计算机辅助的基于图像的增强体内碎石的制作方法

文档序号:13764558阅读:176来源:国知局
本发明涉及从身体去除结石(calculi)。更特别地,本发明涉及尿结石的体内粉碎。现今,用于尿结石的碎石术可以由体外冲击波碎石术或用内窥镜来执行。后者方法被称为体内碎石术。体内碎石术可以由挠性或刚性输尿管镜或经皮肾镜取石术来进行。体内碎石术通常使用激光能来完成。然而,其它技术(诸如弹道碎石术、超声碎石术以及电动液压碎石术)由尿路的使用仪器应用。用于体内碎石术的当前仪器具有多个缺点:存在结果的不良控制。通过试错,泌尿科医师必须手动调整功率设置,启动仪器并且确定手头案例的期望结果已经产生。该处理通常被重复,从而延长该过程(procedure)。另外,可用于由泌尿科医师改变的参数受限制。而且,仪器设置与对正被处理的结石的效果之间常常没有明确的关系。远离内窥镜的结石移动(stonemigration)(称为后退(retropulsion))通常是碎石术的不期望效果。后退产生对进一步调整或重定位仪器的需要,这延长了该过程且增加了其成本。而且,在输尿管镜检查术的情况下,结石沿输尿管向上移动可能导致它进入肾盂,这可能必须使用另一个设备来完成该过程,从而增加了成本并且可能增加发病率。结石的破碎是碎石术的期望效果。然而,传统技术和仪器提供对结石碎片的尺寸的有限且低效控制。通常,各种尺寸的碎片与结石的主体无关。根据经验,大于2mm的结石碎片必须通过提取或通过进一步破碎来处理。因为更小的碎片可以被留在原处,所以它们是期望的。当前,在内窥镜的情况下,泌尿科医师仅可以通过将结石与在图像中具有已知直径的激光纤维进行比较来估计结石尺寸。这种估计可能不准确。在增加功率设置之间存在折衷,这导致更多破碎,但是具有更大程度的结石移动。此外,增加功率往往产生更大的碎片。因此,泌尿科医师必须作出折衷。技术实现要素:根据所公开的本发明的实施方式,提供了用于控制体内碎石装置的功率参数以实现结石的期望粉碎而没有上述不期望的效果的方法和系统。根据本发明的实施方式,提供了一种被构造为将破坏性能量传递至结石的医疗设备。该设备包括:检测器,该检测器操作为从结石获得图像数据;生成器,该生成器根据用于产生破坏性能量的一个或更多个产生参数来操作;以及视频处理器单元,该视频处理器单元从检测器接收图像数据,其中,视频处理器单元操作为在启动所述装置之后分析图像数据,以确定结石相对于结石的先前位置的位移。该设备包括:控制器,该控制器链接到视频处理器单元和生成器,该控制器操作为响应于结石的位移改变生成器的一个或更多个产生参数。根据该设备的一方面,所述视频处理器单元被编程为在所述位移超过位移阈值时发布警报。根据该设备的另一方面,所述视频处理器单元被编程为计算所述结石的移动速率,并且在所述移动速率超过速度阈值时发布运动警报。根据该设备的又一方面,所述视频处理器单元操作为确定所述结石的碎片的数量变化已经发生。根据该设备的另外方面,所述装置包括内窥镜,并且所述破坏性能量包括激光束。根据该设备的另一方面,所述破坏性能量包括声能。根据本发明的实施方式,还提供一种方法,该方法通过以下步骤来执行:确定结石在对象的身体内的第一位置,朝向所述结石引导破坏性能量,此后确定所述结石到第二位置的移动已经发生。该方法还通过以下步骤来执行:响应于所述第二位置与所述第一位置之间的差,建立针对所述能量的新参数;以及使用所述新参数重复引导破坏性能量。根据该方法的一方面,使用内窥镜来执行引导破坏性能量,并且所述破坏性能量是激光束。根据该方法的又一方面,使用体外碎石机来传递引导破坏性能量,并且所述破坏性能量是声能。根据该方法的还有的一方面,确定第一位置和确定所述结石的移动已经发生包括:所述结石的光学成像。附图说明为了更好地理解本发明,用示例对本发明的具体实施方式作出参考,本发明的具体实施方式将连同以下附图被阅读,在附图中,给予相同元件相同参考标记,并且在附图中:图1是根据本发明的实施方式的系统的图形示意图;图2是示出根据本发明的另选实施方式的适用于与图1中所示的系统一起使用的体内碎石术的技术的复合图;图3是示出根据本发明的实施方式的图1中所示的内窥镜的远端的示意图;图4是示出根据本发明的实施方式的如通过内窥镜观察的结石的视图;图5是示出根据本发明的实施方式的如通过内窥镜观察的结石的视图;图6是根据本发明的实施方式的结石的光学图像的示意图;图7是根据本发明的实施方式的在碎石能量施加后得到的图6中所示的结石的光学图像的示意图;图8是根据本发明的实施方式的结石的详细预处理示意图;图9是根据本发明的实施方式的结石的详细后处理示意图;以及图10是根据本发明的实施方式的体内碎石术的方法的流程图。具体实施方式在以下描述中,阐述大量具体详情以便提供本发明的各种原理的彻底理解。然而,对于本领域技术人员来说显而易见的是,不是所有这些详情都一直必须用于实践本发明。在这种情况下,未详细地示出公知电路、控制逻辑以及用于传统算法和处理的计算机程序指令的详情,以不会不必要地模糊一般概念。现在转到附图,最初对图1作出参考,图1是根据本发明的实施方式的系统10的图形示意图。传统内窥镜12适用于体内碎石术。例如,内窥镜12可以是用于到肾盂的经皮入口的输尿管镜或肾镜。内窥镜12可以被装配用于本领域中已知的任何形式的体内碎石术(包括激光碎石术、电动液压碎石术、气动碎石术、超声碎石术及其组合)。由碎石模块13产生的能量借助内窥镜12的工作通道15被投射,该工作通道15可以包括光学探针,该光学探针包括用于将光从源14发送到结石24的光导纤维和光学透镜(未示出)。内窥镜12可以包括在远端16处用于使反射光返回到图像获取单元18的透镜系统和半传导成像阵列(下面描述)。源14可以发射一个或更多个波长的光。图像获取单元18可以被实现为在第8,659,646号美国专利中描述的装置,其通过参考结合于此。现在对图2作出参考,图2是示出根据本发明的实施方式的适用于与系统10(图1)一起使用的体内碎石术的技术的复合示意图。作为用于该过程的内窥镜的肾镜20经皮进入肾22,以处理位于肾盂44中的结石24。肾镜20具有光纤46可以被插入并且置于结石24附近的中空通道(未示出)。另选地,输尿管镜48可以沿反方向(retrogradedirection)穿过尿路以接近结石24。肾镜20和输尿管镜48可以结合上述各种体内碎石技术。返回到图1,图像获取单元18将图像数据提供给处理器32。处理器32通常包括通用或嵌入式计算机处理器,该处理器32设置有存储器19,并且被编程有用于执行在下文描述的功能的适当软件。由此,虽然处理器32被示出为包括多个单独功能块,但是这些块不必须是单独物理实体,而是可以表示处理器可存取的存储器中所存储的不同计算任务或数据对象。这些任务可以在单个处理器上或多个处理器上运行的软件中执行。软件可以在与计算机系统一起使用的各种已知非暂时性媒体(诸如磁盘或硬盘驱动器或CD-ROM)中的任一个上具体实现。代码可以分布在这种媒体上,或者可以通过网络从另一个计算机系统(未示出)的存储器或储存器分配到处理器32。另选地或另外地,处理器32可以包括数字信号处理器或硬接线逻辑。如下面进一步详细描述的,处理器32被编程为执行图像处理例程34,并且使用分析程序36来确定结石的特性。考虑到在此描述的参数,可以存储并且静态模型准备从生成器的启动累积的当前结石的时变特性的数据库38。使用这些特性,处理器32计算最佳功率参数,并且将控制信号发送到碎石模块13的控制器40,该控制器40响应于一个或更多个能量产生参数调整生成器42的功率设置。监测器50可以呈现正被处理的结石的图像52。表1参数功率脉冲速率脉宽离末端的距离后退结石尺寸碎片尺寸结石成分表1是示出可能影响功率设置的参数的示例性表。表1中的前三个参数可由操作者或处理器32控制。在一些实施方式中,处理器32可以自动机械地操纵内窥镜12并且影响末端与结石之间的距离。最后一个参数结石成分可以是已知的、估计的或完全未知的。结石成分显然是不可控的,但是可能对碎片尺寸具有显著影响。例如,可能期望半胱氨酸或尿酸结石与草酸钙结石对激光脉冲不同地进行响应。生成器42根据所采用的上述类型的体内碎石术产生将被施加至结石24的破坏性能量。由此,破坏性能量可以包括激光束。在任何情况下,能量都由碎石模块13来发送,并且被引导至位于远端16之外的结石。结石的一系列图像由图像获取单元18来获取,这些图像包括在能量施加之前和之后得到的图像。现在对图3作出参考,图3是示出根据本发明的实施方式的、内窥镜12(图1)的远端16的示意图。假定远端16位于结石24附近。照明器54能够在图像获取单元18(图1)的控制下发射可见光(通常为白光)。来自由照明器54照射的对象的返回光由透镜系统56聚焦到也由图像获取单元18控制的半传导成像阵列58上,并且这使得能够捕获被照射对象的图像。在图3的示例中,探针57穿过工作通道60,并且被构造为能够借助光纤46(图1)并且沿着从远端64延伸的路径62发送由碎石模块13中的生成器42产生的激光束。激光束传送充足能量,以使结石24破碎或破裂。激光操作典型激光的功率参数是重复率(每秒激光脉冲的数量)、每脉冲的能量以及脉宽。现在对图4和图5作出参考,图4和图5是示出根据本发明的实施方式的被观察为在内窥镜的远端处由半导体成像阵列58(图3)获取的图像的肾盂44中的结石24的视图。在图4和图5中分别看到在碎石能量施加之前、以及碎石能量施加期间或之后的结石24、以及所指示的其轮廓线66。在图5中,结石24已经更深地移动到肾盂44中。结石24的初始轮廓线66被示出为虚线。碎片68保留并且已经转移超过轮廓线66。在激光射击在结石上期间,系统检测并且跟踪图像中的结石,并且使用分析程序36(图1)继续测量结石的运动(例如,反向运动)和破碎。在图5的示例中,箭头指示结石24的移动。这种移动可能在施加至结石24的功率过多时发生。在随后能量施加中,应降低功率,以增加结石将在没有反向运动的情况下破碎的可能性。已知每脉冲更低的能量和更长的脉宽产生更少结石后退。还已知每脉冲更低的能量和更长的脉宽产生更小的碎片,并且反之亦然。结石和碎片的尺寸测量可以基于激光纤维的已知尺寸、例如经过碎石装置的光导纤维或安全导线(例如,例如投射通过工作通道)的瞄准束的光点。在激光碎石术期间,纤维末端通常与结石的表面接触放置或放置在结石附近(通常在1mm内)。通过计算图像中的末端的尺寸与图像中的结石碎片的尺寸之间的关系,基于末端的绝对尺寸,可以计算碎片68的尺寸。结石尺寸的计算还可以基于激光瞄准束的检测。在激光碎石术期间,具有红色或绿色的瞄准束连同人眼不可见的烧蚀激光束一起沿着路径62被发送通过纤维。可见束指示目标的位置。在结石表面上看到的束直径由所使用的纤维的已知尺寸来确定。结石和碎片尺寸可以参考束直径来计算。200μm、270μm或365μm的纤维直径是合适的。这些值不是关键的。现在对图6作出参考,图6是根据本发明的实施方式的通常在监视器50(图1)上呈现给操作者的结石70的光学图像的示意图。从以下论述看出,由如上所述的体内碎石术施加破坏性能量使得结石70碎裂成碎片。现在对图7作出参考,图7是根据本发明的实施方式的在能量施加之后得到的结石70的光学图像的示意图。结石70碎裂成碎片是明显的。碎片的外表面由轮廓线72、74、76来描绘。轮廓线72、74、76由处理器生成,并且用于跟踪碎片的移动。跟踪可以由图像分析的公知方法来执行。第5,697,885号美国专利中公开了一种适当的技术,其通过参考结合于此。图像仅部分被看到。虽然在处理之前,结石70整体可见,但是现在碎片74已经转移并且不完全在视场内。虽然为了清楚呈现,图7中所示的碎片被示出为关于结石70的原始块相对大,但是情况并非总是如此。实际上,碎片通常远远小于该示例中所呈现的碎片。结石碎片移动还可以使用本领域中已知用于检测结石的轮廓线(例如,轮廓线66(图4))并且检测在连续帧中的轮廓的位置变化的算法来跟踪。现在对图8和图9作出参考,图8和图9是类似于图6和图7的结石70的详细预处理和后处理示意图。这些图示出用于结石70的运动跟踪的颜色的使用。结石70的不同区域中的填充图案描绘了不同碎片在结石的图像上的区域。一种运动跟踪方法利用结石的颜色和/或碎片颜色与它周围环境的差异。例如,图8中的区域78在图9的破碎结石中不再完整。而是,区域78的部分表现为单独碎片的更小区域80、82、84。单独地或与边缘检测算法结合地检测颜色对比度提供确定在不同帧中的结石的位置变化的充足信息。在一个操作模式下,系统在继续跟踪实际实现的同时根据预定义算法逐渐增加功率参数、脉宽或两者。例如,改变功率参数的一个顺序(order)是在两次连续射击中能量增加10%,然后脉宽增加10%。另外地或另选地,操作者可以改变内窥镜与结石之间的距离,利用激光技术识别该距离,在超过大约1mm的距离时效率快速下降。一旦系统检测到特定后退量,系统就通过稳定或减小功率参数来做出反应。连续帧中的功率参数可以在有或没有操作者的确认的情况下被自动设置,并且可选地参考上述模型来自动设置,以检验结石正根据模型的预测作出响应。非激光体内碎石术上述技术加以必要的变更可以应用至上述其它类型的体内碎石术(像篮式碎石装置或超声探针)。例如,虽然结石和碎片尺寸不能使用激光的瞄准束来确定,但是它们可以使用碎石机探针的已知尺寸或由图像识别程序进行的图像处理来估计。通过检测结石碎片,碎石模块可以改变施加至结石的破坏性能量。改变内窥镜到结石的距离可以比用激光在弹道技术中更有影响,并且可以在一定程度上由操作者来控制。操作现在对图10作出参考,图10是根据本发明的实施方式的体内碎石术的方法的流程图。该过程在初始步骤86处开始。对象被插管有如上所述且与结石接触放置或放置在结石附近的内窥镜(通常为输尿管镜或肾镜)。内窥镜设置有如上所述的光学成像能力和能量传递系统。接着,在步骤88处,获取结石的初始光学图像。接着,在步骤90处,分析图像以建立结石的轮廓线和/或颜色区域。体内碎石装置的功率参数被设置为初始值,该初始值可以根据从初始光学图像获得的信息而变化。接着,在步骤92处,启动碎石装置。破坏性能量经由内窥镜被发送并且施加至结石。接着,在步骤94处,在完成步骤92之后,获取结石的第二光学图像。接着,在步骤96处,分析第二光学图像以建立剩余结石的尺寸、碎片的数量以及结石和碎片从执行步骤92之前的位置的移动。接着,在决策步骤98处,确定结石及其碎片的移动量是否在预定范围(例如,1mm)内。如果确定是否定的,则控制进行到步骤100。调整碎石装置的功率参数。然后控制返回到步骤92,以使用新功率参数重复启动碎石装置。如果在决策步骤98处的确定是肯定的,则控制进行到决策步骤102,在步骤102中,确定碎石过程是否完成。如果确定是否定的,则控制返回到步骤92,以重复启动碎石装置。如果在决策步骤98处的确定是肯定的,则控制进行到最终步骤104,并且该过程结束。本领域技术人员将想到,本发明不限于在上文特别示出并描述的内容。而是,本发明的范围包括在上文描述的各种特征的组合和子组合两者、以及不在现有技术中的本领域技术人员在阅读前述说明书时将想到的变型例和修改例。权利要求书(按照条约第19条的修改)1.一种医疗设备,所述医疗设备包括:装置(13),所述装置(13)被构造为将破坏性能量传递至结石(24);检测器(18),所述检测器(18)操作为从所述结石获得图像数据;生成器(42),所述生成器(42)包括用于产生所述破坏性能量的一个或更多个产生参数;视频处理器单元(32),所述视频处理器单元(32)从所述检测器(18)接收所述图像数据,所述视频处理器单元(32)操作为响应于所述装置(13)的启动来分析所述图像数据,以确定所述结石(24)相对于所述结石(24)的先前位置的位移,并且所述视频处理器单元(32)被编程为当所述位移超过位移阈值时发布警报;以及控制器,所述控制器链接到所述视频处理器单元(32)和所述生成器(42),所述控制器操作为响应于所述结石的所述位移,改变所述生成器(42)的所述一个或更多个产生参数。2.根据权利要求1所述的设备,其中,所述视频处理器单元(32)被编程为计算所述结石的移动速率,并且当所述移动速率超过速度阈值时发布运动警报。3.根据权利要求1或2所述的设备,其中,所述视频处理器单元(32)操作为确定所述结石的碎片数量的变化已经发生。4.根据权利要求1至3中的任一项所述的设备,其中,所述装置(13)包括内窥镜(12),并且所述破坏性能量包括激光束(62)。5.根据权利要求1至4中的任一项所述的设备,其中,所述破坏性能量包括声能。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1