由金属材料或金属合金制造的可生物相容的颗粒材料以及所述颗粒在椎骨成形术中的使用的制作方法

文档序号:12138374阅读:350来源:国知局
由金属材料或金属合金制造的可生物相容的颗粒材料以及所述颗粒在椎骨成形术中的使用的制作方法与工艺

本发明涉及经皮椎骨成形术或者椎体后凸成形术的外科手术。

更具体地说,本发明的目标是将用于椎骨成形术中的、由可生物相容的金属材料(优选是骨诱导金属)制造的颗粒以及这些颗粒用于该目的的使用。



背景技术:

椎骨成形术或椎体后凸成形术是用于椎骨压缩骨折患者的治疗。

很多原因能够决定椎骨在压缩力作用下的塌缩,该压力通常影响脊柱:可能产生由于胸椎或腰椎的骨质疏松性、创伤性或溶骨性压缩引起的疼痛压缩骨折。主要原因是骨质疏松、多发性骨髓瘤、椎骨移位、或者更简单的创伤。

如已知(见附图1和2),椎骨10有基本圆柱形形状(或者更好的,稍微“沙漏”形状)的主体11,其中,可以辨认出皮层骨的周边环和松质骨的中心部分12以及在后面延伸的多个突出部13(上部关节的、底部关节的、横向的和棘状的)。

80%的负载由主体11来承受,而椎弓根和突出部13执行运动功能,并分配成只承担很小部分的负载。

因此,压缩骨折基本涉及主体。

如前所述,骨折可能由于影响松质骨的骨质疏松情况而产生,该松质骨由于受损的骨小梁结构而不再执行它的支承功能,并在压缩负载的作用下塌缩。然后,松质骨的塌缩使得即使在皮层骨中也产生骨折。

外科手术方法在现有技术中已知。该外科手术方法的目的是通过插入假体辅助装置(例如柔性杆、螺钉和钉)来恢复椎骨的承载能力。

还如本领域技术人员能够知道,这些外科手术非常有创伤性,因为它们需要外科医生产生较大的进口装置,还因为施加杆、螺钉和钉在任何情况下都是对于患者的身体很沉重的外科手术,从身体完全适应假体的存在的观点来看也是负担。

近来,微创外科手术技术已经发展和建立,该微创外科手术需要更包容的进口装置(几毫米),并降低了患者身体的压力,甚至在术后期。

这种技术称为椎体后凸成形术或椎骨成形术,并通过将由聚合物材料制造的球囊导管或机械扩张器插入椎骨本体内(通过更大尺寸的金属插管,大约5mm的直径)而执行。

最多使用的技术提供为使用球囊30:外科医生在产生所需的进口装置后将插管20插入塌缩的椎骨内,这使得球囊30能够插入至椎骨的主体11内并处于该塌缩的松质骨12不再执行其支承功能的区域中。

在患者处于倾斜和分散注意的情况下,医生通过经椎弓根的进口而将插管直接插入椎骨的主体中。整个外科手术步骤在荧光透视下进行。

一旦到达在椎骨的主体内的正确位置,骨压缩装置(该骨压缩装置只是球囊,该球囊通过液体或等效系统来膨胀)通过插管而插入。球囊执行压紧椎骨主体的松质骨的小梁的功能,同时使得塌缩椎骨的内部空腔膨胀。

一旦椎骨的空腔通过球囊而膨胀,该球囊就退出,在整形外科中通常使用的接合剂(即PMMA(聚甲基丙烯酸甲酯))插入这样形成的空腔中,总是通过插管插入。

在椎体后凸成形术中使用接合剂具有立即保证主稳定性的优点,即抵抗作用在脊柱上的压缩负载,这保证了患者的非常短住院时间,以使得患者自身能够在外科手术几天后离开。

另一方面,很多缺点也与PMMA在椎体后凸成形术中的使用相关联。

与使用接合剂相关联的第一个缺点是通过聚合反应而产生热量,该聚合反应发出大量的热。在固结(concrete)物质中均匀地产生温度升高(每100g接合剂产生12-14千卡热量),然后朝向表面传递,它在该表面处耗散掉。还达到接近80℃的温度。这种高聚合温度可能引起局部骨坏死的问题。

由于使用接合剂而引起的还一缺点是,微小的接合剂片段可能脱开以及通过骨折的皮层骨而从椎骨的主体脱离。在文献中这样的病例也不少见,其中,接合剂颗粒从椎骨脱离,从而引起血栓或者其它对于患者极其危险的情况。

特别是,迄今所述类型的椎体后凸成形术外科手术(该椎体后凸成形术外科手术使用接合剂来恢复由具有小梁结构的松质骨执行的支承功能)未解决的遗留问题包括该外科手术并不治疗受损的骨,特别是它并不治疗骨折,而是将自身限制为以合成材料来代替受损的松质骨,该合成材料完成由健康骨来执行的支承功能。



技术实现要素:

因此,本发明的主要目的是克服当前使用的方法未解决的遗留缺陷,特别是完全消除与在椎体后凸成形术外科手术中使用接合剂(PMMA)相关联的缺陷。

因此,在该目的中,本发明的一个目标是消除与PMMA的高温聚合相关联的问题。

本发明的还一目标包括完全消除微小材料颗粒从椎骨本体脱离和传送至身体内的危险,其中有公知的有害结果,在使用接合剂的椎体后凸成形术植入件的临床跟踪研究中报告。

本发明的还一目标是提供一种可生物相容的材料,该材料能够用于椎体后凸成形术外科手术中,以便代替接合剂(PMMA),且该材料也为骨诱导的,即能够刺激和促进骨再生和骨融合,以便治疗受损的骨,而不是用接合剂来代替骨,以便恢复机械负载支承功能。

该目的以及这些和其它目标通过一种根据随后权利要求的可生物相容颗粒材料来实现(优选是基于金属合金),该目的和目标将通过后面对本发明的非限定示例的详细说明而更清楚。

附图说明

通过下面的详细说明将更清楚本发明的其它特征和优点,该详细说明将通过非限定示例来提供,并在附图中表示,附图中:

图1表示了脊柱的一部分的侧视图;

图2表示了两面凹的塌缩椎骨的剖视图,其中,可以看见主体、松质骨以及通过椎弓根进口而插入所述主体内的插管;

图3表示了塌缩椎骨的剖视图,具有楔形形状,且插管插入主体内;

图4表示了已知球囊插入椎骨的主体内;

图5表示了由钛或钛合金制造的多孔小梁表面;以及

图6表示了小梁骨的结构的电子显微镜视图。

具体实施方式

根据本发明,由可生物相容的金属材料(更特别是基于钛和/或它的合金)制造的颗粒产生为具有这样的特征,以便在外科手术阶段中能够同时进行颗粒的插入和骨融合(一旦就位)。

在本说明书中使用的术语“颗粒”将表示具有任意几何形状的固体颗粒,不过优选是但并不排他,具有近似球形几何形状,且具有大约几毫米的平均尺寸,优选是小于7mm,甚至更优选是但并不必须,在4和6mm之间。

在这些颗粒具有球形几何形状的情况下,它们的特征是几毫米的外径,优选是小于7mm,更优选是但并不必须,在4和6mm之间。

根据本发明的优选实施例,所述颗粒将有球形形状,特别是,它们将有实心球形结构。根据不太优选的变化形式,所述颗粒能够有空心球形形状。

优选是,所述球形将有多孔的外表面。

甚至更优选是,所述球形的表面将有小梁、穿孔结构,以便促进骨融合。

根据本发明的、为实心或空心以及有小梁结构的外表面的颗粒或球形颗粒由申请人通过生产技术来获得,该生产技术设想通过高能电子束来进行粉末(金属或聚合物)的局部精确铸造。目前,称为EBM(英文Electron Beam Melting(电子束熔化)的首字母)的这些技术是极其先进的制造技术,它使得具有甚至非常复杂的几何形状和具有不同的表面粗糙度的物品能够从最终产品的计算机绘图开始生产,该物品通过计算机化的机器来处理,该机器引导电子束的动作。

电子束熔化是用于生产植入件结构的、相对较新的快速原型机制造技术,并能够生产复杂的三维几何形状。

使用该技术,能够设计很多表面特征,以便发展用于骨融合、增生以及与无接合剂假体不同的表面优化结构。

根据本发明,该技术能够用于生产颗粒,该颗粒由金属材料或金属合金来制造,具有实心或空心球形结构,有小梁表面以及允许和真正促进骨融合和骨再生的表面粗糙度。

优选是,根据本发明的颗粒将具有这样的表面,该表面有规则的小梁结构,且在一个小梁和下一个小梁之间的孔尺寸为大约一百微米左右。

具有小梁结构的钛表面的一个示例在图5中表示。

图6表示了小梁骨的结构的电子显微镜图。

更具体地说,规则的小梁结构将具有在300和1000微米之间的范围内的孔直径,更优选是在400和800微米之间,甚至更优选是,孔直径将为大约600微米,优选是640微米。

特别是,由于弹性模量非常类似于自然的小梁骨,因此由钛或钛合金制造的小梁结构恢复了负载的生理传递,从而防止损伤骨和真正促进骨的再生。

小梁的钛能够促进骨融合:体外研究表明,在植入的三周内,小梁结构已经在成骨细胞部分完全定植,同时,体外研究已经显示了在26周由于新的板层骨形成而有良好的骨融合。

根据本发明的优选实施例,可生物相容材料的颗粒由金属材料来制造,优选是钛或它的合金,例如钛-铝-钒TiAl4V合金,或者纯等级2钛,或者铬钴合金,或者在生物相容性方面有类似特征和能够促进骨再生的其它材料。如前所述,椎体后凸成形术或椎骨成形术外科手术提供为使用球囊或类似系统,该球囊或类似结构能够压紧目前受损的松质骨,并使得椎骨本体的内部空腔膨胀。即使在使用根据本发明的颗粒(而不是在现有技术中使用的接合剂)的情况下,外科手术的技术保持完全不变。

一旦球囊或其它类似装置已经取出和制备了椎骨的空腔,外科医生就插入根据本发明的颗粒,而不是PMMA。

加入根据本发明的颗粒优选是能够通过插管来进行,该插管与当前在具有球囊和插入PMMA的椎体后凸成形术外科手术中使用的插管相同或完全类似。

因此,通过与当前由现有技术系统来沉积接合剂相同的方法,本发明的颗粒能够沉积在椎骨的主体的空腔内。

必须由颗粒来填充的容积是与由接合剂来填充的容积相同的容积,它大约只有几cc,更特别是1.5-2.0cc。

根据前面所述,根据本发明的颗粒具有大约几毫米的中间尺寸,必须小于插管的直径,颗粒通过该插管而引入椎骨的空腔内,但是在任何情况下,有限数目的颗粒都将很容易充满可用容积。

为了方便颗粒穿过插管插入,优选是可以使用载体物质,例如盐水、血清或者能够通过减小摩擦而帮助颗粒在插管内滑动的其它物质,但并不必须提供。

再有,颗粒能够有利地通过连接装置而相互连接,以便形成链,该连接装置用于限制一个颗粒相对于其它颗粒的相对运动。

更特别是,根据本发明的优选实施例,颗粒具有基本球形空心形状,各球形有布置在径向相对位置处的一对狭槽,各所述狭槽与相邻颗粒的相应狭槽相互连接。

球形颗粒的真正链这样产生,从而限制一个颗粒相对于其它颗粒的相对运动。

由于这种有利特征,即存在限制颗粒的相对运动的连接装置,因此获得使得颗粒在椎骨的空腔(该空腔由颗粒以有序的方式来填充)内压紧的还一优点。使得颗粒相互连接还能够由外科医生更好地控制该颗粒在椎骨空腔内的沉积处理。

一旦颗粒均匀地充满椎骨空腔,将通过颗粒以紧凑方式充满空腔而保证主稳定性,从而均匀地传递负载。

然后,稳定性通过骨融合处理来保证,制造颗粒的材料和表面的小梁构造能够促进该骨融合。

特别是,在文献中已知钛和它的合金具有可生物相容以及能够促进小梁骨的再生的特性,因此促进受损骨的治愈,这是不能通过惰性材料(例如当前的PMMA)来获得的结果。

在椎骨成形术或椎体后凸成形术外科手术中使用所述颗粒也是本发明的目的。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1