双模式超声换能器的制作方法

文档序号:1144880阅读:263来源:国知局
专利名称:双模式超声换能器的制作方法
双模式超声换能器本发明涉及超声系统,并且更具体地涉及用于超声系统的换能器。在超声诊断成像中,将超声能量发射到患者身体中。探测并处理被反射的能量以 形成指示患者体内组织的密度和边界以及血流的位置和速度的图像。通常从包括独立压电 换能器元件的阵列的换能器发射超声信号,其中该压电换能器元件也用于探测被反射的信号。可以使用各种换能器和扫描模式来发射并接收超声信号。在相控阵列成像中,多 个换能器元件发射具有相位和幅度关系的信号,从而使得他们组合形成能够被操纵以扫描 饼状扇形观察区域的单一射束。扇形模式成像对于在患者的肋骨之下成像尤其有用,因为 该射束能够起源于瞄准患者的肋骨之间的公共顶点,而不是发射和接收会被肋骨阻挡的信 号的较宽孔径。在线性阵列扫描中,换能器元件的阵列顺序地从不同元件组发射信号并从在患者 体内的观察区域接收信号。线性阵列通常用在需要与皮肤表面接近的区域的宽视角的应用 中,并且其中不阻塞至感兴趣区域的声接入。线性阵列是平的或者弯曲的。平的线性阵列 提供矩形或梯形的视场,而弯曲的线性阵列由于阵列的曲率而提供散开的视场。实际上,技术人员经常需要具有多个换能器以便充分地对患者的不同解剖体成 像,这增加了超声系统的成本。技术人员还将需要将系统操作从一个换能器切换到另一个, 这占用时间。因为换能器与应用至患者的声音传导凝胶一起使用,所以需要在使用后清洁 每个换能器,这需要更多时间。鉴于前述问题,提供一种适于执行扇形和弯曲的线性阵列扫描二者的超声换能器 是有利的。根据本发明的原理,一种超声系统包括表面,所述表面具有中心部分和在所述中 心部分的两侧上的侧向部分。将第一多个换能器元件设置在所述中心部分上,且将第二多 个换能器元件设置在所述侧向部分上。所述第一多个换能器元件具有第一、精细节距以用 于扇形模式,而所述第二多个换能器元件具有第二、较粗节距以用于线性模式。该阵列可以 是弯曲的或平面的。在扇形模式中,将射束形成器耦合以操作所述第一多个换能器元件以用于相控阵 列成像。在线性模式中,将射束形成器耦合以操作两组换能器元件。根据本发明的另一方 面,第一多个换能器元件中的相邻的对可以一前一后操作,从而使得换能器将在全部可操 作孔径上展示出公共元件节距。在本发明的另一方面中,在扇形模式中激活的所述第一多个换能器元件的数目根 据与患者皮肤接触的换能器元件的数目而变化。在本发明的另一方面中,提供模式选择开关以使得用户能够在线性模式和扇形模 式之间切换。

图1是根据本发明的实施例的超声系统的方块图;图2A和2B是根据本发明的实施例的换能器表面的示意图;图3是根据本发明的实施例的超声系统的可选实施例的示意性方块4
图4A和4B是根据本发明的实施例的耦合至换能器元件的控制线路的示意图;图5A和5B是根据本发明的实施例的将控制线路耦合至换能器元件的开关矩阵的 示意图;图6是根据本发明的实施例的用于使用双模式换能器的方法的过程流程图;图7是根据本发明的实施例的与患者皮肤接合的弯曲的换能器的示意图;图8是根据本发明的实施例的使能可变换能器孔径的开关矩阵的示意图;图9是根据本发明的实施例的用于使用具有可变孔径的换能器的方法的过程流 程图。参照图1,超声系统10包括具有适于将超声信号发送进入患者并接收回波信号的 若干换能器元件的换能器12。该换能器元件优选地为压电换能器元件。换能器12耦合至 由射束形成器控制器18控制的射束形成器16。射束形成器16控制施加至换能器12的元 件的激励信号的相位和幅度,以产生扫描患者体内的观察区域的超声射束。射束形成器16 还相对地延迟换能器元件所接收的信号的相位,以使得这些信号相位相干并且然后将他们 相加。在所图示说明的实施例中,模式选择器开关20耦合至射束形成器控制器18,从而使 得用户能够设定射束形成器操作以便利用换能器12以扇形模式、线性模式和其他操作模 式扫描。在其他实施例中,模式选择器开关20’位于换能器的盒子上。在另外的其他实施 例中,模式选择器开关由耦合至射束形成器控制器18的图形用户接口提供。对射束形成器16的输出进行滤波以从回波信号提取信息。在所图示说明的实施 例中,使用正交带通滤波器22。将滤波器22的输出提供给B模式处理器24和多普勒处理 器26中的一个或两个。B模式处理器24处理该数据以产生关于反射激励信号的组织结 构的信息。多普勒处理器26处理该数据以提取关于观察区域内的血流速度的信息。提供 给多普勒处理器26的数据在被多普勒处理器26处理之前可以存储在集合存储(ensemble store) 28中,直到已经获取了观察区域的足够样本来形成多普勒图像。将B模式处理器24 和多普勒处理器26的输出提供给图像处理器30,该图像处理器30生成期望图像格式的B 模式和多普勒图像,然后将该图像显示在显示器32上。参照图2A和2B,换能器12具有凸起的表面34,该表面34具有位于表面34的后 面的曲率中心36并且具有沿着表面34分布的多个换能器元件38。位于表面34的中心部 分40的换能器元件38具有第一节距42,并且位于在该中心部分40的两侧上的侧向部分 44上的换能器元件38具有比所述第一节距大的第二节距46。在优选实施例中,第二节距 46是第一节距42的二倍。在侧向部分44上的换能器元件38的组合数目可以等于在中心 部分40上的换能器元件38的数目的一半。可以通过沿着表面34以不同的侧向增量切割 压电晶体来获得中心部分40和侧向部分44中的不同节距。换能器元件发射波长为λ的超声波。第一节距42可以小于或大约等于λ/2,而 第二节距46小于或大约等于λ。不同的节距42、46便于使用换能器12来执行不同类型的 超声扫描。具体参照图2Α,在线性扫描模式中,顺序地激活换能器元件38以垂直于表面34发 射超声射束48。在线性模式中,中心部分40中的换能器元件38优选地被成对50激励,从 而使得超声射束48的角分布是恒定的。具体参照图2Β,在相控阵列射束操纵模式中,选择施加至具有精细节距的元件38的激励信号的相位和幅度,使得从元件38发射的超声信号相组合以在每次发送期间形成 聚焦的射束52。使相位和幅度变化以改变每个射束52的角度并且执行对观察区域的扇形 扫描。在所图示说明的实施例中,射束52从位于换能器的表面34的顶点54延伸。然而, 通过改变操纵角度,顶点54可以位于其他位置,例如在表面34的前面或后面。在优选实施 例中,在射束操纵模式中,只有中心部分40的换能器元件38被用于生成射束52。中心部 分40中的精细节距42有利地允许与较大节距相比更大范围的操纵角度,而不产生降低图 像质量的光栅或显著的旁瓣或其他伪影。参照图3的实施例,将开关矩阵56插入射束形成器16和换能器12的元件之间。 开关矩阵56根据由操作者选择的模式来改变射束形成器16的信号线路和换能器12的换 能器元件38之间的耦合。在可选的实施例中,诸如通过射束形成器控制器18来用程序控 制施加至换能器元件38的信号以在各模式之间切换,而不改变射束形成器16和换能器元 件38之间的耦合。例如,参照图4A,在扇形模式中开关矩阵56可以将控制线路58从射束形成器16 耦合至中心部分40的独立换能器元件38。参照图4B,在线性模式中,开关矩阵56将控制 线路58耦合至侧向部分44的换能器元件38和在中心部分40中的换能器元件38的对50。 在图4A和4B的实施例中,控制线路58的数目少于换能器元件38的总数目。在所图示说 明的实施例中,控制线路58的数目等于在中心部分中的换能器元件38的数目,该数目是换 能器元件38的总数目的三分之二。在其他实施例中,控制线路的数目等于换能器元件38 的总数目。在一些实施例中,使用128条控制线路58。因此,换能器12可以包括在中心部 分40中的128个换能器元件38和位于侧向部分中的总计64个换能器元件,其中每个侧向 部分44中有32个换能器元件。参照图5A和5B,在该实施例中,如所图示说明的,控制线路58耦合至换能器元件 38。所图示说明的控制线路58和换能器元件38之间的耦合可以通过对应于每条控制线路 58和每个换能器元件38相对于换能器12的中心60的位置为每条控制线路58分配数字 (η)并且为每个换能器元件38分配数字(i)来数学地描述。在扇形模式中,如在图5A中 所示,每条控制线路η耦合至中心部分40的换能器i = η。在线性模式中,如在图5Β中所 示,每条控制线路η耦合至在中心部分40中的两个换能器元件i = 2n-l和i = 2η以及在 侧向部分44中的换能器元件i = N/2+n,其中N等于中心部分40中的换能器元件38的数 目的一半。换言之,在中心部分中的每个换能器元件i在扇形模式中耦合至控制线路η = i 而在线性模式中耦合至控制线路η = i-INT(i/2),其中INTO函数返回其操作数的整数部 分。在i等于1的情况下,i_INT(i/2)等于1。因此,在扇形模式和线性模式二者中,换能 器元件i = 1均耦合至控制线路η = 1,并且不需要切换。中心部分40的剩余换能器元件 i+1到N中的每个通过两个开关62a、62b耦合至控制线路58,这两个开关62a、62b每次只 有一个闭合。如在图5A中所示,在扇形模式中开关62a闭合并且将换能器元件i耦合至控 制线路η = i。如在图5B中所示,在线性模式中开关62b闭合并且将换能器元件i耦合至 控制线路η = i-INT(i/2)。在线性模式中开关64将侧向部分44的换能器元件38耦合至 控制线路η = Ν+1到η = Ν+Μ,其中M是在单个侧向部分44中的换能器元件38的数目。开 关64在线性模式中闭合并且在扇形模式中打开。
6
参照图6,一种用于执行超声扫描的方法66可以包括在步骤68将控制线路耦合至 换能器12的中心部分40的换能器元件38。在步骤70,使用超声系统10执行对患者14体 内的观察区域的一个或多个扇形扫描。在步骤72,通过模式选择开关20、图形用户接口或 其他输入器件从用户接收用户模式选择输入。在模式选择输入指示选择线性扫描模式的情况下,方法66包括在步骤74将中心 部分40的换能器元件38的对耦合至控制线路的一部分。在步骤76,将控制线路的另一部 分耦合至侧向部分44的换能器元件38。在步骤78,执行线性扫描。可以记录方法66的步 骤,从而使得指示扇形模式的用户模式选择输入导致超声系统10执行步骤68和70。为了对患者14体内的观察区域恰当地成像,通常需要减小换能器12和患者皮肤 之间的空气间隙。这通常是通过在患者皮肤上放置声音传导凝胶以便填充间隙并且提供换 能器12和患者皮肤之间的良好声音传导层来完成的。当前表面34是凸起的时,在一些使 用中并不是所有换能器元件38都可以充分接触患者皮肤或者声音传导凝胶。例如,当成像 通过患者肋骨时,肋骨可能不允许换能器12充分压入到患者14以形成与中心部分40的所 有换能器元件的良好接触。因此,在一些实施例中,在扇形模式中激活的中心部分40内的 换能器元件38的数目可以根据与患者皮肤或者声音传导凝胶接触的换能器元件38的数目 而减少。这样,如在图7中所示,在中心部分40的第一区域80与患者皮肤82充分接触的 情况下,则将激活区域80内的换能器元件38以产生经操纵的射束。在较小区域84与患者 皮肤82’接触的情况下,则仅激活较小区域84的换能器元件38。参照图8,如所图示说明的,减少用在扇形模式中的换能器元件38的数目可以包 括在扇形模式中打开一些最外侧开关62a,从而使得中心部分40的外侧换能器38未耦合至 射束形成器16。参照图9,用于与不同患者皮肤顺应性相适应的方法86可以包括在步骤88执行初 始扫描。在一些实施例中,初始扫描包括从每个换能器元件38顺序地进行发射,从而使得 能够容易地将回波信号与每个换能器元件相关联。在步骤90,分析换能器元件38的输出以 确定哪些换能器元件与患者14或声音传导凝胶不充分地接合。确定哪些换能器元件不充 分地接合可以包括分析对于每个换能器元件38所接收的回波信号并且将被反射的信号的 强度与阈值相比较以确定是否发生充分的声音接收。在步骤92,将对其而言未接收到回波 信号或者接收到低于阈值的回波信号的换能器元件38识别为与患者14或声音传导凝胶不 充分地接合。识别步骤92可以自动地执行或者由操作者来执行,向该操作者呈现表示来自 初始扫描的回波信号的超声图像。在步骤94,将被识别为与患者或者声音传导凝胶不充分 地接合的换能器元件38与射束形成器16去耦合,从而减少对于该扫描的有效孔径。步骤 94的去耦合步骤可以自动地执行或者由操作者执行。例如,操作者可以转动表盘或者与图 形用户接口元件相交互以向射束形成器控制器18指示要去耦合或者要在有效孔径中使用 哪些换能器元件38。作为对于步骤94的可选替代,可以对射束形成器16编程以制止在射 束形成中使用来自被识别为与患者不充分地声耦合的元件的信号,而不是将它们从控制线 路去耦合。在步骤96,使用与患者14充分地声耦合的换能器元件38来执行对患者14的一 个或多个射束操纵的扫描。虽然已经参照所公开的示例对本发明进行了描述,但是本领域中普通技术人员应该认识到可以进行形式或细节的改变而不偏离本发明的精神和范围。这样的修改完全在本 领域中普通技术人员的技术能力之内。因此,除了随附的权利要求之外,本发明不受其他限 制。
权利要求
一种超声换能器,包括换能器元件的阵列,其具有前表面,所述前表面具有中心部分和在所述中心部分的两侧上的侧向部分;以及线性设置在所述中心部分上的第一多个换能器元件和线性设置在所述侧向部分上的第二多个换能器元件,所述第一多个换能器元件具有第一节距并且所述第二多个换能器元件具有第二节距,所述第一节距基本小于所述第二节距。
2.根据权利要求1所述的超声换能器,其中,所述第一多个换能器元件和所述第二多 个换能器元件线性设置在弯曲的弧中。
3.根据权利要求1所述的超声换能器,其中,所述第一多个换能器元件和所述第二多 个换能器元件线性设置在公共平面中。
4.根据权利要求1所述的超声换能器,其中,所述第二节距是所述第一节距的大约二倍。
5.根据权利要求4所述的超声换能器,其中,所述第一多个换能器元件的数目是所述 第二多个换能器元件的数目的二倍。
6.根据权利要求4所述的超声换能器,其中,所述第一多个换能器元件和所述第二多 个换能器元件耦合至具有多条输入线路和多条输出线路的开关矩阵,所述输出线路中的每 条耦合至所述第一多个换能器元件和所述第二多个换能器元件中的一个,所述开关矩阵具 有第一模式和第二模式,在所述第一模式中,耦合至所述第一多个换能器元件的输出线路 中的每条与所述输入线路中的一条相耦合,而在所述第二模式中,所述输入线路中的一条 耦合至与所述第二多个换能器元件相耦合的输入线路中的每条,并且耦合至所述第一多个 换能器元件中的相邻换能器元件的输出线路对中的每个耦合至所述输入线路中的一条。
7.根据权利要求6所述的超声换能器,其中,在所述第一模式中所述开关矩阵可操作 用于接收输入,并且其中,耦合至在所述第一模式中与所述输入线路相耦合的所述第一多 个换能器元件的输出线路的数目对应于所述输入。
8.根据权利要求1所述的超声换能器,还包括耦合至所述第一多个换能器元件和所述 第二多个换能器元件的控制器,所述控制器具有第一模式和第二模式,在所述第一模式中, 信号仅通过所述第一多个换能器元件发送,而在所述第二模式中,信号通过所述第二多个 换能器元件和通过所述第一多个换能器元件中的相邻的对来发送。
9.根据权利要求8所述的超声换能器,其中,所述控制器可操作用于在所述第一模式 中接收输入,并且其中,在所述第一模式中信号所发送至的换能器元件的数目对应于所述 输入。
10.根据权利要求8所述的超声换能器,其中,所述控制器可操作用于从用户接收对应 于第一模式选择和第二模式选择中的至少一个的输入,所述控制器还可操作用于在接收到 所述第一模式选择后引起所述第一多个换能器元件和所述第二多个换能器元件发射沿着 穿过位于所述前表面后面的第一顶点的直线辐射的超声射束,并且可操作用于在接收到所 述第二模式选择后引起所述第一多个换能器元件发射沿着穿过位于所述前表面前面的第 二顶点的直线辐射的超声射束。
11.根据权利要求10所述的超声换能器,其中,所述控制器可操作用于引起所述换能 器元件以一超声波长发射超声射束,并且其中,所述第一节距小于或大约等于所述超声波长的一半。
12.根据权利要求11所述的超声换能器,其中,所述第二节距小于或大约等于所述超声波长。
13.根据权利要求10所述的超声换能器,其中,所述换能器阵列安装在包括电耦合至 所述控制器的模式选择按钮的手柄内,其中,所述控制器还可操作用于将用户与所述模式 选择按钮的交互解释为所述第一模式选择和所述第二模式选择中的至少一个。
14.根据权利要求10所述的超声换能器,其中,所述换能器阵列安装在手柄内,并且位 于超声系统用户接口上的模式选择按钮电耦合至所述控制器,其中,所述控制器还可操作 用于将用户与所述模式选择按钮的交互解释为所述第一模式选择和所述第二模式选择中 的至少一个。
15.一种超声系统,包括模式选择开关,其可操作用于选择线性模式的扫描或者扇形模式的扫描;超声换能器,其包括具有前表面的换能器元件的弯曲的阵列;以及射束形成器,其响应于所述模式选择开关并且耦合至所述弯曲的阵列中的元件,并且 可操作用于在所述线性模式中引起所述弯曲的阵列垂直于所述阵列的所述表面发送和接 收射束,并且可操作用于在所述扇形模式中引起所述弯曲的阵列发送和接收从公共顶点发 出的射束。
16.根据权利要求15所述的超声系统,其中,在所述线性模式中所述弯曲的阵列作为 线性阵列来操作,而在所述扇形模式中所述弯曲的阵列作为相控阵列来操作。
17.根据权利要求16所述的超声系统,其中,在所述线性模式中,对于每个射束的有效 孔径在射束间沿着所述阵列的所述表面移动,而在所述扇形模式中,将换能器元件的同一 有效孔径用于每个射束的相控阵列射束操纵。
18.根据权利要求15所述的超声系统,其中,在所述扇形模式中,来自未声耦合至患者 的元件的信号不参与射束形成。
19.根据权利要求18所述的超声系统,其中,通过将由换能器元件接收的回波信号与 阈值相比较来识别未声耦合至患者的元件。
20.根据权利要求18所述的超声系统,还包括用于调整对所述换能器的有效孔径起作 用的元件的孔径控制。
21.根据权利要求15所述的超声系统,其中,在所述扇形模式中,所述换能器的有效孔 径仅包括位于所述换能器阵列的中心部分中的换能器元件;而在所述线性模式中,所述换 能器的有效孔径包括位于所述换能器阵列的所述中心部分中的换能器元件和位于所述中 心部分的两侧上的换能器元件。
22.根据权利要求21所述的超声系统,其中,所述中心部分的换能器元件展示出比在 所述中心部分的两侧上的换能器元件更精细的节距。
23.根据权利要求22所述的超声系统,其中,在所述线性模式中,成对地操作所述中心 部分的换能器元件。
全文摘要
本发明描述了一种弯曲的阵列超声换能器,其可以在扇形和弯曲的线性模式中使用。该换能器包括元件的中心部分(40)和在该中心部分的两侧上的元件的侧向部分(44)。在扇形模式中,元件的中心部分被操作用于执行相控阵列扫描。在弯曲的线性模式中,元件的中心部分和侧向部分都被操作用于执行弯曲的线性阵列扫描。中心部分的换能器元件的节距比侧向部分的换能器元件的节距精细。在扇形模式中,独立地操作中心部分的元件,而在弯曲的线性模式中,成对地操作中心部分的换能器元件。在扇形模式中,中心部分中参与到换能器的有效孔径中的换能器元件的数目可以根据与患者声接触的换能器元件的数目而变化。
文档编号A61B8/00GK101903796SQ200880105551
公开日2010年12月1日 申请日期2008年8月27日 优先权日2007年9月4日
发明者D·亚当斯 申请人:皇家飞利浦电子股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1