具有成角度的组织接触表面的外科端部执行器的制作方法与工艺

文档序号:12796552阅读:208来源:国知局
具有成角度的组织接触表面的外科端部执行器
背景技术
:多年以来,已经开发出多种微创机器人(或“远距离外科手术”)系统以增加外科手术的灵活性,并允许外科医生以直观的方式对患者进行手术。多个此类系统在以下美国专利中有所公开,所述每个美国专利的全文以引用方式并入本文:名称为“ArticulatedSurgicalInstrumentForPerformingMinimallyInvasiveSurgeryWithEnhancedDexterityandSensitivity”的美国专利5,792,135、名称为“RoboticArmDLUSForPerformingSurgicalTasks”的美国专利6,231,565、名称为“RoboticSurgicalToolWithUltrasoundCauterizingandCuttingInstrument”的美国专利6,783,524、名称为“AlignmentofMasterandSlaveInaMinimallyInvasiveSurgicalApparatus”的美国专利6,364,888、名称为“MechanicalActuatorInterfaceSystemForRoboticSurgicalTools”的美国专利7,524,320、名称为“PlatformLinkWristMechanism”的美国专利7,691,098、名称为“RepositioningandReorientationofMaster/SlaveRelationshipinMinimallyInvasiveTelesurgery”的美国专利7,806,891以及名称为“SurgicalToolWithWritedMonopolarElectrosurgicalEndEffectors”的美国专利7,824,401。然而,多个此类系统在以前无法生成有效切割和紧固组织所需量级的力。此外,现有的机器人外科系统在其可操作的不同类型的外科装置的数量方面受到限制。附图说明通过结合附图来参考本发明的示例实施例的以下说明,本发明的特征和优点及其获取方法将会变得更加明显,并可更好地理解本发明本身,其中:本文结合下述附图以举例的方式对各种示例实施例进行描述,其中:图1为机器人控制器的一个实施例的透视图。图2为可操作地支撑多个外科工具实施例的机器人系统的机器人外科臂车/操纵器的透视图。图3为图2中所示的机器人外科臂车/操纵器的一个实施例的侧视图。图4为具有定位连杆的车结构的透视图,所述定位连杆用于可操作地支撑可与外科工具实施例一起使用的机器人操纵器。图5为外科工具实施例和外科端部执行器实施例的透视图。图6为与发生器电连通的电外科工具的一个实施例的透视图。图7示出了图6的外科工具的端部执行器的一个实施例的透视图,其中钳口构件打开并且可轴向运动的构件的远侧端部处于回缩位置。图8示出了图6的外科工具的端部执行器的一个实施例的透视图,其中钳口构件闭合并且可轴向运动的构件的远侧端部处于部分推进的位置。图9为图6的外科工具的可轴向运动的构件的一个实施例的透视图。图10为图6的外科工具的电外科端部执行器的一个实施例的剖视图。图11为用于将各种外科工具实施例附接到机器人系统的适配器和工具保持器布置的一个实施例的分解组件视图。图12为图11中所示的适配器的一个实施例的侧视图。图13为图11中所示的适配器的一个实施例的底视图。图14为图11和图12的适配器的一个实施例的顶视图。图15为外科工具的一个实施例的局部底部透视图。图16为外科工具的一部分的一个实施例的前透视图,其中为清楚起见省略了一些元件。图17为图16的外科工具的一个实施例的后透视图。图18为图16和图17的外科工具的一个实施例的顶视图。图19为图16-18的外科工具的一个实施例的局部顶视图,其中可手动致动的驱动齿轮处于未致动位置。图20为图16-19的外科工具的一个实施例的另一个局部顶视图,其中可手动致动的驱动齿轮处于初始致动位置。图21为图16-20的外科工具的一个实施例的另一个局部顶视图,其中可手动致动的驱动齿轮处于致动位置。图22为另一个外科工具实施例的后透视图。图23为图22的外科工具的一个实施例的侧正视图。图24为关节运动接头和端部执行器的一部分的一个实施例的剖视图。图24A示出了图24的轴组件和关节运动接头的一个实施例,其中示出了远侧缆线部分和近侧缆线部分之间的连接。图25为图24的关节运动接头和端部执行器的一部分的一个实施例的分解组件视图。图26为图25中所示的关节运动接头和端部执行器部分的一个实施例的局部剖视透视图。图27为端部执行器和驱动轴组件实施例的局部透视图。图28为驱动轴组件的一个实施例的局部侧视图。图29为驱动轴组件的一个实施例的透视图。图30为图29的驱动轴组件的一个实施例的侧视图。图31为复合驱动轴组件的一个实施例的透视图。图32为图31的复合驱动轴组件的一个实施例的侧视图。图33为呈弓形或“挠曲”构型的图29和图30的驱动轴组件的一个实施例的另一个视图。图33A为呈弓形或“挠曲”构型的驱动轴组件的一个实施例的侧视图。图33B为呈弓形或“挠曲”构型的另一个驱动轴组件的一个实施例的侧视图。图34为另一个驱动轴组件实施例的一部分的透视图。图35为图34的驱动轴组件实施例的顶视图。图36为处于弓形构型的图34和图35的驱动轴组件实施例的另一个透视图。图37为图36中所示的驱动轴组件实施例的顶视图。图38为另一个驱动轴组件实施例的透视图。图39为处于弓形构型的图38的驱动轴组件实施例的另一个透视图。图40为图38和图39的驱动轴组件实施例的顶视图。图41为图40的驱动轴组件实施例的剖视图。图42为另一个驱动轴组件实施例的局部剖视图。图43为图42的驱动轴组件实施例的另一个剖视图。图44为另一个驱动轴组件实施例的一部分的另一个剖视图。图45为图44的驱动轴组件的一个实施例的另一个剖视图。图46为另一个外科工具实施例的透视图。图47为图46的外科工具实施例的剖视透视图。图48为关节运动系统的一个实施例的一部分的剖视透视图。图49为处于中间位置的图48的关节运动系统的一个实施例的剖视图。图50为处于关节运动位置的图48和图49的关节运动系统的一个实施例的另一个剖视图。图51为图46-47的外科工具的一个实施例的一部分的侧正视图,其中为清楚起见省略了其部分。图52为图46-47的外科工具的一个实施例的一部分的后透视图,其中为清楚起见省略了其部分。图53为图46-47的外科工具的一个实施例的一部分的后正视图,其中为清楚起见省略了其部分。图54为图46-47的外科工具的一个实施例的一部分的前透视图,其中为清楚起见省略了其部分。图55为图46-47的外科工具的实施例的一部分的侧正视图,其中为清楚起见省略了其部分。图56为图46-47的外科工具的示例反向系统实施例的分解组件视图。图57为图56的反向系统的杠杆臂实施例的透视图。图58为图56的反向系统的一个实施例的刀片回缩器按钮的透视图。图59为图46-47的外科工具实施例的一部分的透视图,其中为清楚起见省略了其部分并且杠杆臂与反向齿轮处于可致动接合位置。图60为图46-47的外科工具实施例的一部分的透视图,其中为清楚起见省略了其部分并且杠杆臂处于未致动位置。图61为图46-47的外科工具实施例的一部分的另一个透视图,其中为清楚起见省略了其部分并且杠杆臂与反向齿轮处于可致动接合位置。图62为图46-47的外科工具实施例的柄部组件部分的一部分的侧正视图,其中移位器按钮组件运动到下述位置,当驱动轴组件被致动时所述位置将导致端部执行器的旋转。图63为图46-47的外科工具的一个实施例的柄部组件部分的一部分的另一个侧正视图,其中移位器按钮组件运动到另一个位置,当驱动轴组件被致动时所述另一个位置将导致端部执行器中的击发构件的击发。图64为多轴线关节运动和旋转外科工具的实施例的透视图。图65为图64所示的外科工具的一个实施例的各种部件的分解透视图。图66为图64所示的外科工具的一个实施例的局部剖视透视图,其中示出了接合用于致动I型梁构件的平移和端部执行器的钳口组件的闭合的旋转驱动螺母的旋转驱动轴。图67为图64中所示的外科工具的一个实施例的剖视透视图,其中示出了接合用于致动I型梁构件的平移和端部执行器的钳口组件的闭合的旋转驱动螺母的旋转驱动轴。图68为图64中所示的外科工具的一个实施例的局部剖视透视图,其中示出了接合用于致动端部执行器的旋转的轴联接件的旋转驱动轴。图69为图64中所示的外科工具的一个实施例的侧面剖视图,其中示出了处于打开位置的端部执行器的钳口组件、处于近侧回缩位置的I型梁构件、以及接合用于致动I型梁构件的平移和端部执行器的钳口组件的闭合的旋转驱动螺母的旋转驱动轴。图70为图64中所示的外科工具的一个实施例的侧面剖视图,其中示出了处于闭合位置的端部执行器的钳口组件、处于远侧推进位置的I型梁构件、以及接合用于致动I型梁构件的平移和端部执行器的钳口组件的打开的旋转驱动螺母的旋转驱动轴。图71为图64中所示的外科工具的一个实施例的侧面剖视图,其中示出了处于打开位置的端部执行器的钳口组件、处于近侧回缩位置的I型梁构件、以及接合用于致动端部执行器的旋转的轴联接件的旋转驱动轴。图72为图64中所示的外科工具的一个实施例的侧面剖视图,其中示出了处于闭合位置的端部执行器的钳口组件、处于远侧推进位置的I型梁构件、以及接合用于致动端部执行器的旋转的轴联接件的旋转驱动轴。图73和图74为图64中所示的外科工具的一个实施例的侧面剖视细部图,其中示出I型梁构件的凸轮表面与第一钳口构件的砧座表面接合以使第一钳口构件相对于第二钳口构件在打开位置和闭合位置之间运动。图75为构成多轴线关节运动和旋转外科工具的实施例的部件的分解图,所述多轴线关节运动和旋转外科工具包括头部锁定机构。图76为图75中所示的外科工具的头部锁定机构的一个实施例的花键锁部件的分解图。图77为图75中所示的外科工具的一个实施例的侧面剖视图,其中示出了处于打开位置的端部执行器的钳口组件、处于近侧回缩位置的I型梁构件、接合用于致动I型梁构件的平移和端部执行器的钳口组件的闭合的旋转驱动螺母的旋转驱动轴、以及阻止端部执行器的旋转的已接合花键锁。图78为图75中所示的外科工具的一个实施例的侧面剖视图,其中示出了处于闭合位置的端部执行器的钳口组件、处于远侧推进位置的I型梁构件、接合用于致动I型梁构件的平移和端部执行器的钳口组件的打开的旋转驱动螺母的旋转驱动轴、以及阻止端部执行器的旋转的已接合花键锁。图79为图75中所示的外科工具的一个实施例的侧面剖视图,其中示出了处于打开位置的端部执行器的钳口组件、处于近侧回缩位置的I型梁构件、接合用于致动端部执行器的旋转的轴联接件的旋转驱动轴、以及允许端部执行器的旋转的已脱离花键锁。图80为图64中所示的外科工具的一个实施例的侧面剖视图,其中示出了处于闭合位置的端部执行器的钳口组件、处于远侧推进位置的I型梁构件、接合用于致动端部执行器的旋转的轴联接件的旋转驱动轴、以及允许端部执行器的旋转的已脱离花键锁。图81为图80中所示的外科工具的一个实施例的侧面剖视细部图。图82为图78中所示的外科工具的一个实施例的侧面剖视细部图。图83为根据本文所述的某些实施例的具有第一钳口构件和第二钳口构件的外科工具的剖视透视图。图84为图83的外科工具的一个实施例的闭合螺母的预期图。图85为图83的外科工具的一个实施例的剖视正视图,其中第一钳口构件和第二钳口构件处于至少部分地打开位置,并且其中旋转驱动轴与旋转驱动螺母可操作地脱离。图86为图83的外科工具的一个实施例的剖视正视图,其中第一钳口构件和第二钳口构件处于至少部分地打开位置,并且其中旋转驱动轴与旋转驱动螺母可操作地接合。图87为图83的外科工具的一个实施例的剖视正视图,其中第一钳口构件和第二钳口构件处于至少部分地闭合位置,其中旋转驱动轴与旋转驱动螺母可操作地接合,并且其中闭合螺母与旋转驱动螺母可操作地脱离。图88为图83的外科工具的一个实施例的剖视正视图,其中第一钳口构件和第二钳口构件处于至少部分地闭合位置,其中旋转驱动轴与旋转驱动螺母可操作地接合,并且其中I型梁构件为至少部分地延伸的。图89为图83的外科工具的一个实施例的剖视正视图,其中第一钳口构件和第二钳口构件处于至少部分地闭合位置,其中旋转驱动轴与旋转驱动螺母可操作地接合,并且其中I型梁构件为至少部分地回缩的。图90为图83的外科工具的一个实施例的剖视正视图,其中第一钳口构件和第二钳口构件处于至少部分地闭合位置,其中旋转驱动轴与旋转驱动螺母可操作地接合,并且其中I型梁构件为至少部分地回缩的。图91为图83的外科工具的一个实施例的剖视正视图,其中第一钳口构件和第二钳口构件处于至少部分地打开位置,其中旋转驱动轴与旋转驱动螺母可操作地接合,并且其中闭合螺母与旋转驱动螺母可操作地接合。图92为根据本文所述的某些实施例的具有第一钳口构件和第二钳口构件的外科工具的剖视透视图。图93为图92的外科工具的一个实施例的剖视正视图,其中第一钳口构件和第二钳口构件处于至少部分地打开位置,并且其中旋转驱动轴与端部执行器驱动外壳的花键联接部分可操作地接合。图94为图92的外科工具的一个实施例的剖视正视图,其中第一钳口构件和第二钳口构件处于至少部分地闭合位置,并且其中旋转驱动轴与筒形凸轮的花键联接部分可操作地接合。图95为图92的外科工具的一个实施例的剖视正视图,其中第一钳口构件和第二钳口构件处于至少部分地闭合位置,并且其中旋转驱动轴未与花键联接部分中的任一部分可操作地接合。图96为图92的外科工具的一个实施例的剖视正视图,其中第一钳口构件和第二钳口构件处于至少部分地闭合位置,并且其中旋转驱动轴与旋转驱动螺母的花键联接部分可操作地接合。图97示出了根据至少一个实施例的外科器械的端部执行器和关节运动接头的透视图,其中为示出目的一些部分被移除。图98示出了根据至少一个实施例的能够在图97的端部执行器和关节运动接头内平移的驱动轴的细部图。图99示出了根据至少一个另选的实施例的驱动轴的透视图。图100示出了图99的驱动轴的一个实施例的正视图。图101示出了以关节运动状态示出的图99的驱动轴的一个实施例的正视图。图102示出了根据至少一个另选的实施例的包括驱动管以及围绕驱动管延伸的螺纹的驱动轴组件的透视图。图103示出了图102的驱动轴组件的一个实施例的正视图。图104示出了根据至少一个实施例的包括驱动管、围绕驱动管延伸的螺纹、和延伸穿过驱动管的内芯的驱动轴组件的透视图。图105示出了图104的驱动轴组件的一个实施例的正视图。图106为根据本文所述的某些实施例的具有第一钳口构件和第二钳口构件的外科工具的透视图。图107为图106中所示的外科端部工具的第一钳口构件和第二钳口构件的一个实施例的远侧部分的剖视图。图108为根据本文所述的某些实施例的外科端部执行器和轴组件的透视图。图109为根据本文所述的某些实施例的外科端部执行器的钳口构件的预期图。图110为根据本文所述的某些实施例的与轴组件脱离的外科执行器的剖视图。图111为根据本文所述的某些实施例的附接到轴组件的外科执行器的剖视图。图112为根据本文所述的某些实施例的多个可互换的外科端部执行器的透视图。图113为根据本文所述的某些实施例的外科端部执行器的透视图,其中包括钳口构件的剖视图。图114为根据本文所述的某些实施例的与轴组件脱离的外科执行器的剖视图。图115为根据本文所述的某些实施例的附接到轴组件的外科执行器的剖视图。图116为根据本文所述的某些实施例的具有第一钳口和第二钳口的外科端部执行器的透视图。图117为根据本文所述的某些实施例的图116中所示的外科端部执行器的另一个透视图,其中包括钳口构件的剖视透视图。图118为根据本文所述的某些实施例的外科端部执行器的第一钳口构件和第二钳口构件的剖视图。图119为根据本文所述的某些实施例的外科端部执行器的第一钳口构件和第二钳口构件的剖视图。图120为根据本文所述的某些实施例的外科端部执行器的第一钳口构件和第二钳口构件的透视图。图121为根据本文所述的某些实施例的外科端部执行器的钳口构件的远侧部分的预期图。图122为根据本文所述的某些实施例的夹持部分的顶视图。图123为根据本文所述的某些实施例的夹持部分的顶视图。图124为根据本文所述的某些实施例的夹持部分的顶视图。图125为根据本文所述的某些实施例的夹持部分的顶视图。图126为根据本文所述的某些实施例的夹持部分的顶视图。图127为根据本文所述的某些实施例的夹持部分的顶视图。图128为根据本文所述的某些实施例的夹持部分的顶视图。图129为根据本文所述的某些实施例的夹持部分的顶视图。图130为根据本文所述的某些实施例的夹持部分的顶视图。图131为根据本文所述的某些实施例的夹持部分的顶视图。图132为端部执行器的一个实施例的透视图,所述端部执行器具有处于打开位置的第一钳口和第二钳口构件以及基本上沿钳口构件的整个长度的成角度的组织接触表面。图133为图132中所示的端部执行器的一个实施例的另一个透视图,其中第一钳口构件和第二钳口构件处于闭合位置。图134为图133中所示的端部执行器的一个实施例的前视图。图135为图134中所示的端部执行器的一个实施例的剖视图。图136为图132中所示的端部执行器的一个实施例的侧视图。图137为图133中所示的端部执行器的一个实施例的侧视图。图138为示出具有第一钳口构件和第二钳口构件的端部执行器的一个实施例的前视图的示意图,其中每个钳口构件具有两个成相反角度的组织接触表面。图139为端部执行器的一个实施例的透视图,所述端部执行器具有处于打开位置的第一钳口构件和第二钳口构件以及沿钳口构件的长度的一部分的成角度的组织接触表面。图140为图139中所示的端部执行器的一个实施例的另一个透视图。图141为端部执行器的一个实施例的透视图,所述端部执行器具有处于打开位置的第一钳口构件和第二钳口构件、沿钳口构件的长度的一部分的成角度的组织接触表面、以及定位在第二钳口构件上的两个成角度的组织接触表面之间的电极。图142为端部执行器的一个实施例的剖视图,所述端部执行器具有处于夹持钳口构件之间的组织的闭合位置的第一钳口构件和第二钳口构件,其中第一钳口构件和第二钳口构件具有相对的成角度的组织接触表面。图143为图64-82的端部执行器和轴组件的一个实施例的剖视图,其中示出了旋转电极组件的示例安装。图144为图143的端部执行器和轴组件的一个实施例的分解图,其中示出了已被安装的和分解的旋转电极组件。图145为图143的端部执行器和轴组件的一个实施例的剖视图,其中示出了旋转电极组件以及处于近侧位置的旋转驱动头。图146为图143的端部执行器和轴组件的一个实施例的剖视图,其中示出了旋转电极组件以及处于远侧位置的旋转驱动头。图147-148为图143的端部执行器和轴组件的一个实施例的剖视图,其中外部接触件的纵向长度被选择为使得旋转连接器组件交替地产生和中断由刷组件的纵向位置限制的电连接。图149-150示出了图143的端部执行器和轴组件的一个实施例,其中示出了包括位于端部执行器和轴组件之间的引线部分和连接器组件的构型。图151示出了端部执行器和轴组件的一个实施例的剖视图,其中示出了可使用旋转连接器组件的另一个环境。图152示出了图83-91的端部执行器和轴组件的一个实施例的剖视图,其中示出了旋转电极组件的另一个示例安装。图153示出了可与各种外科工具(包括本文所述的那些)一起使用的端部执行器的一个实施例。图154示出了图153的端部执行器的一个实施例,其中示出了邻近端部执行器的第二钳口构件的纵向通道的组织接触部分。图155示出了图153的端部执行器的一个实施例,其中示出了沿第一钳口构件的中线的轴向横截面,显示邻近第一钳口构件的纵向通道设置的组织接触部分。图156示出了处于打开位置的图153的端部执行器的一个实施例的透视图。图157示出了适于与图153的端部执行器一起使用的第二钳口构件的一个实施例的顶视图。图158示出了适于与图153的端部执行器一起使用的第一钳口构件的一个实施例的底视图。图159示出了处于闭合位置的图153的端部执行器的另一个实施例的前剖视图。图160-165示出了图153的端部执行器的各种实施例的侧面剖视图。图166示出了适于与处于闭合位置的保持外科工具的图153的端部执行器一起使用的第二钳口构件的另一个实施例。图167示出了适于与图153的端部执行器一起使用的第二钳口构件的一个实施例。图168示出了适于与图153的端部执行器一起使用的第二钳口构件的另一个实施例。具体实施方式本专利申请的申请人还拥有与本专利同一日期提交的以下专利申请,这些专利申请各自的全部内容均以引用方式并入本文:1.名称为“FlexibleDriveMember”的美国专利申请序列号_____________(代理人案卷号END7131USNP/120135)。2.名称为“Multi-FunctionalPoweredSurgicalDevicewithExternalDissectionFeatures”的美国专利申请序列号_____________(代理人案卷号END7132USNP/120136)。3.名称为“CouplingArrangementsforAttachingSurgicalEndEffectorstoDriveSystemsTherefor”的美国专利申请序列号_____________(代理人案卷号END7133USNP/120137)。4.名称为“RotaryActuatableClosureArrangementforSurgicalEndEffector”的美国专利申请序列号_____________(代理人案卷号END7134USNP/120138)。5.名称为“InterchangeableEndEffectorCouplingArrangement”的美国专利申请序列号_____________(代理人案卷号END7136USNP/120140)。6.名称为“SurgicalEndEffectorJawandElectrodeConfigurations”的美国专利申请序列号_____________(代理人案卷号END7137USNP/120141)。7.名称为“Multi-AxisArticulatingandRotatingSurgicalTools”的美国专利申请序列号_____________(代理人案卷号END7138USNP/120142)。8.名称为“DifferentialLockingArrangementsforRotaryPoweredSurgicalInstruments”的美国专利申请序列号_____________(代理人案卷号END7139USNP/120143)。9.名称为“InterchangeableClipApplier”的美国专利申请序列号_____________(代理人案卷号END7140USNP/120144)。10.名称为“FiringSystemLockoutArrangementsforSurgicalInstruments”的美国专利申请序列号_____________(代理人案卷号END7141USNP/120145)。11.名称为“RotaryDriveShaftAssembliesforSurgicalInstrumentswithArticulatableEndEffectors”的美国专利申请序列号_____________(代理人案卷号END7142USNP/120146)。12.名称为“RotaryDriveArrangementsforSurgicalInstruments”的美国专利申请序列号_____________(代理人案卷号END7143USNP/120147)。13.名称为“RoboticallyPoweredSurgicalDeviceWithManually-ActuatableReversingSystem”的美国专利申请序列号_____________(代理人案卷号END7144USNP/120148)。14.名称为“ReplaceableClipCartridgeforaClipApplier”的美国专利申请序列号_____________(代理人案卷号END7145USNP/120149)。15.名称为“EmptyClipCartridgeLockout”的美国专利申请序列号_____________(代理人案卷号END7146USNP/120150)。16.名称为“SurgicalInstrumentSystemIncludingReplaceableEndEffectors”的美国专利申请序列号_____________(代理人案卷号END7147USNP/120151)。17.名称为“RotarySupportJointAssembliesforCouplingaFirstPortionofaSurgicalInstrumenttoaSecondPortionofaSurgicalInstrument”的美国专利申请序列号_____________(代理人案卷号END7148USNP/120152)。18.名称为“ElectrodeConnectionsforRotaryDrivenSurgicalTools”的美国专利申请序列号_____________(代理人案卷号END7149USNP/120153)。申请人还拥有以下专利申请,这些专利申请各自的全部内容均以引用方式并入本文:-名称为“SurgicalInstrumentWithWirelessCommunicationBetweenaControlUnitofaRoboticSystemandRemoteSensor”的美国专利申请序列号13/118,259,美国专利申请公开号2011-0295270A1;-名称为“Robotically-ControlledDisposableMotorDrivenLoadingUnit”的美国专利申请序列号13/118,210,美国专利申请公开号2011-0290855A1;-名称为“Robotically-ControlledEndoscopicAccessoryChannel”的美国专利申请序列号13/118,194,美国专利申请公开号2011-0295242;-名称为“Robotically-ControlledMotorizedSurgicalInstrument”的美国专利申请序列号13/118,253,美国专利申请公开号2011-0295269A1;-名称为“Robotically-ControlledSurgicalStaplingDevicesThatProduceFormedStaplesHavingDifferentLengths”的美国专利申请序列号13/118,278,美国专利申请公开号2011-0290851A1;-名称为“Robotically-ControlledMotorizedCuttingandFasteningInstrument”的美国专利申请序列号13/118,190,美国专利申请公开号2011-0288573A1-名称为“Robotically-ControlledShaftBasedRotaryDriveSystemsForSurgicalInstruments”的美国专利申请序列号13/118,223,美国专利申请公开号2011-0290854A1;-名称为“Robotically-ControlledSurgicalInstrumentHavingRecordingCapabilities”的美国专利申请序列号13/118,263,美国专利申请公开号2011-0295295A1;-名称为“Robotically-ControlledSurgicalInstrumentWithForceFeedbackCapabilities”的美国专利申请序列号13/118,272,美国专利申请公开号2011-0290856A1;-名称为“Robotically-DrivenSurgicalInstrumentWithE-BeamDriver”的美国专利申请序列号13/118,246,美国专利申请公开号2011-0290853A1;和-名称为“SurgicalStaplingInstrumentsWithRotatableStapleDeploymentArrangements”的美国专利申请序列号13/118,241。现在将描述某些示例实施例来提供对本文所公开的装置和方法的结构、功能、制造和使用的原理的全面理解。这些示例实施例的一个或多个实例在附图中示出。本领域的普通技术人员将会理解,本文具体描述和在附图中示出的装置和方法为非限制性的示例实施例,并且本发明的各种示例实施例的范围仅由权利要求书限定。结合一个示例实施例而示出或描述的特征可与其他示例实施例的特征进行组合。这种修改和变型旨在包括在本发明的范围之内。图1示出了结合图2中所示类型的从属机械臂车20使用的主控制器12。主控制器12和从属机械臂车20以及它们各自的部件和控制系统在本文中统称为机器人系统10。此类系统和装置的实例公开于美国专利7,524,320中,所述专利以引用方式并入本文。因而,除了对理解本文所述的多种示例实施例可能必要的细节以外,本文将不详细地描述此类装置的各种细节。众所周知,主控制器12通常包括如下主控制器(在图1中一般表示为14):在外科医生通过立体显示器16观察手术时,所述主控制器由外科医生抓持并在空间中操控。主控制器12大体包括手动输入装置,该手动输入装置优选地以多个自由度运动并通常进一步地具有用于致动工具的可致动的柄部(例如,用于闭合握紧钳口、向电极施加电势等)。如图2中所示,机械臂车20能够致动多个外科工具,一般称为30。名称为“Multi-ComponentTelepresenceSystemandMethod”的美国专利6,132,368中公开了使用主控制器和机械臂车布置的各种机器人外科系统和方法,该专利申请的全部公开内容以引用方式并入本文。如图所示,机械臂车20包括基座22,在例示的实施例中,所述基座22支撑有三个外科工具30。外科工具30各自由一系列手动关节运动式连杆(一般称为装置接头32)和机器人操纵器34支撑。本文示出的这些结构具有在机器人连杆的大部分之上延伸的护盖。这些护盖可以是任选的,并且可在尺寸上有所限制或完全被消除,以使用于操纵此类装置的伺服机构遇到的惯性最小化、限制运动部件的体积以避免碰撞、并且限制车20的总重量。车20通常具有适于在手术室之间来搬运车20的尺寸。车20能够通常适于穿过标准的手术室门并放置到标准的医院电梯上。车20可优选地具有重量并包括轮(或其他运输)系统,所述轮系统允许车20被单个维护人员定位在手术台附近。现在参见图3,如图所示的机器人操纵器34包括限制外科工具30的运动的连杆38。连杆38包括由旋转接头以平行四边形布置方式联接在一起的刚性连接件,使得外科工具30围绕空间40中的某一点旋转,如在美国专利5,817,084中更充分地描述,所述专利的全部公开内容以引用方式并入本文。平行四边形布置方式将旋转限制为围绕轴40a(有时称为俯仰轴)枢转。支撑平行四边形连杆的连接件枢转地安装到装置接头32(图2)上,使得外科工具30进一步围绕轴40b(有时称为偏航轴)旋转。俯仰轴40a和偏航轴40b在远程中心42处相交,所述远程中心沿外科工具30的轴44对齐。当由操纵器50支撑时,外科工具30可具有另外的从动自由度,包括外科工具30沿纵向工具轴线“LT-LT”的滑动运动。当外科工具30沿工具轴线LT-LT相对于操纵器50(箭头40c)滑动时,远程中心42相对于操纵器50的基座52保持固定。从而,使整个操纵器总体上运动以重新定位远程中心42。操纵器50的连杆54由一系列的马达56驱动。这些马达响应于来自控制系统的处理器的命令而主动地运动连杆54。马达56还用于操纵外科工具30。图4中示出了可供选择的装置接头结构。在该实施例中,外科工具30由两个组织操纵工具之间的可供选择的操纵器结构50'支撑。其他实施例可包括多种可供选择的机器人结构,包括描述于名称为“AutomatedEndoscopeSystemForOptimalPositioning”的美国专利5,878,193中的那些,该专利的全部内容以引用方式并入本文。另外,虽然结合外科工具30和主控制器12之间的通信描述了机器人部件与机器人外科系统的处理器之间的数据通信,但类似的通信可发生在操纵器、装置接头、内窥镜或其他图像捕获装置等的电路与机器人外科系统的处理器之间,所述机器人外科系统的处理器用于部件兼容性确认、部件类型识别、部件校正(例如偏移等)通信、部件与机器人外科系统的联接确认等。极其适于与机器人系统10一起使用的外科工具100示于图5-6中。图5示出了外科工具100和电外科端部执行器3000的另外的实施例。如在图5中可见,外科工具100包括电外科端部执行器3000。电外科端部执行器3000可利用电能来处理和/或破坏组织。电外科端部执行器3000通常包括第一钳口构件和第二钳口构件3008A、3008B,所述第一钳口构件和第二钳口构件可为直的(如图6-10所示)或为弯曲的(如本文所述的各种其他附图所示)。钳口构件3008A、3008B之一或两者通常包括用于向组织提供电外科能量的各种电极。外科工具100通常包括细长轴组件200,所述细长轴组件通过工具安装部分(通常称为300)可操作地联接到操纵器50。电外科工具(例如,包括电外科端部执行器的外科工具,诸如工具100和端部执行器3000)可在任何合适类型的外科环境中使用,包括例如开放式、腹腔镜式、内窥镜式外科环境等。通常,电外科工具包括用于提供电流的一个或多个电极。电极可抵靠组织进行定位和/或相对于组织进行定位,使得电流可流过组织。电流可在组织中生成热,这继而导致在组织内和/或在组织之间形成一个或多个止血密封。例如,由电流导致的组织加热可至少部分地使组织内的蛋白质变性。此类蛋白质(诸如胶原)可例如变性为蛋白质性混合物,其在蛋白质复性时混合和熔合、或“焊接”在一起。当所处理的区域随时间推移而愈合时,这种生物“焊接”可通过身体的伤口愈合过程而被重新吸收。由电外科工具提供的电能可具有任何合适的形式,包括例如直流电或交流电。例如,电能可包括高频交流电,诸如射频或“RF”能量。RF能量可包括在300千赫(kHz)至1兆赫(MHz)的范围内的能量。当施加到组织时,RF能量可导致离子振荡或摩擦,由此增加组织的温度。另外,RF能量可在受累组织和围绕其的其他组织之间提供清晰的边界,由此允许外科医生以高精准水平和高控制水平进行操作。RF能量的低操作温度使得外科医生能够移除、收缩、或塑造软组织,同时密封血管。射频能量尤其良好地适用于结缔组织,所述结缔组织主要由胶原构成,并在接触热时收缩。在某些结构中,一些双极(例如,双电极)电外科工具可包括相对的第一钳口构件和第二钳口构件,其中每个钳口的面可包括电流通路和/或电极。在使用中,组织可被捕获在钳口表面之间,使得电流可在相对的钳口构件中的电极之间流动,并流过位于电极之间的组织。此类工具可能不得不凝固、密封或“焊接”多种类型的组织,例如,具有含不规则或厚的纤维性内容物的壁的解剖结构、成束的不同解剖结构、显著较厚的解剖结构、和/或具有厚筋膜层的组织(诸如大直径血管)。一些实施例可包括用以例如在施加电外科能量期间或之后切断组织的刀片或切割刃。例如,尤其对于切割和密封大直径血管而言,此类应用可能需要在处理后立即进行高强度组织焊接。图6为与发生器3002电连通的电外科工具100的一个实施例的透视图。与发生器3002结合的电外科工具100能够向患者的组织提供能量,例如,电能、超声能、和/或热能。在例示的实施例和功能类似的实施例中,发生器3002经由合适的传输介质(诸如缆线3010)连接到电外科工具100。在一个实施例中,发生器3002联接到控制器,例如控制单元3004。在各种实施例中,控制单元3004可与发生器3002整体形成或者可作为电联接到发生器3002(以虚线显示以示出该部分)的独立的电路模块或装置而提供。尽管在本发明所公开的实施例中,发生器3002被示为与电外科工具100分离,但在一个实施例中,发生器3002(和/或控制单元3004)可与电外科工具100整体形成,以形成一体的电外科系统。例如,在一些实施例中,发生器或等同电路可存在于工具安装部分300内和/或存在于合适的手动实施例中的柄部内(如本文所述)。发生器3002可包括位于发生器3002控制台的前面板上的输入装置3006。输入装置3006可包括生成适于对发生器3002的操作进行程控的信号的任何合适装置,例如键盘或输入端口。在一个实施例中,可将第一钳口构件3008A和第二钳口构件3008B中的各种电极联接到发生器3002。将工具安装部分300连接到发生器3002的缆线3010可包括用于对电外科工具100的正(+)和负(-)电极施加电能的多种电导体。控制单元3004可用于启动发生器3002,所述发生器可用作电源。在各种实施例中,发生器3002可包括例如射频源、超声波源、直流电源、和/或任何其他合适类型的电能源。在各种实施例中,外科工具100可包括至少一个供电导体3012和至少一个返回导体3014,其中电流可经由供电导体3012供给到电外科工具100,并且其中电流可经由返回导体3014流回到发生器3002。在各种实施例中,供电导体3012和返回导体3014可包括绝缘线和/或任何其他合适类型的导体。在某些实施例中,如下文所述,供电导体3012和返回导体3014可容纳在缆线3010内和/或可包括缆线3010,所述缆线在或至少部分地在发生器3002和电外科工具100的端部执行器3000之间延伸。在任何情况下,发生器3002能够在供电导体3012和返回导体3014之间提供足够的电压差,使得可将足够的电流供给到端部执行器3000。电外科端部执行器3000可适于捕获和切断组织并适于利用受控施加的能量(例如RF能量)来同时焊接所捕获的组织。图7示出了电外科端部执行器300的一个实施例,其中钳口构件3008A、3008B打开并且可轴向运动的构件3016处于近侧回缩位置。图8示出了电外科端部执行器300的一个实施例,其中钳口构件3008A、3008B闭合并且可轴向运动的构件3016处于部分推进的位置。在使用中,钳口构件3008A、3008B闭合,从而围绕由可轴向运动的构件3016(或其远侧部分)限定的纵向工具轴线LT-LT来捕获或接合组织。第一钳口构件3008A和第二钳口构件3008B还可对组织施加压缩。在一些实施例中,细长轴200、以及第一钳口构件3008A和第二钳口构件3008B可相对于工具安装部分300旋转完整的360°角度,如箭头3018所示(参见图8)。第一钳口构件3008A和第二钳口构件3008B可各自包括分别沿其相应的中间部分向外设置的细长狭槽或通道3020A和3020B(图7)。另外,第一钳口构件3008A和第二钳口构件3008B可各自具有组织夹持元件,诸如设置在第一钳口构件3008A和第二钳口构件3008B的内部部分上的齿状物3022。下钳口构件3008B可限定具有能量递送表面或电极3024B的钳口主体。例如,电极3024B可经由供电导体3012与发生器3002电连通。位于上部第一钳口构件3008上的能量递送表面3024A可提供电外科能量的返回路径。例如,能量递送表面3024A可与返回导体3014电连通。在例示的实施例和功能类似的实施例中,外科工具100的其他导电部分(包括例如钳口构件3008A、3008B、轴200等)可形成返回路径的全部或部分。电极的各种构型和用于将能量递送表面3024A、3024B联接到导体3012、3014的各种构型在本文中有所描述。另外,应当理解,供电电极3024B可提供在下钳口构件3008B上(如图所示)或上钳口构件3008A上。可轴向运动的构件3016的远侧平移和近侧平移可用于打开和闭合钳口构件3008A、3008B,并切断保持在它们之间的组织。图9为外科工具100的可轴向运动的构件3016的一个实施例的透视图。可轴向运动的构件3016可包括一个或若干零件,但在任何情况下,可相对于细长轴200和/或钳口构件3008A、3008B进行运动或平移。另外,在至少一个实施例中,可轴向运动的构件3016可由17-4沉淀硬化的不锈钢制成。可轴向运动的构件3016的远侧端部可包括能够在钳口构件3008A和3008B中的通道3020AA和3020B内滑动的带凸缘的“I”型梁。可轴向运动的构件3016可在通道3020A、3020B内滑动,以打开和闭合第一钳口构件3008A和第二钳口构件3008B。可轴向运动的构件3016的远侧端部还可包括上凸缘或“c”-形部分3016A以及下凸缘或“c”-形部分3016B。凸缘3016A和3016B分别限定用于接合第一钳口构件3008A和第二钳口构件3008B的向外表面的内部凸轮表面3026A和3026B。钳口构件3008A和3008B的打开-闭合可利用凸轮机构对组织施加极高的压缩力,所述凸轮机构可包括可运动的“I型梁”、可轴向运动的构件3016和钳口构件3008A、3008B的向外表面3028A、3028B。更具体地讲,现在参见图7-9,总体而言,可轴向运动的构件3016的远侧端部的内部凸轮表面3026A和3026B可分别适于滑动地接合第一钳口构件3008A和第二钳口构件3008B的第一向外表面3028A和第二向外表面3028B。第一钳口构件3008A内的通道3020A和第二钳口构件3008B内的通道3020B的尺寸可设定成并可被配置成适应可轴向运动的构件3016的运动,所述可轴向运动的构件可包括组织切割元件3030,例如,包括尖锐的远侧边缘。例如,图8示出了至少部分地推进穿过通道3020A和3020B(图7)的可轴向运动的构件3016的远侧端部。可轴向运动的构件3016的推进可将端部执行器3000从图7中所示的打开构型闭合。在图8所示的闭合位置中,上部第一钳口构件3008A和下部第二钳口构件3008B限定第一钳口构件3008A的第一能量递送表面3024A与第二钳口构件3008B的第二能量递送表面3024B之间的间隙或尺寸D。在各种实施例中,尺寸D可等于约0005"至约0.040",例如,在一些实施例中,在约0.001"至约0.010"之间。另外,第一能量递送表面3024A和第二能量递送表面3024B的边缘可为圆形的以防止切开组织。图10为外科工具100的端部执行器3000的一个实施例的剖视图。下钳口构件3008B的接合或组织接触表面3024B适于至少部分地通过导电-电阻性基质(诸如可变电阻正温度系数(PTC)主体,如下文更详细地描述)向组织递送能量。上钳口构件和下钳口构件3008A、3008B中的至少一个可承载能够从发生器3002向所捕获的组织递送能量的至少一个电极3032。上钳口构件3008A的接合或组织接触表面3024A可承载类似的导电-电阻性基质(即PTC材料),或者在一些实施例中,此表面可为例如导电电极或绝缘层。作为另外一种选择,钳口构件的接合表面可承载2001年10月22日提交的名称为“ELECTROSURGICALJAWSTRUCTUREFORCONTROLLEDENERGYDELIVERY”的美国专利6,773,409所公开的能量递送部件中的任何一个,该专利的全部公开内容以引用方式并入本文。第一能量递送表面3024A和第二能量递送表面3024B可各自与发生器3002电连通。第一能量递送表面3024A和第二能量递送表面3024B可能够接触组织并将适于密封或焊接组织的电外科能量递送到捕获的组织。控制单元3004调节由电发生器3002递送的电能,所述电发生器继而向第一能量递送表面3024A和第二能量递送表面3024B递送电外科能量。可以任何合适的方式(例如,在机器人系统10致动时)启动能量递送。在一个实施例中,可经由脚踏开关3034(图6)通过发生器3002来对电外科工具100进行供能。当致动时,脚踏开关3034触发发生器3002以例如将电能递送到端部执行器3000。控制单元3004可在启动期间调节由发生器3002生成的功率。尽管脚踏开关3034可适用于多种情况,但可利用其他合适类型的开关。如上所述,由电发生器3002递送并且由控制单元3004调节或以其他方式控制的电外科能量可包括射频(RF)能量,或其他合适形式的电能。另外,相对的第一能量递送表面和第二能量递送表面3024A和3024B之一或二者可承载与发生器3002和控制单元3004进行电连通的可变电阻性正温度系数(PTC)主体。有关电外科端部执行器、钳口闭合机构和电外科能量递送表面的另外的细节在以下的美国专利和已公布的专利申请中有所描述:美国专利号7,087,054;7,083,619;7,070,597;7,041,102;7,011,657;6,929,644;6,926,716;6,913,579;6,905,497;6,802,843;6,770,072;6,656,177;6,533,784;和6,500,176;以及美国专利申请公开号2010/0036370和2009/0076506,这些专利和专利申请中的全部均全文以引用方式并入本文并形成本说明书的一部分。在一个实施例中,发生器3002可被实现为电外科单元(ESU),所述电外科单元能够提供足以利用射频(RF)能量来执行双极电外科手术的功率。在一个实施例中,ESU可为ERBEUSA公司(Marietta,Georgia)出售的双极ERBEICC350。在一些实施例中,诸如对于双极性电外科手术应用而言,可利用具有有源电极和返回电极的外科工具,其中有源电极和返回电极可抵靠、邻近待处理的组织来定位和/或与待处理的组织电连通,使得电流可从有源电极通过正温度系数(PTC)主体并通过组织流到返回电极。因此,在各种实施例中,电外科系统150可包括供电路径和返回路径,其中正被处理的所捕获组织完成或闭合电路。在一个实施例中,发生器3002可为单极性RFESU并且电外科工具100可包括其中集成一个或多个有源电极的单极性端部执行器3000。对于此类系统而言,发生器3002可需要位于远离操作位点的位置处与患者紧密接触的返回垫,和/或其他合适的返回路径。返回垫可通过缆线连接到发生器3002。在电外科工具100的操作期间,临床医生通常抓紧组织,对所捕获的组织供应能量以形成焊接或密封(例如,通过致动按钮214和/或踏板216),然后驱动位于可轴向运动的构件3016的远侧端部处的组织切割元件3030穿过所捕获的组织。根据各种实施例,可轴向运动的构件3016的轴向运动的平移可为有节奏的或以其他方式受控制的,以有助于以合适的行进速率来驱动可轴向运动的构件3016。通过控制行进速率,所捕获组织在经切割元件3030切断之前已被适当地和功能性地密封的可能性增加。现在参见图11-15中所示的实施例,工具安装部分300包括工具安装板304,所述工具安装板可操作地支撑多个(图15中示出4个)可旋转的主体部分、从动盘或元件306,所述从动盘或元件各自包括从从动元件306的表面延伸的一对销308。一个销308比相同从动元件306上的其他销308更靠近每个从动元件306的旋转轴,这有助于确保从动元件306的正向角对齐。接口302可包括能够以安装方式接合安装板304的适配器部分310,如将在下文中进一步描述。所示的适配器部分310包括电连接销312阵列(图13),其可通过工具安装部分300内的电路板联接到存储器结构。虽然在本文结合机械耦合元件、电耦合元件和磁耦合元件描述了接口302,但应当理解,在其他实施例中可使用多种遥测形式,包括红外、电感耦合等。如图11-14所示,适配器部分310大体包括工具侧314和保持器侧316。将多个可旋转主体320安装到浮动板318,所述浮动板相对于与适配器310的主表面垂直的周围适配器结构具有有限的运动范围。当沿工具安装部分外壳侧(未示出)的杠杆或其他闩锁形成物致动时,浮动板318的轴向运动有助于使可旋转主体320从工具安装部分300脱离。其他实施例可采用其他机构/结构以用于将工具安装部分300可释放地联接到适配器310。在图11-15的实施例中,通过弹性径向构件将可旋转主体320弹性地安装到浮动板318,所述弹性径向构件延伸到围绕可旋转主体320的周边凹痕中。可旋转主体320可通过偏转这些弹性结构而相对于板318轴向运动。当设置在第一轴向位置(朝工具侧314)时,可旋转主体320可自由旋转而没有角度限制。然而,当可旋转主体320朝工具侧314轴向运动时,突出部322(从可旋转主体320径向延伸)横向接合位于浮动板上的棘爪以便限制可旋转主体320围绕其轴线的角旋转。当驱动销332将可旋转主体320推动至受限的旋转位置直到销332与开口334’对齐(并滑动到其中)时,可使用该受限的旋转以协助可旋转主体320与机器人系统10的对应工具保持器部分330的驱动销332驱动地接合。可旋转主体320的工具侧314上的开口334和保持器侧316上的开口334’能够使工具安装部分300的从动元件306(图15)与工具保持器330的驱动元件336准确地对齐。如上关于从动元件306的内部和外部销308所述,开口304和304’位于距其各自的可旋转主体306的旋转轴线不同的距离处,以确保不与其预期的位置成180度对齐。另外,开口304中的每一个可略微径向细长,以便适当地接收周边方向上的销308。这允许销308在开口334和334’内径向滑动并适应工具100和工具保持器330之间的一些轴向偏差,同时使驱动元件和从动元件之间的任何角偏差和角侧隙最小化。工具侧314上的开口334可与保持器侧316上的开口334’(以虚线示出)偏置约90度,如图14中最清晰可见。在图11-15的实施例中,电连接器销340阵列位于适配器310的保持器侧316上,并且适配器310的工具侧314包括用于从工具安装部分300接收销阵列(未示出)的狭槽342(图14)。除了在外科工具100和工具保持器330之间传输电信号之外,可通过适配器1240的电路板将这些电连接件中的至少一些联接至适配器存储器装置344(图13)。在图11-15的实施例中,采用可拆卸的闩锁布置346以将适配器310可释放地附连到工具保持器330。如本文所用,术语“工具驱动组件”在用于机器人系统10的上下文中时至少涵盖适配器310和工具保持器330,并且其在图11中已通常统称为110。如在图11中可见,工具保持器330包括第一闩锁销布置337,所述第一闩锁销结构的尺寸设定成接收在设置于适配器310中的相应连接叉狭槽311中。此外,工具保持器330还具有第二闩锁销338,所述第二闩锁销的尺寸设定成保持在适配器310中的相应闩锁连接叉313中。参见图11。闩锁组件315被活动地支撑在适配器310上并具有形成于其中的可从第一闩锁位置(其中闩锁销338保持在其相应的闩锁连接叉313内)和未闩锁位置(其中连接叉317与连接叉313对齐以使得第二闩锁销338可插入到闩锁连接叉313中或从闩锁连接叉313移除)偏置的一对闩锁连接叉317。采用一个或多个弹簧(未示出)来将闩锁组件偏置到闩锁位置。适配器310的工具侧314上的唇缘可滑动地接收工具安装外壳(未示出)的侧向延伸突出部。现在参见图5和图16-21,工具安装部分300可操作地支撑多个驱动系统以用于生成各种形式的控制运动,所述控制运动是操作联接到细长轴组件200的远侧端部的特定类型端部执行器所必需的。如图5和图16-21所示,工具安装部分300包括通常称为350的第一驱动系统,所述第一驱动系统能够接收来自机器人系统10的工具驱动组件110的相应的“第一”旋转输出运动,并将第一旋转输出运动转换成要施加到外科端部执行器的第一旋转控制运动。在例示的实施例中,第一旋转控制运动被用于使细长轴组件200(和外科端部执行器3000)围绕纵向工具轴线LT-LT旋转。在图5和图16-18的实施例中,第一驱动系统350包括形成于(或附接到)细长轴组件200的近侧管段202的近侧端部208上的管齿轮段354。近侧管段202的近侧端部208通过安装在工具安装板304上的向前的支撑支架352被旋转地支撑在工具安装部分300的工具安装板304上。参见图16。管齿轮段354以与第一旋转齿轮组件360啮合接合而被支撑,所述第一旋转齿轮组件可操作地支撑在工具安装板304上。如图16所示,旋转齿轮组件360包括第一旋转驱动齿轮362,当工具安装部分300联接到工具驱动组件110时,所述第一旋转驱动齿轮联接到工具安装板304的保持器侧316上的从动盘或元件306中的相应第一者。参见图15。旋转齿轮组件360还包括被可旋转地支撑在工具安装板304上的第一旋转从动齿轮364。第一旋转从动齿轮364与第二旋转从动齿轮366处于啮合接合状态,所述第二旋转从动齿轮继而与管齿轮段354处于啮合接合状态。将来自机器人系统10的工具驱动组件110的第一旋转输出运动施加到相应的从动元件306将由此引起旋转驱动齿轮362的旋转。旋转驱动齿轮362的旋转最终导致细长轴组件200(和外科端部执行器3000)围绕纵向工具轴线LT-LT(图5中由箭头“R”表示)旋转。应当理解,从工具驱动组件110沿一个方向施加的旋转输出运动将导致细长轴组件200和外科端部执行器3000围绕纵向工具轴线LT-LT在第一旋转方向上旋转,并且沿相反方向施加的旋转输出运动将导致细长轴组件200和外科端部执行器3000在与第一旋转方向相反的第二旋转方向上旋转。在图5和图16-21的实施例中,工具安装部分300还包括通常称为370的第二驱动系统,所述第二驱动系统能够接收来自机器人系统10的工具驱动组件110的相应的“第二”旋转输出运动,并将第二旋转输出运动转换成第二旋转控制运动以用于施加到外科端部执行器。第二驱动系统370包括第二旋转驱动齿轮372,当工具安装部分300联接到工具驱动组件110时,所述第二旋转驱动齿轮联接到工具安装板304的保持器侧316上的从动盘或元件306中的相应第二者。参见图15。第二驱动系统370还包括被可旋转地支撑在工具安装板304上的第一旋转从动齿轮374。第一旋转从动齿轮374与轴齿轮376处于啮合接合状态,所述轴齿轮可运动地并且不可旋转地安装到近侧驱动轴段380上。在此例示的实施例中,轴齿轮376通过一系列轴向键槽384不可旋转地安装到近侧驱动轴段380上,所述轴向键槽使得轴齿轮376能够在近侧驱动轴段380上轴向地运动,同时与其不可旋转地附连。近侧驱动轴段380的旋转导致第二旋转控制运动被传送到外科端部执行器3000。图5和图16-21的实施例中的第二驱动系统370包括用于选择性地轴向偏移近侧驱动轴段380的移位系统390,从而将轴齿轮376运动成与第一旋转从动齿轮374啮合接合以及与第一旋转从动齿轮374脱离啮合接合。例如,如在图16-18中可见,近侧驱动轴段380被支撑在附接到工具安装板304的第二支撑支架382内,使得近侧驱动轴段380可相对于第二支撑支架382轴向运动和旋转。在至少一个形式中,移位系统390还包括被可滑动地支撑在工具安装板304上的移位器轭392。近侧驱动轴段380被支撑在移位器轭392中并在其上具有一对衬圈386,使得移位器轭392在工具安装板304的移位导致近侧驱动轴段380的轴向运动。在至少一个形式中,移位系统390还包括与移位器轭392可操作地交接的移位器螺线管394。移位器螺线管394接收来自机器人控制器12的控制功率,使得当移位器螺线管394被启动时移位器轭392沿远侧方向“DD”进行运动。在例示的实施例中,轴弹簧396轴颈连接在轴齿轮376和第二支撑支架382之间的近侧驱动轴段380上,以使轴齿轮376沿近侧方向“PD”偏置并偏置成与第一旋转从动齿轮374啮合接合。参见图16、18和19。响应于由机器人系统10生成的旋转输出运动的第二旋转驱动齿轮372的旋转最终导致近侧驱动轴段380和与其联接的其他驱动轴部件(驱动轴组件388)围绕纵向工具轴线LT-LT进行旋转。应当理解,从工具驱动组件110沿一个方向施加的旋转输出运动将导致近侧驱动轴段380以及最终与其附接的其他驱动轴部件在第一方向上的旋转,并且沿相反方向施加的旋转输出运动将导致近侧驱动轴段380在与第一方向相反的第二方向上的旋转。当希望沿远侧方向“DD”上移动近侧驱动轴段380时,如将在下文更详细地描述,机器人控制器12启动移位器螺线管390以沿远侧方向“DD”移动移位器轭392。在一些实施例中,移位器螺线管390可能够使近侧驱动轴段380在多于两个纵向位置之间移位。例如,一些实施例(诸如本文相对于图83-96所述的那些)可在多于两个纵向位置来使用旋转驱动轴(例如,被联接到近侧驱动轴段380)。图22-23示出了另一个实施例,此实施例采用图5和图16-21中所示的实施例的相同部件,不同的是此实施例采用电池供电的马达400以用于向近侧驱动轴段380提供旋转驱动运动。此类结构使得工具安装部分能够生成较高的旋转输出运动和扭矩,这在采用不同形式的端部执行器时可为有利的。如在那些附图中可见,马达400通过支撑结构402附接到工具安装板304,使得联接到马达400的驱动器齿轮404保持与轴齿轮376啮合接合。在图22-23的实施例中,支撑结构402能够可移除地接合形成于工具安装板304中的闩锁凹口303,所述闩锁凹口被设计成在不使用马达400时有利于将外壳构件(未示出)附接到安装板304。因此,为了使用马达400,临床医生从工具安装板304移除外壳,然后将支撑结构的腿403插入到工具安装板304中的闩锁凹口303中。通过对马达400供电使得近侧驱动轴段380以及与其附接的其他驱动轴部件围绕纵向工具轴线LT-LT旋转。如图所示,马达400为电池供电的。然而,在此结构中,马达400与机器人控制器12交接,使得机器人系统10控制马达400的启动。在另选的实施例中,马达400可通过安装在马达400自身或工具安装部分300上的通断开关(未示出)来手动致动。在其他实施例中,马达400可接收来自机器人系统的电力和控制信号。图5和图16-21中所示的实施例包括可手动致动的反向系统(通常称为410),以用于在马达失效或到机器人系统的电力丢失或中断的情况下将反向旋转运动手动地施加到近侧驱动轴段380。例如,当驱动轴组件388被卡住或以其他方式被束缚以使得在仅有马达电力的情况下将阻止驱动轴部件的反向旋转时,此类可手动致动的反向系统410还可为尤其有用的。在例示的实施例中,可机械致动的反向系统410包括驱动齿轮组件412,所述驱动齿轮组件与第二旋转从动齿轮376能够选择性地接合,并可手动地致动以将反向旋转运动施加到近侧驱动轴段380。驱动齿轮组件412包括可运动地安装到工具安装板304的反向齿轮414。反向齿轮414可旋转地轴颈连接在枢轴416上,所述枢轴通过狭槽418可运动地安装到工具安装板304。参见图17。在图5和图16-21的实施例中,可手动致动的反向系统410还包括可手动致动的驱动齿轮420,所述可手动致动的驱动齿轮包括具有形成于其上的弓形齿轮段424的主体部分422。主体部分422枢转地联接到工具安装板304,以用于围绕基本上垂直于工具安装板304的致动器轴线A-A(图16)来选择性地枢转行进。图16-19示出了处于第一未致动位置的可手动致动的反向系统410。在一个示例形式中,致动器柄部部分426形成于或以其他方式附接到主体部分422上。致动器柄部部分426相对于工具安装板304设定尺寸,使得在柄部部分426和工具安装板304之间建立少量的过盈以将柄部部分426保持在第一未致动位置。然而,当临床医生希望手动地致动驱动齿轮组件412时,临床医生可通过对柄部部分426施加枢转运动来容易地克服过盈配合。另外如在图16-19中可见,当驱动齿轮组件412处于第一未致动位置时,弓形齿轮段424不与反向齿轮414啮合接合。当临床医生希望对近侧驱动轴段380施加反向旋转驱动运动时,临床医生开始对驱动齿轮420施加枢转棘轮运动。当驱动齿轮420开始围绕致动轴线A-A枢转时,主体422的一部分接触反向齿轮414的一部分并沿远侧方向DD使反向齿轮414轴向地运动,从而使驱动轴齿轮376不与第二驱动系统370的第一旋转从动齿轮374啮合接合。参见图20。当使驱动齿轮420枢转时,弓形齿轮段424与反向齿轮414啮合接合。驱动齿轮420的持续棘轮运动导致将反向旋转驱动运动施加到驱动轴齿轮376,并最终施加到近侧驱动轴段380。临床医生可继续使驱动齿轮组件412按照完全释放或撤回相关联的端部执行器部件所需的次数来多次进行棘轮运动。一旦所需量的反向旋转运动已施加到近侧驱动轴段380,临床医生就使驱动齿轮420返回到初始或未致动位置,其中弓形齿轮段416不与驱动轴齿轮376啮合接合。当处于此位置时,轴弹簧396再次将轴齿轮376偏置成与第二驱动系统370的第一旋转从动齿轮374啮合接合。在使用中,临床医生可将控制命令输入到机器人系统10的控制器或控制单元,所述机器人系统“机械地生成”输出运动,所述输出运动最终被传送到第二驱动系统370的各种部件。如本文所用,术语“机械地生成”或“机械地生成的”是指通过对机器人系统马达和其他电力驱动部件进行供电和控制所产生的运动。这些术语区别于术语“可手动致动的”或“手动地生成的”,所述术语是指由临床医生采取的导致控制运动的动作,所述控制运动独立于通过对机器人系统马达进行供电所生成的那些运动而生成。沿第一方向施加到第二驱动系统的机械地生成的控制运动导致将第一旋转驱动运动施加到驱动轴组件388。当驱动轴组件388沿第一旋转方向旋转时,将可轴向运动的构件3016沿远侧方向“DD”从其在端部执行器3000中的起始位置朝结束位置驱动,例如,如本文相对于图64-96所述。沿第二方向施加到第二驱动系统的机械地生成的控制运动导致将第二旋转驱动运动施加到驱动轴组件388。当驱动轴组件388沿第二旋转方向旋转时,将可轴向运动的构件3016沿近侧方向“PD”从其在端部执行器3000中的结束位置朝起始位置驱动。当临床医生希望将旋转控制运动手动地施加到驱动轴组件388时,驱动轴组件388沿第二旋转方向旋转,由此使得击发构件(例如,可轴向平移的构件3016)在端部执行器中沿近侧方向“PD”运动。包括相同部件的其他实施例被配置成使得手动施加到驱动轴组件的旋转控制运动可导致驱动轴组件沿第一旋转方向旋转,这可用于辅助机械地生成的控制运动以沿远侧方向驱动可轴向运动的构件3016。用于击发、闭合和旋转端部执行器的驱动轴组件可进行手动地致动和偏移,由此允许端部执行器释放并从手术部位以及腹腔取出,甚至在马达失效、机器人系统失去电力、或发生其他电力故障的情况下亦是如此。柄部部分426的致动导致致动力或控制力的手动地生成,所述致动力或控制力通过可手动致动的反向系统410的各种部件施加到驱动轴组件388’。如果柄部部分426处于其未致动状态,则其偏置成不与反向齿轮414可致动的接合。柄部部分426的开始致动将改变这种偏置。柄部426能够按照完全释放可轴向运动的构件3016和端部执行器3000所需的次数来重复致动多次。如图5和图16-21所示,工具安装部分300包括第三驱动系统430,所述第三驱动系统能够接收来自机器人系统10的工具驱动组件110的相应的“第三”旋转输出运动并将该第三旋转输出运动转换成第三旋转控制运动。第三驱动系统430包括第三驱动滑轮432,当工具安装部分300联接到工具驱动组件110时,所述第三驱动滑轮联接到工具安装板304的保持器侧316上的从动盘或元件306中的相应第三者。参见图15。第三驱动滑轮432能够将第三旋转控制运动(响应于由机器人系统10施加到其上的相应的旋转输出运动)施加到相应的第三驱动缆线434,所述第三驱动缆线可用于将各种控制或操纵运动施加到可操作地联接到轴组件200的端部执行器。如在图16-17中最具体可见,第三驱动缆线434围绕第三驱动心轴组件436延伸。第三驱动心轴组件436枢转地安装到工具安装板304,并且第三拉伸弹簧438附接在第三驱动心轴组件436和工具安装板304之间,以在第三驱动缆线434中保持所需拉伸量。如在附图中可见,第三驱动缆线434的缆线末端部分434A围绕附接到工具安装板304的滑轮组440的上部部分延伸,并且缆线末端部分434B围绕滑轮组440上的滑车滑轮或支架442延伸。应当理解,从工具驱动组件110沿一个方向施加的第三旋转输出运动将导致第三驱动滑轮432沿第一方向旋转,并且导致缆线末端部分434A和434B沿相反方向运动以将控制运动施加到端部执行器3000或细长轴组件200,如将在下文更详细地描述。即,当第三驱动滑轮432沿第一旋转方向旋转时,缆线末端部分434A沿远侧方向“DD”运动并且缆线末端部分434B沿近侧方向“PD”运动。第三驱动滑轮432沿相反旋转方向的旋转导致缆线末端部分434A沿近侧方向“PD”运动并且导致缆线末端部分434B沿远侧方向“DD”运动。图5和图16-21所示的工具安装部分300包括第四驱动系统450,所述第四驱动系统能够接收来自机器人系统10的工具驱动组件110的相应的“第四”旋转输出运动并且将此第四旋转输出运动转换成第四旋转控制运动。第四驱动系统450包括第四驱动滑轮452,当工具安装部分300联接到工具驱动组件110时,所述第四驱动滑轮联接到工具安装板304的保持器侧316上的从动盘或元件306中的相应第四者。参见图15。第四驱动滑轮452能够将第四旋转控制运动(响应于由机器人系统10施加到其上的相应的旋转输出运动)施加到相应的第四驱动缆线454,所述第四驱动缆线可用于将各种控制或操纵运动施加到可操作地联接到轴组件200的端部执行器。如在图16-17中最具体可见,第四驱动缆线454围绕第四驱动心轴组件456延伸。第四驱动心轴组件456枢转地安装到工具安装板304,并且第四拉伸弹簧458附接在第四驱动心轴组件456和工具安装板304之间,以保持第四驱动缆线454中的所需拉伸量。第四驱动缆线454的缆线末端部分454A围绕附接到工具安装板304的滑轮组440的底部部分延伸,并且缆线末端部分454B围绕滑轮组440上的滑车滑轮或第四支架462延伸。应当理解,从工具驱动组件110沿一个方向施加的旋转输出运动将导致第四驱动滑轮452沿第一方向旋转,并且导致缆线末端部分454A和454B沿相反方向运动,以将控制运动施加到端部执行器或细长轴组件200,如将在下文更详细地描述。即,当第四驱动滑轮434沿第一旋转方向旋转时,缆线末端部分454A沿远侧方向“DD”运动并且缆线末端部分454B沿近侧方向“PD”运动。第四驱动滑轮452沿相反旋转方向的旋转导致缆线末端部分454A沿近侧方向“PD”运动并且导致缆线末端部分454B沿远侧方向“DD”运动。图5-6所示的外科工具100包括关节运动接头3500。在此实施例中,第三驱动系统430还可称为“第一关节运动驱动系统”并且第四驱动系统450在本文中可称为“第二关节运动驱动系统”。同样,第三驱动缆线434可称为“第一近侧关节运动缆线”,并且第四驱动缆线454在本文中可称为“第二近侧关节运动缆线”。图5和图16-21中所示的实施例的工具安装部分300包括通常称为470的第五驱动系统,所述第五驱动系统能够轴向地移动驱动杆组件490。驱动杆组件490包括近侧驱动杆段492,所述近侧驱动杆段延伸穿过近侧驱动轴段380和驱动轴组件388。参见图18。第五驱动系统470包括滑动地支撑在工具安装板304上的可运动驱动轭472。近侧驱动杆段492被支撑在驱动轭372中并在其上具有一对保持器球394,使得驱动轭372在工具安装板304上的偏移导致近侧驱动杆段492的轴向运动。在至少一个示例形式中,第五驱动系统370还包括与驱动轭472可操作地交接的驱动螺线管474。驱动螺线管474接收来自机器人控制器12的控制功率。驱动螺线管474沿第一方向的致动将导致驱动杆组件490沿远侧方向“DD”运动,并且驱动螺线管474沿第二方向的致动将导致驱动杆组件490沿近侧方向“PD”运动。如在图5中可见,端部执行器3000包括钳口构件,所述钳口构件可在将轴向闭合运动施加到闭合系统时在打开和闭合位置之间运动。在图5和图16-21的例示的实施例中,采用第五驱动系统470来生成此类闭合运动。因此,第五驱动系统470还可称为“闭合驱动器”。图5和图16-21中所示的外科工具100包括关节运动接头3500,所述关节运动接头分别与第三和第四驱动系统430、450配合以用于使端部执行器3000围绕纵向工具轴线“LT”进行关节运动。关节运动接头3500包括近侧承窝管3502,所述近侧承窝管被附接到远侧外管部分231的远侧端部233并且在其中限定近侧球承窝3504。参见图24。近侧球构件3506可运动地安置在近侧球承窝3504内。如在图24中可见,近侧球构件3506具有中央驱动通道3508,所述中央驱动通道使得远侧驱动轴段3740能够延伸穿过其中。此外,近侧球构件3506在其中具有四个关节运动通道3510,所述关节运动通道有利于远侧缆线段444、445、446、447从其中穿过。在各种实施例中,远侧缆线段444、445、446、447可例如分别直接或间接地联接到近侧缆线末端部分434A、434B、454A、454B,如图24A所示。如在图24中进一步可见,关节运动接头3500还包括中间关节运动管段3512,所述中间关节运动管段具有形成于其中的中间球承窝3514。中间球承窝3514能够在其中可运动地支撑形成于端部执行器连接器管3520上的端部执行器球3522。远侧缆线段444、445、446、447延伸穿过形成于端部执行器球3522中的缆线通道3524,并通过接收在端部执行器球3522中的相应通道3528内的凸耳3526附接到端部执行器球3522。可采用其他附接结构以将远侧缆线段444、445、446、447附接到端部执行器球3522。独特的和新型的旋转支撑接头组件(通常称为3540)示于图25和图26中。示出的旋转支撑接头组件3540包括大体上圆柱形形状的端部执行器驱动外壳4010的连接器部分4012。第一环形座圈4014形成于圆柱形连接器部分4012的周边。旋转支撑接头组件3540还包括形成于端部执行器连接器管3520中的远侧承窝部分3530,如图25和26所示。远侧承窝部分3530相对于圆柱形连接器部分4012设定尺寸,使得连接器部分4012可在承窝部分3530内自由地旋转。第二环形座圈3532形成于远侧承窝部分3530的内壁3531中。窗口3533被提供成穿过远侧承窝3530,所述远侧承窝与其中的第二环形座圈3532连通。另外如在图25和26中可见,旋转支撑接头组件3540还包括环状轴承3534。在各种示例实施例中,环状轴承3534包括在其中具有切口3535的可塑性变形的基本上圆形的环。切口在环状轴承3534中形成自由端3536、3537。如在图25中可见,环状轴承3534在其自然未偏置状态下具有大体上环状的形状。为了将外科端部执行器3000(例如,外科工具的第一部分)联接到关节运动接头3500(例如,外科工具的第二部分),将圆柱形连接器位置4012插入到远侧承窝部分3530中,以使第二环形座圈3532与第一环形座圈4014基本上对准。然后将环状轴承的自由端3536、3537中的一个穿过端部执行器连接器管3520的远侧承窝部分3530中的窗口3533插入到已对准的环形座圈4014、3532中。为了有利于容易的插入,窗口或开口3533具有形成于其上的渐缩表面3538。参见图25。将环状轴承3534基本上旋转到适当位置,并且其一旦被安装就不趋于退出窗口3533,因为其趋于形成圆或环。一旦环状轴承3534已插入到对准的环形座圈4014、3532中,端部执行器连接器管3520就将可旋转地附连到端部执行器驱动外壳4010的连接器部分4012。此类结构使得端部执行器驱动外壳4010能够相对于端部执行器连接器管3520围绕纵向工具轴线LT-LT旋转。环状轴承3534变成端部执行器驱动外壳4010随后在其上旋转的承载表面。任何侧向负载均试图使环状轴承3534变形,所述环状轴承由两个联锁座圈4014、3532支撑和容纳以防止环状轴承3534受到损害。应当理解,此类采用环状轴承3534的简单且有效的接头组件在可旋转部分4010、3530之间形成高度润滑接口。如果组装期间,自由端3536、3537中的一个允许通过窗口3533突出(参见例如图26),则可通过将环状轴承构件3532通过窗口3533拉出来拆卸旋转支撑接头组件3540。旋转支撑接头组件3540允许容易的组装和制造,同时还提供良好的端部执行器支撑件以及有利于其旋转操纵。关节运动接头3500有利于端部执行器3000围绕纵向工具轴线LT进行关节运动。例如,当希望使端部执行器3000沿如图5所示的第一方向“FD”进行关节运动时,机器人系统10可对第三驱动系统430进行供电,使得第三驱动心轴组件436(图16-18)沿第一方向旋转,从而沿近侧方向“PD”拉动近侧缆线末端部分434A以及最终拉动远侧缆线段444,并且释放近侧缆线末端部分434B和远侧缆线段445,由此使端部执行器球3522在承窝3514内旋转。同样,为了使端部执行器3000沿与第一方向FD相反的第二方向“SD”进行关节运动,机器人系统10可对第三驱动系统430进行供电,使得第三驱动心轴组件436沿第二方向旋转,从而沿近侧方向“PD”方向拉动近侧缆线末端部分434B以及最终拉动远侧缆线段445,并且释放近侧缆线末端部分434A和远侧缆线段444,由此使端部执行器球3522在承窝3514内旋转。当希望使端部执行器3000沿如图5所示的第三方向“TD”进行关节运动时,机器人系统10可对第四驱动系统450进行供电,使得第四驱动心轴组件456沿第三方向旋转,从而沿近侧方向“PD”拉动近侧缆线末端部分454A以及最终拉动远侧缆线段446,并且释放近侧缆线末端部分454B和远侧缆线段447,由此使端部执行器球3522在承窝3514内旋转。同样,为了使端部执行器3000沿与第三方向TD相反的第四方向“FTH”进行关节运动,机器人系统10可对第四驱动系统450进行供电,使得第四驱动心轴组件456沿第四方向旋转,从而沿近侧方向“PD”拉动近侧缆线末端部分454B以及最终拉动远侧缆线段447,并且释放近侧缆线末端部分454A和远侧缆线段446,由此使端部执行器球3522在承窝3514内旋转。图5和图16-21中所示的端部执行器实施例采用通过细长轴组件从工具安装部分300传输的用于致动的旋转和纵向运动。用于将此类旋转和纵向运动(例如,扭转、拉伸、和压缩运动)传输到端部执行器的驱动轴组件为相对柔韧的,以有利于端部执行器围绕关节运动接头进行关节运动。图27-28示出了可结合图5和图16-21中所示的实施例使用的或可用于其他实施例中的另选的驱动轴组件3600。在图5所示的实施例中,近侧驱动轴段380包括驱动轴组件3600的一段,并且远侧驱动轴段3740类似地包括驱动轴组件3600的另一段。驱动轴组件3600包括驱动管3602,所述驱动管具有在其中切割的一系列环形接头段3604。在此例示的实施例中,驱动管3602包括近侧驱动轴段380的远侧部分。例如,本文相对于图27-45所述的轴组件3600、以及轴组件3600',3600"可为本文所述的各种旋转驱动轴(例如,旋转驱动轴680、1270、1382等)的部件和/或可机械联接到本文所述的各种旋转驱动轴。驱动管3602包括中空金属管(不锈钢、钛等),所述中空金属管具有形成于其中的一系列环形接头段3604。环形接头段3604包括多个松散联锁的燕尾形状3606,所述燕尾形状例如被激光切割到驱动管3602中并用于促进邻接的接头段3604之间的柔性运动。参见图28。管材的此类激光切割产生可用于压缩、拉伸和扭转的柔性中空驱动管。此类结构采用通过“拼图”构型与相邻部分联锁的全直径切口。这些切口随后沿中空驱动管的长度按照阵列来进行复制,并且有时为“时控的”或旋转的以改变拉伸或扭转性能。图29-33示出了包括多个激光切口形状3606’的另选的示例微环形接头段3604’,所述激光切口形状大致类似于松散联锁的、相对的“T”形状和其中具有凹口部分的T-形状。环形接头段3604、3604’基本上包括多个微关节运动扭转接头。即,每个接头段3604、3604’均可传输扭矩同时有利于每个环形接头段之间的相对关节运动。如图29-30所示,驱动管3602的远侧端部3603上的接头段3604D’具有远侧安装衬圈部3608D,所述远侧安装衬圈部有利于附接到其他驱动部件,所述其他驱动部件用于致动端部执行器或快速脱开接头的部分等,并且驱动管3602的近侧端部605上的接头段3604P’具有近侧安装衬圈部3608P’,所述近侧安装衬圈部有利于附接到其他近侧驱动部件或快速脱开接头的部分。可通过增加激光切口中的间距来增加每个特定驱动轴组件3600的接头-接头运动范围。例如,为了确保接头段3604’保持联接在一起而不会显著地降低驱动管在所需运动范围内进行关节运动的能力,采用第二约束构件3610。在图31-32所示的实施例中,第二约束构件3610包括弹簧3612或其他螺旋盘绕构件。在各种示例实施例中,弹簧3612的远侧端部3614对应于远侧安装衬圈部3608D并比弹簧3612的中央部分3616盘绕得更紧密。相似地,弹簧3612的近侧端部618比弹簧3612的中央部分3616盘绕得更紧密。在其他实施例中,约束构件3610以所需的节距被安装在驱动管3602上,使得约束构件还充当例如柔性驱动螺纹以用于通过螺纹接合位于端部执行器和/或控制系统上的其他螺纹控制部件。还应理解,约束构件可被安装成具有可变节距,以在驱动轴组件旋转时实现所需旋转控制运动的传输。例如,约束构件的可变节距布置方式可用于增强打开/闭合和击发运动,所述打开/闭合和击发运动将受益于来自相同旋转运动的不同线性行程。在其他实施例中,例如,驱动轴组件包括位于中空柔性驱动轴上的可变节距螺纹,所述中空柔性驱动轴可围绕90度弯曲进行推动和牵拉。在其他实施例中,第二约束构件包括围绕驱动管3602的外部或周边施加的弹性体管或涂层3611,如图33A所示。在另一个实施例中,例如,弹性体管或涂层3611’被安装在形成于驱动管3602内的中空通道613中,如图33B所示。此类驱动轴布置包括复合扭转驱动轴,所述复合变形驱动轴允许优异的负载传输,同时有利于所需的轴向关节运动范围。参见例如图33和图33A-33B。即,这些复合驱动轴组件允许大的运动范围,同时保持沿两个方向传输扭矩的能力并且有利于通过其来传输拉伸和压缩控制运动。此外,此类驱动轴布置的中空特性有利于其他控制部件从中穿过,同时提供改进的拉伸负载。例如,一些其他实施例包括延伸穿过驱动轴组件的柔性内部缆线,所述柔性内部缆线可有助于接头段的对准,同时有利于通过驱动轴组件来施加拉伸运动的能力。此外,此类驱动轴布置相对易于制造和组装。图34-37示出了驱动轴组件3600’的段3620。此实施例包括从管材材料(例如,不锈钢、钛、聚合物等)激光切割出的接头段3622、3624。接头段3622、3624保持松散地附接在一起,因为切口3626为径向的并且为一定程度地渐缩的。例如,凸耳部分3628中的每一个具有渐缩的外周边部分3629,所述渐缩的外周边部分被接收在具有渐缩的内壁部分的承窝3630内。参见例如图35和37。因此,无需将接头段3622、3624附接在一起的组件。如在附图中可见,接头段3622具有在其每个末端上切割的相对的枢转凸耳部分3628,所述枢转凸耳部分被枢转地接收在形成于相邻接头段3624中的相应承窝3630中。图34-37示出了驱动轴组件3600’的小段。本领域的普通技术人员应当理解,可贯穿驱动轴组件的整个长度来切割凸耳/承窝。即,接头段3624可具有在其中切割的相对的承窝3630,以有利于与邻接接头段3622的联接来使驱动轴组件3600’的长度完整。此外,接头段3624具有在其中切割的成角度的末端部分3632,以有利于接头段3624相对于接头段3622的关节运动,如图36-37所示。在例示的实施例中,每个凸耳3628具有关节运动止挡部分3634,所述关节运动止挡部分适于接触形成于接头段3622中的对应的关节运动止挡件3636。参见图36-图37。可另外与段3620相同的其他实施例不具有关节运动止挡部分3634和止挡件3636。如上所述,可通过增加激光切口的间距来增加每个特定驱动轴组件的接头-接头运动范围。在此类实施例中,为了确保接头段3622、3624保持联接在一起而不会显著降低驱动管在所需运动范围内进行关节运动的能力,采用呈弹性体套管或涂层3640形式的第二约束构件。其他实施例采用本文所述的其他形式的约束构件以及它们的等同结构。如在图34中可见,接头段3622、3624能够围绕由枢转凸耳3628和对应的承窝3630限定的枢转轴线“PA-PA”枢转。为了获得扩大的关节运动范围,驱动轴组件3600’可围绕工具轴线TL-TL旋转同时围绕枢转轴线PA-PA旋转。图38-43示出了另一个驱动轴组件3600”的段3640。驱动轴组件3600”包括多段驱动系统,所述多段驱动系统包括形成柔性中空驱动管3602”的互连的接头段3642。接头段3642包括球式连接器部分3644和承窝部分3648。每个接头段3642可通过例如金属注塑成型“MIM”制成并且可由17-4、17-7、420不锈钢制成。其他实施例可由300或400系列不锈钢、6065或7071铝或钛加工制成。其他实施例可由例如塑料填充或未填充的尼龙、聚酰亚胺、ABS、聚碳酸酯或聚乙烯模塑而成。如在附图中可见,球式连接器3644为六边形形状的。即,球式连接器3644具有形成于其上的六个弓形表面3646并适于被可旋转地接收在类似形状的承窝3650中。每个承窝3650具有由六个平坦表面3654形成的六边形外部部分3652和径向成形的内部部分3656。参见图41。每个接头段3642具有相同的结构,不同的是形成驱动轴组件3600的远侧端部和近侧端部的最后的接头段的承窝部分能够与对应的控制部件可操作地配合。每个球式连接器3644在其中具有中空通道3645,所述中空通道配合以形成穿过中空柔性驱动管3602”的中空通道3603。如在图42和43中可见,互连的接头段3642容纳在约束构件3660内,所述约束构件包括由例如柔性聚合物材料制成的管或套管。图44示出了延伸穿过互连的接头段3642的柔性内芯构件3662。内芯构件3662包括由聚合物材料制成的实心构件或由柔性聚合物材料制成的中空管或套管。图45示出了另一个实施例,其中约束构件3660和内芯构件3662均被采用。驱动轴组件3600”有利于将旋转和平移运动传输穿过可变半径的关节运动接头。驱动轴组件3600”的中空特性为额外的控制部件或拉伸元件(例如,柔性电缆)提供空间,以有利于拉伸和压缩负载传输。然而,在其他实施例中,接头段3624不提供穿过驱动轴组件的中空通道。在此类实施例中,例如,球式连接器部分为实心的。经由六边形表面的边缘来平移旋转运动。较严格的容差可允许更大的负载容量。利用穿过驱动轴组件3600”的中心线的缆线或其他拉伸元件,整个驱动轴组件3600”可被旋转弯曲、推动、以及牵拉,而不限制运动范围。例如,驱动轴组件3600”可形成弓形驱动路径、直线驱动路径、螺线型驱动路径等。尽管本文所述的各种示例实施例能够与机器人系统可操作地交接并且至少部分地由机器人系统致动,但本文所述的各种端部执行器和细长轴均可有效地结合手持式工具来使用。例如,图46-47示出了手持式外科工具2400,所述手持式外科工具可使用上文所述的各种部件和系统来可操作地致动与其联接的电外科端部执行器3000。应当理解,手持式外科工具2400可包含发生器和/或电连接到发生器,诸如发生器3002,以用于生成电外科驱动信号来驱动端部执行器300。在图46-47所示的示例实施例中,采用快速脱开接头2210来将端部执行器3000联接到细长轴组件2402。例如,快速脱开接头2210可操作以按照本文参考图106-115所述的方式来移除端部执行器3000。为了有利于端部执行器3000围绕关节运动接头3500进行关节运动,细长轴组件2402的近侧部分包括示例的可手动致动的关节运动驱动装置2410。现在参见图48-50,在至少一个示例形式中,关节运动驱动装置2410包括四个可轴向运动的关节运动滑块,所述关节运动滑块被可运动地轴颈连接在位于近侧外管段2214和近侧驱动轴段380’之间的近侧驱动轴段380’上。例如,关节运动缆线段434A’附接到第一关节运动滑块2420,所述第一关节运动滑块具有从其突起的第一关节运动致动器杆2422。关节运动缆线段434B’附接到与第一关节运动滑块2420在直径上对置的第二关节运动滑块2430。第二关节运动滑块2430具有从其突起的第二关节运动致动器杆2432。关节运动缆线段454A’附接到第三关节运动滑块2440,所述第三关节运动滑块具有从其突起的第三关节运动致动器杆2442。关节运动缆线段454B’附接到与第三关节运动滑块2440在直径上对置的第四关节运动滑块2450。第四关节运动致动器杆2452从第四关节运动滑块2450突起。关节运动致动器杆2422、2432、2442、2452有利于通过关节运动环组件2460来将控制运动分别施加到关节运动滑块2420、2430、2440、2450。如在图48中可见,关节运动致动器杆2422、2432、2442、2452可运动地穿过安装球2470,所述安装球被轴颈连接在近侧外管段2404上。在至少一个实施例中,安装球2470可以由适当的紧固件结构(例如,焊接件、粘合剂、螺杆等)附接到一起的段而制造。如图50所示,关节运动致动器杆2422和2432延伸穿过近侧外管段2404中的狭槽2472和安装球2470中的狭槽2474,以使得关节运动滑块2420、2430能够相对其进行轴向运动。尽管未示出,但关节运动致动器杆2442、2452延伸穿过近侧外管段2404和安装球2470中的类似狭槽2472、2474。关节运动致动器杆2422、2432、2442、2452中的每一个从安装球2470中的对应狭槽2474伸出,以被可操作地接收在关节运动环组件2460中的对应安装承窝2466内。参见图49。在至少一个示例形式中,关节运动环组件2460由一对环段2480、2490制成,所述一对环段通过例如焊接、粘合剂、按扣特征结构、螺杆等接合在一起以形成关节运动环组件2460。环段2480、2490配合以形成安装承窝2466。关节运动致动器杆中的每一个均具有在其上形成的安装球2468,所述安装球各自适于被可运动地接收在关节运动环组件2460中的对应安装承窝2466内。关节运动驱动装置2410的各种示例实施例还可包括示例锁定系统2486,所述锁定系统能够将关节运动环组件2460保持在致动位置。在至少一个示例形式中,锁定系统2486包括形成在关节运动环组件2460上的多个锁定翼片。例如,环段2480、2490可由略呈柔性的聚合物或橡胶材料制成。环段2480具有在其中形成的一系列柔性近侧锁定翼片2488,并且环段2490具有在其中形成的一系列柔性远侧锁定翼片2498。每个锁定翼片2388具有在其上形成的至少一个锁定棘爪2389,并且每个锁定翼片2398在其上具有至少一个锁定棘爪2399。锁定棘爪2389、2399可用于建立与关节运动球所需的锁定摩擦量,以便将关节运动球保持就位。在其他示例实施例中,锁定棘爪2389、2390能够配合地接合形成于安装球2470的外周边中的各种锁定凹坑。可参照图49和50来理解关节运动驱动装置2410的操作。图49示出了处于非关节运动位置的关节运动驱动装置2410。在图50中,临床医生已手动地倾斜关节运动环组件2460,以使得关节运动滑块2420沿远侧方向“DD”轴向地运动,从而朝远侧推进关节运动缆线段434A’。关节运动环组件2460的此类运动还导致关节运动滑块2430沿近侧方向的轴向运动,所述轴向运动最终沿近侧方向牵拉关节运动缆线434B。关节运动缆线段434A’、434B’的此类推动与牵拉将导致端部执行器3000相对于纵向工具轴线“LT-LT”以上文所述的方式进行关节运动。为了反转关节运动方向,临床医生仅反转关节运动环组件2460的取向,从而使得关节运动滑块2430沿远侧方向“DD”运动并且使得关节运动滑块2420沿近侧方向“PD”运动。关节运动环组件2460可被类似地致动以将所需的推动和牵拉运动施加到关节运动缆线段454A’、454B’。锁定棘爪2389、2399与安装球的外周边之间所产生的摩擦用于在端部执行器3000已被关节运动到所需位置之后将关节运动驱动装置2410保持就位。在另选的示例实施例中,当锁定棘爪2389、2399被定位成便于接收在安装球的对应锁定凹坑中时,安装球将被保持就位。在例示的示例实施例和其他实施例中,细长轴组件2402与柄部组件2500可操作地交接。柄部组件2500的示例实施例包括一对柄部外壳段2502、2504,所述一对柄部外壳段被联接在一起以形成用于各种驱动部件和系统的外壳,如将在下文中进一步地描述。参见例如图46。柄部外壳段2502、2504可通过螺杆、按扣特征结构、粘合剂等联接在一起。当联接在一起时,柄部段2502、2504可形成包括手握式握把部2506的柄部组件2500。为了有利于端部执行器3000围绕纵向工具轴线“LT=LT”的选择性旋转,细长轴组件2402可与第一驱动系统交接,通常称为2510。驱动系统2510包括可手动致动的旋转喷嘴2512,所述可手动致动的旋转喷嘴被可旋转地支撑在柄部组件2500上,使得其可相对于柄部组件旋转以及可在锁定位置和解锁位置之间轴向地运动。外科工具2400可包括闭合系统3670。闭合系统3670可用于一些实施例中,以在细长轴组件2402和端部执行器3000中产生远侧和近侧运动。例如,在一些实施例中,闭合系统3670可驱动可轴向运动的构件,诸如3016。例如,闭合系统3670可用于平移可轴向运动的构件3016,而非本文相对于图64-82、83-91和92-96所述的各种旋转驱动轴。在此示例实施例中,闭合系统3670由闭合触发器2530来致动,所述闭合触发器被枢转地安装到柄部框架组件2520,所述柄部框架组件被支撑在柄部外壳段2502、2504内。闭合触发器2530包括致动部分2532,所述致动部分被枢转地安装到枢转销2531上,所述枢转销被支撑在柄部框架组件2520内。参见图51。此类示例结构有利于朝柄部组件2500的手握式握把部2506以及远离其枢转行进。如在图51中可见,闭合触发器2530包括闭合联接件2534,所述闭合联接件通过闭合线2535连接到第一枢转连接件和齿轮组件3695。因此,通过将闭合触发器2530朝柄部组件2500的手握式握把部2506枢转到致动位置,闭合联接件2534和闭合线2535使得第一枢转连接件和齿轮组件3695沿远侧方向“DD”运动,以导致远侧运动通过轴并且在一些实施例中到达端部执行器。外科工具2400还可包括闭合触发器锁定系统2536,以将闭合触发器保持在致动位置。在至少一个示例形式中,闭合触发器锁定系统2536包括枢转地联接到柄部框架组件2520的闭合锁定构件2538。如在图52和53中可见,闭合锁定构件2538具有在其上形成的锁定臂2539,所述锁定臂能够在闭合触发器2530朝手握式握把部2506致动时骑跨在闭合联接件2532的弓形的部分2537上。当闭合触发器2530已被枢转到完全致动位置时,锁定臂2539下降到闭合联接件2532的端部后并防止闭合触发器2530返回到其未致动位置。因此,通过轴组件平移到端部执行器的远侧运动可被锁定。为了使得闭合触发器2530能够返回其未致动位置,临床医生简单地枢转闭合锁定构件2538,直至其锁定臂2539脱离闭合联接件2532的端部,从而允许闭合联接件2532运动到未致动位置。通过闭合返回系统2540来使闭合触发器2532返回到未致动位置。例如,如在图51中可见,闭合触发器返回系统2540的一个示例形式包括闭合触发器滑块构件2542,所述闭合触发器滑块构件通过闭合触发器轭2544连接到闭合联接件2534。闭合触发器滑块构件2542被可滑动地支撑在柄部框架组件2520中的滑块腔2522内。闭合触发器返回弹簧2546定位在滑块腔2520内,以将偏置力施加到闭合触发器滑块构件2542。因此,当临床医生致动闭合触发器2530时,闭合触发器轭2544使闭合触发器滑块构件2542沿远侧方向“DD”运动,由此压缩闭合触发器返回弹簧2546。当闭合触发器锁定系统2536被脱离并且闭合触发器2530被释放时,闭合触发器返回弹簧2546使闭合触发器滑块构件2542沿近侧方向“PD”运动,从而将闭合触发器2530枢转到起始未致动位置。外科工具2400还可采用上文所述的各种示例驱动轴组件中的任何一者。在至少一个示例形式中,外科工具2400采用第二驱动系统2550以用于将旋转控制运动施加到近侧驱动轴组件380’。参见图55。第二驱动系统2550可包括被可操作地支撑在手握式握把部2506中的马达组件2552。马达组件2552可通过可移除地附接到柄部组件2500的电池组2554来供电,或者其可由交流电源来供电。第二驱动齿轮2556可操作地联接到马达组件2552的驱动轴2555。第二驱动齿轮2556被支撑成与第二旋转从动齿轮2558啮合接合,所述第二旋转从动齿轮附接到驱动轴组件的近侧驱动轴段380’。在至少一个形式中,例如,第二驱动齿轮2556还可在马达驱动轴2555上相对于马达组件2552沿由图55中的箭头“U”表示的方向进行轴向运动。偏置构件(例如,卷簧2560或类似的构件)定位在第二驱动齿轮2556马达外壳2553之间并用于使马达驱动轴2555上的第二驱动齿轮2556偏置成与第二从动齿轮2558上的第一齿轮段2559啮合接合。第二驱动系统2550还可包括击发触发器组件2570,所述击发触发器组件可运动地(例如,可枢转地)附接到柄部框架组件2520。在至少一个示例形式中,例如,击发触发器组件2570包括第一旋转驱动触发器2572,所述第一旋转驱动触发器与对应的开关/接触件(未示出)配合,所述开关/接触件与马达组件2552电连通并在启动时导致马达组件2552向第二从动齿轮2558施加第一旋转驱动运动。此外,击发触发器组件2570还包括可相对于第一旋转驱动触发器枢转的回缩驱动触发器2574。回缩驱动触发器2574与开关/接触件(未示出)可操作地交接,所述开关/接触件与马达组件2552电连通并在启动时导致马达组件2552向第二从动齿轮2558施加第二旋转驱动运动。第一旋转驱动运动导致驱动轴组件和端部执行器中的工具驱动轴旋转,以使击发构件在端部执行器3000中朝远侧运动。相反地,第二旋转驱动运动与第一旋转驱动运动相反,并将最终导致驱动轴组件和工具驱动轴沿旋转方向旋转,这导致端部执行器3000中的击发构件的近侧运动或回缩。例示的实施例还包括可手动致动的安全构件2580,所述可手动致动的安全构件枢转地附接到闭合触发器致动部分2532并可在第一“安全”位置(其中安全构件2580物理地阻止击发触发器组件2570的枢转行进)和第二“关闭”位置(其中临床医生可自由地枢转击发触发器组件2570)之间选择性地枢转。如在图51中可见,第一凹坑2582提供在闭合触发器致动部分2532中,所述闭合触发器致动部分对应于安全构件2580的第一位置。当安全构件2580处于第一位置时,安全构件2580上的棘爪(未示出)被接收在第一凹坑2582内。第二凹坑2584另外提供在闭合触发器致动部分2532中,所述闭合触发器致动部分对应于安全构件2580的第二位置。当安全构件2580处于第二位置时,安全构件2580上的棘爪被接收在第二凹坑2582内。在至少一些示例形式中,外科工具2400可包括可机械致动的反向系统(通常称为2590)以用于在马达组件2552失效或电池电力丢失或中断的情况下将反向旋转运动机械地施加到近侧驱动轴段380’。例如,当可操作地联接到近侧驱动轴段380’的驱动轴系统部件被卡住或以其他方式被束缚以使得在仅有马达电力的情况下将阻止驱动轴部件的反向旋转时,此类机械反向系统2590还可为尤其有用的。在至少一个示例形式中,可机械致动的反向系统2590包括反向齿轮2592,所述反向齿轮被可被旋转地安装在形成于柄部框架组件2520上的轴2524A上并且与第二从动齿轮2558上的第二齿轮段2562啮合接合。参见图53。因此,当第二从动齿轮2558使驱动轴组件的近侧驱动轴段380’旋转时,反向齿轮2592在轴2524A上自由地旋转。在各种示例形式中,机械反向系统2590还包括呈杠杆臂2596形式的可手动致动的驱动器2594。如在图56和57中可见,杠杆臂2596包括轭部分2597,所述轭部分具有穿过其的细长狭槽2598。轴2524A延伸穿过狭槽2598A,并且形成于柄部外壳组件2520上的相对的第二轴2598B延伸穿过另一个细长狭槽以将杠杆臂2596可运动地附连到相对的第二轴2598B。此外,杠杆臂2596具有形成于其上的可啮合地接合反向齿轮2592的致动器翅片2597。存在将杠杆臂2596保持在未致动状态的棘爪或干涉过盈件,直至临床医生施加显著力来致动它。这可避免其在倒置的情况下意外启动。其他实施例可采用弹簧来将杠杆臂偏置成未致动状态。机械反向系统2590的各种示例实施例还包括被可运动地轴颈连接在柄部框架组件2520中的刀片回缩器按钮2600。如在图56和57中可见,刀片回缩器按钮2600包括能够接合第二驱动齿轮2556的顶部的脱离翼片2602。通过刀片回缩器弹簧2604来将刀片回缩器按钮2600偏置到脱离位置。当处于脱离位置时,脱离翼片2602偏置成不与第二驱动齿轮2556接合。因此,直至临床医生希望通过按压刀片回缩器按钮2600来启动机械反向系统2590时,第二驱动齿轮2556才与第二从动齿轮2558的第一齿轮段2559啮合接合。当临床医生希望向近侧驱动轴段380’施加反向旋转驱动运动时,临床医生按压刀片回缩器按钮2600以使第二从动齿轮2558上的第一齿轮段2559与第二驱动齿轮2556脱离。然后,临床医生开始对可手动致动的驱动器2594施加枢转棘轮运动,这导致其上的齿轮翅片2597驱动反向齿轮2592。反向齿轮2592与第二从动齿轮2558上的第二齿轮段2562处于啮合接合状态。可手动致动的驱动器2594的持续齿合导致反向旋转驱动运动被施加到第二齿轮段2562并最终被施加到近侧驱动轴段380’。临床医生可按照完全释放相关联的端部执行器部件或使其反向所需要的次数来继续多次齿合驱动器2594。一旦所需量的反向旋转运动已被施加到近侧驱动轴段380’,临床医生就将刀片回缩器按钮2600和驱动器2594释放到其相应的起始或未致动位置,其中翅片2597不与反向齿轮2592接合,并且第二驱动齿轮2556再次与第二从动齿轮2558上的第一齿轮段2559啮合接合。外科工具2400还可与电外科端部执行器一起使用,所述电外科端部执行器包括利用旋转驱动轴在不同轴向位置以不同方式进行驱动的各种旋转驱动部件。本文相对于图64-82、83-91和92-96来描述此类端部执行器和驱动机构的实例。外科工具2400可采用移位系统2610,以用于选择性地轴向移动近侧驱动轴段380’,从而使轴齿轮376运动成与第一旋转从动齿轮374啮合接合以及与第一旋转从动齿轮374脱离啮合接合。例如,近侧驱动轴段380’被可运动地支撑在柄部框架组件2520内,使得近侧驱动轴段380’可在其中轴向运动和旋转。在至少一个示例形式中,移位系统2610还包括由柄部框架组件2520可滑动地支撑的移位器轭2612。参见图51和54。近侧驱动轴段380’在其上具有一对衬圈386(示于图51和55中),使得移位器轭2612在柄部框架组件2520上的移位导致近侧驱动轴段380’的轴向运动。在至少一个形式中,移位系统2610还包括与移位器轭2612可操作地交接的移位器按钮组件2614,并延伸穿过柄部组件2500的柄部外壳段2504中的狭槽2505。参见图62和63。移位器弹簧2616与柄部框架组件2520安装在一起,使得其接合近侧驱动轴段380’。参见图54和61。当将移位器按钮组件2614可滑动地定位在如图62所示的第一轴向位置(其中驱动轴组件的旋转导致端部执行器3000围绕纵向工具轴线“LT-LT”相对于关节运动接头3500的旋转(如图67所示))和如图63所示的第二轴向位置(其中驱动轴组件的旋转导致击发构件在端部执行器中的轴向运动(如图66所示))之间时,弹簧2616用于为临床医生提供可听咔嗒声和触觉反馈。因此,此类结构使得临床医生在保持柄部组件2500时能够容易地可滑动地定位移位器按钮组件2614。在一些实施例中,移位器按钮组件2500可具有多于两个轴向位置,对应于旋转驱动轴的多于两个所需轴向位置。本文结合图83-91和图92-96提供了此类外科工具的实例。参见图64-72,多轴线关节运动和旋转外科工具600包括端部执行器550,所述端部执行器包括第一钳口构件602A和第二钳口构件602B。第一钳口构件602A可相对于第二钳口构件602B在打开位置(图64、66-69、71)和闭合位置(图70和72)之间运动,以夹持第一钳口构件602A和第二钳口构件602B之间的组织。外科工具600能够围绕关节运动接头640在垂直方向(图64和66-72中的标记为方向V)和水平方向(图64和65-68中的标记为方向H)上独立地进行关节运动。关节运动接头640的致动可按照类似于上文相对于图24-26所述的方式进行。外科工具600能够围绕头部旋转接头645在纵向方向(图64和66-72中的标记为方向H)上独立地旋转。端部执行器550包括I型梁构件620和钳口组件555,所述钳口组件包括第一钳口构件602A、第二钳口构件602B、第二钳口构件602B的近侧部分603、以及安置在近侧部分603中的旋转驱动螺母606。I型梁构件620和钳口组件555可按照本文所述的方式和类似于上文相对于可轴向运动的构件3016和钳口构件3008A、3008B(描述于上文中)描述的方式进行操作。端部执行器550联接到轴组件560,所述轴组件包括端部执行器驱动外壳608、端部执行器连接器管610、中间关节运动管段616、和远侧外管部分642。端部执行器550和轴组件560一起构成外科工具600。端部执行器550可利用本文例如结合图106-115所述的机构来可移除地联接到端部执行器驱动外壳608。端部执行器连接器管610包括圆柱形部分612和球构件614。端部执行器驱动外壳608通过头部旋转接头645来联接到端部执行器连接器管610的圆柱形部分612。端部执行器550和端部执行器驱动外壳608一起构成外科工具600的头部部分556。外科工具600的头部部分556可围绕头部旋转接头645独立地旋转,如将在下文更详细地所述。中间关节运动管段616包括球构件618和球承窝619。端部执行器连接器管610通过球窝接头联接到中间关节运动管段616,所述球窝接头通过端部执行器连接器管610的球构件614与中间关节运动管段616的球承窝619的相互接合而形成。中间关节运动管段616通过球窝接头联接到远侧外管部分642,所述球窝接头通过中间关节运动管段616的球构件618与远侧外管部分642的球承窝的相互接合而形成。关节运动接头640包括端部执行器连接器管610、中间关节运动管段616、和远侧外管部分642。可例如利用可独立致动的缆线段(例如,上文所述的连接到端部执行器连接器管610的球构件614的444、445、446、447)来致动外科工具600围绕关节运动接头640的独立竖直关节运动和/或水平关节运动。这种独立关节运动功能例如结合图24、24A和25进行描述。允许临床医生启动关节运动功能的机器人和手持式设备例如结合图6、16-21和46-50进行描述。第一钳口构件602A相对于第二钳口构件602B在打开位置(图64、66-69和71)和闭合位置(图70和72)之间的运动可由合适的闭合致动机构来致动。参见图73和74,可通过I型梁构件620的平移来致动钳口组件555的闭合。I型梁构件620包括第一I型梁凸缘622A和第二I型梁凸缘622B。第一I型梁凸缘622A和第二I型梁凸缘622B与中间部分624连接。I型梁构件620的中间部分624包括切割构件625,当钳口组件555处于闭合位置时,所述切割构件能够切断夹持在第一钳口构件602A和第二钳口构件602B之间的组织。I型梁构件620能够在第一钳口构件602A中的第一通道601A内和第二钳口构件602B中的第二通道601B内平移。第一通道601A包括第一通道凸缘605A,并且第二通道601B包括第二通道凸缘605B。第一I型梁凸缘622A可限定第一凸轮表面626A,并且第二I型梁凸缘622B可限定第二凸轮表面626B。第一和第二凸轮表面626A和626B可分别滑动地接合第一和第二通道凸缘605A和605B的面向外的相对表面。更具体地讲,第一凸轮表面626A可包括能够滑动地接合第一钳口构件602A的第一通道凸缘605A的相对表面的合适轮廓,类似地,第二凸轮表面626B可包括能够滑动地接合第二钳口构件602B的第二通道凸缘605B的相对表面的合适轮廓,使得当I型梁构件620朝远侧推进时,凸轮表面626A和626B可配合以使第一钳口构件602A朝第二钳口构件602B进行凸轮运动并使钳口组件555从打开位置运动到闭合位置,如图74中的箭头629所示。图73示出了处于完全近侧位置的I型梁构件620和处于打开位置的钳口组件555。在图73所示的位置中,第一凸轮表面626A正接合弓形砧座表面628的近侧部分,从而将第一钳口构件602A相对于第二钳口构件602B(图69和71)机械地保持成打开状态。I型梁构件620沿纵向方向(图64和66-74中的标记为方向L)朝远侧的平移导致第一凸轮表面626A与弓形砧座表面628的一定长度滑动接合,由此使得第一钳口构件602A朝第二钳口构件602B进行凸轮运动,直至第一凸轮表面626A接合弓形砧座表面628的远侧部分。在I型梁构件620朝远侧平移预定距离后,第一凸轮表面626A接合弓形砧座表面628的远侧部分,并且钳口组件处于闭合位置(图74)。然后,I型梁构件620可进一步朝远侧平移,以便在第一钳口构件602A和第二钳口构件602B处于闭合位置时切断夹持在第一钳口构件602A和第二钳口构件602B之间的组织。在I型梁构件620在钳口组件闭合之后的远侧平移期间,第一和第二I型梁凸缘622A和622B的第一和第二凸轮表面626A和626B分别滑动地接合第一和第二通道凸缘605A和605B的相对表面。这样,I型梁构件朝远侧推进穿过第一钳口构件和第二钳口构件602A和602B的第一和第二通道601A和601B。I型梁构件620的远端或前端包括切割构件625,所述切割构件可为锋利的边缘或刀片,所述锋利的边缘或刀片能够在I型梁构件的远侧平移行程期间切穿所夹持的组织,从而切断组织。图72和70示出了远侧平移行程之后的处于完全远侧位置的I型梁构件620。在远侧平移行程之后,I型梁构件620可朝近侧回缩回到图74所示的纵向位置,其中钳口组件保持闭合,从而夹持第一钳口构件602A和第二钳口构件602B之间的任何切断的组织。I型梁构件朝完全近侧位置(图69、71和73)的进一步回缩将导致第一凸轮表面626A与砧座表面628的近侧部分接合,这使第一钳口构件602A远离第二钳口构件602B进行凸轮运动,由此打开钳口组件555。在I型梁构件620推进穿过夹持在第一钳口构件602A和第二钳口构件602B之间的组织之前、期间和/或之后,可将电流提供到位于第一和/或第二钳口构件602A和602B中的电极,以便焊接/熔合组织,如本说明书更详细地描述。例如,电极可能够在第一钳口构件602A和第二钳口构件602B处于闭合位置时将RF能量递送到夹持在第一钳口构件602A和第二钳口构件602B之间的组织,以焊接/熔合组织。I型梁构件620在近侧回缩位置(图64、66-69、71和73)、中间位置(图74)、和远侧推进位置(图70和72)之间的远侧和近侧平移可利用合适的平移致动机构来实现。参见图65-72,I型梁构件620连接到螺纹旋转驱动构件604。螺纹旋转驱动螺母606螺纹接合到螺纹旋转驱动构件604上。螺纹旋转驱动螺母606安置在第二钳口构件602B的近侧部分603中。螺纹旋转驱动螺母606沿任何方向的平移被机械地约束,但螺纹旋转驱动螺母606可在第二钳口构件602B的近侧部分603内旋转。因此,鉴于旋转驱动螺母606和螺纹旋转驱动构件604的螺纹接合,旋转驱动螺母606的旋转运动被转换成螺纹旋转驱动构件604沿纵向方向的平移运动,并且继而转换成I型梁构件620沿纵向方向的平移运动。螺纹旋转驱动构件604穿过旋转驱动螺母606并定位在旋转驱动轴630的内腔内。螺纹旋转驱动构件604未附接或连接到旋转驱动轴630。螺纹旋转驱动构件604可在旋转驱动轴630的内腔中自由地运动并且当由旋转驱动螺母606的旋转驱动时将在旋转驱动轴630的内腔内平移。包括位于旋转驱动轴630的内腔内的螺纹旋转驱动构件604的旋转驱动轴630形成位于轴组件560的内腔内的同心旋转驱动轴/螺杆组件。如图65所示,一起构成轴组件560的端部执行器驱动外壳608、端部执行器连接器管610和中间关节运动管段616具有开放内腔,因此轴组件具有内腔,如图66-68所示。再次参见图66-68,同心旋转驱动轴/螺纹旋转驱动构件组件位于轴组件560的内腔内并穿过端部执行器驱动外壳608、端部执行器连接器管610、和中间关节运动管段616。尽管未示于图66-68中,但至少旋转驱动轴630穿过远侧外管部分642的内腔并且可操作地联接到驱动机构,所述驱动机构向旋转驱动轴630提供旋转和轴向平移运动。例如,在一些实施例中,外科工具600可通过轴组件560可操作地联接到机器人外科系统(例如,结合图5和16-21所述的机器人外科系统),所述机器人外科系统向旋转驱动轴630提供旋转运动和轴向平移运动。例如,旋转驱动轴630通过轴组件560可操作地联接到上文所述的近侧驱动轴段380。另外,在一些实施例中,外科工具600可结合手持式外科装置(诸如,上文结合图46-63所述的装置)来使用。例如,旋转驱动轴630可通过轴组件560可操作地联接到上文所述的近侧驱动轴段380'。旋转驱动轴630包括旋转驱动头632。旋转驱动头632包括位于旋转驱动头632的远侧的凹型六角联接部分634,并且旋转驱动头632包括位于旋转驱动头632的近侧的凸型六角联接部分636。旋转驱动头632的远侧凹型六角联接部分634能够与位于旋转驱动螺母606的近侧的旋转驱动螺母606的凸型六角联接部分607机械地接合。旋转驱动头632的近侧凸型六角联接部分636能够与端部执行器驱动外壳608的凹型六角轴联接部分609机械地接合。参见图66、67、69和70,旋转驱动轴630被示为处于完全远侧轴向位置,其中旋转驱动头632的凹型六角联接部分634与旋转驱动螺母606的凸型六角联接部分607机械地接合。在此构型中,旋转驱动轴630的旋转致动旋转驱动螺母606的旋转,继而致动螺纹旋转驱动构件604的平移,由此致动I型梁构件620的平移。螺纹旋转驱动构件604和旋转驱动螺母606的螺纹取向可被确定,使得旋转驱动轴630的顺指针或逆时针旋转将致动螺纹旋转驱动构件604和I型梁构件620的远侧或近侧平移。这样,旋转驱动轴630的旋转的方向、速度和持续时间可为受控的,以便控制I型梁构件620的纵向平移的方向、速度和量值,并且因此控制钳口组件的闭合和打开、以及I型梁构件沿第一和第二通道601A和601B的切断行程,如上所述。参见图69,例如,旋转驱动轴630沿顺时针方向(如从近侧至远侧有利位置观察)的旋转致动旋转驱动螺母606的顺时针旋转,继而致动螺纹旋转驱动构件604的远侧平移,继而致动I型梁构件620的远侧平移,由此致动钳口组件的闭合和I型梁构件620/切割构件625的远侧切断行程。参见图70,例如,旋转驱动轴630沿逆时针方向(如从近侧至远侧有利位置观察)的旋转致动旋转驱动螺母606的逆时针旋转,继而致动螺纹旋转驱动构件604的近侧平移,继而致动I型梁构件620的近侧平移,由此致动I型梁构件620/切割构件625的近侧返回行程和钳口组件的打开。这样,旋转驱动轴630可用于独立地致动钳口组件的打开和闭合、以及I型梁620/切割构件625的近侧-远侧切断行程。参见图68、71和72,旋转驱动轴630被示为处于完全近侧轴向位置,其中旋转驱动头632的凸型六角联接部分636与端部执行器驱动外壳608的凹型六角轴联接部分609机械地接合。在此构型中,旋转驱动轴630的旋转致动外科工具600的头部部分556围绕旋转接头645的旋转,包括端部执行器550和端部执行器驱动外壳608的旋转。在此构型中,外科工具600的位于头部旋转接头645远侧的部分(即,外科工具600的头部部分556,包括端部执行器550和端部执行器驱动外壳608)随着旋转驱动轴630的旋转而旋转,并且外科工具的位于头部旋转接头645近侧的部分(例如,端部执行器连接器管610、中间关节运动管段616和远侧外管部分642)不随着旋转驱动轴630的旋转而旋转。应当理解,旋转驱动轴630用以驱动旋转驱动螺母606的所需旋转速度可大于用于使头部部分556旋转的所需旋转速度。例如,旋转驱动轴630可由能够以不同旋转速度操作的马达(未示出)驱动。参见图71,例如,旋转驱动轴630沿顺时针方向(如从近侧至远侧有利位置观察)的旋转致动端部执行器550和端部执行器驱动外壳608(即,外科工具600的头部部分556)的顺时针旋转,其中钳口组件555处于打开位置。旋转驱动轴630沿逆时针方向(如从近侧至远侧有利位置观察)的旋转致动端部执行器550和端部执行器驱动外壳608的逆时针旋转,其中钳口组件555处于打开位置。参见图72,例如,旋转驱动轴630沿顺时针方向(如从近侧至远侧有利位置观察)的旋转致动端部执行器550和端部执行器驱动外壳608的顺时针旋转,其中钳口组件555处于闭合位置。旋转驱动轴630沿逆时针方向(如从近侧至远侧有利位置观察)的旋转致动端部执行器550和端部执行器驱动外壳608的逆时针旋转,其中钳口组件555处于闭合位置。尽管未示出,但应当理解,当旋转驱动轴630处于完全近侧轴向位置并且旋转驱动头632的凸型六角联接部分636与端部执行器驱动外壳608的凹型六角轴联接部分609机械地接合以致动外科工具的头部部分的旋转时,I型梁构件620可位于中间位置,其中钳口组件闭合但I型梁未完全朝远侧推进(参见例如图74)。因此,旋转驱动轴630可用于独立地致动钳口组件的打开和闭合、I型梁620/切割构件625的近侧-远侧切断行程、以及外科工具600d的头部部分556的旋转。在各种实施例中,外科工具可包括端部执行器、第一致动机构和第二致动机构。外科工具还可包括离合构件,所述离合构件能够选择性地接合第一致动机构或第二致动机构中的任一者并且将旋转运动传输到第一致动机构或第二致动机构中的任一者。例如,在各种实施例中,离合构件可包括旋转驱动轴,所述旋转驱动轴包括例如结合图64-72所述的旋转驱动头。在各种实施例中,第一致动机构可包括I型梁构件,所述I型梁构件连接到穿过如例如结合图64-74所述的旋转驱动螺母的螺纹旋转驱动构件螺纹,其中I型梁、螺纹旋转驱动构件、以及旋转驱动螺母能够致动钳口组件的闭合和打开和/或切割构件的平移。在各种实施例中,第二致动机构可包括如例如结合图64-72所述的轴联接部分,其中轴联接部分能够致动外科工具的头部部分的旋转。在各种实施例中,外科工具可包括端部执行器,所述端部执行器包括第一钳口构件、第二钳口构件和第一致动机构,所述第一致动机构能够使第一钳口构件相对于第二钳口构件在打开位置和闭合位置之间运动。外科工具还可包括位于外科端部执行器近侧的轴组件。外科工具还可包括旋转驱动轴。旋转驱动轴能够传输旋转运动,并且还可相对于轴组件在第一位置和第二位置之间选择性地运动。旋转驱动轴能够在处于第一位置时接合第一致动机构并将旋转运动选择性地传输到第一致动机构,并且旋转驱动轴还能够在处于第二位置时从致动机构脱离。例如,在各种实施例中,第一致动机构可包括I型梁构件,所述I型梁构件连接到穿过如例如结合图64-74所述的旋转驱动螺母的螺纹旋转驱动构件螺纹,其中当旋转驱动轴接合驱动螺母并将旋转运动选择性地传输到驱动螺母时,I型梁、螺纹旋转驱动构件、以及旋转驱动螺母能够致动钳口组件的闭合和打开。在各种实施例中,外科工具可包括外科端部执行器,所述外科端部执行器包括第一钳口构件、第二钳口构件和闭合机构,所述闭合机构能够使第一钳口构件相对于第二钳口构件在打开位置和闭合位置之间运动。外科工具还可包括位于外科端部执行器近侧的轴组件,其中外科端部执行器能够相对于轴组件旋转。外科工具还可包括能够传输旋转运动的旋转驱动轴,所述旋转驱动轴可相对于轴组件在第一位置和第二位置之间选择性地轴向运动,其中所述旋转驱动轴能够在处于第一轴向位置时将旋转运动施加到闭合机构,并且其中所述旋转驱动轴能够在处于第二轴向位置时将旋转运动施加到外科端部执行器。例如,在各种实施例中,第一轴向位置可对应于正处于完全远侧轴向位置的旋转驱动轴,其中旋转驱动头与如例如结合图64-72所述的旋转驱动螺母机械地接合。在各种实施例中,第二轴向位置可对应于正处于完全近侧轴向位置的旋转驱动轴,其中旋转驱动头与如例如结合图64-72所述的轴构件的轴联接部分机械地接合。在各种实施例中,包括端部执行器、第一致动机构和第二致动机构的外科工具还可包括头部锁定机构。例如,参见图75-82,多轴线关节运动和旋转外科工具650包括端部执行器570、轴组件580、和头部锁定机构590。端部执行器570包括第一钳口构件652A和第二钳口构件652B。第一钳口构件602A可相对于第二钳口构件602B在打开位置(图77和79)和闭合位置(图78和80)之间运动以夹持第一钳口构件652A和第二钳口构件652B之间的组织。外科工具650能够围绕关节运动接头在竖直方向和水平方向上独立地进行关节运动,类似于图64-72所示的外科工具600。外科工具650还能够围绕头部旋转接头独立地旋转,类似于图64-72所示的外科工具600。端部执行器570包括I型梁构件670和钳口组件575,所述钳口组件包括第一钳口构件652A、第二钳口构件652B、第二钳口构件652B的近侧部分653、以及安置在近侧部分653中的旋转驱动螺母656。端部执行器570联接到轴组件580,所述轴组件包括端部执行器驱动外壳658、端部执行器连接器管660、中间关节运动管段666、和外科工具轴构件(未示出)。端部执行器570和轴组件580一起构成外科工具650。端部执行器570可利用如例如结合图106-115所述的机构可移除地联接到端部执行器驱动外壳658。端部执行器驱动外壳608通过头部旋转接头联接到端部执行器连接器管660。端部执行器570和端部执行器驱动外壳658一起构成外科工具650的头部部分578。外科工具650的头部部分578为可围绕头部旋转接头独立地旋转,如上文结合示出外科工具600的图64-72更详细地描述。端部执行器连接器管660通过球窝接头联接到中间关节运动管段666,所述球窝接头通过端部执行器连接器管660的球构件与中间关节运动管段666的球承窝的相互接合而形成。中间关节运动管段666通过球窝接头联接到外科工具轴构件,所述球窝接头通过中间关节运动管段616的球构件与外科工具轴构件的球承窝的相互接合而形成。关节运动接头包括端部执行器连接器管660、中间关节运动管段666、和外科工具轴构件。可例如利用连接到端部执行器连接器管660的球构件的可独立致动的驱动缆线来致动外科工具650围绕关节运动接头的独立竖直关节运动和/或水平关节运动。这种独立关节运动功能例如结合图24-25进行描述。允许临床医生启动关节运动功能的机器人和手持式设备例如结合图6、16-21和46-50进行描述。利用上文结合图73和74描述的相同致动机构来致动第一钳口构件652A相对于第二钳口构件652B的运动。I型梁构件670在近侧回缩位置(图77和79)、中间位置(参见图74)、和远侧推进位置(图78和80)的远侧和近侧平移可利用合适的平移致动机构来实现。参见图75-80,I型梁构件670连接到螺纹旋转驱动构件654。螺纹旋转驱动螺母656螺纹接合到螺纹旋转驱动构件654上。螺纹旋转驱动螺母656安置在第二钳口构件652B的近侧部分653中。螺纹旋转驱动螺母656沿任何方向的平移被机械地约束,但可在第二钳口构件652B的近侧部分653内旋转。因此,鉴于旋转驱动螺母656和螺纹旋转驱动构件654的螺纹接合,旋转驱动螺母656的旋转运动被转换成螺纹旋转驱动构件654沿纵向方向的平移运动,并且继而转换成I型梁构件670沿纵向方向的平移运动。螺纹旋转驱动构件654穿过旋转驱动螺母656并定位在旋转驱动轴680的内腔内。螺纹旋转驱动构件654未附接或连接到旋转驱动轴680。螺纹旋转驱动构件654可在旋转驱动轴680的内腔内自由地运动并且当由旋转驱动螺母656的旋转驱动时将在旋转驱动轴680的内腔内平移。包括位于旋转驱动轴680的内腔内的螺纹旋转驱动构件654的旋转驱动轴680形成位于轴组件580的内腔内的同心旋转驱动轴/螺杆组件。参见图77-80,同心旋转驱动轴/螺杆组件位于轴组件560的内腔内并穿过端部执行器驱动外壳658、端部执行器连接器管660、和中间关节运动管段666。尽管未示于图77-80中,但至少旋转驱动轴680穿过外科工具轴构件的内腔并且可操作地联接到驱动机构,所述驱动机构向旋转驱动轴680提供旋转和轴向平移运动。例如,在一些实施例中,外科工具650可通过轴组件580可操作地联接到机器人外科系统(例如,结合图5和16-21所述的机器人外科系统),所述机器人外科系统向旋转驱动轴680提供旋转运动和轴向平移运动。例如,在一些实施例中,外科工具650可通过轴组件580可操作地联接到手持式外科装置(例如结合图46和63所述的手持式外科装置),所述手持式外科装置向旋转驱动轴680提供旋转运动和轴向平移运动。在一些实施例中,螺纹旋转驱动构件654具有小于旋转驱动轴680的长度的长度,并且因此位于旋转驱动轴680的仅远侧部分内。螺纹旋转驱动构件654和旋转驱动轴680为柔性的,使得螺纹旋转驱动构件654和旋转驱动轴680的位于关节运动接头中的部分可在外科工具650围绕关节运动接头独立地进行关节运动期间弯曲,而不损害或损失可操作性。旋转驱动轴680的示例构型参考图28-45提供于本文中。旋转驱动轴680包括旋转驱动头682。旋转驱动头682包括位于旋转驱动头682的远侧的凹型六角联接部分684,并且旋转驱动头682包括位于旋转驱动头682的近侧的凸型六角联接部分686。旋转驱动头682的远侧凹型六角联接部分684能够与位于旋转驱动螺母656的近侧的旋转驱动螺母656的凸型六角联接部分657机械地接合。旋转驱动头682的近侧凸型六角联接部分686能够与端部执行器驱动外壳658的凹型六角轴联接部分659机械地接合。参见图77和78,旋转驱动轴680被示为处于完全远侧轴向位置,其中旋转驱动头682的凹型六角联接部分657与旋转驱动螺母656的凸型六角联接部分684机械地接合。在此构型中,旋转驱动轴680的旋转致动旋转驱动螺母656的旋转,继而致动螺纹旋转驱动构件654的平移,由此致动I型梁构件670的平移。参见图79和80,旋转驱动轴680被示为处于完全近侧轴向位置,其中旋转驱动头682的凸型六角联接部分686与端部执行器驱动外壳658的凹型六角轴联接部分659机械地接合。在此构型中,旋转驱动轴680的旋转致动外科工具650的头部部分578围绕旋转接头的旋转,包括端部执行器570和端部执行器驱动外壳658的旋转。旋转驱动轴680还包括花键锁690。花键锁690利用轴凸缘685联接到旋转驱动轴680。花键锁690沿任何方向的平移被旋转驱动轴680和轴凸缘685机械地约束,但可花键锁690可围绕旋转驱动轴680自由地旋转。花键锁690包括围绕花键锁690的外表面周向设置并被取向成与轴组件580共轴的花键构件692。如图75和76所示,花键锁690位于旋转接头处,所述旋转接头通过端部执行器驱动外壳658和端部执行器连接器管660的联接而形成。端部执行器驱动外壳658包括花键联接部分694,所述花键联接部分包括围绕端部执行器驱动外壳658的内表面周向设置并被取向成与轴组件580共轴的花键构件696。端部执行器连接器管660包括花键联接部分662,所述花键联接部分包括围绕端部执行器连接器管660的内表面周向设置并取向成与轴组件580共轴的花键构件664。当旋转驱动轴680处于完全远侧轴向位置(其中旋转驱动头682的凹型六角联接部分684与旋转驱动螺母656的凸型六角联接部分657机械地接合以驱动旋转驱动螺母656的旋转以及螺纹旋转驱动构件654和I型梁构件670的平移(图77、78、和82))时,花键锁690、端部执行器驱动外壳658、和端部执行器连接器管660的花键构件692、696和664分别能够彼此机械地接合。相应花键构件692、696和664的机械接合利用端部执行器连接器管660来将端部执行器驱动外壳658锁定就位,从而锁定旋转接头并阻止外科工具650的头部部分578的旋转。因为花键锁690可围绕旋转驱动轴680自由地旋转,所以相应花键构件692、696和664的机械接合并不阻止旋转驱动轴680致动旋转驱动螺母656、螺纹旋转驱动构件654、和I型梁构件670。当旋转驱动轴680处于完全近侧轴向位置(其中旋转驱动头682的凸型六角联接部分686与端部执行器驱动外壳658的凹型六角轴联接部分659机械地接合以驱动外科工具650的头部部分578旋转)时,花键锁690完全回缩到端部执行器连接器管660的内腔中并且花键锁690从端部执行器驱动外壳658的花键联接部分694完全脱离。(图79、80、和81)。在此构型中,花键锁690的花键构件692与端部执行器连接器管660的花键构件664完全接合,并且花键锁690的花键构件692与端部执行器驱动外壳658的花键构件696完全脱离。当旋转驱动轴680处于完全近侧轴向位置时,花键锁690的花键构件692与端部执行器驱动外壳658的花键构件696的机械脱离使端部执行器驱动外壳658从端部执行器连接器管660解锁,从而解锁旋转接头并允许外科工具650的头部部分578的旋转。因为花键锁690可围绕旋转驱动轴680自由地旋转,所以花键锁690的花键构件692与端部执行器连接器管660的花键构件664的机械接合不阻止旋转驱动轴680致动外科工具650的头部部分578的旋转。当旋转驱动轴680处于接合旋转驱动螺母656的完全远侧轴向位置以驱动钳口闭合机构和/或I型梁平移机构的致动时,头部锁定机构590确保外科工具650的头部部分578不旋转,如上所述(图77、78、和82))时,花键锁690、端部执行器驱动外壳658、和端部执行器连接器管660的花键构件692、696和664分别能够彼此机械地接合。当旋转驱动轴680处于接合端部执行器驱动外壳658的轴联接部分659的完全近侧轴向位置以驱动头部旋转时,头部锁定机构590确保外科工具650的头部部分578可自由旋转,如上所述(图79、80、和81)。参见图77和78,例如,旋转驱动轴680的旋转致动旋转驱动螺母656的旋转,继而致动螺纹旋转驱动构件654(取决于旋转驱动轴680的旋转运动的方向)的远侧或近侧平移,继而致动I型梁构件670的远侧或近侧平移,继而致动钳口组件575的闭合和打开以及I型梁构件670/切割构件675的远侧和近侧切断行程。同时,花键锁690接合端部执行器驱动外壳658和端部执行器连接器管660两者以阻止非预期的头部旋转。参见图79和80,例如,旋转驱动轴680的旋转致动端部执行器驱动外壳658的旋转,继而致动端部执行器570的旋转。同时,花键锁690与端部执行器驱动外壳658脱离并且不阻止头部旋转。因此,旋转驱动轴680可用于独立地致动钳口组件575的打开和闭合,I型梁670/切割构件675的近侧-远侧切断行程,以及外科工具650的头部部分578的旋转。在各种实施例中,端部执行器(诸如,图64-82中所示的端部执行器550和570)可包括第一钳口构件和第二钳口构件,所述第一钳口构件和第二钳口构件分别包括第一远侧纹理化部分和第二远侧纹理化部分。端部执行器的第一钳口构件和第二钳口构件的第一远侧纹理化部分和第二远侧纹理化部分可为相对的,并可允许端部执行器除了在切开操作期间夹持组织之外来夹持、传送和/或操纵外科工具,诸如用于缝合组织的针。在一些实施例中,远侧纹理化部分还可为电极,所述电极例如能够在切开操作期间将RF能量递送到组织。这种夹持、传送、操纵和/或切开功能例如结合图153-168进行描述。在各种实施例中,端部执行器(诸如,图64-82中所示的端部执行器550和570)可包括第一钳口构件和第二钳口构件,所述第一钳口构件和第二钳口构件包括设置在第一钳口构件和第二钳口构件的面向外的表面上的第一夹持部分和第二夹持部分。端部执行器的第一钳口构件和第二钳口构件的第一夹持部分和第二夹持部分可有助于辅助组织切开,如例如结合图116-131所述。在各种实施例中,端部执行器(诸如,图64-82所示的端部执行器550和570)可包括设置在至少一个钳口构件的至少一个组织接触表面上的至少一个电极。电极能够例如在钳口构件处于闭合位置时将RF能量递送到夹持在钳口构件之间的组织以焊接/熔合组织,所述组织在一些实施例中也可通过平移包括切割构件的I型梁构件来进行切断。在一些实施例中,第二钳口构件还可包括位于钳口构件的远侧末端的偏置电极,所述电极能够例如在切开操作期间将RF能量递送到组织。这种电极功能例如结合153-168进行描述。在各种实施例中,端部执行器(诸如,图64-82中所示的端部执行器550和570)可包括钳口构件,所述钳口构件包括结合图132-142所述的成角度的组织接触表面。参见图83-91,多轴线关节运动和旋转外科工具1200包括端部执行器1202,所述端部执行器包括钳口组件1211,所述钳口组件包括第一钳口构件1204和第二钳口构件1206。第一钳口构件1204可相对于第二钳口构件1206在打开位置和闭合位置之间运动,以夹持第一钳口构件1204和第二钳口构件1206之间组织。外科工具1200能够围绕关节运动接头1208独立地进行关节运动。如上所述,外科工具1200还能够围绕头部旋转接头1210独立地进行关节运动。主要参见图83,端部执行器1202还包括近侧轴部分1212。端部执行器1202联接到轴组件1214,所述轴组件包括端部执行器驱动外壳1216、端部执行器连接器管1218、中间关节运动管段1220、和远侧外管部分(图83-91中未示出)。端部执行器1202和轴组件1214可一起构成外科工具1200。端部执行器1202可利用如例如结合图106-115所述的机构可运动地联接到端部执行器驱动外壳1216。端部执行器连接器管1218包括圆柱形部分1222和球部分1224。端部执行器驱动外壳1216通过头部旋转接头1210联接到端部执行器连接器管1218的圆柱形部分1222。端部执行器1202和端部执行器驱动外壳1216一起构成外科工具1200的头部部分。外科工具1200的头部部分可围绕头部旋转接头1210独立地旋转。主要参见图85-87,外科工具1200可包括用于使第一钳口构件1204相对于第二钳口构件1206在打开位置(图86)和闭合位置(图87)之间运动的闭合机构1226。如图83所示,第一钳口构件1204可包括第一安装孔1228,并且第二钳口构件1206可包括第二安装孔(图83-91中未示出)。第一钳口构件1204可相对于第二钳口构件1206进行布置,使得枢轴或耳轴销(图83-91中未示出)延伸穿过第一钳口构件1204的第一安装孔1228和第二钳口构件1206的第二安装孔,以将第一钳口构件1204枢转地联接到第二钳口构件1206。用于联接第一钳口构件1204和第二钳口构件1206的其他合适装置在本公开的范围内。参见图83-91,闭合机构1226可包括连杆布置,所述连杆布置可包括第一连接件1230和第二连接件(图83-91中未示出)。闭合机构1226还可包括例如呈闭合螺母1232形式的闭合驱动器。闭合螺母1232(图84)可至少部分地定位在端部执行器驱动外壳1216内。在使用中,闭合螺母1232可相对于端部执行器驱动外壳1216在第一位置(图86)和第二位置(图87)之间轴向平移并且可包括第一臂1234和第二臂1236。主要参见图84,第一臂1234和第二臂1236可从闭合螺母1232的远侧部分1238朝远侧延伸,其中第一臂1234可包括第一开口1240,并且第一臂1234可通过第一开口1240经由第一销1242枢转地连接到第一连接件1230。相似地,第二臂1236可包括第二开口1244,其中第二臂1236可通过第二开口1244经由第二销(图83-91中未示出)枢转地连接到第二连接件。第一连接件1230和第二连接件(图83-91中未示出)还可枢转地连接到第一钳口构件1204,使得当闭合螺母1232从第一位置(图86)朝远侧推进到第二位置(图87)时,第一钳口构件1204相对于第二钳口构件1206朝闭合位置枢转。相应地,当闭合螺母1232从第二位置(图89)朝近侧回缩到第一位置(图91)时,第一钳口构件1204相对于第二钳口构件1206朝打开位置枢转。图85示出了处于第一位置的闭合螺母1232和处于打开位置的钳口组件1211。图87示出了处于第二位置的闭合螺母1232和处于闭合位置的钳口组件1211。然而,闭合螺母1232可通过例如紧靠端部执行器驱动外壳11316的标引特征进行约束而不能相对于端部执行器驱动外壳1316旋转。参见图83-91,外科工具1200可包括具有合适击发驱动器的击发机构1246。击发机构1246可包括I型梁构件1247、螺纹驱动构件1248、和螺纹旋转驱动螺母1250。I型梁构件1247可包括第一I型梁凸缘1252和第二I型梁凸缘1254。I型梁构件1247可按照类似于上文相对于可轴向运动的构件3016(描述于上文中)描述的方式来进行操作。例如,第一I型梁凸缘1252和第二I型梁凸缘1254与中间部分1256连接。I型梁构件1247的中间部分1256可包括位于其远端或前端上的切割构件1258。I型梁构件1247能够在第一钳口构件1204中的第一通道1260内和第二钳口构件1206中的第二通道1262内平移。图84示出了处于完全近侧位置的I型梁构件1247和处于打开位置的钳口组件1211。I型梁构件1247可朝远侧进行平移以便在第一钳口构件1204和第二钳口构件1206处于闭合位置时使切割构件1258切断夹持在第一钳口构件1204和第二钳口构件1206之间的组织。切割构件1258(可包括例如锋利边缘或刀片)能够在I型梁构件1247的远侧平移(击发)行程期间切穿所夹持的组织,从而切断组织。图88示出了击发行程之后的处于完全远侧位置的I型梁构件1247。在I型梁构件1247推进穿过夹持在第一钳口构件1204和第二钳口构件1206之间的组织之前、期间和/或之后,可将电流提供到位于第一钳口构件1204和/或第二钳口构件1206中的电极,以便焊接/熔合组织,如本说明书更详细地描述。例如,电极能够在第一钳口构件1204和第二钳口构件1206处于闭合位置时将RF能量递送到夹持在第一钳口构件1204和第二钳口构件1206之间的组织,以焊接/熔合组织。I型梁构件1247在近侧回缩位置和远侧推进位置之间的远侧和近侧平移可利用合适的击发机构1246来实现。参见图83-91,I型梁构件1247连接到螺纹驱动构件1248,其中螺纹旋转驱动螺母1250与螺纹驱动构件1248螺纹接合。主要参见图83,螺纹旋转驱动螺母1250定位在端部执行器驱动外壳1216内,所述端部执行器驱动外壳在位于近侧环形凸缘1264和远侧环形凸缘1266之间的闭合螺母1232的近侧。螺纹旋转驱动螺母1250沿任何方向的平移被机械地约束,但可在端部执行器驱动外壳1216内围绕中心轴线A旋转。因此,鉴于旋转驱动螺母1250和螺纹驱动构件1248的螺纹接合,旋转驱动螺母1250的旋转运动被转换成螺纹驱动构件1248沿中心轴线A的平移运动,并且继而转换成I型梁构件1247沿中心轴线A的平移运动。螺纹驱动构件1248穿过旋转驱动螺母1250并且至少部分地定位在旋转驱动轴1270的内腔1268内。螺纹驱动构件1248未附接或连接到旋转驱动轴1270。在使用中,螺纹驱动构件1248可在旋转驱动轴1270的内腔内自由地运动并且当由旋转驱动螺母1250的旋转驱动时将在旋转驱动轴1270的内腔内平移。旋转驱动轴1270和螺纹驱动构件1248形成位于轴组件1214中的同心旋转驱动轴/螺杆组件。此外,螺纹驱动构件1248朝远侧延伸穿过闭合螺母1232的内腔1272。类似于上文所述,螺纹驱动构件1248可在闭合螺母1232的内腔1272内自由地运动,并且因此螺纹驱动构件1248在由旋转驱动螺母1250的旋转驱动时将在闭合螺母1232的内腔1272内平移。参见图83-91,旋转驱动螺母1250可包括螺纹远侧部分1274。闭合螺母1232可包括螺纹近侧部分1276。旋转驱动螺母1250的螺纹远侧部分1274与闭合螺母1232的螺纹近侧部分1276处于螺纹接合。如上所述,螺纹旋转驱动螺母1250沿任何方向的平移被机械地约束,但可在端部执行器驱动外壳1216内围绕中心轴线A旋转。因此,鉴于旋转驱动螺母1250与闭合螺母1232的螺纹接合,旋转驱动螺母1250的旋转运动被转换成闭合螺母1232沿中心轴线A的平移运动,并且继而转换成钳口组件1211中的枢转运动。如图83所示,一起构成轴组件1214的端部执行器驱动外壳1216、端部执行器连接器管1218和中间关节运动管段1220具有开放内腔,因此轴组件1214包括从其中纵向延伸穿过的内腔,如图83和85-91所示。再次参见图83和85-91,同心旋转驱动轴/螺纹驱动构件组件位于轴组件1214的内腔内,并且穿过端部执行器驱动外壳1216、端部执行器连接器管1218和中间关节运动管段1220。尽管未示于图83-91中,但至少旋转驱动轴1270穿过轴组件1214的内腔并且可操作地联接到驱动机构,所述驱动机构向旋转驱动轴1270提供旋转运动和轴向平移运动。例如,在一些实施例中,外科工具1200可通过轴组件1214可操作地联接到机器人外科系统(例如,结合图5和16-21所述的机器人外科系统),所述机器人外科系统向旋转驱动轴1270提供旋转运动和轴向平移运动。例如,旋转驱动轴1270可通过轴组件联接到上文所述的近侧驱动轴段380。在一些实施例中,例如,外科工具1200可通过轴组件1214可操作地联接到手持式外科装置,诸如上文相对于图46-63所述的装置。例如,旋转驱动轴1270可通过轴组件560可操作地联接到上文所述的近侧驱动轴段380'。在一些实施例中,螺纹驱动构件1248具有小于旋转驱动轴1270的长度的长度,并且因此位于例如旋转驱动轴1270的仅远侧部分内。螺纹驱动构件1248和旋转驱动轴1270可为柔性的,使得螺纹驱动构件1248和旋转驱动轴1270可在外科工具1200围绕关节运动接头1208的关节运动期间弯曲,而不损害或损失可操作性。如本说明书在别处更详细地描述,旋转驱动轴1270可包括旋转驱动头1278。旋转驱动头1278包括位于旋转驱动头1278的远侧的凹型六角联接部分1280,并且旋转驱动头1278包括位于旋转驱动头1278的近侧的凸型六角联接部分1282。旋转驱动头1278的远侧凹型六角联接部分1280能够与位于旋转驱动螺母1250的近侧的旋转驱动螺母1250的凸型六角联接部分1284机械地接合。如在别处所述,旋转驱动头1278的近侧凸型六角联接部分1282能够与端部执行器驱动外壳1216的凹型六角联接部分1286机械地接合,以便围绕中心轴线A来旋转端部执行器1202。参见图85,旋转驱动轴1270被示为处于完全轴向位置,其中旋转驱动头1278的六角联接部分1282与端部执行器驱动外壳1216的凹型六角轴联接部分机械地接合。在此构型中,旋转驱动轴1270的旋转导致外科工具1200的头部部分围绕头部旋转接头1210的旋转,包括端部执行器1202和端部执行器驱动外壳1216的旋转。在此构型中,外科工具1200的位于头部旋转接头1210远侧的部分(例如,头部部分)随着旋转驱动轴1270的旋转而旋转,并且外科工具1200的位于头部旋转接头1210近侧的部分不随旋转驱动轴1270的旋转而旋转。头部旋转接头1210的实例结合图64-82、83-91和92-96进行描述。用于使端部执行器1202相对于轴组件1214旋转的其他合适的技术和旋转装置在本公开的范围内。应当理解,用以驱动旋转驱动螺母1250的旋转驱动轴1270的所需旋转速度可大于用于使头部部分旋转的所需旋转速度。例如,旋转驱动轴1270可由能够以不同旋转速度操作的马达(未示出)来驱动。螺纹驱动构件1248和旋转驱动螺母1250的螺纹取向可被确定,使得旋转驱动轴1270的顺指针旋转或逆时针旋转中的任一者将导致螺纹驱动构件1248和I型梁构件1247的远侧或近侧平移。换句话讲,旋转驱动轴1270和旋转驱动螺母1250可沿第一方向进行旋转以朝远侧推进螺纹驱动构件1248,并且相对地,可沿相反的第二方向进行旋转以朝近侧回缩螺纹驱动构件1248。螺纹驱动构件1248的螺纹和旋转驱动螺母1250的螺纹的节距和/或头数可被选择以控制旋转驱动螺母1250的旋转的速度和/或持续时间,并且继而控制螺纹驱动构件1248的平移的速度和/或持续时间。这样,可控制旋转驱动轴1270的旋转的方向、速度和/或持续时间以便控制I型梁构件1247沿第一通道1260和第二通道1262的平移的方向、速度和量值,如上所述。类似于上文所述,旋转驱动螺母1250的螺纹远侧部分1274和闭合螺母1232的螺纹近侧部分1276的螺纹取向可被确定,使得旋转驱动轴1270的顺时针旋转或逆时针旋转中的任一者将导致闭合螺母1232的远侧或近侧平移,并且继而将导致钳口组件1211的闭合或打开。换句话讲,螺纹远侧部分1274可沿第一方向进行旋转以朝远侧推进螺纹近侧部分1276,并且相对地,可沿相反的第二方向进行旋转以朝近侧回缩螺纹近侧部分1276。螺纹驱动构件1248的螺纹远侧部分1274的螺纹和闭合螺母1232的螺纹近侧部分1276的螺纹的节距和/或头数可被选择以控制旋转驱动螺母1250的旋转的速度和/或持续时间以及闭合螺母1232的平移的速度和/或持续时间。这样,可控制旋转驱动轴1270的旋转的方向、速度和/或持续时间,以便控制钳口组件1211的枢转的方向、速度和量值。参见图86-88,旋转驱动轴1270被示为处于完全延伸的远侧轴向位置,其中旋转驱动头1278的凹型六角联接部分1280与旋转驱动螺母1250的凸型六角联接部分1284机械地接合。在此构型中,旋转驱动轴1270沿第一方向(例如顺时针方向)围绕中心轴线A的旋转通过导致旋转驱动螺母1250沿第一方向旋转而开始击发行程。旋转驱动螺母的旋转推进螺纹驱动构件1248,这继而朝远侧推进I型梁构件1247。同时,旋转驱动螺母1250的旋转朝远侧推进闭合螺母1232,由此使钳口组件1211闭合。闭合螺母1232和螺纹驱动构件1248朝远侧进行推进,直至闭合螺母1232从与旋转驱动螺母1250的螺纹接合脱离,如图88所示。换句话讲,闭合螺母1232可朝远侧进行推进,直至旋转驱动螺母1250的螺纹远侧部分1274的螺纹不再与闭合螺母1232的螺纹近侧部分1276的螺纹进行螺纹接合。因此,旋转驱动螺母1250沿第一方向的进一步旋转将不会朝远侧推进闭合螺母1232。闭合螺母1232在击发行程的剩余部分中将闲置。旋转驱动螺母1250沿相同方向的附加旋转使螺纹驱动构件1248的远侧推进继续,从而使I型梁构件1247的远侧推进在击发行程的剩余部分中继续。外科工具1200可包括例如至少部分地围绕旋转驱动螺母1250的螺纹远侧部分1274设置的偏置构件1288、螺旋弹簧和/或垫圈弹簧。如图86所示,偏置构件1288可包括紧靠端部执行器驱动外壳1216的远侧环形凸缘1266的近侧端部和紧靠闭合螺母1232的近侧端部1290的远侧端部。一旦闭合螺母1232从与旋转驱动螺母1250的螺纹接合释放,偏置构件1288就可通过沿远侧方向沿中心轴线A轴向地推动闭合螺母1232直至闭合螺母1232的远侧部分1238紧靠端部执行器1202的近侧轴部分1212的末端壁1294来保持闭合螺母1232不与旋转驱动螺母1250重新接合。偏置构件1288还确保当I型梁构件1247朝远侧推进穿过闭合的钳口组件1211时,钳口组件1211通过偏置闭合螺母1232来保持处于正闭合压力下,所述闭合螺母紧靠端部执行器1202的近侧轴部分1212的末端壁1294。主要参见图84,闭合螺母1232可包括从闭合螺母1232朝远侧延伸的凸轮构件1296。主要参见图87,当闭合螺母1232的远侧部分1238在来自偏置构件1288的正压力下紧靠端部执行器1202的近侧轴部分1212的末端壁1294时,凸轮构件1296可延伸穿过端部执行器1202的近侧轴部分1212的末端壁1294的开口1298。参见图88,旋转驱动轴1270被示为处于完全延伸的远侧轴向位置,其中旋转驱动头1278的凹型六角联接部分1280与旋转驱动螺母1250的凸型六角联接部分1284机械地接合。在此构型中,旋转驱动轴1270沿与第一方向(例如逆时针方向)相反的第二方向的旋转通过导致旋转驱动螺母1250的相反旋转而开始反向行程,这使螺纹驱动构件1248回缩,继而回缩I型梁构件1247。至少在反向行程的初始阶段期间,闭合螺母1232保持从旋转驱动螺母1250脱离。然而,当I型梁构件1247正在回缩时,I型梁构件1247可接合闭合螺母1232的凸轮构件1296。I型梁构件1247的任何进一步回缩可通过将闭合螺母1232沿近侧方向沿中心轴线A朝旋转驱动螺母1250轴向地推动来同时地打开钳口组件1211。为了使I型梁构件1247朝近侧推动闭合螺母1232,I型梁构件1247必须压缩偏置构件1288。当I型梁构件1247回缩时,I型梁构件1247可朝近侧推动闭合螺母1232,直至闭合螺母返回到与旋转驱动螺母1250螺纹接合。此时,旋转驱动螺母1250可因两者间的螺纹接合而朝近侧牵拉闭合螺母1232。当闭合螺母1232朝近侧回缩时,第一连接件1230和第二连接件将导致钳口组件1211打开。I型梁构件1247的回缩和钳口组件1211的打开在反向行程的剩余部分中同时继续。导致钳口组件1211的闭合、I型梁构件1247的完全延伸、I型梁构件1247的完全回缩、和钳口组件1211的重新打开的事件序列按时间顺序示于图85-91中。图85示出了处于完全打开位置的钳口组件1211、处于完全回缩位置的I型梁构件1247、和处于完全回缩轴向位置的旋转驱动轴1270,其中旋转驱动头1278的凹型六角联接部分1280从旋转驱动螺母1250的凸型六角联接部分1284机械地脱离。在第一操作阶段中,返回到图86,旋转驱动轴1270轴向地进行推进,以使旋转驱动头1278的凹型六角联接部分1280与旋转驱动螺母1250的凸型六角联接部分1284机械地接合。再次参见图86,旋转驱动轴1270沿第一方向(例如顺时针方向)围绕中心轴线A的旋转导致旋转驱动螺母1250沿第一方向的旋转。闭合螺母1232和螺纹驱动构件1248通过旋转驱动螺母1250沿第一方向的旋转来同时朝远侧推进。继而,钳口组件1211的闭合和I型梁构件1247的初始推进在第一操作阶段期间同时发生。在第二操作阶段中,现在参见图87,闭合螺母1232从与旋转驱动螺母1250的螺纹接合脱离。在第二操作阶段的剩余部分中,旋转驱动螺母1250继续独立于闭合螺母1232来推进螺纹驱动构件1248。因此,主要参见图88,钳口组件1211保持闭合并且I型梁构件1247继续推进直至第二操作阶段结束。在第三操作阶段中,如图89所示,旋转驱动轴1270沿与第一方向相反的第二方向旋转,由此导致旋转驱动螺母1250沿第二方向的旋转。在第三操作阶段中,闭合螺母1232保持与旋转驱动螺母1250脱离。旋转驱动螺母1250的旋转独立于闭合螺母1232而回缩螺纹驱动构件1248。因此,钳口组件1211保持闭合,并且I型梁构件1247响应于旋转驱动的旋转进行回缩。在第四操作阶段中,主要参见图90,旋转驱动螺母1250继续其沿第二方向的旋转,从而回缩螺纹驱动构件1248,由此回缩I型梁构件1247,直至I型梁构件1247接合闭合螺母1232的凸轮构件1296。I型梁构件1247的任何进一步回缩通过将闭合螺母1232沿近侧方向沿中心轴线A轴向地朝压缩所述偏置构件1288的旋转驱动螺母1250的推动来同时地打开钳口组件1211。主要参见图91,I型梁构件1247可继续朝近侧推动闭合螺母1232,直至其返回到与旋转驱动螺母1250螺纹接合。I型梁构件1247的回缩和钳口组件1211的打开在第四操作阶段的剩余部分中同时继续。参见图92-96,多轴线关节运动和旋转外科工具1300包括端部执行器1302,所述端部执行器包括钳口组件1311,所述钳口组件包括第一钳口构件1304和第二钳口构件1306。第一钳口构件1304可相对于第二钳口构件1306在打开位置和闭合位置之间运动,以夹持第一钳口构件1304和第二钳口构件1306之间的组织。外科工具1300能够围绕关节运动接头1308独立地进行关节运动。如上所述,外科工具1300还能够围绕头部旋转接头1310独立地进行关节运动。端部执行器1302被联接到轴组件1314,所述轴组件包括端部执行器驱动外壳1316、端部执行器连接器管1318、中间关节运动管段1320以及远侧外管部分(图92-96中未示出)。端部执行器1302和轴组件1314可一起构成外科工具1300。端部执行器1302可利用如例如结合图106-115所述的机构可移除地联接到端部执行器驱动外壳1316。端部执行器连接器管1318包括圆柱形部分1322和球构件1324。端部执行器驱动外壳1316通过头部旋转接头1310联接到端部执行器连接器管1318的圆柱形部分1322。端部执行器1302和端部执行器驱动外壳1316一起构成外科工具1300的头部部分。外科工具1300的头部部分可围绕头部旋转接头1310独立地旋转。主要参见图92,外科工具1300可包括用于使第一钳口构件1304相对于第二钳口构件1306在打开位置(图93)和闭合位置(图94)之间运动的闭合机构1326。如图83所示,第一钳口构件1304可包括第一安装孔1328,并且第二钳口构件1306可包括第二安装孔(图92-96中未示出)。第一钳口构件1304可相对于第二钳口构件1306进行布置,使得枢轴或耳轴销(图92-96中未示出)延伸穿过第一钳口构件1304的第一安装孔1328和第二钳口构件1306的第二安装孔,以将第一钳口构件1304枢转地联接到第二钳口构件1306。用于联接第一钳口构件1304和第二钳口构件1306的其他合适装置在本公开的范围内。参见图92-96,闭合机构可包括闭合联接件1330,所述闭合联接件相对于端部执行器驱动外壳1316在第一位置和第二位置之间轴向平移。闭合联接件1330可包括远侧端部1332和近侧端部1334。远侧端部1332可枢转地连接到第一钳口构件1304的近侧部分1336,使得当闭合联接件1330在第一位置和第二位置之间平移时,第一钳口构件1304相对于第二钳口构件1306在打开和闭合位置之间进行运动。参见图92-96,闭合机构1328还可包括呈例如筒形凸轮1338形式的闭合驱动器。筒形凸轮1338可定位在端部执行器驱动外壳1316内。筒形凸轮1338可通常包括具有穿过其中的内腔1340的大体圆柱形形状。筒形凸轮1338可包括限定在其周向表面中的第一弓形沟槽1346和第二弓形沟槽1348。第一弓形沟槽1346可接收从端部执行器驱动外壳1316延伸的第一销1350。第二弓形沟槽1348可接收从端部执行器驱动外壳1316延伸的第二销(图92-96中未示出)。第一销1350和第二销(图92-96中未示出)可从端部执行器驱动外壳1316的内壁的周向相对侧延伸。筒形凸轮1338可围绕中心轴线A旋转,其中当筒形凸轮1338围绕中心轴线A旋转时,第一销1350沿第一弓形沟槽1346行进,并且第二销沿第二弓形沟槽1348行进,从而使筒形凸轮1338沿中心轴线A轴向平移。结果是筒形凸轮1338的旋转运动被转换成闭合联接件1330的轴向运动。换句话讲,筒形凸轮1338沿第一方向(例如顺时针方向)围绕中心轴线A的旋转可导致筒形凸轮1338沿远侧方向轴向推进。相对地,筒形凸轮1338沿与第一方向相反的第二方向(例如逆时针方向)的旋转可导致筒形凸轮1338沿近侧方向沿中心轴线A轴向回缩。参见图92-96,闭合联接件1330的近侧端部1334可与筒形凸轮1338可操作地接合,使得筒形凸轮1338的轴向推进可导致闭合联接件1330轴向推进并且继而闭合钳口组件1311。类似地,筒形凸轮1338的近侧回缩可回缩闭合联接件1330,由此可打开钳口组件1311。如图92-96所示,筒形凸轮1338可在其远侧部分处在筒形凸轮1338的外壁上包括周向凹陷部1354。闭合联接件1330的近侧端部可包括连接器构件1356。连接器构件1356可沿凹陷部1354与筒形凸轮1338可操作地接合。因此,筒形凸轮1338可通过连接器构件1356来将轴向运动平移到闭合联接件1330。主要参见图92,外科工具1300可包括击发机构1358。击发机构1358可包括I型梁构件1360、螺纹驱动构件1362、和螺纹旋转驱动螺母1364。I型梁构件1360可按照类似于上文所述的可轴向运动的构件3016的方式来操作,并且可包括第一I型梁凸缘1367和第二I型梁凸缘1368。第一I型梁凸缘1367和第二I型梁凸缘1368与中间部分1370连接。I型梁构件1360的中间部分1370可包括切割构件1372,所述切割构件可包括例如锋利边缘或刀片,以在钳口组件1311闭合时切断夹持在第一钳口构件1304和第二钳口构件1306之间的组织。在远侧平移(击发)行程期间,I型梁构件1360可在限定于第一钳口构件1304中的第一通道(图92-96中未示出)和限定于第二钳口构件1306中的第二通道1376内平移以切穿所夹持的组织。图96示出了击发行程之后的I型梁构件1360。在I型梁构件1360推进穿过夹持在第一钳口构件1304和第二钳口构件1306之间的组织之前、期间和/或之后,可将电流提供到位于第一钳口构件1304和/或第二钳口构件1306中的电极1378,以便焊接/熔合组织,如本说明书更详细地描述。例如,电极1378能够在第一钳口构件1304和第二钳口构件1306处于闭合位置时将RF能量递送到夹持在第一钳口构件1304和第二钳口构件1306之间的组织,以焊接/熔合组织。I型梁构件1360在近侧回缩位置和远侧推进位置之间的远侧和近侧平移可利用合适的击发机构1358来实现。参见图92-96,I型梁构件1360连接到螺纹驱动构件1362,其中螺纹驱动构件与旋转驱动螺母1364螺纹接合。螺纹旋转驱动螺母1364定位在位于近侧环形凸缘1339A和远侧环形凸缘1339B之间的筒形凸轮1338远侧的端部执行器驱动外壳1316内。螺纹旋转驱动螺母1364沿任何方向的平移被机械地约束,但可在端部执行器驱动外壳1316内旋转。因此,鉴于旋转驱动螺母1364和螺纹驱动构件1362的螺纹接合,旋转驱动螺母1364的旋转运动被转换成螺纹驱动构件1362沿中心轴线A的平移运动,并且继而转换成I型梁构件1360沿中心轴线A的平移运动。螺纹驱动构件1362穿过旋转驱动螺母1364并且至少部分地定位在旋转驱动轴1382的内腔1381内。螺纹驱动构件1362未附接或连接到旋转驱动轴1382。螺纹驱动构件1362可在旋转驱动轴1382的内腔1381内自由地运动并且当由旋转驱动螺母1364的旋转驱动时将在旋转驱动轴1382的内腔1381内平移。旋转驱动轴1382和螺纹驱动构件1362形成位于轴组件1314中的同心旋转驱动轴/螺纹驱动构件组件。此外,螺纹驱动构件1362朝远侧延伸穿过筒形凸轮1338的内腔1384,其中螺纹驱动构件1362可在筒形凸轮1338的内腔1384内自由地运动并且当螺纹驱动构件由旋转驱动螺母1364的旋转驱动时将在筒形凸轮1338的内腔1384内平移。如图92所示,一起构成轴组件1314的端部执行器驱动外壳1316、端部执行器连接器管1318和中间关节运动管段1320具有延伸穿过其中的内腔。因此,轴组件1314可包括延伸穿过其中的内腔,如图92-96所示。再次参见图92-96,同心旋转驱动轴/螺纹驱动构件组件位于轴组件1314的内腔内,并穿过端部执行器驱动外壳1316、端部执行器连接器管1318、和中间关节运动管段1320。尽管未示于图92-96中,但至少旋转驱动轴1382穿过轴组件1314的内腔并且可操作地联接到驱动机构,所述驱动机构向旋转驱动轴1382提供旋转运动和/或轴向平移运动。例如,在一些实施例中,外科工具1300可通过轴组件1314可操作地联接到机器人外科系统(例如,结合图5和16-21所述的机器人外科系统),所述机器人外科系统向旋转驱动轴1382提供旋转运动和轴向平移运动。例如,旋转驱动轴1382可通过轴组件1314可操作地联接到上文所述的近侧驱动轴段380。另外,在一些实施例中,外科工具1300可结合手持式外科装置(诸如上文结合图46-63所述的装置)来使用。例如,旋转驱动轴1382通过轴组件1314可操作地联接到上文所述的近侧驱动轴段380'。在一些实施例中,螺纹旋转驱动构件1362具有小于旋转驱动轴1382的长度的长度,并且因此位于例如旋转驱动轴1382的仅远侧部分内。螺纹驱动构件1362和旋转驱动轴1382可为柔性的,使得螺纹驱动构件1362和旋转驱动轴1382可在外科工具1300围绕关节运动接头1308的关节运动期间弯曲,而不损害或损失可操作性。旋转驱动轴1382可包括旋转驱动头1386。旋转驱动头1386可包括围绕旋转驱动头1386的外表面周向设置并被取向成与轴组件1314共轴的花键构件1388。端部执行器驱动外壳1316可包括花键联接部分1390,所述花键联接部分包括围绕端部执行器驱动外壳1316的内壁周向设置并被取向成与轴组件1314共轴的花键构件1392。筒形凸轮1338可包括花键联接部分1394,所述花键联接部分包括围绕筒形凸轮1338的内壁周向设置并被取向成与轴组件1314共轴的花键构件1396。旋转驱动螺母1364也可包括花键联接部分1397,所述花键联接部分包括围绕旋转驱动螺母1364的内壁周向设置并被取向成与轴组件1314共轴的花键构件1398。如图93所示,旋转驱动轴1382可朝近侧选择性地回缩,以使旋转驱动头1386与端部执行器驱动外壳1316的花键联接部分1390可操作地接合。在此构型中,旋转驱动轴1382的旋转导致外科工具1300的头部部分围绕头部旋转接头1310的旋转,包括端部执行器1302和端部执行器驱动外壳1316的旋转。在此构型中,外科工具1300的位于头部旋转接头1310远侧的部分随旋转驱动轴1382的旋转而旋转,并且外科工具1300的位于头部旋转接头1310近侧的部分不随旋转驱动轴1382的旋转而旋转。头部旋转接头1310的实例结合图64-82、83-91和92-96进行描述。用于相对于轴组件1314来旋转端部执行器1302的其他合适的技术和旋转装置在本公开的范围内。应当理解,用以驱动旋转驱动螺母1364的旋转驱动轴1382的所需旋转速度可大于用于使头部部分旋转的所需旋转速度。例如,旋转驱动轴1270可由能够以不同旋转速度操作的马达(未示出)来驱动。如图94所示,旋转驱动轴1382可朝远侧选择性地推进,以使旋转驱动头1386与筒形凸轮1338的花键联接部分1394可操作地接合。在此构型中,旋转驱动轴1382的旋转导致筒形凸轮1338的旋转。如上所述,筒形凸轮1338的旋转导致闭合联接件1330中的轴向运动。因此,旋转驱动轴1382沿第一方向(例如,顺时针方向)围绕中心轴线A的旋转可导致闭合联接件1330沿中心轴线A朝远侧推进,这可闭合钳口组件1311。另选地,旋转驱动轴1382沿与第一方向相反的第二方向(例如,顺时针方向)的旋转可导致闭合联接件1330沿中心轴线A朝近侧回缩,这继而可打开钳口组件1311。如图95所示,旋转驱动轴1382可朝远侧选择性地推进,以将旋转驱动头1386通过筒形凸轮1338的内腔传送到位于筒形凸轮1338和旋转驱动螺母1364之间的端部执行器驱动外壳1316中的空间1399中,其中旋转驱动头1386不与花键联接部分中的任何一者可操作地接合。旋转驱动轴1382随后可朝远侧进一步推进,以使旋转驱动头1386与旋转驱动螺母1364的花键联接部分1397可操作地接合,如图96所示。在此构型中,旋转驱动轴1382的旋转导致旋转驱动螺母1364的旋转。如上所述,旋转驱动螺母1364的旋转导致螺纹驱动构件1362中的轴向运动。因此,旋转驱动轴1382沿第一方向(例如,顺时针方向)围绕中心轴线A的旋转可导致螺纹驱动构件1362朝远侧推进,这继而可朝远侧推进I型梁构件1360。另选地,旋转驱动轴1382沿与第一方向相反的第二方向(例如,顺时针方向)的旋转可导致螺纹驱动构件1362朝近侧回缩,这可朝近侧回缩I型梁构件1360。导致钳口组件1311的闭合、I型梁构件1360的完全延伸、I型梁构件1360的完全回缩、和钳口组件1311的重新打开的事件序列按时间顺序示于图93-96中。图93示出了处于完全打开位置的钳口组件1311、处于完全回缩位置的I型梁构件1360、和处于回缩轴向位置的旋转驱动轴1382,其中旋转驱动头1386与端部执行器驱动外壳1316的花键联接部分1390可操作地接合。在第一操作阶段中,旋转驱动轴1382被旋转以将端部执行器1302例如相对于血管旋转成合适的取向。在第二操作阶段中,旋转驱动轴1382轴向地推进以使旋转驱动头1386与筒形凸轮1338的花键联接部分1394可操作地接合。在此构型中,旋转驱动轴1382可沿第一方向(例如,顺时针方向)围绕中心轴线A进行旋转以使钳口组件1311围绕血管闭合。第一钳口构件1304和第二钳口构件1306中的电极1378可被激活以密封血管。在第三操作阶段中,旋转驱动轴1382随后可轴向地推进以使旋转驱动头1386与旋转驱动螺母1364的花键联接部分1397可操作地接合。在此构型中,旋转驱动轴1382可沿第一方向(例如,顺时针方向)围绕中心轴线A进行旋转以推进I型梁构件1360,从而切断所密封的血管。在第四操作阶段中,旋转驱动轴1382可沿与第一方向相反的第二方向(例如,逆时针方向)进行旋转以回缩I型梁构件1360。在第五操作阶段中,旋转驱动轴1382轴向地回缩以使旋转驱动头1386与筒形凸轮1338的花键联接部分1394可操作地接合。在此构型中,旋转驱动轴1382可沿与第一方向相反的第二方向(例如逆时针方向)进行旋转以重新打开钳口组件1311,从而释放所密封的切割的血管。如上所述,外科工具可利用驱动系统,所述驱动系统用于在外科工具的端部执行器内朝远侧平移驱动构件以例如在端部执行器内推进切割构件,并用于朝近侧平移驱动管以回缩驱动管和/或切割构件。图97和98示出了示例的驱动轴组件1400,所述驱动轴组件可结合端部执行器1420和/或本文所述的端部执行器中的任何一者来使用。例如,驱动轴组件1400(以及组件1400')可对应于本文所述的各种螺纹旋转驱动构件,包括例如螺纹旋转驱动构件604、654、1040、1248、1364等。对上文进行进一步描述,驱动轴组件1400可朝远侧推进,以便使端部执行器1420的钳口构件1422在闭合位置和打开位置之间旋转(如图97所示)并在钳口构件1422和定位在钳口构件1422对侧的钳口构件1424之间推进切割构件。在一个示例形式中,驱动轴组件1400包括驱动构件或管1402,所述驱动构件或管可包括在其中切割的一系列环形接头段1404。在各种示例实施例中,驱动构件1402可包括由例如不锈钢、钛和/或任何其他合适材料构成的中空金属管,所述中空金属管具有在其中形成的一系列环形接头段1404。在至少一个实施例中,环形接头段1404可包括多个松散联锁的燕尾形状1406,所述松散联锁的燕尾形状例如通过激光切割到驱动构件1402中并用于促进邻接的接头段1404之间的柔性运动。管材的此类激光切割可产生可用于压缩、拉伸和/或扭转的柔性中空驱动管。此类结构可采用通过“拼图”构型与相邻部分联锁的全直径切口。这些切口随后沿中空驱动管的长度按照阵列来进行复制,并且有时为“时控的”或旋转的以改变拉伸或扭转性能。对上文进行进一步描述,联锁的燕尾形状1406仅为一个示例实施例,并且在各种情况下,驱动构件1402可包括任何合适的关节运动接头阵列,所述关节运动接头阵列包括联锁的驱动突出部和驱动凹陷部。在各种情况下,驱动构件1402可包括关节运动接头格,所述关节运动接头格包括可操作地接合的突出部和凹陷部,所述突出部和凹陷部可进行联锁以在两者间传输线性和/或旋转运动。在某种意义上,在各种实施例中,驱动构件1402可包括限定在驱动构件1402的主体内的多个或大量关节运动接头。驱动构件1402可包括驱动构件1402的主体固有的多个关节运动接头。对上文进行进一步描述,驱动构件1402可朝远侧进行推动,使得纵向力通过驱动构件1402传输到例如与驱动构件1402的远侧端部可操作地联接的切割构件。相应地,驱动构件1402可被朝近侧进行牵拉,使得纵向力通过驱动构件1402传输到切割构件。联锁的燕尾形状1406能够在接头段1404之间传输纵向推动力和牵拉力,而不管接头段1404是否被纵向对齐(如图98所示)和/或相对于彼此进行关节运动以适应关节运动接头1430的关节运动,所述关节运动接头将端部执行器1420可旋转地连接到外科器械的轴。更具体地,对上文进行进一步描述,关节运动接头1430可包括一个或多个关节运动段1434,所述关节运动段可相对于彼此运动以允许端部执行器1420旋转,其中为了适应关节运动接头段1434的相对运动,驱动构件1402的接头段1404可相对于彼此进行旋转或偏移。在至少图97的例示实施例中,关节运动接头段1434可限定延伸穿过其中的通道1435,当关节运动接头1430已进行关节运动时,所述通道能够紧密地接收驱动管1402并且约束接头段1404之间的大的横向运动,同时允许接头段1404之间的足够相对运动。图99-101示出了可包括多个激光切口形状1406’的驱动构件1402’的另选的示例微环形接头段1404’,所述激光切口形状1406’大致类似于例如松散联锁的、相对的“T”形状和其中具有凹口部分的T-形状。激光切口形状1406’还可大致类似于例如松散联锁的、相对的“L”形状和限定凹口部分的L-形状。环形接头段1404、1404’可基本上包括多个微关节运动扭转接头。即,每个接头段1404、1404’可传输扭矩,同时有利于每个环形接头段之间的至少一些相对关节运动。如图99和100所示,驱动构件1402’的远侧端部1403’上的接头段1404D’具有远侧安装衬圈部1408D’,所述远侧安装衬圈部有利于附接到用于致动端部执行器的其他驱动部件。类似地,驱动构件1402’的近侧端部1405’上的接头段1404P’具有近侧安装衬圈部1408P’,所述近侧安装衬圈部有利于附接到例如其他近侧驱动部件或快速脱开接头的部分。可通过增加激光切口中的间距来增加每个特定接头段1404’的接头-接头运动范围。然而,在各种情况下,驱动构件1402’的任何特定区域内的激光切口的数量和/或密度可导致驱动构件1402’在此区域为尤其柔性的。为了确保接头段1404’保持联接在一起而不显著地降低驱动管在所需运动范围内进行关节运动的能力,可使用第二约束构件来限制或阻止接头段1404’的向外伸展。在图102和103所示的示例实施例中,第二约束构件1410包括弹簧1412或另外的螺旋盘绕构件。在各种示例实施例中,弹簧1412的远侧端部1414可对应于并且可附接到远侧安装衬圈部1408D’,并且可比弹簧1412的中央部分1416盘绕得更紧密。类似地,弹簧1412的近侧端部1418可对应于并且可附接到近侧衬圈部1408P’,并且可比弹簧1412的中央部分1416盘绕地更紧密。由于更紧密的盘绕,远侧端部1414和/或近侧端部1418可包括比中央部分1416的线圈更紧密地定位在一起的线圈。换句话讲,远侧端部1414和/或近侧端部1418的每单位距离的线圈可大于中央部分1416的每单位距离的线圈。在任何情况下,弹簧1412可限定纵向孔1413,在所述纵向孔内可定位例如驱动构件1402’和/或驱动构件1402的。纵向孔1413和驱动构件1402’的尺寸可设定成并可被配置成使得驱动构件1402’被紧密地接收在纵向孔1413内,其中在各种情况下,弹簧1412的线圈可限制接头段1404’的向外运动,使得接头段1404’在其相对于彼此进行关节运动时彼此不分离。如上所述,弹簧1412的远侧端部1414可固定地安装到驱动构件1402’的远侧端部1403’,并且弹簧1412的近侧端部1418可固定地安装到驱动构件1402’的近侧端部1405’,其中远侧管末端1403’的运动可使远侧弹簧端部1414运动,并且对应地,近侧管末端1405’的运动可使近侧弹簧端部1418运动。在各种情况下,弹簧端部1414和1418可分别焊接到例如管端部1403’和1405’。在至少例示的实施例中,中央部分1416的线圈可不固定地安装到驱动构件1402’。在至少一个此类实施例中,驱动构件1402’能够在中央部分1416的线圈内至少部分地进行关节运动,直至驱动构件1402’接触线圈,其中此时线圈能够至少部分地伸展或偏移以适应驱动构件1402’的横向运动。在各种其他实施例中,中央部分1416的线圈的至少部分可通过例如焊接来固定地安装到驱动构件1402’。对上文进行进一步描述,约束构件1410可以所需节距安装在驱动构件1402’上,使得约束构件1410还用作例如柔性驱动螺纹1440,所述柔性驱动螺纹可与端部执行器和/或驱动系统上的其他螺纹驱动部件通过螺纹进行接合,如上所述。驱动构件1402’围绕其纵向轴线的转动可被限制,其中当螺纹驱动输入端与螺纹1440接合并且借助马达例如沿第一方向旋转时,驱动构件1402’可在端部执行器1420内朝远侧推进。相应地,当与螺纹1440接合的螺纹驱动输入端沿相反的第二方向进行旋转时,驱动构件1402’可朝近侧回缩。应当理解,约束构件1410可被安装成使得螺纹1440包括沿其长度的恒定或至少基本上恒定的节距。在此类实施例中,对于螺纹驱动输入端进行旋转的给定速率,驱动构件1402’可以恒定或至少基本上恒定的速率推进和/或回缩。还应理解,约束构件1410可被安装成使得螺纹1440包括可变的节距或沿驱动构件1402’的长度而变化的节距。例如,约束构件1410的可变节距布置方式可用于在驱动组件1400’的击发行程的某些部分期间减慢驱动组件1400’或加速驱动组件1400’。例如,螺纹1440的第一部分可包括小于螺纹1440的第二部分的节距的第一节距,其中例如第一节距可以第一速率驱动闭合构件,并且第二部分可以第二速率驱动击发构件。在至少一些形式中,例如,驱动轴组件包括位于中空柔性驱动轴上的可变节距螺纹,所述中空柔性驱动轴可围绕90度弯曲或更大弯曲进行推动和牵拉。如上所述,驱动构件1402’围绕其纵向轴线的转动可被约束。而且,整个驱动轴组件1400’围绕其纵向轴线的旋转被约束。在各种实施例中,驱动构件1402’可包括限定于其中的纵向狭槽,所述纵向狭槽可与一个或多个突出部接合,所述一个或多个突出部可例如从端部执行器1420和/或关节运动接头构件1434向内延伸到纵向狭槽中。纵向狭槽和突出部的此类结构能够阻止或至少限制驱动轴组件1400’围绕其纵向轴线的旋转。如本文所用,驱动轴组件1400’和/或驱动构件1402’的纵向轴线可沿驱动轴组件1400’的中心延伸,而不管驱动轴组件1400’为平直构型还是弯曲构型。因此,当端部执行器1420进行关节运动并且驱动轴组件1400’进行关节运动以适应端部执行器1420的关节运动时,驱动轴组件1400’的纵向轴线的路径和方向可改变。对上文进行进一步描述,驱动构件1402’可固定地安装到定位在端部执行器1420内的切割构件并且从其朝近侧延伸。如本文所述,切割构件可被紧密地接收在限定于端部执行器中的各种狭槽和/或通道内,所述狭槽和/或通道可阻止切割构件和从其延伸的驱动轴组件1400’围绕其纵向轴线旋转或至少基本上旋转。尽管驱动轴组件1400’的纵向轴线可由驱动构件1402’限定,但此纵向轴线可由弹簧1412限定。在至少一个此类实施例中,弹簧线圈的中心路径可限定驱动轴组件1400’的纵向轴线。在任何情况下,驱动轴组件1400’围绕其纵向轴线的转动被约束。现在转到图104和105,驱动轴组件1400’可包括内部约束构件,例如柔性芯1417,所述柔性芯能够限制或阻止驱动构件1402’的接头段1404’的向内运动或塌缩。驱动构件1402’可限定能够紧密地接收柔性芯1417的内部纵向腔1415。在至少一个此类实施例中,限定于驱动构件1402’中的内部腔1415可包括等于或至少基本等于柔性芯1417的直径或宽度的直径或宽度。在各种情况下,在端部执行器1420的关节运动期间,例如,接头段1404’的部分可朝柔性芯1417向内挠曲或移动,其中当接头段1404’接触柔性芯1417时,芯1417可阻止接头段1404’的向内运动并且阻止驱动构件1402’向内塌缩。柔性芯1417可安装到驱动构件1402’的至少部分,例如其远侧端部1408D’和/或近侧端部1408P’。在某些实施例中,柔性芯1417可不固定地安装到驱动构件1402’,其中在此类实施例中,柔性芯1417可通过驱动构件1402’保持就位。在任何情况下,柔性芯1417可为足够柔性的,以便允许驱动轴组件1400’按照传输所施加到其的推动运动和牵拉运动的需要来弯曲或进行关节运动,如上所述。如上所述,轴组件1400’例如能够弯曲或挠曲,以适应端部执行器1420围绕关节运动接头1430的关节运动。驱动构件1402’、柔性芯1417、和/或弹簧1412可为有弹性的,使得轴组件1400’可返回到例如其初始纵向构型。在各种情况下,端部执行器1420可从其关节运动位置旋转回到其纵向或平直的位置,并且由此轴组件1400’能够弯曲或挠曲以便适应端部执行器1420的返回。参见图106-108,外科工具1000可包括外科端部执行器1001和轴组件1003。外科端部执行器1001能够响应于对其施加的驱动运动来执行外科行为。轴组件1003能够将此类驱动运动传输到外科端部执行器1001。外科端部执行器1001可包括第一钳口构件1002和第二钳口构件1004。第一钳口构件1002可相对于第二钳口构件1004在第一位置和第二位置之间运动。另选地,第一钳口构件1002和第二钳口构件1004可相对于彼此在第一位置和第二位置之间运动。第一位置可为打开位置并且第二位置可为闭合位置。参见图106-108,第一钳口构件1002可相对于第二钳口构件1004在第一位置和第二位置之间枢转地运动。如图108所示,第一钳口构件1002可包括安装孔(未示出),并且第二钳口构件1004可包括安装孔1008。第一钳口构件1002可相对于第二钳口构件1004进行布置,使得枢轴或耳轴销(未示出)穿过第一钳口构件1002的安装孔和第二钳口构件1004的安装孔1008插入,以将第一钳口构件1002枢转地联接到第二钳口构件1004。用于联接第一钳口构件1002和第二钳口构件1004的其他合适装置被设想在本公开的范围内。参见图106-108,外科端部执行器1001可适于执行多个功能。例如,外科端部执行器1001可包括设置在第一钳口构件1002和/或第二钳口构件1004的外表面上的夹持部分1010。夹持部分1010可适于接触并且钝切组织。合适的夹持部分1010例如结合图116-131进行描述。外科端部执行器1001还可包括用于切断组织的成角度的组织接合表面1012。合适的成角度的组织接合表面1012例如结合图132-142进行描述。第一钳口构件1002可包括内表面1014并且第二钳口构件1004可包括内表面1016。第一内表面1014和第二内表面1016能够夹持、传送和/或操纵组织和/或外科工具,诸如用于缝合组织的针1015。这种夹持、传送、和/或操纵功能例如结合图153-168进行描述。此外,外科端部执行器1001还可包括用于在外科手术期间密封血管的电极1017和/或另一个电活性表面。电极1017能够在第一钳口构件1002和第二钳口构件1004处于闭合位置时将射频(RF)能量递送到夹持在第一钳口构件1002和第二钳口构件1004之间的组织,以焊接/熔合组织,所述组织可通过平移切割构件1018来进行切断。合适的电极例如结合图153-168进行描述。参见图108-111,外科端部执行器1001可释放地附接到轴组件1003。操作者或外科医生可将外科端部执行器1001附接到轴组件1003来执行外科手术。在图108所示的实施例中,轴组件1003包括呈快速脱开结构或接头1019形式的联接结构,所述联接结构有利于将轴组件1003的远侧轴部分1020快速地附接到外科端部执行器1001的近侧轴部分1022。快速脱开接头1019可用于促进多个驱动系部件的快速附接和脱离,所述驱动系部件用于将控制运动从驱动运动源提供到可操作地联接到驱动系部件的端部执行器。如图112所示,外科端部执行器1001可与适于与轴组件1003一起使用的其他外科端部执行器进行互换。例如,可使外科端部执行器1001从轴组件1003脱离并且可将第二外科端部执行器1024附接到轴组件1003。又如,第二外科端部执行器1024可由第三外科端部执行器1026来替换。外科端部执行器1001、1024和1026可包括通用驱动系部件,所述通用驱动系部件与其在轴组件1003中的对应件能够可操作地接合。然而,外科端部执行器1001、1024和1026可各自包括适用于某些外科任务的独特操作特征。外科端部执行器1001可包括致动机构。致动机构可包括用于使第一钳口构件1002相对于第二钳口构件1004运动的闭合机构。致动机构可包括击发机构,所述击发机构用于切断抓持在第一钳口构件1002和第二钳口构件1004之间的组织。闭合和击发可通过独立的机构来实现,所述独立的机构可为独立驱动的或同时驱动的。另选地,闭合和击发可通过单个机构来实现。合适的闭合机构和合适的击发机构例如结合图64-82,83-91和92-96进行描述。参见图113,示出了致动机构1028。致动机构可包括往复式构件1030。往复式构件1030可限定凸轮狭槽1032,所述凸轮狭槽能够接收联接到第一钳口构件1002的凸轮销1034。往复式构件1030的远侧和近侧运动可导致凸轮销1032在凸轮狭槽1034内平移,这继而导致第一钳口构件1002从打开位置(例如,往复式构件1030的近侧位置)枢转到闭合位置(例如,往复式构件1030的远侧位置)。在其中第一钳口构件1002和第二钳口构件1004可运动的实施例中,钳口构件1002和1004均可包括凸轮销,并且往复式构件1030可限定一对凸轮狭槽或沟槽。往复式构件1030可包括I型梁构件,所述I型梁构件适于在钳口构件1002和1004上滑动,以闭合钳口构件1002和1004,和/或提供趋于将钳口构件1002和1004推动到一起的夹持力。往复式构件1030可包括切割刀片1036。切割刀片1036可附接到往复式构件1030和可被设置成使其可与往复式构件1030一起延伸和回缩。切割构件可进行延伸以切断存在于钳口构件1002和1004之间的组织或材料。参见图108-111,致动机构1028可包括旋转驱动螺母1038和螺纹旋转驱动构件1040。旋转驱动构件1040可从往复式构件1030朝近侧延伸。往复式构件1030和旋转驱动构件1040可一起形成为单个部件。另选地,往复式构件1030和旋转驱动构件1040可单独形成并被焊接在一起。用于接合往复式构件1030和旋转驱动构件1040的其他技术可被采用并且被设想在本公开的范围内。旋转驱动螺母1038能够可操作地支撑在外科端部执行器1001的近侧轴部分1022内,所述近侧轴部分相对于钳口构件1002和1004朝近侧延伸。旋转驱动螺母1038可例如围绕延伸穿过近侧轴部分1022的中心轴线进行旋转,如上文所述。旋转驱动构件1040可从往复式构件1030朝近侧沿中心轴线延伸穿过旋转驱动螺母1038。旋转驱动螺母1038和旋转驱动构件1040可被布置成配对结构,使得旋转驱动螺母1038沿一个方向(例如,顺时针方向)围绕中心轴线的旋转可推进旋转驱动构件1040,并且旋转驱动螺母1038沿相反方向(例如,逆时针方向)围绕中心轴线的旋转可回缩旋转驱动构件1040。这种致动机构和其他合适的致动机构例如结合图64-82、83-91和92-96进行描述。参见图108-111,外科工具1000可包括穿过轴组件1003纵向设置的旋转驱动轴1042。旋转驱动轴1042可包括位于其远侧部分处的旋转驱动头1044。旋转驱动螺母1038可包括用于与旋转驱动头1044配对布置的致动联接器1046,使得当联接时,旋转驱动头1044可将旋转运动传输到致动联接器1046。旋转驱动轴1042可在多个离散位置之间选择性地轴向运动。例如,旋转驱动轴1042可进行轴向延伸,以使得旋转驱动头1044与致动联接器1046可操作地接合,如图111所示。另选地,旋转驱动轴1042可进行轴向回缩,以使得旋转驱动头1044从致动联接器1046脱离。此类结构可允许多个外科端部执行器与轴组件1003的快速且有效的附接和脱离。参见图108-110,外科端部执行器1001被示为从轴组件1003脱离。外科端部执行器1001的近侧轴部分1022从轴组件1003的远侧轴部分1020脱离。如图108所示,外科端部执行器1001的近侧轴部分1022可包括用于与轴组件1003的远侧轴部分1020上的漏斗末端配对布置的楔形末端。旋转驱动轴1042可包括中空远侧部分,所述中空远侧部分朝远侧沿中心轴线延伸穿过旋转驱动头1044并且终止在其远侧开口处。当将外科端部执行器1001附接到轴组件1003时,中空远侧部分可接收旋转驱动构件1040的近侧部分。旋转驱动构件1040可在旋转驱动轴1042的中空远侧部分中自由地旋转。如图110所示,简单地通过将旋转驱动构件1040的近侧部分插入到旋转驱动轴1042的中空部分中并且将外科端部执行器1001的近侧轴部分1022的楔形末端引导成与轴组件1003的远侧轴部分1020的漏斗末端配对布置来将外科端部执行器1001附接到轴组件1003。如图111所示,一旦外科端部执行器1001附接到轴组件1003,就可推进旋转驱动轴1042,以使旋转驱动头1044与致动联接器1046可操作地接合以将旋转运动传输到旋转驱动螺母1038。用于将外科端部执行器1001可释放地附接到轴组件1003的其他附接装置和技术被设想在本公开的范围内。如图108-110所示,外科端部执行器1001的近侧轴部分1022以及轴组件1003的远侧轴部分1020可具有对准特征以确保外科端部执行器1001和轴组件1003在附接时正确地对准。在示例实施例中,如图108所示,外科端部执行器1001的近侧轴部分1022包括键特征结构1048,并且轴组件1003的远侧轴部分1020可包括用于接收键特征结构的狭槽1050。用于将外科端部执行器1001与轴组件1003对准的其他对准装置和技术被设想在本公开的范围内。参见图114,外科端部执行器1001可包括致动机构,其中击发和闭合单独地执行。这种致动机构和其他合适的致动机构例如结合图83-91和92-96进行描述。在示例实施例中,如图114所示,外科端部执行器1001包括独立驱动的闭合机构1052和击发机构1054。闭合机构1052包括闭合驱动器1056,并且击发机构1054包括击发驱动器1058。如上所述,外科端部执行器1001可释放地附接到轴组件1003。如图114所示,外科端部执行器1001的近侧轴部分1022可从轴组件1003的远侧轴部分1020脱离。一旦外科端部执行器1001的近侧轴部分1022附接到轴组件1003的远侧轴部分1020,轴驱动器1042就可朝远侧延伸到第一离散位置以与闭合驱动器1056可操作地接合。另选地,轴驱动器可朝远侧延伸到第一离散位置远侧的第二离散位置以与击发驱动器1058可操作地接合。如图115所示,外科工具1000可包括用于使外科端部执行器1001围绕纵向工具轴线“LT”进行关节运动的关节运动接头1060。在此示例实施例中,关节运动接头1060被设置在轴组件1003的远侧部分1020的近侧。关节运动接头1060使轴组件1003的远侧部分1020进行关节运动。当外科端部执行器1001的近侧部分1022附接到轴组件1003的远侧部分1020时,轴组件1003的远侧部分1020的关节运动将导致外科端部执行器1003进行关节运动。在示例实施例中,如图115所示,关节运动接头1060包括附接到轴组件1003并在其中限定近侧球承窝的近侧承窝管1062。参见图115。近侧球构件1064可运动地安置在近侧球承窝内。如在图115中可见,近侧球构件1064具有使旋转驱动轴1042能够延伸穿过其中的中央驱动通道。此外,近侧球构件1064在其中具有四个关节运动通道,所述关节运动通道有利于四个远侧缆线1066从中穿过。如在图115中进一步可见,关节运动接头1060还包括中间关节运动管段1068,所述中间关节运动管段具有形成于其中的中间球承窝。中间球承窝能够在其中可运动地支撑形成于远侧连接器管1072上的远侧球构件1070。缆线1066延伸穿过形成于远侧球构件1070中的缆线通道并且通过凸耳1074附接到远侧球构件。适于将缆线附接到端部执行器球1070的其他附接装置被设想在本公开的范围内。参见图116-120,外科工具900可包括从轴组件903延伸的外科端部执行器。外科端部执行器901能够响应于对其施加的驱动运动来执行外科行为。外科端部执行器901可包括第一钳口构件902和第二钳口构件904。第一钳口构件902可相对于第二钳口构件904在第一位置和第二位置之间运动。另选地,第一钳口构件902和第二钳口构件904对可相于彼此在第一位置和第二位置之间运动。第一位置可为打开位置并且第二位置可为闭合位置。参见图116-120,第一钳口构件902可相对于第二钳口构件904在打开位置和闭合位置之间枢转地运动。如图120所示,第一钳口构件902可包括安装孔906,并且第二钳口构件904可包括安装孔908。第一钳口构件902可相对于第二钳口构件904进行布置,使得枢轴或耳轴销(未示出)穿过第一钳口构件902的安装孔906和第二钳口构件904的安装孔908插入,以将第一钳口构件902枢转地联接到第二钳口构件904。用于联接第一钳口构件902和第二钳口构件904的其他合适装置被设想在本公开的范围内。参见图116-120,外科端部执行器901可适于执行多个功能。例如,外科端部执行器901可包括用于切断组织的成角度的组织接合表面910。合适的组织接合表面910例如结合图132-142进行描述。第一钳口构件902可包括内表面912并且第二钳口904构件可包括内表面914。第一内表面912和第二内表面914能够夹持、传送和/或操纵组织和/或外科工具,诸如用于缝合组织的针915。这种夹持、传送、和/或操纵功能例如结合图153-168进行描述。参见图116-120,外科端部执行器901还可包括用于在外科手术期间密封血管的电极916和/或另一个电活性表面。电极916能够在第一钳口构件902和第二钳口构件904处于闭合位置时将射频(RF)能量递送到夹持在第一钳口构件902和第二钳口构件904之间的组织,以焊接/熔合组织,所述组织可通过平移切割构件来进行切断。合适的电极916例如结合图6-10和图153-168进行描述。外科端部执行器901可释放地附接到轴组件903。操作者或外科医生可将外科端部执行器901附接到轴组件903来执行外科手术。用于将外科端部执行器901可释放地附接到轴组件903的合适技术和机构例如结合图106-115进行描述。参见图116-120,外科端部执行器901可包括致动机构。致动机构可包括用于使第一钳口构件相对于第二钳口构件运动的闭合机构。致动机构可包括击发机构,所述击发机构用于切断抓持在第一钳口构件和第二钳口构件之间的组织。闭合和击发可通过独立的机构来实现,所述独立的机构可为独立驱动的或同时驱动的。另选地,闭合和击发可通过单个机构来实现。合适的闭合机构和合适的击发机构例如结合图64-82,83-91和92-96进行描述。如图117所示,示出了示例致动机构920。致动机构920可包括类似于上文所述的可轴向运动的构件3016的往复式构件918。往复式构件918或其凸轮销924可被接收在凸轮狭槽922内。往复式构件918的远侧和近侧运动可导致凸轮销924在凸轮狭槽922内平移,这继而导致第一钳口构件902从打开位置(例如,往复式构件918的近侧位置)枢转到闭合位置(例如,往复式构件918的远侧位置)。在其中第一钳口构件902和第二钳口构件904可运动的实施例中,两个钳口构件可包括凸轮狭槽922,并且往复式构件918可限定一对凸轮销。往复式构件918可包括I型梁构件,所述I型梁构件适于在第一钳口构件902和第二钳口构件904上滑动,以闭合第一钳口构件902和第二钳口构件904和/或提供趋于将第一钳口构件902和第二钳口构件904推动到一起的夹持力。往复式构件918可包括切割刀片926。切割刀片926可附接到往复式构件918和可被设置成使其可与往复式构件918一起延伸和回缩。切割刀片926可进行延伸以切断存在于第一钳口构件902和第二钳口构件904之间的组织或材料。参见图116-120,第一钳口构件902可包括外表面928。第一钳口构件902的外表面可包括第一组织夹持部分930。第二钳口构件904也可包括外表面932。第二钳口构件904的外表面932可包括第二组织夹持部分934。第一组织夹持部分930和第二组织夹持部分934可通过接触并且暂时地粘附到组织来夹持组织。当第一钳口构件902和第二钳口构件904相对于彼此正从闭合位置运动到打开位置时,第一夹持部分930和第二夹持部分934可接触并且钝切组织。在示例实施例中,外科端部执行器901可用于在外科手术期间切开组织。例如,第一夹持部分930和第二夹持部分934可分别接触并且暂时粘附到第一组织部分和第二组织部分(未示出),使得当第一钳口构件902相对于第二钳口构件904从闭合位置运动到打开位置时,第一组织部分与第二组织部分沿面平面分开,同时基本上保持血管和神经的局部构造和结构完整性。在外科手术期间,第一夹持部分930和第二夹持部分934能够在第一钳口构件902相对于第二钳口构件904运动时通过钝切分离(切开)组织层来产生操作空间。如图121所示,第一夹持部分930和第二夹持部分934可通过施加涂层来形成在第一钳口构件902和第二钳口构件904的外表面928和932的远侧部分上。在一个实施例中,第一夹持部分930和第二夹持部分934通过粘合剂附接到其相应钳口构件的外表面928和932上。在一个实施例中,第一夹持部分930和第二夹持部分934被压力配合到外表面928和932的远侧部分上。本公开可设想到适于将夹持部分附接到或形成在外表面上的其他技术和附接装置。第一夹持部分930和第二夹持部分934可包括具有高摩擦系数的材料,以在第一钳口构件和第二钳口构件902和904相对于彼此运动到打开位置时如果组织相对于第一钳口构件902和第二钳口构件904滑动则夹持组织,从而沿筋膜平面分离(切开)组织层,同时基本上保持血管和神经的局部构造和结构完整性。可用于形成第一夹持部分930和第二夹持部分934的具有高摩擦系数的材料的实例包括但不限于有机硅基弹性体、苯乙烯基热塑性弹性体(TPE)、聚异戊二烯、低密度聚乙烯、聚丙烯、sanoprene、有机硅、聚氨酯、天然橡胶、isoplast、液晶聚合物(LCP)等。第一夹持部分930和第二夹持部分934可包括半刚性材料,所述半刚性材料为柔性的,足以在接触组织时形成轮廓而不剪切。第一夹持部分930和第二夹持部分934可包括非过敏性生物相容性材料。在一个实施例中,第一夹持部分930和第二夹持部分934可包括具有低杨氏模量和高屈服应变的材料,诸如弹性体。合适弹性体的实例包括但不限于有机硅基弹性体、苯乙烯基热塑性弹性体(TPE)、聚异戊二烯、低密度聚乙烯、聚丙烯、sanoprene、有机硅、聚氨酯、天然橡胶、isoplast、液晶聚合物(LCP)等。参见图116-120,第一夹持部分930和第二夹持部分934可包括夹持特征结构936。夹持特征结构936可为柔性的,足以在接触组织时形成轮廓而不剪切。夹持特征结构936可呈突起938的形式。在至少一个实施例中,夹持特征结构936可呈凹陷940的形式。参见图121-126,夹持特征结构936可在空间上布置成夹持图案942。夹持图案942可包括多个突起938。夹持图案可包括多个凹陷940。在至少一个实施例中,如图127所示,夹持图案942可包括多个交替的突起938和凹陷940。在一个实施例中,如图123所示,夹持图案942可包括四个突起938。如图128所示,夹持图案942可包括在空间上布置成圆的多个突起940。其他布置方式也是可以的并且在本公开的范围内。如图122所示,夹持图案942可包括在空间上布置成多行的多个突起938,其中每行包括沿行的长度对齐的若干突起938。每行可包括交替的突起938和凹陷940。参见图123-128,夹持图案942可包括在夹持部分930上水平延伸的竖直突起938。如图所示,竖直突起938可沿相反方向延伸。在某些实施例中,如图124所示,突起938可沿平行行延伸。在至少一个实施例中,如图125所示,夹持图案942包括第一多个平行突起938a和第二多个平行突起938b,其中第一多个平行突起938a与第二多个平行突起938b呈倾斜布置方式。在至少一个实施例中,如图125所示,夹持部分930可包括人字形图案。参见图129-131,夹持图案942可限定在夹持部分930上以非线性方式水平延伸的竖直突起938。例如,如图129所示,非线性突起938可以Z字形方式延伸。在某些实施例中,如图130和131所示,非线性突起938可沿平行行延伸。在某些实施例中,如图130和131所示,非线性突起938可沿相反方向延伸。参见图132至137,端部执行器500包括第一钳口构件502A和第二钳口构件502B。第一钳口构件502A可相对于第二钳口构件502B在打开位置(图132和136)和闭合位置(图133、134和137)之间运动,以夹持第一钳口构件502A和第二钳口构件502B之间的组织。第一钳口构件502A包括成角度的组织接触表面504A和506A。第二钳口构件502B包括成角度的组织接触表面504B和506B。第一钳口构件502A包括第一成正角度的组织接触表面504A和第一成负角度的组织接触表面506A。第二钳口构件502B包括第二成正角度的组织接触表面504B和第二成负角度的组织接触表面506B。如本文所用,术语“成正角度的”和“成负角度的”是指组织接触表面相对于钳口构件的主体成角度的方向,所述钳口构件的主体包括钳口构件的组织接触表面和夹持平面。参见图138,第一钳口构件502A'和第二钳口构件502B'被示为处于闭合位置,以便夹持相对的钳口构件502A'和502B'之间的组织。此闭合位置类似于图133、134、135、137和142中所示的闭合位置。第一钳口构件502A'包括第一钳口主体503A'、第一组织夹持元件507A'、和第一夹持平面505A。第二钳口构件502B'包括第二钳口主体503B'、第二组织夹持元件507B'、和第二夹持平面505B。通常,当钳口构件处于闭合位置例如以夹持相对的钳口构件之间的组织时,端部执行器的钳口构件的组织夹持元件和夹持平面呈相对取向。第一钳口构件502A'包括第一成正角度的组织接触表面504A',所述第一成正角度的组织接触表面相对于第一夹持平面505A并且在第一钳口构件502A'的第一组织夹持元件507A'的周边处远离第一钳口主体503A'成一角度(α)。第一钳口构件502A'包括第一成负角度的组织接触表面506A',所述第一成负角度的组织接触表面506A'相对于第一夹持平面505A并且在钳口构件502A'的第一组织夹持元件507A'的周边处朝第一钳口主体503A'成一角度(α)。因此,如本文所用,术语“成正角度的”用于规定如下组织接触表面,所述组织接触表面远离夹持平面成角度并且在包括成正角度的组织接触表面的钳口构件的组织夹持元件周边处远离钳口主体成角度。同样,如本文所用,术语“成负角度的”用于规定如下组织接触表面,所述组织接触表面远离夹持平面成角度并且在包括成负角度的组织接触表面的钳口构件的组织夹持元件的周边处朝钳口主体成角度。因此,第二钳口构件502B'包括第二成正角度的组织接触表面504B',所述第二成正角度的组织接触表面504B'相对于第二夹持平面505B并且在第二钳口构件502B'的第二组织夹持元件507B'的周边处远离第二钳口主体503B'成一角度(α)。第二钳口构件502B'包括第二成负角度的组织接触表面506A',所述第二成负角度的组织接触表面506A'相对于第二夹持平面505B并且在第二钳口构件502B'的第二组织夹持元件507B'的周边处朝第二钳口主体503B'成一角度(α)。再次参见图132-134,第一钳口构件502A包括第一钳口主体503A和第一组织夹持元件507A,并且第二钳口构件502B包括第二钳口主体503B和第二组织夹持元件507B。第一钳口构件502A的第一成正角度的组织接触表面504A在第一组织夹持元件507A的周边处远离第一钳口主体503A成角度。第一钳口构件502A的第一成负角度的组织接触表面506A在第一组织夹持元件507A的周边处朝第一钳口主体503A成角度。第二钳口构件502B的第二成正角度的组织接触表面504B在第二组织夹持元件507B的周边处远离第二钳口主体503B成角度。第二钳口构件502B的第二成负角度的组织接触表面506B在第二组织夹持元件507B的周边处朝第二钳口主体503B成角度。当第一钳口构件502A和第二钳口构件502B处于闭合位置例如以夹持第一钳口构件和第二钳口构件之间的组织时,第一成正角度的组织接触表面504A与第二成负角度的组织接触表面506B相对。当第一钳口构件502A和第二钳口构件502B处于闭合位置例如以夹持第一钳口构件和第二钳口构件之间的组织时,第一成负角度的组织接触表面506A与第二成正角度的组织接触表面504B相对。如图132-133和图136-137所示,第一成正角度的组织接触表面504A和第一成负角度的组织接触表面506A沿第一钳口构件502A的基本上整个长度进行设置。第二成正角度的组织接触表面504B和第二成负角度的组织接触表面506B沿第二钳口构件502B的基本上整个长度进行设置。端部执行器500包括在一些实施例中可用作闭合构件和/或组织切割构件的“I型梁”构件508。I型梁构件508可按照类似于上文相对于上述可轴向运动的构件3016描述的方式操作。I型梁构件508的尺寸可设定成并可被配置成至少部分地贴合在第一钳口构件502A和第二钳口构件502B中的通道内。I型梁构件508可沿第一钳口构件502A和第二钳口构件502B中的通道例如在第一近侧回缩位置(与处于打开位置的钳口构件502A和502B相关)和第二远侧推进位置(与处于闭合位置的钳口构件502A和502B相关)之间可操作地平移。这样,例如,I型梁构件508能够在第一钳口构件502A和第二钳口构件502B中的通道内可操作地平移,以利用凸轮动作来闭合钳口构件并且/或者将切割构件推进穿过第一组织夹持元件507A和第二组织夹持元件507B来切断夹持在第一钳口构件502A和第二钳口构件502B之间的组织。第一钳口构件502A相对于第二钳口构件502B在打开位置(图132和136)和闭合位置(图133、134和137)之间以夹持第一钳口构件502A和第二钳口构件502B之间的组织的运动可利用合适的闭合致动机构来致动。I型梁构件在回缩位置和推进位置之间的平移可利用合适的平移致动机构来致动。合适的闭合致动机构和合适的平移致动机构例如结合图64-82、83-91和92-96进行描述。参见图139和140,端部执行器510包括第一钳口构件512A和第二钳口构件512B。第一钳口构件512A可相对于第二钳口构件512B在打开位置(图139和140)和闭合位置(未示出)之间运动,以夹持第一钳口构件512A和第二钳口构件512B之间的组织。第一钳口构件512A包括成角度的组织接触表面514A和516A。第二钳口构件512B包括成角度的组织接触表面514B和516B。第一钳口构件512A包括第一成正角度的组织接触表面514A和第一成负角度的组织接触表面516A。第二钳口构件512B包括第二成正角度的组织接触表面514B和第二成负角度的组织接触表面516B。第一钳口构件512A包括第一钳口主体513A和第一组织夹持元件517A,并且第二钳口构件512B包括第二钳口主体513B和第二组织夹持元件517B。第一钳口构件512A的第一成正角度的组织接触表面514A在第一组织夹持元件517A的周边处远离第一钳口主体513A成角度。第一钳口构件512A的第一成负角度的组织接触表面516A在第一组织夹持元件517A的周边处朝第一钳口主体513A成角度。第二钳口构件512B的第二成正角度的组织接触表面514B在第二组织夹持元件517B的周边处远离第二钳口主体513B成角度。第二钳口构件512B的第二成负角度的组织接触表面516B在第二组织夹持元件517B的周边处朝第二钳口主体513B成角度。当第一钳口构件512A和第二钳口构件512B处于闭合位置例如以夹持第一钳口构件和第二钳口构件之间的组织时,第一成正角度的组织接触表面514A与第二成负角度的组织接触表面516B相对。当第一钳口构件512A和第二钳口构件512B处于闭合位置例如以夹持第一钳口构件和第二钳口构件之间的组织时,第一成负角度的组织接触表面516A与第二成正角度的组织接触表面514B相对。第一成正角度的组织接触表面514A沿第一钳口构件512A的长度的近侧部分进行设置。第二成正角度的组织接触表面514B沿第二钳口构件512B的长度的近侧部分进行设置。第一成负角度的组织接触表面516A沿第一钳口构件512A的基本上整个长度进行设置。第二成负角度的组织接触表面516B沿第二钳口构件502B的基本上整个长度进行设置。端部执行器510包括在一些实施例中可用作闭合构件和/或组织切割构件的“I型梁”构件518。I型梁构件518的尺寸可设定成并可被配置成至少部分地贴合在第一钳口构件512A和第二钳口构件512B中的通道内。I型梁构件518可沿第一钳口构件512A和第二钳口构件512B中的通道例如在第一近侧回缩位置(与处于打开位置的钳口构件512A和512B相关)和第二远侧推进位置(与处于闭合位置的钳口构件512A和512B相关)之间可操作地平移。这样,例如,I型梁构件518能够在第一钳口构件512A和第二钳口构件512B中的通道内可操作地平移,以利用凸轮动作来闭合钳口构件并且/或者将切割构件推进穿过第一组织夹持元件517A和第二组织夹持元件517B来切断夹持在第一钳口构件512A和第二钳口构件512B之间的组织。第一钳口构件512A相对于第二钳口构件512B在打开位置(图139和140)和闭合位置(未示出)之间以夹持第一钳口构件512A和第二钳口构件512B之间的组织的运动可利用合适的闭合致动机构来致动。I型梁构件在回缩位置和推进位置之间的平移可利用合适的平移致动机构来致动。合适的闭合致动机构和合适的平移致动机构例如结合图64-82、83-91和92-96进行描述。第一钳口构件512A和第二钳口构件512B分别包括第一远侧纹理化部分519A和第二远侧纹理化部分519B。第一钳口构件512A的第一远侧纹理化部分519A设置在第一钳口构件512A的近侧组织夹持元件517A的远侧并与其直接相邻,所述第一钳口构件包括第一成正角度的组织接触表面514A。第一成正角度的组织接触表面514A不沿第一钳口构件512A的长度朝远侧延伸到第一远侧纹理化部分519A中。第二钳口构件512B的第二远侧纹理化部分519B设置在第二钳口构件512B的近侧组织夹持元件517B的远侧并与其直接相邻,所述第二钳口构件包括第二成正角度的组织接触表面514B的。第二成正角度的组织接触表面514B不沿第二钳口构件512B的长度朝远侧延伸到第二远侧纹理化部分519B中。第一钳口构件512A和第二钳口构件512B的第一远侧纹理化部分519A和第二远侧纹理化部分519B可为相对的,并且可允许端部执行器510除了例如在切开操作期间夹持组织之外还夹持、传送和/或操纵外科工具,诸如用于缝合组织的针。这种夹持、传送、和/或操纵功能例如结合图116-131和154-164进行描述。第一钳口构件512A和第二钳口构件512B分别包括第一夹持部分521A和第二夹持部分521B。第一夹持部分521A设置在第一钳口构件512A的面向外的表面上,并且第二夹持部分521B设置在第二钳口构件512B的面向外的表面上。夹持部分521A和521B可用于辅助组织切开,如例如结合图116-131和图154-164所述。图141为类似于图139和140所示的端部执行器510的端部执行器510'的透视图,不同的是包括电极522,所述电极位于第二钳口构件516B的第二组织夹持元件517B中并且位于第二成正角度的组织接触表面514B和第二成负角度的组织接触表面516B之间。电极522能够在第一钳口构件512A和第二钳口构件512B处于闭合位置时将射频(RF)能量递送到夹持在第一钳口构件512A和第二钳口构件512B之间的组织,以焊接/熔合组织,所述组织可通过平移包括切割构件的I型梁构件518来进行切断。尽管图141示出了两个电极522,但应当理解,根据本说明书中所述的实施例的端部执行器可包括至少一个或多个电极,所述电极包括任何合适的形状和取向,如例如本说明书所述。第二钳口构件516B还包括位于远侧末端525处的偏置电极524,所述偏置电极524能够例如在切开操作期间将RF能量递送到组织。在一些实施例中,第一远侧纹理化部分519A和第二远侧纹理化部分519B还可为例如能够在切开操作期间将RF能量递送到组织的电极。这种电极功能例如结合图164-154进行描述。参见图142,端部执行器530包括被示为处于闭合位置的夹持钳口构件之间的组织545的第一钳口构件532A和第二钳口构件532B。第一钳口构件532A包括第一成正角度的组织接触表面534A和第一成负角度的组织接触表面536A。第二钳口构件532B包括第二成正角度的组织接触表面534B和第二成负角度的组织接触表面536B。组织545物理接触成角度的组织接触表面534A、534B、536A和536B。组织545与成角度的组织接触表面534A、534B、536A和536B之间的物理接触压缩第一钳口构件532A和第二钳口构件532B之间的组织545。如图142所示,组织在第一钳口构件532A和第二钳口构件532B之间的夹持使得组织545在互相相对的组织接触表面536A和534B之间以及还在互相相对的组织接触表面534A和536B之间进行压缩,从而实现被压缩组织545的曲折变形。曲折变形可改善端部执行器530对组织545的夹持动作,继而可改善组织545的焊接/熔合和/或组织545的切断。例如,通过经由电极542施加的RF能量可焊接/熔合组织545,所述电极位于第二钳口构件532B的组织夹持元件中并且位于第二成正角度的组织接触表面534B和第二成负角度的组织接触表面536B之间。可例如通过平移I型梁构件538,继而平移切割构件541穿过所夹持的组织545来切断组织545。在一些实施例中,端部执行器可包括第一钳口构件和第二钳口构件,所述第一钳口构件包括第一成正角度的组织接触表面和第一成负角度的组织接触表面,所述第二钳口构件包括第二成正角度的组织接触表面和第二成负角度的组织接触表面。成角度的组织接触表面可相对于夹持平面形成角度(α),如例如结合图138所述。组织接触表面和夹持平面之间的角度(α)的量值可在5度至85度的范围内或者涵盖在其中的任何子范围内,例如,10度至80度、20度至70度、30度至60度、40度至50度、25度至50度、或30度至45度。在一些实施例中,成角度的组织接触表面可相对于相应的夹持平面独立地形成角度。由成角度的组织接触表面形成的角度在给定的端部执行器中可为基本上相同的或不同的。例如,两个相对的成角度的组织接触表面(例如,第一成正角度的组织接触表面和相对的第二成负角度的组织接触表面)均可相对于相应的夹持平面形成公共角(α1),并且两个其他的相对的成角度的组织接触表面(例如,第一成负角度的组织接触表面和相对的第二成正角度的组织接触表面)均可相对于相应的夹持平面形成公共角(α2),其中|α1|≠|α2|。在一些实施例中,成角度的组织接触表面可垂直于与钳口构件的水平组织接触部分一致的相应夹持平面延伸预定距离。例如,参见图138,第一成正角度的组织接触表面504A'垂直于第一夹持平面505A延伸一定距离,并且第二成正角度的组织接触表面504B'垂直于第二夹持平面505B延伸一定距离。同样,第一成负角度的组织接触表面506A'垂直于第一夹持平面505A延伸一定距离,并且第二成负角度的组织接触表面506B'垂直于第二夹持平面505B延伸一定距离。在一些实施例中,成角度的组织接触表面可垂直于相应夹持平面延伸0.025英寸至0.25英寸的距离,或者涵盖在其中的任何子范围,例如,0.025英寸至0.01英寸或0.025英寸至0.05英寸。尽管图132至142所示的成角度的组织接触表面被示为平坦表面时,但应当理解,在一些实施例中,成角度的组织接触表面可为弯曲表面或者平坦表面与弯曲表面的组合。在一些实施例中,包括成角度的组织接触表面的端部执行器能够可操作地联接到机器人外科系统,例如,结合例如图1-45所述的机器人外科系统。在一些实施例中,具有成角度的组织接触表面的端部执行器能够可操作地联接到手持式外科装置,例如,结合图46-63所述的手持式外科装置。结合图132至142所述的成角度的组织接触表面为端部执行器提供多个优点,所述端部执行器能够夹持/夹紧组织、焊接/熔合组织、切断组织、或这些操作的任何组合。例如,在一些实施例中,如图132至142所示,成正角度的组织接触表面与钳口构件的外表面形成一体(即,由单块材料形成)。由此,成正角度的组织接触表面在厚度维度上(图141和142中的标记为维度T)提供较厚的钳口构件。较厚的钳口构件结构增加钳口构件的强度和刚度,从而为组织提供增大的夹持/夹紧负荷。在一些实施例中,例如,相对于包括共面的组织接触表面的钳口构件而言,由成正角度的组织接触表面提供的较厚钳口构件结构可使钳口构件的惯性矩增加20-30%。增加的惯性矩可通过提供用于使RF能量进入并熔合组织的更聚焦的区域来提供改善的焊接区域,所述焊接区域用于熔合和烧灼夹持在包括成角度的组织接触表面的端部执行器中的组织。本文所述的电外科工具中的任何一者可利用电流/能量路径来供能,所述电流/能量路径从发生器或其他信号源(诸如发生器3002)、穿过导体(诸如供电导体3012和返回导体3014(参见图6))、穿过轴组件延伸到一个或多个电极。在轴组件内,可通过延伸穿过轴组件的导线来提供电流路径。然而,导线必须能够避免工具的各种关节运动和旋转接头处(包括本文所述的关节运动接头3500)的扭结、缠绕或其他变形。在例示的实施例中,电外科工具可将轴组件的部件用作对电外科电极供能的电流路径。这可不需要导线并且简化外科工具的关节运动和旋转。在例示的实施例中,旋转连接器组件可用于允许轴组件的旋转驱动轴或其他内部件提供发生器与端部执行器和/或其电极之间的供能电流路径。无论轴和/或端部执行器的旋转如何,旋转连接器均能够保持供能电流路径与端部执行器之间的连接。在双极构型中,返回路径可由轴和端部执行器的导电部件来形成,例如,轴的表层、I型梁构件或其他刀具、各个钳口构件的部分等,如本文所述。图143-146示出了旋转连接器组件1100的一个实施例,所述旋转连接器组件被安装在如本文相对于图64-81所述的端部执行器550和轴组件560中。图143为端部执行器550和轴组件560的一个实施例的剖视图,其中示出了旋转电极组件1100的示例安装。图144为端部执行器550和轴组件560的一个实施例的分解图,其中示出了安装在旋转驱动轴630的旋转电极组件1100(由参考数字1100'、1102'、1104'指示)及其分解件(由数字1100、1102、1104指示)。图145为端部执行器550和轴组件560的一个实施例的剖视图,其中示出了旋转电极组件1100以及处于近侧位置的旋转驱动头632。图146为端部执行器550和轴组件560的一个实施例的剖视图,其中示出了旋转电极组件1100以及处于远侧位置的旋转驱动头632。旋转电极组件1100可定位在端部执行器驱动外壳608内并且可包括外部接触件1102和内部接触件1103。外部接触件1102可围绕端部执行器驱动外壳608的内壁进行定位。在例示的实施例中并且在功能类似的实施例中,外部接触件1102可呈圆柱体形状或其他旋转体形状。外部接触件1102可通过一个或多个引线(诸如引线1110)与端部执行器550中的一个或多个电极1112电连通。引线1110可与外部接触件1102物理接触并且可穿过下钳口构件602B延伸到电极1112,如图所示。引线1110可以任何合适的方式(包括例如利用焊料或其他类似的接头)紧固到电极1112。例如,多个供能电极可与引导到每个电极的一根引线1110一起使用。在例示的实施例中,引线1110可为绝缘的,以便避免与端部执行器550和轴组件560的其他部分的电连通。内部接触件1103可例如从六角连接部分634的近侧物理地联接到旋转驱动轴630,如图所示。内部接触件1103可与外部接触件1102电接触。例如,内部接触件1103可与外部接触件1102物理接触。在例示的实施例中和在功能类似的实施例中,当旋转驱动轴630和/或端部执行器560旋转时,内部接触件1103可保持与外部接触件1102的电接触。例如,外部接触件1102可为旋转体,使得当旋转驱动轴630旋转时,内部接触件1103与接触件1102物理接触。在例示的实施例中和在功能类似的实施例中,内部接触件1103也可为旋转体。例如,如图所示,内部接触件1103可包括环状刷1104和沟槽状导体1106。沟槽状导体1106可围绕六角联接部分634近侧的旋转驱动轴630进行定位。沟槽状导体1106可限定沟槽1107以接收环状刷1104。环状刷1104可具有大于沟槽1107的直径的直径。在例示的实施例中和在功能类似的实施例中,环状刷1104可限定狭槽1105。例如,狭槽1105可允许环状刷1104的直径伸展和收缩。例如,环状刷1104的直径可伸展,以便将其布置在沟槽状导体1106的剩余部分上并布置到狭槽1107中。另外,当内部接触件1103被布置在外部接触件1102内时,其直径可收缩。这样,环状刷1104恢复其初始直径的趋势可导致环状刷1104对外部接触件1102施加向外力,所述向外力趋于保持环状刷1104和外部接触件1102彼此的物理接触和电接触。内部接触件1103可与合适的轴部件电连通,从而使从电极1112到发生器(诸如,上文相对于图6所述的发生器3002和/或内部发生器)的电流路径完整。在例示的实施例中,内部接触件1103并且具体地讲沟槽状导体1106与缠绕在旋转驱动轴630周围的盘绕线部件1114物理接触并且电接触。盘绕线部件1114可朝近侧延伸穿过轴,其中盘绕线部件1114可直接地或间接地联接到发生器。如本文所述,盘绕线部件1114还可充当弹簧,从而为围绕关节运动接头的旋转驱动轴630提供刚度,例如,如本文相对于图31-31和弹簧3612所述。在一些实施例中,旋转驱动轴630可包括外部绝缘套管。内部接触件1103可与外部绝缘套管(除了或替代盘绕线部件1114)电接触。示例的绝缘套管1166相对于图151进行描述。可能的绝缘套管的另一个实例为上文相对于图45所述的约束构件3660。在例示的实施例中,电极1112的电流返回路径可由端部执行器550和轴组件560的各种部件来提供,所述部件包括例如钳口构件602A、602B、端部执行器驱动外壳608、以及朝近侧延伸的其他轴构件。因此,供能电流路径的部分可与端部执行器550和轴组件560的其他部件电隔离。例如,如上所述,外部接触件1102和电极1112之间的引线1110可由电绝缘件1111包围,如图所示。另外,外部接触件1102和内部接触件1103可与端部执行器550和轴组件560的其他部件隔离。例如,绝缘件1118可被定位成使外部接触件1102与端部执行器驱动外壳608电隔离。绝缘件1116可被定位成使外部接触件1102和内部接触件1103与旋转驱动轴630隔离。绝缘件1118可为附加部件,或者在一些实施例中可被提供为特氟隆或其他绝缘涂层。如图145-146所示,绝缘件1116可朝近侧延伸,从而另外使得盘绕线部件1114与旋转驱动轴630以及轴组件560的其他部件(例如端部执行器驱动外壳608)均隔离。在图145-146所示的实施例中,外部接触件1102可朝近侧和朝远侧延伸,使得在旋转驱动轴630和旋转驱动头632位于不同的近侧和远侧位置的情况下保持外部接触件1102和内部接触件1103之间的电接触。例如,在图145中,旋转驱动轴630和旋转驱动头632朝近侧牵拉,使得驱动轴头部632的凸型六角联接部分636被端部执行器驱动外壳608的六角轴联接部分609接收。在此位置中,旋转驱动轴630的旋转可导致端部执行器驱动外壳608和端部执行器550的旋转,如本文所述。另外,如图145所示,内部接触件1103可与外部接触件1102物理接触并且电接触。在图146中,旋转驱动轴630和旋转驱动头632朝远侧进行推动,使得旋转驱动头632的六角联接部分634接收螺纹旋转驱动螺母606。在此位置中,旋转驱动轴630的旋转可导致螺纹旋转驱动螺母606的旋转,这继而导致螺纹旋转驱动构件604的旋转以及I型梁构件620的远侧和/或近侧平移。另外,如图146所示,内部接触件1103可与外部接触件1102物理接触并且电接触。图147-148为端部执行器550和轴组件560的一个实施例的剖视图,其中外部接触件1108的纵向长度被选择为使得旋转连接器组件1100交替地产生和中断由内部接触件1103的纵向位置限制的电连接。例如,在图147中,旋转驱动轴630和旋转驱动头632在近侧定位,使得凸型六角联接部分636被接收到远侧轴部分608的六角轴联接部分609中。如图所示,内部接触件1103(并且具体地讲环状刷1104)可不接触接触件1102,但相反可接触绝缘件1108。这样,当旋转驱动轴630和旋转驱动头632处于图147所示的近侧位置时,电极1112和发生器之间可不存在的完整的电连接。当旋转驱动轴630和旋转驱动头632在远侧定位以接触螺纹驱动螺母606时,如图148所示,内部接触件1103可与接触件1102电接触(并且物理接触),从而使电极1112和发生器之间的电流路径完整。如图147-148所示的构型可用于各种不同的环境中。例如,当钳口构件602A、602B打开时,对电极1112供能可为不可取的。在例示的实施例中,当轴630在远侧定位时(图148)而非当轴630在近侧定位时(图147),钳口构件602A、602B可由旋转驱动轴630来闭合。因此,在图147-148的构型中,从发生器到电极1112的电流路径仅在旋转驱动轴630和旋转驱动头632在远侧定位时才是完整的。在本文所述的一些实施例中,端部执行器550可从端部执行器驱动外壳608移除,并且例如可与其他端部执行器(未示出)互换。本文相对于图106-115提供了用于实现可互换电极的机构的实例。在此类具体实施中,引线1110可包括通过连接器组件连接的端部执行器部分和轴部分。图149-150示出了端部执行器550和轴组件560的一个实施例,其中示出了包括引线部分1130、1132和连接器组件1120的构型。例如,如图149-150所示并且如本文所述,钳口构件602B的近侧部分603可被接收在端部执行器驱动外壳608内。钳口构件602B的近侧部分603在图149被示为位于端部执行器驱动外壳608内,并且在图150中被示为与端部执行器驱动外壳608分开。连接器组件1120可包括端部执行器侧引线1122和轴侧引线1124。当近侧部分603被接收到远侧轴部分608中时,相应的引线可彼此物理接触并且电接触,如图149所示。在各种实施例中,连接器组件1120可被配置成便于保持供能电流路径与端部执行器550和轴560的其他部件的电隔离。例如,绝缘件1126、1128可电隔离连接器引线1122、1124。在例示的实施例中和在功能类似的实施例中,绝缘件1126、1128可采用定位在引线1122、1124的全部或部分上的塑料或者其他绝缘收缩管的形式。在一些实施例中,绝缘件1126、1128可包括施加到引线1122、1124的部分和/或周围材料的特氟隆或其他绝缘涂层。图151示出了端部执行器1140和轴组件1142的另选实施例的剖视图,其中示出了可使用旋转连接器组件1147的另一个环境。端部执行器1140可包括可类似于上文所述的钳口构件3008A、3008B、602A、602B等来操作的钳口构件1146A、1146B。例如,钳口构件1146A、1146B可由I型梁构件1156致动,所述I型梁构件在例示的实施例中可包括用于切断钳口构件1146A、1146B之间的组织的切割刃1148。I型梁构件1156可通过螺纹I型梁构件轴1154的旋转来朝远侧以及朝近侧驱动。I型梁构件轴1154可通过主驱动轴1149进行旋转。例如,主驱动轴1149可联接到齿轮1150。齿轮1150可与联接到I型梁构件轴1154的齿轮1152机械连通,如图所示。端部执行器1140可包括可按照类似于上文所述的电极1112等的方式来操作的电极1158。绝缘引线1160可电联接到电极1158并且可朝近侧延伸到外部接触件1162。外部接触件1162可以类似于接触件1102联接到端部执行器驱动外壳608的内壁1108的方式来定位在轴构件1141的内壁上。内部接触件1164(例如,刷)可围绕主驱动轴1149进行定位,使得刷1164与接触件1162电接触。刷1164还可与围绕主驱动轴1149定位的导电套管1166电接触。套管1166可例如通过绝缘件1168、1170来与主驱动轴1149和轴1142的剩余部分电隔离。应当理解,旋转电极组件1100可与本文所述的端部执行器和/或轴组件实施例中的任何一者一起使用。例如,图152示出了图83-91的端部执行器和轴组件的一个实施例的剖视图,其中示出了如本文所述的包括外部接触件1102和内部接触件1103的旋转电极组件1100的另一个示例安装。图153-168示出了包括近侧组织处理区域706和远侧组织处理区域708的电外科端部执行器700的各种实施例。近侧组织处理区域706利用各种电极和切割刃来处理组织,例如,如上文相对于图6-10所示的端部执行器3000所述。由近侧组织处理区域706提供的处理可包括例如夹持、抓持、切断、凝结、焊接等。远侧组织处理区域708还可包括一个或多个电极742并且可用于对组织施加处理,并且在一些实施例中,可用于执行其他外科任务,诸如,抓持和操纵缝合针和/或其他外科工具。图153示出了端部执行器700的一个实施例。端部执行器700可与各种外科工具一起使用,包括本文所述的那些。如图所示,端部执行器700包括第一钳口构件720和第二钳口构件710。第一钳口构件720可相对于第二钳口构件1004在打开位置(图153-156中所示)和闭合位置(图166和165中所示)之间运动。例如,钳口构件720、710可在枢转点702处枢转地联接。钳口构件710、720相对于纵向工具轴线“LT”可为弯曲的,如图所示。在一些实施例中,钳口构件710、720可改为直的,如相对于示于图6-8中的钳口构件3008A、3008B所示。在使用中,端部执行器700可从打开位置转变到闭合位置以捕获钳口构件720、710之间的组织。捕获在钳口构件720、710之间的组织可沿钳口构件710、720的部分进行夹持或抓持,以用于施用一种或多种组织处理,诸如切断、焊接、切开和电烧灼。端部执行器700的近侧组织处理区域706可按照类似于上文相对于端部执行器3000所述的方式来处理组织。钳口构件720、710之间的处于近侧处理区中的组织可例如通过齿状物734a、734b来固定就位。参见例如图154-159。在近侧组织处理区域706中,钳口构件720、710可各自限定相应的纵向通道812、810。I型梁构件820(图155和159)可在纵向通道812、810内朝远侧和朝近侧穿过,例如,如上文相对于端部执行器3000和可轴向运动的构件3016所述。在一些实施例中,I型梁构件820的远侧和近侧平移还可使钳口构件720、710在打开位置和闭合位置之间转换。例如,I型梁构件820可包括凸缘,所述凸缘被定位成接触相应钳口构件720、710的凸轮表面,与相对于图6-10所述的实施例中凸缘3016A、3016B接触凸轮表面3026A、3026B的方式类似。I型梁构件820还可限定朝远侧定向的切割元件822,所述切割元件可在I型梁构件820朝远侧推进时切断钳口构件720、710之间的组织。在一些实施例中,钳口构件720、710可包括类似于上文相对于图132-137所述的组织接触表面504A、504B、506A、506B的组织接触表面730a、730b、732a、732b。近侧组织处理区域706可另外包括各种电极和/或电流路径,以用于向组织提供电外科(RF)能量和/或其他能量。第二钳口构件710可包括围绕通道810定位的供电电极848。参见例如图153-155和157。供电电极848可与用于提供RF能量的发生器(诸如,上文所述的发生器3002)电连通。例如,供电电极848可联接到一个或多个供电连接器引线846。供电连接器引线846可朝远侧穿过轴组件延伸到工具接口302和/或柄部2500,并且最终延伸到发生器,诸如,如本文所述的发生器3002或内部发生器。供电电极848可与端部执行器700的其他元件电绝缘。例如,参见图10,供电电极(由通道810任一侧的848A和848b指示)可被定位在绝缘层844上(同样由通道810任一侧的844A和844b指示)。绝缘层844可由任何合适的绝缘材料(诸如陶瓷、特氟隆等)制成。在一些实施例中,绝缘层844可作为涂层施加到钳口构件810。供电电极848可结合返回路径来操作,以将双极性RF能量施加到组织,诸如图159所示的组织762。经由供电电极848提供的电流可流过组织762并且经由返回路径返回到发生器。返回路径可包括端部执行器700的各种导电部件。例如,在一些实施例中,返回路径可包括第一和第二钳口720、710的主体、I型梁构件820、组织接触表面730a、730b、732a、732b等。在例示的实施例中,供电电极848与返回路径偏置。例如,供电电极848被定位成使得当钳口构件720、710处于如图159所示的闭合位置时,电极848不与端部执行器700的导电部分电接触(例如,物理接触),所述导电部分可用作RF电流的返回路径。例如,第一钳口构件720可包括被定位成与电极848相对的相对的构件878(如在图159中由通道812任一侧的878A和878b指示),使得在钳口构件720、710闭合时,电极848与相对的构件878直接接触并且不与端部执行器700的任何其他部分直接接触。相对的构件878可为电绝缘的。这样,可以闭合钳口构件720、710而不会使供电电极848与返回路径短路。在一些实施例中,相对的构件878可为选择性地电绝缘的。例如,相对的构件878可包括正温度系数(PTC)主体,如上所述,所述正温度系数(PTC)主体在低于温度阈值(例如,约100℃)时为导电的并且在较高温度下为绝缘的。这样,相对的构件878可形成返回路径的部分,除非其温度超过温度阈值。例如,如果供电电极848与包括PTC或相似材料的相对的构件878电短路,则短路将快速地驱动相对的构件878的温度接近阈值,从而解除短路。远侧组织处理区域708可限定分别定位在钳口构件710、720上的远侧抓持表面790a、790b。远侧抓持表面790a、790b可从近侧处理区706在远侧定位。远侧抓持表面790a、790b可在一些实施例中能够抓持和保持组织。例如,远侧抓持表面790a、790b可包括夹持元件741以用于增加抓持表面790a、790b与组织和/或外科工具之间的摩擦,如下文所述。夹持元件741可包括由表面790a、790b限定的任何合适纹理、施用到表面790a、790b的摩擦增强涂层等等。在一些实施例中,远侧组织处理区域708还能够施加单极性和/或双极性电外科(例如,RF)能量。例如,表面790a可为和/或包括远侧供电电极742。例如,表面790a本身可由导电材料制成并且因此可为远侧供电电极742。在一些实施例中,如本文所述,导电电极742可包括联接到绝缘层845的导电材料。绝缘层845可为施用到钳口构件710的电介质层和/或涂层。远侧供电电极742可与发生器(诸如,上文所述的发生器3002和/或内部发生器)电接触。在一些实施例中,远侧供电电极742可与近侧组织处理区域706的供电电极848电接触。这样,当对近侧供电电极848供能时,远侧供电电极742可被供能。在一些实施例中,远侧供电电极742可独立于近侧供电电极848而被供能。例如,远侧供电电极742可通过专用供电线(未示出)联接到发生器。用于由远侧供电电极742提供的电能的返回路径还可包括端部执行器的任何合适的导电部分,所述导电部分包括例如钳口构件710、钳口构件720、I型梁构件820等。在一些实施例中,远侧抓持表面790b还可形成远侧返回电极748,所述远侧返回电极可为远侧供电电极742的返回路径的部分。例如,远侧返回电极748可与钳口构件720电接触,所述钳口构件可继而与发生器(诸如发生器3000)电接触。可以任何合适的方式来形成远侧返回电极748。例如,表面790b可为导电的,从而形成电极748。在一些实施例中,导电材料可被施加到表面790b,其中导电材料构成电极748。在例示的实施例中,远侧供电电极742为不偏置的。例如,远侧供电电极742与返回电极748对准。因此,端部执行器700能够在钳口构件720、710处于闭合位置时使远侧供电电极742不与返回电极748接触。例如,当钳口构件720、710处于闭合位置时,远侧供电电极742和远侧返回电极748之间可存在间隙780。间隙780可见于图160、161、162、163、164和165中。在各种实施例中,间隙780可因近侧组织处理区域706的各种部件的维度(例如厚度)而生成。例如,当相对的构件878和近侧供电电极848可朝轴线LT延伸,以使得当电极848和构件878彼此物理接触时(例如,当钳口构件720、710处于闭合位置时),远侧抓持表面790a、b彼此并不物理接触。可利用相对的构件878、供电电极848和绝缘层844的任何合适的组合来产生这种结果。现在参见图160、163和164,绝缘层844和绝缘层845可为连续的(例如,形成连续绝缘层)。类似地,近侧供电电极848和远侧供电电极742可为连续的(形成连续电极)。还示出了相对的构件878。如图所示,电极848(例如,近侧区706中的连续电极的部分)比电极742更厚。因此,当电极848接触相对的构件878时,电极848的厚度可阻止远侧抓持表面790a、b彼此接触,从而形成间隙780。图161示出了端部执行器700的另选的实施例,其中电极742和电极848具有相同的厚度。然而,相对的构件878的厚度被选择为使得当电极848接触相对的构件878时,远侧抓持表面790a、b彼此不接触,从而形成间隙780。图162示出了另一个实施例,其中绝缘层844比绝缘层845更厚,从而阻止远侧抓持表面790a、b之间的接触并且形成间隙780。在一些实施例中,远侧供电电极742可朝远侧延伸到钳口构件710的远侧边缘886的一部分。例如,图153示出了远侧电极部分744。临床医生可利用远侧电极部分744来将电外科能量施加到组织,所述组织不必位于钳口构件720、710之间。在一些实施例中,远侧电极部分744可用于提供双极性和/或单极性烧灼。在双极性实施例中,远侧电极部分744可利用与本文所述的返回路径相似的返回路径。在一些实施例中,相应的钳口构件可包括与相对于图116-131所述的突起相似的外部凹陷和/或突起800、802。凹陷和/或突起800、802可为导电的并且可为经由远侧电极部分744传送的电流提供可能的返回路径。在存在远侧电极部分744的一些实施例中,绝缘层845可在远侧电极部分下朝远侧延伸,如图164所示。应当理解,相应的组织处理区域706、708的长度可随不同的具体实施而有所改变。例如,图165示出了其中远侧组织处理区域708比其他附图所示的区708相对地较短的实施例。例如,在图165中,远侧组织处理区域708与在其他所示的区708相比从端部执行器700的远侧末端朝近侧延伸较短的距离。在一些实施例中,远侧组织处理区域708可用作一般外科抓紧器。例如,远侧抓持表面790a、b可用于抓持和操纵组织。另外,在一些实施例中,远侧抓持表面790a、b可用于抓持和操纵人工外科工具,诸如针、夹、钉等。例如,图160、161、162和163示出了固定在远侧抓持表面790a、b之间的外科工具896。在图160、161和162中,外科工具896具有圆形横截面(例如,缝合针)。在图163中,外科工具896具有非圆形横截面(例如,缝合针的后端、夹等)。当用作抓紧器时,远侧处理区708可或不可将电外科能量施加到组织表面790a、b之间的物体。例如,将电外科能量施加到针或其他外科工具可为不可取的。应当理解,如上所述,近侧组织处理区域706的一些部件与远侧组织处理区域708的一些部件可为公共的和/或连续的。例如,图167示出了钳口构件710的一个实施例,其中电极878、742被移除以示出绝缘层845、844。如图所示,绝缘层845、844限定公共、连续层899。连续层899的远侧部分可构成绝缘层845,同时绝缘层899的近侧部分可构成绝缘层844。如图所示的绝缘层844限定对应于通道810的凹口897(如图所示),使得I型梁构件820可穿过通道810而不接触连续层899。另外,如图所示,绝缘层845限定在钳口构件710的远侧端部886的一部分上延伸的远侧部分843。远侧部分843例如可定位在远侧电极部分744下。图166示出了安装有电极742、848的如图167所示的钳口构件710的实施例。如图所示,近侧供电电极可包括区域850a、850b、850c。区域850A和850b定位在通道810的任一侧。区域850c定位在通道810的最远侧部分的远侧。图168示出了在省略第三区域850c情况下的另选实施例。因此,电极848的第一和第二区域850a、850b朝远侧延伸到远侧供电电极742。非限制性实例在各种实施例中,外科器械可包括端部执行器和在端部执行器的近侧联接的轴组件。端部执行器包括第一钳口构件、第二钳口构件和闭合机构,所述闭合机构能够使第一钳口构件相对于第二钳口构件在打开位置和闭合位置之间运动。轴组件包括关节运动接头,所述关节运动接头能够独立地使端部执行器在竖直方向和水平方向上进行关节运动。外科器械还包括至少一个有源电极,所述有源电极设置在第一钳口构件和第二钳口构件的至少一个上。所述至少一个有源电极能够在第一钳口构件和第二钳口构件处于闭合位置时将RF能量递送到位于第一钳口构件和第二钳口构件之间的组织。在各种实施例中,外科器械可包括端部执行器和在端部执行器的近侧联接的轴组件。端部执行器包括第一钳口构件、第二钳口构件和闭合机构,所述闭合机构能够使第一钳口构件相对于第二钳口构件在打开位置和闭合位置之间运动。轴组件包括能够独立地使端部执行器旋转的头部旋转接头。外科器械还包括至少一个有源电极,所述有源电极设置在第一钳口构件和第二钳口构件的至少一个上。所述至少一个有源电极能够在第一钳口构件和第二钳口构件处于闭合位置时将RF能量递送到位于第一钳口构件和第二钳口构件之间的组织。外科工具可包括端部执行器,所述端部执行器包括第一钳口构件、第二钳口构件和闭合机构,所述闭合机构能够使第一钳口构件相对于第二钳口构件在打开位置和闭合位置之间运动。外科工具还包括位于外科端部执行器近侧的轴组件和能够传输旋转运动的旋转驱动轴,其中外科端部执行器能够相对于轴组件旋转。旋转驱动轴能够相对于轴组件在第一位置和第二位置之间选择性地轴向运动,其中旋转驱动轴能够在处于第一轴向位置时将旋转运动施加到闭合机构,并且其中旋转驱动轴能够在处于第二轴向位置时将旋转运动施加到端部执行器。此外,外科工具的闭合机构包括I型梁构件,所述I型梁构件能够沿轴向平移以使第一钳口构件朝第二钳口构件进行凸轮运动。I型梁构件连接到螺纹旋转驱动构件,所述螺纹旋转驱动构件联接到旋转驱动螺母,其中旋转驱动轴能够与旋转驱动螺母接合以将旋转运动传输到旋转驱动螺母。旋转驱动螺母的旋转运动致动螺纹旋转驱动构件和I型梁沿轴向的平移。此外,第一钳口构件和第二钳口构件包括能够与I型梁构件滑动地接合的通道,其中旋转驱动螺母的旋转运动致动I型梁在通道中在近侧回缩位置和远侧推进位置之间的平移。外科工具可包括端部执行器,所述端部执行器包括第一钳口构件、第二钳口构件和第一致动机构,所述第一致动机构能够使第一钳口构件相对于第二钳口构件在打开位置和闭合位置之间运动。外科工具还包括位于外科端部执行器近侧的轴组件和能够传输旋转运动的旋转驱动轴。旋转驱动轴能够在第一位置和第二位置之间相对于轴组件选择性地运动,其中旋转驱动轴能够在处于在第一位置时接合第一致动机构以及将旋转运动选择性地传输到第一致动机构,并且其中旋转驱动轴能够在处于第二位置时从致动机构脱离。此外,第一致动机构包括I型梁构件,所述I型梁构件能够沿轴向平移以使第一钳口构件朝第二钳口构件进行凸轮运动,所述I型梁构件连接到螺纹旋转驱动构件,所述螺纹旋转驱动构件联接到旋转驱动螺母,其中旋转驱动轴能够与旋转驱动螺母接合以将旋转运动传输到旋转驱动螺母,并且其中旋转驱动螺母的旋转运动致动螺纹旋转驱动构件和I型梁沿轴向的平移。此外,第一钳口构件和第二钳口构件包括能够与I型梁构件滑动地接合的通道,并且其中旋转驱动螺母的旋转运动致动I型梁在通道中在近侧回缩位置和远侧推进位置之间的平移。外科工具可包括端部执行器,所述端部执行器包括第一钳口构件和第二钳口构件,其中第一钳口构件能够相对于第二钳口构件在打开位置和闭合位置之间运动。外科工具还包括第一致动机构和第二致动机构、以及离合构件,所述离合构件能够选择性地接合第一致动机构或第二致动机构中的任一者以及将旋转运动传输到第一致动机构或第二致动机构中的任一者。此外,第一致动机构包括I型梁构件,所述I型梁构件能够沿轴向平移以使第一钳口构件相对于第二钳口构件进行凸轮运动,所述I型梁构件连接到螺纹旋转驱动构件,所述螺纹旋转驱动构件联接到旋转驱动螺母,其中离合构件能够与旋转驱动螺母接合以将旋转运动传输到旋转驱动螺母,并且其中旋转驱动螺母的旋转运动致动螺纹旋转驱动构件和I型梁沿轴向的平移。此外,第一钳口构件和第二钳口构件包括能够与I型梁构件滑动地接合的通道,并且其中旋转驱动螺母的旋转运动致动I型梁在通道中在近侧回缩位置和远侧推进位置之间的平移。外科工具可包括柄部组件、轴组件、和可互换的端部执行器。可互换的端部执行器包括具有第一电极的第一钳口构件和具有第二电极的第二钳口构件。第一钳口构件能够相对于第二钳口构件在第一位置和第二位置之间运动。柄部组件在所述外科端部执行器的近侧。轴组件在柄部组件和可互换的端部执行器之间延伸。轴组件包括能够传输旋转运动的旋转驱动轴。旋转驱动轴相对于轴组件能够在多个离散位置之间选择性地轴向运动。联接结构能够将可互换的端部执行器可释放地附接到轴组件。外科工具可包括轴组件和可互换的端部执行器。可互换的端部执行器可包括具有第一电极的第一钳口构件、具有第二电极的第二钳口构件、能够使第一钳口构件相对于第二钳口构件在第一位置和第二位置之间运动的闭合机构、以及能够驱动闭合机构的致动驱动器。轴组件在可互换的端部执行器近侧延伸并且包括旋转驱动轴,所述旋转驱动轴能够将旋转运动传输到致动驱动器。联接结构能够将可互换的端部执行器可释放地附接到轴组件。外科工具可包括轴组件和可互换的端部执行器。端部执行器包括具有第一电极的第一钳口构件、具有第二电极的第二钳口构件、能够使第一钳口构件相对于第二钳口构件在第一位置和第二位置之间运动的闭合机构、以及能够驱动闭合机构的致动驱动器。轴组件在可互换的端部执行器近侧延伸并且包括能够传输旋转运动的旋转驱动轴。可互换的端部执行器可释放地附接到轴组件。旋转驱动轴可选择性地轴向延伸,以可操作地接合致动驱动器并且将旋转运动传输到致动驱动器。外科端部执行器可包括第一钳口构件和第二钳口构件。第一钳口构件在其远侧部分上限定外表面。第二钳口构件在其远侧部分上限定外表面。第一钳口构件能够相对于第二钳口构件在第一位置和第二位置之间运动。第一钳口构件和第二钳口构件的外表面中的至少一个包括组织夹持部分。外科工具可包括外科端部执行器、柄部组件和驱动轴。外科端部执行器包括第一钳口构件和第二钳口构件,所述第一钳口构件在其远侧部分上限定外表面并且第二钳口构件在其远侧部分上限定外表面。第一钳口构件能够相对于第二钳口构件在第一位置和第二位置之间运动。第一钳口构件和第二钳口构件的外表面中的至少一个包括组织夹持部分。柄部组件在所述外科端部执行器的近侧。驱动轴在所述外科端部执行器和所述柄部组件之间延伸,并且能够响应于柄部中的致动运动使第一钳口构件相对于第二钳口构件在第一位置和第二位置之间运动。外科工具可包括致动系统、外科端部执行器和轴组件。致动系统用于选择性地生成多种控制运动。外科端部执行器可操作地联接到所述致动系统,并且包括第一钳口构件和第二钳口构件。第一钳口构件在其远侧部分上限定外表面。第二钳口构件在其远侧部分上限定外表面。第一钳口构件响应于由所述致动系统生成的闭合运动而相对于第二钳口构件可被运动地支撑在打开位置和闭合位置之间。第一钳口构件和第二钳口构件的外表面中的至少一个包括组织粘附部分。轴组件用于将所述多个控制运动传输到外科端部执行器。端部执行器可包括第一钳口构件和第二钳口构件。第一钳口构件能够相对于第二钳口构件在打开位置和闭合位置之间运动。第一钳口构件包括第一成正角度的组织接触表面。第二钳口构件包括第二成正角度的组织接触表面。第一钳口构件和第二钳口构件中的至少一个包括至少一个有源电极,所述至少一个有源电极设置在邻近成正角度的组织接触表面的钳口构件上。所述至少一个有源电极能够在第一钳口构件和第二钳口构件处于闭合位置时将RF能量递送到位于第一钳口构件和第二钳口构件之间的组织。端部执行器可包括第一钳口构件和第二钳口构件。第一钳口构件能够相对于第二钳口构件在打开位置和闭合位置之间运动。第一钳口构件包括第一成正角度的组织接触表面和第一成负角度的组织接触表面。第二钳口构件包括第二成正角度的组织接触表面和第二成负角度的组织接触表面。当第一钳口构件和第二钳口构件处于闭合位置时,第一成正角度的组织接触表面与第二成负角度的组织接触表面相对。当第一钳口构件和第二钳口构件处于闭合位置时,第一成负角度的组织接触表面与第二成正角度的组织接触表面相对。端部执行器可包括第一钳口构件和第二钳口构件。第一钳口构件能够相对于第二钳口构件在打开位置和闭合位置之间运动。第一钳口构件包括第一近侧组织接触部分、邻近第一近侧组织接触部分的第一远侧纹理化部分、沿第一近侧组织接触部分设置的第一成正角度的组织接触表面、和位于邻近第一成正角度的组织接触表面的第一近侧组织接触部分中的至少一个第一电极。第二钳口构件包括第二近侧组织接触部分、邻近第二近侧组织接触部分的第二远侧纹理化部分、沿第二近侧组织接触部分设置的第二成正角度的组织接触表面、和位于邻近第二成正角度的组织接触表面的第二近侧组织接触部分中的至少一个第二电极。所述至少一个第一电极和所述至少一个第二电极呈双极构型,以在第一钳口构件和第二钳口构件处于闭合位置时将RF能量递送到位于第一钳口构件和第二钳口构件之间的组织。外科工具可包括端部执行器。端部执行器可包括第一钳口构件和第二钳口构件、轴组件、可旋转的驱动轴、第一电接触件、以及第二电接触件。第一钳口构件和第二钳口构件能够相对于彼此从打开位置枢转到闭合位置。电极定位在第一钳口构件上。轴组件从端部执行器朝近侧延伸,为至少部分中空的,并且限定内壁。可旋转的驱动轴在轴组件内朝近侧延伸。第一电接触件联接到轴组件的内壁并且定位成围绕驱动轴的至少一部分。第二电接触件联接到驱动轴并且可与驱动轴一起旋转。第二电接触件被定位成在驱动轴旋转时电连接到第一电接触件。与外科工具一起使用的外科端部执行器可包括第一钳口构件和第二钳口构件。第二钳口构件能够相对于第一钳口构件从第一打开位置枢转到闭合位置,其中第一钳口构件和第二钳口构件在闭合位置中为基本上平行的。第二钳口构件包括远侧供电电极和偏置的近侧供电电极。偏置的近侧供电电极被定位成在第一钳口构件和第二钳口构件处于闭合位置时接触第一钳口构件的相对的构件。远侧供电电极被定位在偏置的近侧电极的远侧并且在第一钳口构件和第二钳口构件处于闭合位置时与第一钳口构件的导电表面对齐。当第一钳口构件和第二钳口构件处于闭合位置时,近侧供电电极与相对的构件接触并且远侧供电电极不与第一钳口构件的导电表面接触。与外科工具一起使用的外科端部执行器可包括能够从第一打开位置枢转到闭合位置的第一钳口构件和第二钳口构件。第一钳口构件和第二钳口构件限定近侧组织处理区域和远侧组织处理区域。第二钳口构件在近侧组织处理区域中包括偏置的近侧供电电极,所述偏置的近侧供电电极被定位成使得当钳口构件处于闭合位置时,近侧供电电极与第一钳口构件物理接触并且不与第一钳口构件电接触。第二钳口构件还在远侧组织处理区域中包括远侧供电电极,所述远侧供电电极被定位成使得当钳口构件处于闭合位置时,远侧供电电极与第一钳口构件的导电表面对齐。当钳口构件处于闭合位置时,钳口构件在远侧供电电极和第一钳口构件的导电表面之间限定物理间隙。可将本发明所公开的装置设计为单次使用后即进行处理,或者可将它们设计为可多次使用。然而,在任一种情况下,所述装置均可被修复,以在至少一次使用后再次使用。修复可包括如下步骤的任意组合:拆卸所述装置、然后清洗或置换特定部件以及随后重新装配。特别是,所述装置可被拆卸,而且可以任意组合选择性地置换或取出所述装置的任意数目的特定部件或部分。清洗和/或置换特定部件之后,所述装置可以在修复设施处、或者在即将进行外科手术前由手术团队重新装配以便随后使用。本领域的技术人员将了解到,装置的修复可利用多种用于拆卸、清洗/置换和重新装配的技术。此类技术的使用和所得修复装置全都在本申请的范围内。尽管本文已经结合某些公开的示例实施例描述了本发明,但是可对那些示例实施例进行多种修改和变型。例如,可采用不同类型的端部执行器。另外,在公开了用于某些部件的材料的情况下,可使用其他材料。上述描述和以下权利要求旨在涵盖所有此类修改和变型。以引用方式全文或部分地并入本文的任何专利、专利公开或其他公开材料均仅在所并入的材料不与本发明所述的现有定义、陈述或其他公开材料相冲突的范围内并入本文。由此,在必要程度下,本文所明确阐述的公开内容将会取代以引用方式并入本文中的任何相冲突的材料。如果据述以引用方式并入本文但与本文所述现有定义、陈述或者其他公开材料相冲突的任何材料或其部分,仅在所并入的材料与现有公开材料之间不产生冲突的程度下并入本文。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1