, v)对应的图2A所示的原 始的采样点、Al、 A2、 Bl、 B2、 Cl、 C2、 Dl、 D2。如图2C所示, 各采样点成为2x4的列。在此,图2是用于说明本发明的超声波图像 取得装置的内插的图。如图2C所示,在设B1与Cl的距离为1时, 点(u, v)到将B1和B2连接起来的线为止的比例为dv,在设A1与 A2的距离为l时,点(u, v)到将Al和D1连接起来的线为止的比 例为du。
接着,进行A1与A2、 B1与B2、 C1与C2、 D1与D2之间的位 于比例du的位置的点的核心大小2x2的双线性内插。在此,在各内 插点中,v轴方向的值分别与Al、 Bl、 Cl、 Dl相同,因此该2x2的 内插与2点间的内插等价。即,求出(l-du) Al + duA2、 ( 1 - du ) Bl + duB2、 (l-du) Cl + duC2、 ( 1 - du ) Dl + duD2作为内插值。 如图2C所示,假设该得到的内插值为A3、 B3、 C3、 D3。接着,说明根据内插值A3、 B3、 C3、 D3以及内插函数f (x)计 算出内插系数。图3是用于说明根据内插函数计算出内插系数的图。 内插函数f (x)是表示从粗到密的精细度的函数。在此,假设内插函 数f (x)是用于得到精细的图像的内插函数。因此,如图3所示,f (x )是在将通过上述的2x2的双线性内插计算出的4点的内插值的中 间点的x座标设为0时,y座标为0的函数。图3所示的点501、点 502、点503、以及点504例如表示内插点与采样点一致的情况。另夕卜, 在内插点与采样点不一致的情况下,从实际希望内插的点(u, v)到 B3的比例是dv,因此在假设点(u, v)的x座标为0时,即,如点 509为点(u, v)的情况那样,求出将点501移动到点505,将点502 移动到点506,将点503移动到点507,将点504移动到点508,而移 动了距离511后的4点的y座标的值。如图3所示,该y座标的值分 别被计算为a、 b、 c、 d,其值为内插系数。根据所求出的内插系数,基于A1、 A2、 Bl、 B2、 Cl、 C2、 Dl、 D2计算出(u, v)的内插值。根据公式l求出该内插值。公式l<formula>formula see original document page 7</formula>du:距离方向的从内插中心的偏离 a, b, c, d:方位方向的4点的内插系数为了通过DSC进行内插处理和座标变换的处理,必须作成专用的 硬件,不但花费开发和生产的成本,在硬件的处理中只能进行开发时 嵌入了的处理,在以后变更处理内容或对应新的处理的情况下,必须再次作成专用的硬件。对于该点,近年来,也考虑了提高CPU (中央处理单元)的处理 速度,利用软件通过CPU进行与DSC同等的全部处理的方法。但是,对CPU的负荷增大,产生显示以外的处理的响应性变慢、或丟失显示 图像的问题。另外,近年来,为了在计算机等中进行图像显示,使用GPU(图 形处理单元)的情况变多。在此,GPU是指具有图像显示功能、描影 (shading)功能、内插功能这样的计算功能的图像处理芯片。近年的 GPU还支持座标变换功能,通过利用该功能,能够减轻座标变换对 CPU的负荷。但是,由GPU支持的内插功能最大只是核心大小为2x2 的双线性内插,处理能力低下。在超声波图像取得装置中,要求高画质的图像,因此必须通过高 次的核心大小进行内插,最低也需要2x4的核心大小。对于该点,在 超声波图像取得装置中,在2x2的核心大小的内插和2x4的核心大小 的内插中,画质差;U艮明显的。因此,难以只通过2x2核心大小的双 线性内插的处理来作成所需要的图像。因此,在现有的超声波图像取 得装置中,难以安装GPU。进而,在对血流信号(彩色多普勒像)的速度信号进行内插的情 况下,需要考虑折返(杂波aliasing).该折返是指表示速度信号的 频谱成分超过用于取得数据的釆样脉冲的循环频率的一半,即超过了 Nyquist频率的情况下,将频镨成分观测为负方向的流的现象。图4A 和图4B是用于说明折返的图。图4A是表示血流的流动和超声波信号 的图。图4B是用于表示超声波信号和颜色的关系的图。另外,图4B 是纵轴表示速度和与该速度对应的颜色的图,设中间值310为0,设 最高速度(值309)为127,设最低速度(值311)为-128。例如如 图4所示,考虑血液301在箭头300方向上流动的情况。通过用速度 100的红色表示的点304来表示血液301的点302。另外,通过用速度 -100的青色表示的点305来表示血液301的点303。在此,由于折返,
将点305表示为反方向的血流。如果在此进行通常的内插,则进行点 304和点305的内插,成为用速度0的黑色表示的点306。但是,实际 上由于折返现象,速度从IOO (红色)变化到-100 (青色),希望的 内插值是-128 (青色)的点307。难以通过处理能力低的处理器实现 这样的特殊的内插。对于该点,也难以在现有的超声波图像取得装置 中安装GPU。另外,在超声波图像取得装置的图像处理中,还需要按照规定的 理论对组织像(B模式像)和血流像(彩色多普勒像)进行合成而处 理成为一张图像。但是,该合成理论有根据B模式像和彩色多普勒像 两者的值而变化的情况,通过alpha blending这样的单纯重叠图像的 方法是难以实现的。对于该点,难以将GPU安装在超声波图像取得装 置中.另外,在初始的GPU构造中,只能进行在GPU开发时嵌入的图 形处理,但在近年的可编程GPU构造中,通过更新系统,能够即时地 适用新开发的技术。发明内容本发明就是鉴于这样的问题而提出的,其目的在于提供一种能 够组合硬件和软件的双方进行内插,显示高画质的超声波图像的使用 了超声波图像处理用的可编程GPU的超声波图像取得装置。进而,其目的还在于提供一种通过将速度、分布、能量作为复 数进行处理和计算,能够容易地对血流速度信息中的折返进行处理的 超声波图像取得装置。本发明的第一形式的特征在于包括经由超声波探头通过超声波 对被检体进行扫描,取得由沿着扫描线的第 一座标系中的超声波数据 构成的笫一超声波数据的发送接收部件;使用GPU进行计算,将上述 第 一超声波数据从上述第一座标系变换为用于图像显示的笫二座标系 的座标变换部件。该技术可以适用于超声波图像取得装置中。本发明的第二形式的特征在于包括经由超声波探头通过超声波 对被检体进行扫描,取得由沿着扫描线的第 一座标系中的超声波数据构成的第一超声波数据的发送接收部件;使用能够执行并行处理并且 可编程的处理器进行计算,将上述第一超声波数据从上述第一座标系 变换为用于图像显示的第二座标系的座标变换部件。该技术可以适用 于超声波图像取得装置中。根据以上形式,通过用硬件进行用于在正交座标系中显示超声波 信号的内插的基础的一部分,使得进行高速的处理,进而通过程序进 行一部分处理,因此通过对其程序进行编程,能够根据各种内插函数 进行内插。由此,不需要开发用于进行内插处理的专用的硬件,能够 削减成本,进而容易地变更处理内容和对应新的处理。


图1A是用于说明处理座标中的超声波数据的图。图1B是用于说明变换的目标的正交座标的图。图1C是用于说明从处理座标变换到正交座标的图。图2A是表示处理座标中的取得的B模式数据的图。图2B是表示变换的目标的正交座标的图。图2C是放大了处理座标中的取得的B模式数据的图。图3是用于说明根据内插函数计算内插系数的图。图4A是表示血流的流动和超声波信号的图。图4B是用于表示超声波信号和颜色的关系的图。图5是本发明的一个实施例的超声波诊断装置的框图。图6是用于说明使用了复数的血流速度的内插方法的图。图7是实施例1的超声波诊断装置的图像形成的流程图。图8是实施例2的超声波诊断装置的图像形成的流程图。
具体实施方式
实施例1以下,说明本发明的实施例1的超声波图像取得装置。图5是表 示本发明的一个实施例的超声波图像取得装置的功能的框图。在此,图5中的B模式处理部件003、血流信息处理部件004、执行控制部 件005由CPU构成。另外,图^^生成部件006由GPU100构成,该 GPU100具有进行用于从处理座标变换为正交座标的内插的内插功能 部件IIO、图像显示控制功能部件120。在此,处理座标系与本发明的 "第一座标系"对应。另外,正交座标系与本发明的"第二座标系,,对应。 该GPU100是指能够进行并行处理的可编程的处理器。另夕卜,GPU100 具有图形的描绘这样的图像显示功能、描影功能、内插功能这样的计 算功能。进而,内插功能部件110具有低维内插功能部件111和高维 内插功能部件112的2个功能。在此,低维内插功能部件111通过 GPU100的硬件或GPU100的微代码(micro cord )进行超声波数据的 内插的基础部分的计算。另外,高维内插功能部件112通过用于进行 预先编程了的描影处理的程序,使用通过硬件计算出的值进行高次的 内插。该描影处理一般是指图像的变形、移动以及颜色的效果的处理。 另外,本发明的描影处理是指主要进行内插和座标变换的处理。在本 发明的超声波图像取得装置中,实际由执行控制部件005进行全体的 控制,但在以下,为了说明的方便,说明为各部件直接进行信息的交 换.这样,GPU100通过硬件或微代码对简单的内插进行处理,通过 程序对高度的内插进行处理,发送接收部件002将经由超声波探头001接收到的超声波信号发 送到B模式处理部件003和血流信息处理部件004。B模式处理部件003将取得的超声波信号变换为B模式数据。在 此,作为B模式数据得到的数据具有用扫描方向和距离的坐标表示的 位置处的强度的信息。接着,B模式处理部件003将得到的B模式数据发送到图像生成 部件006。血流信息处理部件004将取得的超声波信号变换为作为血流信息 的血流的速度、分布、能量(以下简称为"速度、分布和能量")的数 据.在此,如背景技术所述那样,根据从检测出的超声波信号得到的
复数多普勒信号,计算出作为血流信息得到的数据。接着,血流信息处理部件004将得到的血流信息的速度、分布和 能量的数据发送到图像生成部件006。以下,将从B模式处理部件003和血流信息处理部件004发送到 图像生成部件006的没有进行图像处理的数据称为原始数据。该原始 数据与本发明中的"第一超声波数据"对应。另外,表示第一超声波数 据的扫描方向和距离的座标是第一座标系。执行控制部件005将由操作者输入的核心大小和内插函数发送到 图像生成部件006。在此,设核心大小为2x4,内插函数为f (x)。图像生成部件006将接收到的B模式数据、或作为血流信息的速 度、分布和能量的数据存储在暂时存储部件007中.另外,根据存储 在暂时存储部件007中的数据,图像生成部件006对B模式数据、或 作为血流信息的速度、分布和能量的数据进行为了显示在显示部件008 上的座标变换和内插。以下,分为B模式数据的情况和血流信息的情 况,详细说明图像生成部件006的座标变换、内插、图像显示,B模式数据的情况GPU100参考图2A所示的接收到的B模式数据的处理座标处的位 置信息、图2B所示的希望进行变换的正交座标的信息,为了从B模 式数据位置信息变换到正交座标,将对应的顶点存储在暂时存储部件 007中。在此,上述的为了从B模式数据位置信息变换为正交座标而 使各顶点对应的数据是使本发明的"第 一座标系"与"第二座标系"对应 起来的"几何变换数据"。GPUIOO抽出内插的点.在此,考虑抽出正交座标系中的(x, y) 作为内插的点的情况。接着,GPU100计算出与正交座标系的点(x, y)对应的处理座标系的点(u, v)。作为用于执行2x4的核心大小的内插的笫一步骤,执行控制部件 005对低维内插功能部件111进行以下的控制。低维内插功能部件lll接收点(u, v),通过舍去求解所需要的 点以外的点,而得到与(u, v)对应的图2A所示的原始数据中的采 样点、Al、 A2、 Bl、 B2、 Cl、 C3、 Dl、 D2。如图2C所示,设在 Bl与Cl的距离为1时的(u, v)到将B1、 B2连接起来的线为止的 比例为dv,设在Al与A2的距离为1时的(u, v)到将Al、 Dl连 接起来的线为止的比例为du。低维内插功能部件lll设dv-O,对A1与A2、 B1与B2、 Cl与 C2、 Dl与D2之间的位于比例du的位置处的点进行核心大小2x2的 双线性内插。在此,对于各内插点,由于v轴方向的值分别与Al、 Bl、 Cl、 Dl相同,所以该2x2的内插与2点之间的内插等价。即,低维 内插功能部件111 i十算出A3= (l-du) Al + duA2、 B3 - (1 - du ) Bl + duB2、 C3= (l-du) Cl + duC2、 D3 - (1 - du ) Dl + duD2作 为内插值。在本实施例的超声波图像取得装置中,由于使用GPU进行内插的 计算,所以可以在求出内插点的计算中使用浮点小数。因此,可以以 浮点小数的位数精度求出用于求出内插点的比例du,与现有的使用了 固定小数点的内插相比,能够提高浮点小数的位数的内插精度。低维内插功能部件111将计算出的内插值A3、 B3、 C3、 D3发送 到高维内插功能部件112。作为用于执行2x4的核心大小的内插的步骤,执行控制部件005 对高维内插功能部件112进行以下的控制.高维内插功能部件112从执行控制部件005接收内插函数f,求出 由低维内插功能部件lll计算出的4点的内插值各自的内插系数a、b、 c、 d。在此,内插函数f是dv的函数,表示为(a、 b、 c、 d) =f(dv)。 作为处理内容,到此为止的处理是与现有技术一样的处理,但在本实 施例中,通过用GPU100的硬件来进行该处理,能够高速地执行处理。高维内插功能部件112根据求出的内插系数,计算出内插值。作 为aA3 + bB3 + cC3 + dD3而求出该内插值,高维内插功能部件112将计算出的内插值发送到图像显示控制功 能部件120。图像显示控制功能部件120使用LUT(查找表Look Up Table),
根据内插值的数据,变换为所显示的颜色和灰度等级的RGB数据, 在显示部件008的正交座标系的点(x, y)处显示该RGB数据。图像生成部件006以必要的点个数进行上述内插作业,将基于取 得的B模式数据的B模式图像显示在显示部件008上。血流信息的情况GPU100利用LUT,根据作为血流信息的速度(V )、分布(T )、 能量(P),使用下式,求出具有实数项Re、虚数项Im的复数数据。 Re = ( ( 255 - T ) /2 ) cos (丌V/128 ) Im - ( ( 255 - T ) /2 ) sin (丌V/128 )在此,由于使用8比特的信号进行处理,所以系数使用上述^^式 中的系数的值,但该系数根据所使用的信号而变化,并不只限于该值。GPU100通过内插功能部件110,对由该Re、 Im以及P的3个值 构成的数据,进行用于从用X轴表示Re、 Y轴表示Im的处理座标变 换为正交座标的内插,求出内插值。该内插方法是与在B模式数据的 情况下说明的方法一样的方法,分别对Re、 Im、 P进行。如果取得与上述内插了的Re和Im的相同位置的值,考虑复数 Re + jlm,则成为对其偏角进行了内插的速度。如图6所示,折返速 度附近的2个向量a和向量b的内插向量为向量c,得到与图4所示 的内插大致同等的结果。在此,图6是用于说明使用了复数的血流速 度的内插方法的图。进而,如果参考上述Re和Im,则在该内插中, 用l-T" I d I /P这样的函数进行内插,另外,由于如背景技术所说 明的那样,表示为P = 2: I & I 2、 C!-2Ix,Xi+n所以如果d变大,则 P也变大。即,由于以某程度的大小抑制l-T,所以能够抑制动态范 围,能够容易地进行内插处理。另外,GPU100能够通过内插功能部件110进行帧的内插。帧的 内插是指为了使帧速率变慢,平滑地显示彩色多普勒像的时间过程, 实际在扫描生成的彩色多普勒像之间插入内插帧进行显示。该内插处 理也利用Re、 Im、 P的值进行。通过2帧之间的线性内插进行该内插 处理。进而,内插功能部件110根据求出的Re、 Im的内插值,求出
速度(V)、分布(T)、能量(P)的内插值。接着,GPU100进行原始数据和内插了的数据的着色处理。该处 理是使求出的数据可视化的处理。该处理根据在彩色多普勒像中显示 的信息(以下称为"显示模式")是速度(V)、分布(T)、能量(P) 中的哪一个信息而变化。在彩色多普勒像的显示模式是速度(V)和分布(T)的情况下, GPU100根据以下的公式从Re、 Im计算出V、 T。V= (128/tt) atan2 (Im, Re)T - 255 - 2々(Re2 + Im2)P = (1 - I d I ) /T在此,atan2是在-71~71的范围内求出角度的arctangent函数。通过以上那样的内插处理得到的内插速度在基于现有的折返对应 内插得到的速度和图像上近似到难以识别的程度,因此可以说该内插 处理具有充分的精度。接着,GPU100通过图像显示控制功能部件120,使用LUT将所 得到的速度(V)和分布(T)变换为颜色和灰度等级的RGB,并显 示在显示部件008上。在能量(P)的情况下,根据原始的能量值或内插了的能量(P) 值而决定彩色多普勒像的显示模式。另外,GPU100通过图像显示控 制功能部件120,使用LUT,将能量(P)变换为颜色和灰度等级的 RGB,并显示在显示部件008上。如上所述,在作成彩色多普勒像的情况下,内插处理需要进行速 度(V)、分布(T)、以及能量(P)这样的3个数据的内插处理。 然后,GPU100的图像显示控制功能部件120具备在图像显示的处 理中,能够并行地对红、青、绿、阿尔法(alpha)这样的4个数据进 行处理的并行电路。因此,也可以构成为在对红、青、绿的颜色进行 处理的3个并行处理电路中分别对速度(V)、分布(T)、能量(P) 这样的3个数据进行处理,由此并行地进行内插处理。在此,本发明中的"座标变换部件"包含内插功能部件110,进行
以上说明了的GPU100的内插和座标变换。另外,座标变换部件是图 像形成部件006的构成要素之一。接着,参考图7说明本实施例的超声波图像的形成流程。在此, 图7是本实施例的超声波图像的形成的流程图。步骤S001:操作者输入核心大小和内插函数。步骤S002:发送接收部件002将经由超声波探头001接收到的超 声波信号发送到B模式处理部件003和血流信息处理部件004。B模式处理步骤S003:低维内插功能部件111将发送来的B模式数据存储在 暂时存储部件007中,参考输入的核心大小,基于暂时存储部件007 的B模式数据进行2x2的内插,并将该内插值发送到高维内插功能部 件112。步骤S004:高维内插功能部件112参考内插函数计算出内插系数, 使用该内插系数进行比2x2更高维的内插,内插部件110将该内插值 和原样使用的原始数据发送到图像显示控制功能部件120,血流信息处理步骤S005: GPU100将作为发送来的血流信息的速度(V)、分 布(T)、能量(P)的数据存储在暂时存储部件007中,基于该数据 求出Re、 Im。步骤S006:低维内插功能部件lll参考输入的核心大小,基于求 出的Re、 Im进行2x2的内插,并将该内插值发送到高维内插功能部 件112。步骤S007:高维内插功能部件112参考内插函数计算出内插系数, 使用该内插系数,进行比2x2更高维的内插,例如2x4的内插。 步骤S008:内插功能部件110进行帧内插。 步骤S009:内插功能部件110基于Re、 Im的内插值,求出速度 (V)、分布(T)、能量(P)的内插值,将该内插值的数据和原样 使用的原始数据发送到图像显示控制功能部件120. (B模式处理和血流信息处理)
步骤S010:图像显示控制功能部件120使用LUT,将发送来的数 据变换为RGB。步骤S011:图像显示控制功能部件120基于变换了的RGB的值, 将图像显示在显示部件008上。如上所述,在本发明的超声波图像取得装置中,可以使用通常的 GPU,使用低维内插功能部件lll,通过硬件或GPU的微代码,高速 地进行核心大小直到2x2为止的内插,基于该内插值,使用高维内插 功能部件112通过程序进行核心大小2x4的内插。由此,在能够削减 成本的同时,能够自由地对内插处理进行编程,因此容易地更新处理 内容和对应新的处理,另外,由于能够使用通用的GPU,所以能够抑 制超声波图像取得装置的制造费用,削减成本。进而,还能够降低超 声波图像取得装置的开发费用。另外,由于通过GPU进行内插计算, 所以能够基于GPU的处理能力的浮点小数计算执行内插处理,由此, 能够提高与GPU的处理能力对应的浮点小数位数的内插精度,能够提 高所生成的超声波断层像的画质。另外,由于能够通过GPU的几何变 换执行座标变换,所以能够进行从极座标到正交座标的变换所不能进 行的座标变换(无法用公式表示的座标变换).因此,能够容易地高 精度地进行需要无法通过从极座标向正交座标的变换来进行的座标变 换的特殊检测和使用了 2维阵列探头的扫描,进而,通过将血流的速 度、分布和能量的处理分别分配给作为并行处理系统而由GPU所具有 的R、 G、 B的处理系统等,能够同时进行计算,可以不必维持3个 系统的相同电路而采用单纯的结构,还能够抑制成本.进而,还能够 通过并行处理而提高处理速度。实施例2以下,说明本发明的实施例2的超声波图像取得装置。本实施例 的超声波图像取得装置是在实施例1中,进行所生成的B模式图像与 彩色多普勒像的合成处理,而重叠进行显示。因此,说明B模式图像 和彩色多普勒像的合成处理。在此,本实施例的超声波图像取得装置 也具有图5所示的功能模块。另外,由GPU100进行合成处理。
GPU100的图像显示控制功能部件120具有红、青、绿、阿尔法 (alpha)这样的4个并行处理电路。另外,作为通常的处理电路的使 用方法,GPU100通过前面的3个处理电路对颜色进行处理,通过阿 尔法的处理电路对不透明度进行处理。在本发明中,在GPU100中, 使用处理红、青、绿的处理电路作为在作成B模式图像和作成彩色多 普勒像时使用的处理电路,因此不使用处理阿尔法数据的电路。因此, 在本实施例的超声波图像取得装置中,预先将符合图像条件的阈值信 息,存储在GPUIOO中的图像显示控制功能部件120的上述红、青、 绿、阿尔法这样的4个并行处理电路中的处理阿尔法数据的电路中。该阈值信息是指用于进行以下处理等的一定值,即在B模式数据 为一定值以下或一定值以上时不显示B模式图像的处理、在血流信息 的值为某一定值以下或一定值以上时不显示彩色多普勒像的处理。这 是例如在生成心脏的超声波图像的情况下,在B模式数据的值的亮度 高的情况下,此处应该有心脏的壁而没有血流,因此将该处的部分的 血流信息认为是噪声。因此,必须消去该处的部分的彩色多普勒图《象。 另外,在生成腹部的超声波图像的情况下,血流的信息是重要的,如 果血流为某一定以上,则需要无条件地显示血流。因此,如果血流为 某一定以下,则必须作为噪声消去。进而,在能量值是低的值的情况 下,是噪声的可能性高,因此,必须不显示彩色多普勒像。这样进行 重叠时,需要根据各种条件进行合成处理,因此必须存储该图像条件 和阈值信息。GPU100的图像显示控制功能部件120从高维内插功能部件112 接收B模式数据和作为血流信息的速度(V )、分布(T)和能量(P ) 的数据,参考存储在对阿尔法数据进行处理的电路中的图像条件和阈 值信息,决定在各点显示哪个数据,图像显示控制功能部件120基于接收到的B模式数据和作为血流 信息的速度(V)、分布(T)和能量(P)的数据、以及在各点显示 哪个数据的决定,使用LUT,变换为所显示的颜色和灰度等级的RGB 数据,将对B模式图像和彩色多普勒图像进行了合成处理后的图像显
示在显示部件008上。以上,说明了优先显示B模式图像和彩色多普勒像的任意一个的 情况,但也可以构成为在一定的条件下显示双方。例如在根据B模式 数据和血流信息中的一个数据(在此,考虑速度(V))而显示为与 速度(V)的数据重叠地半透明地可以看到B模式数据时,图像显示 控制功能部件120将B模式数据和速度(V)的数据的双方发送到阿 尔法数据的处理电路,在计算出将B模式数据设定为怎样的透明度并 进行了合成处理后,使用LUT变换为RGB数据,并显示在显示部件 008上。接着,参考图8说明本实施例的超声波图像的形成流程。在此, 图8是本实施例的超声波图像的形成的流程图。步骤S101:操作者输入核心大小和内插函数。步骤S102:发送接收部件002将经由超声波探头001接收到的超 声波信号发送到B模式处理部件003和血流信息处理部件004。B模式处理步骤S103:低维内插功能部件111将发送来的B模式数据存储在 暂时存储部件007中,参考输入的核心大小,基于暂时存储部件007 的B模式数据进行2x2的内插,并将该内插值发送到高维内插功能部 件112,步骤S104:高次内插功能部件112参考内插函数计算出内插系数, 使用该内插系数进行比2x2更高维的内插,内插部件110将该内插值 和原样使用的原始数据发送到图像显示控制功能部件120。血流信息处理步骤S105: GPU100将发送来的作为血流信息的速度(V)、分 布(T)、能量(P)的数据存储在暂时存储部件007中,基于该数据 求出Re、 Im。步骤S106:低维内插部件lll参考输入的核心大小,基于求出的 Re、Im进行2x2的内插,并将该内插值发送到高维内插功能部件112。 步骤S107:高维内插功能部件112参考内插函数计算出内插系数, 使用该内插系数,进行比2x2更高维的内插。 步骤S108:内插功能部件110进行帧内插。步骤S109:内插功能部件IIO基于Re、 Im的内插值,求出速度 (V)、分布(T)、能量(P)的内插值,将该内插值的数据和原样 使用的原始数据发送到图像显示控制功能部件120。 (B模式处理和血流信息处理)步骤S110:图像显示控制功能部件120基于存储在阿尔法数据的 处理电路中的图像条件和阈值信息,决定显示的数据。步骤S111:图像显示控制功能部件120使用LUT,将决定了的数 据变换为RGB。步骤S112:图像显示控制功能部件120基于变换了的RGB的值, 将图像显示在显示部件008上。如上所述,在将B模式图像和彩色多普勒像重叠而进行合成处理 的情况下,通过使用GPU的处理阿尔法数据的电路,还能够与图像的 作成并行地进行合成处理,因此能够高速地处理合成图像那样的复杂 图像并进行显示,能够对超声波诊断的效果提高起作用。
权利要求
1.一种超声波图像取得装置,其特征在于包括经由超声波探头用超声波对被检体进行扫描,取得由沿着扫描线的第一座标系中的超声波数据构成的第一超声波数据的发送接收部件;使用GPU进行计算,将上述第一超声波数据从上述第一座标系变换为用于图像显示的第二座标系的座标变换部件。
2. 根据权利要求l所述的超声波图像取得装置,其特征在于 上述座标变换部件取得使上述第 一座标系和上述第二座标系对应起来的几何变换数据,上述GPU基于上述几何变换数据进行几何变 换,而进行上述座标变换.
3. 根据权利要求l所述的超声波图像取得装置,其特征在于 上述座标变换部件根据上述笫一座标系中的多个点,利用上述GPU进行用于内插上迷第二座标系中的1点的内插计算。
4. 根据权利要求3所述的超声波图像取得装置,其特征在于 在上述内插计算中,通过GPU的硬件或GPU的微代码执行低维的内插,通过GPU的程序执行高维的内插。
5. 根据权利要求3所述的超声波图^^l得装置,其特征在于 在上述内插计算中,接受能够对用于进行内插的滤波器进行记录的大小即核心大小的输入,通过GPU的硬件或GPU的微代码,进行 2x2的双线性内插,求出内插值,通过GPU的程序基于该内插值和规 定的内插函数,求出输入的核心大小的内插值.
6. 根据权利要求l所述的超声波图像取得装置,其特征在于 上述第 一超声波数据包含多种血流信息,上述座标变换部件同时对上述多种血流信息中的多个座标变换进 行处理,
7. 根据权利要求l所述的超声波图像取得装置,其特征在于 上述座标变换部件求出以包含在上述笫一超声波数据中的血流的 速度、分布和能量为要素的复数,在计算出该复数数据的内插值后, 基于该内插值分别变换为上述血流的速度、分布和能量,由此求出上 述血流的速度、分布和能量的内插值。
8. 根据权利要求6所述的超声波图像取得装置,其特征在于 上述多个血流信息包含与血流的速度、分布和能量有关的信息, 上述座标变换部件使速度、分布和能量的各个座标变换和内插处理与GPU所具有的用于处理红、青或绿的各个颜色的并行处理电路对 应地同时进行处理。
9. 一种超声波图像取得装置,其特征在于包括 经由超声波探头用超声波对被检体进行扫描,取得由沿着扫描线的第 一座标系中的超声波数据构成的第 一超声波数据的发送接收部 件;使用能够执行并行处理并且可编程的处理器进行计算,将上述第 一超声波数据从上述第 一座标系变换为用于图像显示的第二座标系的 座标变换部件。
10. 根据权利要求9所述的超声波图像取得装置,其特征在于 上述处理器代替CPU进行图形的描绘。
全文摘要
在本发明的超声波图像取得装置中,发送接收部件经由超声波探头用超声波扫描被检体,取得由沿着扫描线的第一座标系中的超声波数据构成的第一超声波数据,包含在图像生成部件中的座标变换部件使用GPU进行计算,将上述第一超声波数据从上述第一座标系变换为用于图像显示的第二座标系。
文档编号A61B8/00GK101209210SQ20071016781
公开日2008年7月2日 申请日期2007年10月26日 优先权日2006年12月27日
发明者佐藤武史, 大住良太 申请人:株式会社东芝;东芝医疗系统株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1