泄漏检测方法和设备与流程

文档序号:11714238阅读:273来源:国知局
泄漏检测方法和设备与流程
相关申请的交叉引用本申请要求申请号为61/369,247、申请日为2010年7月30日的美国临时专利申请的优先权,并将该申请的内容在此予以全文引用。本技术涉及与呼吸治疗装置相关的泄漏检测的方法和装置。更具体地,本技术的一些实施例可涉及能用于持续气道正压治疗的呼吸治疗装置中的自动化泄漏检测。
背景技术
:阻塞性睡眠呼吸暂停(obstructivesleepapnea(osa))患者在睡眠期间患有只有在患者觉醒后才能停止的周期性呼吸暂停或呼吸功能不全。治疗osa患者的最好形式是持续气道正压(cpap),所述持续气道正压由鼓风机(例如,压缩机)通过连接的软管和面罩施加。正压防止患者的气道在吸气期间塌陷,因此防止周期性呼吸暂停或呼吸功能不全及其后遗症。这样的呼吸治疗装置可在患者呼吸周期中的适当时刻以治疗压力向患者提供清洁的可呼吸气体(通常为空气,带有或不带有补充性氧气)。呼吸治疗装置通常包括流发生器、空气过滤器、面罩或套管、连接流发生器与面罩的空气输送管道、各种传感器和微机控制器。流发生器可包括伺服控制发动机和叶轮。流发生器还可包括阀,该阀能将空气排放至大气中,作为一种控制发动机速度的替代方式的装置,改变输送至患者的压力。传感器测量除其它参数外,还包括发动机速度、气体容积流率和排气压力,例如具有压力变换器,流传感器,比如呼吸速度描记器和差压变换器,或类似物。所述装置可选择地包括位于空气输送导管路径上的加湿器和/或加热元件。所述控制器可包括数据存储功能,其带有或不带有集成式数据检索/传输和显示功能。使用这种设备的呼吸治疗期间,测量实验对象的呼吸流量通常是有用的,其可用流传感器确定。但是,面罩和患者之间的泄漏是典型的。因此,流传感器可测量呼吸流量加上泄漏的流量的总量。如果泄漏的瞬时流量是已知的,则呼吸流量可通过从呼吸速度描记器的流量减去泄漏的流量计算。用于更正泄漏的流量的已知方法可假设(i)该泄漏是基本恒定的,并且(ii)在足够长的时间后,吸气和呼气的呼吸流量将抵消。如果这些假设都满足,在足够长的时间后通过流传感器的平均流量将与泄漏大小相等,并且准确的呼吸气流可如上描述的计算。已知,通过计算泄漏的电导率测量泄漏。如美国专利号6,659,101所述,电导率可通过低通滤波呼吸气流测量值除以面罩压力测量值的低通滤波的平方根而确定。瞬时泄漏可通过用面罩压力的平方根乘以电导率而确定。如berthon-jones美国专利号5,704,345所述,也已知阀类泄漏存在的指数的确定。该指数以呼气的第一个0.5秒期间的峰值流量与呼气的第二个0.5秒期间的平均流量的比率计算。欧洲公布号0714670a2公布了另一技术,其包括取决于压力的泄漏组成的计算。该方法依靠精确地知道吸气事件的开始和下一个吸气事件的开始的出现。换句话说,泄漏计算作为已知的呼吸的平均值而产生并应用至随后的呼吸,在呼吸治疗,比如经鼻cpap治疗中依然表现出对嘴泄漏的许多担忧,这些担忧可包括如下:1.患者的觉醒率和/或呼吸暂停和呼吸功能不全指数("ahi")可能由于泄漏而增加,影响患者的睡眠结构。2.由于经鼻呼吸流从嘴泄漏出来,可能降低通气支持,这是患者在bi-水平/vpap治疗中特别担忧的。3.可能建立单向经鼻气道,导致上气道脱水,炎症介质充血和释放。此外,单向经鼻流可增加经鼻气道阻力,这反过来可增加口部气流倾向,导致在一个循环中产生更多嘴泄漏。4.由于经鼻症状,患者依从性可能降低。5.由于得到的测得的总流量信号可能没正确计算口部的流量,在患者流量估计和流发生器的控制算法中发生错误的行为。6.儿童的嘴呼吸被证明影响颌面发育。特别地,过度的口腔气流可以导致牙齿排列不整齐(牙齿咬合不正),头部前倾姿势,不规则的锁骨生长,和耳朵感染的易感性增加。发展用于检测和/或测量泄漏的另外的方法,这可能是可取的,该方法可能在呼吸治疗装置,比如用于检测的装置和/或用于治疗上呼吸症状比如osa的装置上实施。技术实现要素:本技术一些实施例的第一方面是提供用于检测泄漏的方法和设备。本技术一些实施例的另一方面是在测量患者呼吸流量信号的装置中检测泄漏。本技术另外的方面是在呼吸治疗装置,比如持续气道正压设备中实施泄漏检测。本技术的一些实施例涉及用于控制处理器的方法,比如通过泄漏检测设备,从而比如从测得的可呼吸气体流量检测泄漏。在这种方法中,所述处理器可确定测得的可呼吸气体流量的多个特征。该处理器可分析所述多个特征从而基于所述多个特征确定泄漏事件。所述处理器也可将泄漏事件分类为多个不同类型的泄漏。在这样一些实施例中,多个不同类型的泄漏可包括持续的嘴泄漏和阀类嘴泄漏。在这样一些实施例中,所述多个特征可包括通气测量值和/或瞬时泄漏测量值。此外,所述分析可涉及通气测量值中和瞬时泄漏测量值的同期变化的确定。该同期变化可以为瞬时泄漏测量值增加和通气测量值减少。进一步地,该分析可能涉及通气测量值和瞬时泄漏测量值的进一步同期变化的确定。在这种情况下,所述进一步同期变化可为通气测量值增加和瞬时泄漏测量值减少。此外,在一些实施例中,该分析可涉及持续时间以同期变化开始并以进一步同期变化结束的泄漏事件的持续时间的计算。在这样一些情况下,测得的可呼吸气体流量的多个特征可包括第一值和第二值,所述第一值与低于呼吸中的最大流量的比例的流量测量值相关,所述第二值与高于呼吸中最大流量值的比例的流量测量值相关。在这种情况下,该分析可能涉及代表第一值出现和第二值出现之间的时间的持续时间值的确定。该分析也可能涉及持续时间值与阈值的比较。在这种情况下,当持续时间值低于所述阈值时,该分析可检测到泄漏事件开始。类似地,当持续时间值等于或超过阈值时,该分析可检测到泄漏事件结束。本技术的一些实施例涉及控制处理器以检测泄漏的方法,所述泄漏可能来自测得的可呼吸气体流量。该处理器的方法可涉及通气测量值和来自测得的可呼吸气体流量的泄漏测量值的确定。该处理器可分析通气测量值和泄漏测量值,从而检测通气测量值和泄漏测量值的同期变化。所述处理器可基于该同期变化识别泄漏事件。在这样一些实施例中,所述同期变化可以为泄漏测量值增加和通气测量值减少。可选择地,所述同期变化可以为泄漏测量值减少和通气测量值增加。在这种处理器中,对通气测量值和泄漏测量值的分析可检测通气测量值和泄漏测量值的进一步同期变化,可选地,该处理器可确定持续时间以同期变化开始并以进一步同期变化结束的泄漏事件的持续时间。在一些这样的实施例中,所述同期变化可以为泄漏测量值增加和通气测量值减少,并且所述进一步同期变化可以为泄漏测量值减少和通气测量值增加。可选地,所述通气测量值可以为一分为二的流量测量值的低通滤波绝对值,并且所述泄漏测量值可以为确定为随计算出的泄漏电导率而变化的瞬时泄漏。在这样一些实施例中,所述分析可能包括代表通气测量值和泄漏测量值的数据的协方差确定。其也可能涉及代表泄漏测量值的数据的梯度的确定。可选地,所述梯度和所述协方差的结果可合并。在这种情况下,基于合并结果与阈值的比较,该处理器可通过对持续嘴泄漏进行打分而识别泄漏事件。本技术另外的实施例可涉及一种控制泄漏检测设备的处理器从而比如从测得的可呼吸气体的流量检测泄漏的方法。该处理器的方法可涉及第一出现和第二出现的确定,所述第一出现与呼吸中低于阈值的流量测量值相关,所述第二出现与呼吸中高于所述阈值的流量测量值相关。所述处理器可分析与第一和第二出现相关的持续时间。基于该分析,所述处理器也可识别泄漏事件。在一些实施例中,所述阈值可能为呼吸的最大或峰值流量的比例。此外,该分析可涉及持续时间与其它阈值的比较。可选地,该比例可为约5%至30%的范围中的分数,比如约17%,比如优选17.5%。在一些情况下,所述持续时间可代表第一出现和第二出现之间的时间。更进一步地,在持续时间低于其它阈值时,泄漏事件可被识别为开始,并且在所述持续时间等于或超过其它阈值时,所述泄漏事件可被识别为结束。在一些情况下,所述其它阈值可能为代表约0.05至0.4秒范围中的若干秒,或约0.2秒比如优选0.18秒的值。一个或多个这些检测控制方法可选择地通过泄漏检测装置来实施。所述装置可包括检测控制器,所述检测控制器具有至少一个处理器,从而存取代表测得的可呼吸气体流量的数据。可选地,所述装置进一步包括流传感器和/或流发生器。所述控制器可用于以所述流传感器确定测得的可呼吸气体流量。此外,所述控制器可进一步用于控制所述流发生器以基于检测到的泄漏,根据压力治疗方案产生可呼吸气体。类似的泄漏检测装置可代表本技术的实施例。再次,这种装置可包括控制器,所述控制器具有至少一个处理器,从而存取代表测得的可呼吸气体流量的数据。所述控制器可用于确定被测可呼吸气流的多个特征。所述多个特征可被分析,从而基于所述多个特征确定泄漏事件。所述泄漏事件可被分类。可选地,基于带有时间的多个特征与大小阈值的比较,所述泄漏事件可确定为嘴泄漏事件,比如持续的嘴泄漏事件。在一些情况下,所述控制器可用于确定测得的可呼吸气体流量的第一和第二特征。该控制器可进一步用于分析第一特征从而检测在预定时间段内第一特征的变化。基于第一特征检测预定时间段的变化的分析,该控制器可进一步用于比较第二特征与阈值。更进一步地,基于所述比较,所述控制器可用于设置泄漏指示,使得泄漏指示为持续嘴泄漏的代表。在所述装置的一些实施例中,第一特征可包括修正协方差信号和/或第一特征的变化可能为负向变化。可选地,所述第二特征可包括协方差总和。在一些情况下,如果比较检测出所述第二特征低于所述阈值,所述泄漏指示可设置为代表持续嘴泄漏。可选地,所述第一和第二特征来源于通气测量值和瞬时泄漏测量值。所述装置的进一步实施例可包括流传感器和流发生器,所述流发生器用于产生压力高于大气压的,用于患者的可呼吸气体。在这样一些情况下,所述控制器可进一步用于以流传感器确定测得的可呼吸气体流量,并控制所述流发生器,以根据压力治疗方案产生可呼吸气体。可选地,所述控制器也可用于控制所述流发生器,以基于泄漏指示,根据压力治疗方案产生可呼吸气体。本技术进一步的实施例可涉及带有控制器的泄漏检测装置,所述控制器具有至少一个处理器,从而存取代表测得的可呼吸气体流量的数据。所述控制器可用于确定测得的可呼吸气体流量的特征,从而分析所述特征并产生泄漏指示,从而排除阀类嘴泄漏,使得泄漏指示代表发觉嘴泄漏。在这样一些情况下,至少一个特征可包括修正协方差信号和/或至少一个特征可包括协方差总和,类似地,至少一个特征可包括指示阀类嘴泄漏水平的信号。可选地,所述特征可来源于通气测量值和瞬时泄漏测量值。类似于其它实施例,所述装置也可包括流传感器和流发生器,所述流发生器用于产生压力高于大气压的,用于患者的可呼吸气体。在这样一些情况下,所述控制器可进一步用于以所述流传感器确定测得的可呼吸气体流量,并控制所述流发生器,从而根据压力治疗方案产生可呼吸气体。可选地,所述控制器可进一步用于控制所述流发生器,以基于泄漏指示,根据压力治疗方案产生可呼吸气体。本技术的另一实施例涉及用于泄漏检测和泄漏控制的呼吸治疗装置。所述装置可包括用于测量压力和流量的传感器,所述流量可归因为可呼吸气体。所述装置可进一步包括流发生器,所述流发生器用于产生压力高于大气压的,用于患者的可呼吸气体。所述装置也可包括与传感器和流发生器结合的控制器。所述控制器可用于控制流发生器以根据压力治疗方案产生可呼吸气体。所述控制器可进一步包括泄漏检测模块,所述泄漏检测模块用于基于测得的流量信号分析检测泄漏事件。其也可包括压力调节模块,所述压力调节模块用于调节所述流发生器提供的,随泄漏检测模块的输出而变化的治疗压力,其中所述调节减少所述泄漏事件。在一些这样的实施例中,所述泄漏检测模块可用于检测持续嘴泄漏。可选地,所述压力调节模块可用于降低随泄漏变化的压力。所述压力调节模块也可用于增加随泄漏变化的压力。更进一步地,所述压力调节模块可用于分析患者流量信号,从而计算压力增加和压力降低的调节可能性。在这样的情况下,所述压力调节模块可基于调节可能性和阈值的比较而调节压力。本呼吸技术另外的特征将在下面的详细描述,附图和权利要求书的评述中更明显。附图说明下面通过如图中的实例对本发明进行举例说明,但这些实例不构成对本发明的限制,其中相同的元件使用相同的附图标记。图1展示了带有可选的流传感器和流发生器的本技术的泄漏检测装置的图;图2描述了指示持续嘴泄漏的流量特征的图;图3为描述了指示阀类嘴泄漏的流量特征的图;图4为用于区分不同类型的泄漏的泄漏检测器实施例的方法的流程图;图5为一种控制一种装置以检测泄漏的方法的实施例的流程图;图6为与通过泄漏检测器发觉持续嘴泄漏相关的各种信号轨迹的图;图6a为与通过泄漏检测器发觉持续嘴泄漏相关的各种信号轨迹的另外的图;图7和7a为一种控制一种装置以基于累积协方差的计算检测持续嘴泄漏(cml)的方法的两个实施例的流程图;图8为用于泄漏检测器的实施例的方法的另外的例子的流程图;图9为描述通过泄漏检测器检测阀类嘴泄漏的流量信号的信号轨迹的图;图10为描述可能指示持续嘴泄漏的流量特征的例子的图;图11为描述可能指示阀类泄漏的流量特征的例子的图;图12为适于检测嘴泄漏事件的实施例中的进程模块流程图;图13为适于检测嘴泄漏事件的实施例中的另外的进程模块流程图;图14为展示了可能用于检测持续嘴泄漏事件的各种特征信号的信号图;图15为展示了可能用于检测阀类嘴泄漏事件的各种特征的患者流量信号图;图16为可能用于检测阀类泄漏事件的可选择的特征的患者流量的另外的信号图;图17为在本技术的一些实施例中的嘴泄漏检测模块的例子的流程图;图17a为在本技术的一些实施例中的嘴泄漏检测模块的例子的另一流程图;图18为基于泄漏持续时间,用于量化泄漏严重性的持续嘴泄漏事件的隶属函数的图;图19为基于泄漏的持续时间,用于量化泄漏严重性的阀类嘴泄漏事件的隶属函数的图;图20为基于不同的泄漏事件,用于量化泄漏严重性的输出函数的图;图21为泄漏检测装置中的控制器的方框图,所述泄漏检测装置包括适于实施本技术的检测方法的所述装置的部件;图22为展示了用于具有本技术的泄漏检测和泄漏控制器的呼吸治疗装置的一些部件的方框图;图23为描述基于以图22的控制器部件进行的压力控制的泄漏的信号图。具体实施方式因此,如图1所示,本技术的实施例可包括具有控制器104的泄漏检测设备或装置102,所述控制器104可具有一个或多个处理器,以实施具体的泄漏检测方法,比如在此更详细描述的算法。因此,所述设置或装置可包括集成芯片,存储器和/或其它控制指令,数据或信息存储介质。例如,包含这种检测方法的程序指令可能编码在所述设备或装置的储存器的集成芯片上,从而形成专用集成芯片(asic)。这样的指令也可以或选择性地以合适的数据存储介质作为软件或固件装入。以这种控制器或处理器,所述设备可用于处理来自流量信号的数据。因此,所述处理器可控制泄漏的评估,比如通过检测泄漏,区别或区分如在此基于从先前睡眠时期中测得的和记录的呼吸流量数据中的更详细描述的实施例中所描述的不同类型的泄漏,和/或确定泄漏时间,持续时间,和严重性。可选择地,该检测可在睡眠时期与呼吸流量信号测量同时进行。因此,在一些实施例中,所述设备或装置本身可选择地与用于测量呼吸流量信号的流传感器106利用实施的方法使用。例如,进入或经过经鼻套管108或经鼻面罩或全脸面罩的流量可用呼吸速度描记器和差压变换器,或类似设备,比如使用一束管子或导管的设备测量,以获取流量信号。可选地,流量信号可从其它传感器推算,比如,2005年11月2日提交的pct/au2005/001688中所述的电动机流传感器,其内容在此予以全文引用。如图1中进一步所示,所述泄漏检测设备102可用于累积或生成泄漏相关数据,如可通过泄漏检测设备102存储或输出的泄漏报告中所述的泄漏事件数据109。如在此更详细的论述,所述输出可在所述设备的显示器上可视地输出或电子转移,例如,以无线方式,到另一个装置。通过进一步的实施例,所述泄漏检测设备能以控制方法使用,从而基于泄漏检测方法提供呼吸治疗,使得所述设备可用作呼吸治疗装置。例如,如图1所示,所述泄漏检测设备102可选择地与流发生器110比如带有用于所述控制的合适的传感器(例如,压力传感器)的伺服控制鼓风机一起使用。因此,呼吸治疗或压力治疗方案,比如与cpap治疗相关的治疗压力水平可通过所述设备的控制器输送,可选地,该治疗可提供相对不断地穿过患者每次呼吸循环的压力,或调节压力以在呼气期间提供较低的压力并在吸气期间提供较高的压力。治疗压力水平可自动地调节以响应osa事件(比如呼吸暂停和呼吸功能不全事件)的发觉,所述osa事件由校正泄漏的呼吸气流信号的确定。可选地,泄漏事件的检测或某些泄漏事件的关键数量可用于确定基线压力是否偏离。因此,这些测量值可作为调节基线压力的基础或起因。可选择地,关键泄漏事件的检测可用于控制丧失对osa事件的自动检测能力或自动改变为治疗压力水平的能力。也可以使用其它压力调节方案。进一步地,关键泄漏事件的检测可作为控制器不能或中断压力治疗输送的情况。例如,在一些实施例中,泄漏事件的检测,比如持续嘴泄漏的检测,可作为呼吸功能不全检测器的一部分。在一些自动化呼吸功能不全检测设备中,从假的阳性呼吸功能不全的意义上说,嘴泄漏可通过呼吸功能不全检测器的自动化方法错误地记分为呼吸功能不全事件。以在此描述的方法,呼吸功能不全事件和泄漏事件的同时发觉可作为防止记分为检测到的呼吸功能不全的基础。例如,呼吸中自动检测到的呼吸功能不全事件的记分能以确认在呼吸中存在检测到的泄漏事件为条件。相对于可检测到的泄漏事件的例子,嘴泄漏可在呼吸治疗,比如经鼻cpap治疗期间以各种不同的方式发生。这些泄漏事件能以患者流量或来自流传感器的,代表患者流量的流量信号差异化表示。例如,该泄漏可能为持续嘴泄漏。可选择地,该泄漏可能为阀类嘴泄漏。在持续嘴泄漏(“cml”)期间,至少在发生泄漏的每次呼吸的大部分时间或全部时间的意义上说,患者的嘴保持打开。一般地,在涉及呼吸的每次泄漏期间,该泄漏使一些经鼻吸入的空气从嘴中逃脱。在图2所示的信号轨迹中说明了这种事件。在这点上,图2包括信号轨迹的上部图和信号轨迹的下部图,两者都在共同的时间刻度上。上部信号轨迹展示了流量的测量值。下部轨迹为泄漏的测量值,在这种情况下为瞬时泄漏,比如美国专利号6,659,101中描述的瞬时泄漏,其内容在此予以全文引用作为参考。该图描述了基于以流量信号代表的泄漏测量值的变化(例如,增加)和通气的变化(例如,减少)之间基于时间的对应关系。在本技术的一些实施例中,这种同期变化的发觉可视为发生持续嘴泄漏或cml的指示。在阀类嘴泄漏(“vml”)期间,经鼻吸入的空气在呼吸周期的一部分期间通过嘴部分地或完全地呼出。一般地,经鼻呼气正常开始,但快速回落至零,因为嘴“啪啪”打开(像阀门),使嘴能呼气。这在流量信号中可以表示为可检测的变化,比如经鼻流量信号中尖锐的负值峰。图3的信号轨迹中描述了这种事件的例子。在这点上,图3包括信号在共同的时间刻度上的信号轨迹的上部图和信号轨迹的下部图。该上部信号轨迹展示了经鼻流量的测量值。该下部轨迹为瞬时泄漏测量值。在本技术的一些实施例中,流量信号中的这种尖锐的负值峰的发觉可视为发生阀类嘴泄漏或vml的指示。如下部轨迹所示,该可检测的变化也可与瞬时泄漏测量值的同期变化一致。因此,如图1进一步所示,该泄漏检测设备102可检测或报告泄漏事件数据109,比如cml和/或vml事件以及关于这些事件的另外的数据。例如,该泄漏检测设备102可区分并报告在一个或多个睡眠时期过程中的检测到的这种事件的总数。该检测器可确定每次泄漏事件的持续时间以及每次泄漏发生的时间。该检测器可报告没发生这种泄漏的时期。基于其占总泄漏事件的百分比,该检测器可进一步报告泄漏事件的衰减。基于其占睡眠时期或治疗时期的总持续时间或泄漏时间的总持续时间的百分比,该检测器可进一步确定泄漏事件持续时间的衰减。该泄漏检测设备102也可确定泄漏指数以总结泄漏的严重性。如在此更详细的论述,该指数可与测得的一种或多种不同类型的泄漏信息结合。该检测器可进一步使用关于泄漏严重性的信号警告,这可以基于严重性指数。例如,如图4所示,在一些实施例中,所述泄漏检测设备102可使用一种方法控制处理器从而从测得的可呼吸气体流量检测泄漏。在440中,所述处理器的方法可涉及从测得的可呼吸气体流量确定多个特征。例如,在一些实施例中,该方法可检测通气测量值,比如潮气量。通气测量值可为一分钟通气(例如,在半分钟至5分钟的范围但优选地3分钟的时段确定的测量值)。可选地,这样的通气测量值可通过将从该时间段(例如,0.5分钟,1分钟,3分钟,5分钟)的流量信号获得的流量样品的绝对值的总和二等分而确定。该测量值也可以确定为以理想时段(例如,半分钟,1,3或5分钟)中患者流量的绝对值的一半的合成(因为患者流量考虑瞬时泄漏和软管压降补偿)。更进一步地,该测量值可通过以若干分钟(例如,半分钟,1,3或5分钟)但优选3分钟的时间常数的患者流量绝对值一半的低通滤波确定。更进一步地,所述测量值可为泄漏测量值或之前提及的瞬时泄漏测量值。通过进一步的例子,所述测量值可以为流量信号或流量信号的其它可检测产物的顶峰或最大流量值。在442,检测器控制所述多个特征的分析以基于所述多个特征确定泄漏事件。所述检测器可控制将泄漏事件划分为多种不同类型的泄漏事件。这样,检测器可区分多种不同类型的泄漏,而不是简单地检测不同泄漏的持续时间或泄漏。例如,在一些实施例中,所述检测器可区分为cml和vml泄漏事件。a.cml泄漏事件检测实施例可用于检测cml类泄漏事件的方法可参见图5至7。例如,如图5所示,在这样一个实施例中,在540,检测器的处理器可从测得的可呼吸气体流量确定通气测量值和泄漏测量值。在542,该处理器可分析通气测量值和泄漏测量值以检测通气测量值和泄漏测量值的同期变化。在544,该处理器可基于同期变化识别泄漏事件。这样的同期变化可为,例如,通气减少和泄漏增加,或通气增加和泄漏减少。可选地,这样进程可基于协方差的确定。在这样的实施例中,协方差能以下面的自动化分析和泄漏检测器102的计算确定。对于这样的实施例,输入的数据可以被处理。该输入可包括从分钟通气测量值(例如,1分钟,3分钟,5分钟等等)中抽样的通气值,从泄漏测量值中抽样的瞬时泄漏值和从流量信号比如滤波流量信号中抽样的患者流量值。可选地,该数据可以缓冲。例如,通过呼吸原则,在呼吸中可以缓冲该流量值。因此,泄漏检测器的输入模块可存储当前输入值(例如,通气样品和泄漏样品以及带有代表当前呼吸的流量值的输入矢量)。可以按如下可选择地进行这样的通气处理,泄漏进程,呼吸检测进程和协方差进程:(1)通气确定流量值用于确定分钟通气值(例如,3分钟通气),该流量值可选地为均匀的通气值。例如,从获得流量信号的样品反过来用于确定当前均匀的通气值。如在此更详细的论述,这也应用于患者流量矢量。通气确定进程可以如下:(a)获得患者流量值qp;(b)用低通滤波器比如理想的低通滤波器确定均匀的通气。这可通过等式来管理:其中:vn为瞬时分钟通气,例如,以表示;为之前均匀的通气值。为新的均匀的通气值。a可以根据通气时间常数(τ)(例如,30或60)和抽样时间(δt)以下面的等式确定。可选地,该通气时间常数可在30秒至5分钟的范围内。优选地,其可为约30秒。确定均匀通气的进程与计算3分钟或5分钟通气的进程是相同的,但可能使用不同的时间常数。可选地,在一些实施例中,所述通气测量值进程也可以基于觉醒检测,以在通气测量值中使与觉醒相关的呼吸的影响最小化。如果众多的觉醒影响通气测量值,觉醒后通气将减少。为了避免这种影响,该通气测量值可更改为“无觉醒”通气测量值。例如,当检测到觉醒时(例如,基于下面论述的“觉醒标志”),该通气测量值可保持不变或维持(例如,通过设置之前通气值为当前通气值,如下:直到恢复正常呼吸)。在这种情况下,可使用觉醒检测器,如下:在每次呼吸后:(1)测量末尾呼吸的峰至峰流量(例如最大的流量减去最小的流量)。(2)如果该值比大于末尾呼吸(例如,末尾20次呼吸)的平均的峰至峰流量的一些因子(例如,1.5倍)更大,视为觉醒。(3)当末尾呼吸为觉醒时,设置“觉醒标志”,使得通气测量值可忽视该值直到所述标志重新设置。也可使用其它觉醒检测方法。(2)泄漏确定过滤瞬时泄漏值,例如,通过理想的低通过滤器使输入值随时间变均匀,其可通过等式管理:其中:xn为测得的当前瞬时泄漏;为之前均匀的泄漏值。为新的均匀的泄漏值。a可根据时间常数(τ)(例如20)和抽样时间(δt)通过下面的等式确定:可选地,该泄漏时间常数可以在10秒至2分钟的范围内。优选地,其可以为约60秒。(3)呼吸缓冲区将患者流量值加上呼吸矢量或其它数据结构,以存储数据。该数据结构,矢量或缓冲区可用于以后的决策,这里所描述决策可以使用逐次呼吸分析。这种缓冲区可能会被每个新的呼吸清除。因此,该数据结构可以用于收集随每次吸气开始或呼气结束的检测而变化的流量数据。可选地,这些泄漏和通气输入值可进一步缓冲,例如,作为具有在选定的时间段(例如,以大约秒,比如20-120秒的范围,比如约20秒或30秒)的均匀的泄漏值的环形缓冲区,和作为具有在选定的时间段(例如,以大约秒,比如20-120秒的范围,比如约20秒或30秒)的通气值的环形缓冲区。因此,这些信号缓冲区可以维持最新的通气值和均匀的泄漏值的记录,比如末尾20,30或60秒的值。(4)协方差确定协方差特征c可以基于环形缓冲区的通气数据和泄漏数据而计算。这样的协方差特征c可视为但不一定等同于两个信号的协方差。信号协方差可视为两个变量一起增加或减少多么密切的测量值。高度正相关协方差表明两者一起紧密移动,而高度负相关协方差表明其成反向移动(即,一个增加而另一个减少)。因此,通气和泄漏缓冲区可以表示为[(v={v)]1,v2,...,vn}和[(l={l)]1,l2,...,ln},该通气和泄漏缓冲区分别地通过下面的进程分析:(1)首先,通气和泄漏协方差(cov)可用下面的方程式计算:(2)如果cov(v,l)≥0,那么该检测器可设置cov(v,l)≥0。如果需要专注于负协方差(例如,(1)当通气减少而泄漏增加时,其可视为持续嘴泄漏事件开始的指示,或(2)当通气增加而泄漏减少,其可视为持续嘴泄漏事件结束的指示),那么可以进行该步骤。因此,可以使用该步骤以忽视正协方差。(3)可选地,该协方差至也可乘以泄漏缓冲区的梯度的符号或正负号函数。这能区分泄漏事件的开始(泄漏增加)和结束(泄漏减少)。可选地,为了使算法运行时间减到最少,该梯度运算可简化为仅仅用一些沿着泄漏缓冲区均匀间隔开的值(例如,10个点)估计。例如,所述梯度可用以下获得:其中,t={1,2,...,10}。因此,在实施例中,最终的协方差特征值c可用下面的方程式确定:c=sign(grad(l))×cov(v,l)然后该协方差特征可以随时间而累积。例如,该协方差特征c值可随时间加和或积分,从而形成累积协方差特征ac。例如,该处理器可将协方差特征c积分以确定随时间变化的,协方差特征c代表的曲线下的面积。该步骤可用于使时间依赖性减到最少。例如,如图6所示,该协方差特征c本身可能不会总是大的,但可以是中等的,并在一大段时间内可以维持。在图6中,包括泄漏事件、通气测量值v、瞬时测量值l、协方差特征c和累积的协方差特征ac的流量信号f的信号轨迹绘制在共同的时间轴上。在一些实施例中,累积协方差特征ac可以用如下的自动化进程计算:(1)以ac=0的特征值开始;(2)对于确定的协方差特征c的每个值,用下面的方程式更新累积协方差特征ac:ac=ac+tslow×c其中,tslow为乘数,该乘数使总和成比例从而保证在抽样时间的变化不会改变特征值;(3)如果c末尾值为不同的符号或等于零,那么累积协方差特征ac在增加任何新的值之前重设为零。这样,累积协方差特征ac的值在一个方向(例如,泄漏增加,或泄漏减少)追踪持续协方差的大小。可选地,在一些实施例中,累积协方差信号可以基于各种另外的情况重设(例如,为零)。基本上,这是为了确保不利的影响,如面罩的装配,压力调节等,在泄漏检测过程中依赖泄漏和通气值之前,使泄漏和通气值稳定。例如,在检测器的一些实施例中,可以使用下面的情况。(a)末尾10次呼吸的5次具有阀类嘴泄漏。这样的情况可视为长时间的vml事件已经引起通气值显著减少的指示,通气值显著地减少可以发生在严重的vml事件的情况下。基于ac信号的检测器可将该事件错误地报告为cml事件而不是正确地报告为vml事件。这种情况可使这种假阳性减少。(b)当激活smartstart/stop特征时。smartstart是在装置检测到患者呼吸来自或进入面罩时,一种使呼吸治疗装置自动开始压力治疗的特征。smartstop使压力治疗在该设备检测到患者移开面罩时自动停止。这些检测可基于检测面罩处的压力的某些变化。在利用这些特征的事件中,当检测到移开了面罩或当检测到初次使用面罩时,ac信号可重设为零。这种ac信号调节可以使治疗开始期间或治疗接近停止时可能出现的泄漏或通气值的剧增值无效。这可以通过估计流量数据以检测特定时间段(例如,2分钟)的“长呼吸”来检测。可选地,该ac特征在使用开始时间段(例如,范围为1至4分钟的时间段,并优选呼吸时间约第一个二分钟)可维持为零。(c)当泄漏达到特定水平当泄漏缓冲区的瞬时泄漏测量值的泄漏值超过一定的阈值(例如,超过1.5l/min)。累积协方差特征可以重设(例如,设置为零)。这种重要的泄漏值可以地检测过程有不利影响,并且不可能为cml事件的指示。实际上,这种高度泄漏更可能为一些错误的指示而不是cml。因此,用于检测cml事件的方法可基于累积协方差特征ac。这可能涉及ac特征与一个或多个阈值的一个或多个比较。在这点上,图6的累积协方差ac信号轨迹可视为指示cml事件在时间t1开始并在时间t2停止。这些时间之差可视为cml事件的持续时间的测量值。在t1和t2为样品数的情况下,该持续时间可以是采样数。此外,累积协方差特征ac的大小可作为cml事件的当前状态的数量词。更进一步地,在给定的cml事件中,累积协方差特征ac的峰值,比如ac的负值峰或绝对值的峰,可作为量化特定的cml事件的测量值。通过进一步的例子,cml事件的量化可基于cml事件检测和泄漏或瞬时泄漏的测量值。例如,在该cml事件的特定时间段中泄漏测量值可作为cml事件的数量的测量值。在一些实施例中,合并或合计从该事件的开始时间至该事件的停止时间的泄漏测量值可作为这样的测量值。在实施例中,该累积协方差ac可用作cml事件检测的算法的一部分,比如图7的流程图的检测过程,从而确定是否具有持续嘴泄漏事件。在这样的实施例中,变量(cml状态)可设置为基于累积协方差ac特征指示cml事件是否发生。该进程可循环用于确定累积协方差ac特征的每个新的值。在图7中,760处,检测过程确定cml状态变量的当前状态。如果该cml状态变量为开(即,cml事件在进行中),那么流程前进到774。如果cml状态为关(即,cml事件不在进行中),那么流程前进到762.在762,该ac特征与预定阈值比较,所述预定阈值基于来自一个或多个患者的已知数据比如通过机械学习过程根据经验确定。例如,如果累积协方差ac低于开始阈值(例如,-0.19l2/s2),进程可流动到764。如果不是,进程可流动到772,在772,cml状态变量没有发生状态变化,并且该进程能以下一个ac值重新开始。可选地,该开始阈值可在约-0.001l2/s2至约-2.0l2/s2的范围内,比如约-0.133l2/s2。可选地,在764,可检查呼吸矢量以确定当前呼吸是否为长时间呼吸,比如超过分钟或秒的顺序的时间段(例如,从约100至140秒的范围,但优选120秒)的呼吸。如果当前呼吸为“长”呼吸,那么进程可以流动至772,在772,cml状态变量没有发生状态变化,并且图7的整个进程能以下一个ac值重新开始。可选地,在766,可以检查计时器以确定自末尾长呼吸后是否已经流逝一段时间,这将使缓冲区得到填补,并且使系统能再次正常运行。可选地,该时间段可与定义长呼吸的时段相同或大约相同。例如,该时段可为从约100至140秒的范围,但优选120秒。该计时器将典型地以每次检测到的长呼吸结束的检测为开始。如果时间段已经流逝,那么流程前进至768。如果该时间段没有流逝,进程可以流动至772,在772,cml状态变量没有发生状态变化,并且图7的整个进程能以下一个ac值重新开始。可选地,在768,检查先前事件的数据以确定一些之前的呼吸是否具有检测到的阀类泄漏(vml)事件。例如,前面几次紧邻的呼吸中(例如,5至15的范围,但优选10),这些呼吸中的一些(例如,半次或更少,比如5次)是否具有vml事件。如果有这样的事件,流程前进至770,在770,cml状态变量设置为开,以指示检测到的cml事件的开始或存在。如果没有这样的事件,那么进程可流动到772,在772,cml状态变量没有发生状态变化,并且图7的整个进程能以下一个ac值重新开始。在774,作为对760查询积极响应的结果,累积协方差特征ac与另一预定阈值比较,该预定阈值可能与762的开始阈值相同或不同。在这点上,774处的所述阈值可视为停止阈值,该停止阈值可相似地通过经验实验或分析确定。在774的比较的例子中,如果ac特征不高于停止阈值(例如,0.1l2/s2),那么流程前进至776。如果ac特征高于停止阈值,进程流动至780,在780,cml状态变量发生状态改变,将该变量设置为关,从而指示cml事件结束。可选地,该停止阈值可在约0.001l2/s2至约2.0l2/s2的范围内,比如约+0.05l2/s2。其后,图7的整个进程能以下一个ac值重新开始。在776,检查通气以确定通气测量值是否已经恢复或未恢复至其前clm检测值。该确定可以基于通气缓冲区的值和在cml事件检测开始时设置的之前记录的通气值,比如在770设置这样的通气阈值。例如,在776,如果该通气未恢复至其在当前cml事件开始之时或之前的数量,流程前进至778。如果通气已经恢复,进程流动至780,在780,cml状态变量发生状态改变,将该变量设置为关,从而指示cml事件结束。其后,图7的整个进程能以下一个ac值重新开始。在778,检测器确定泄漏的测量值是否已经恢复至其当检测前cml事件之前的水平或数量。该确定可以基于泄漏缓冲区的值和之前记录的泄漏值,之前记录的泄漏值在cml事件检测的开始时设置,比如通过在770设置这样的泄漏阈值。例如,在778,如果该泄漏已经恢复至其当前cml事件开始之前的数量,流程前进至772。在772,cml状态变量不发生状态变化,并且图7的整个进程能以下一个ac值重新开始。但是,在778,如果泄漏已经恢复,进程流动至780,在780,cml状态变量发生状态改变,将该变量设置为关,从而指示cml事件结束。其后,图7的整个进程能以下一个ac值重新开始。以在泄漏检测器102的处理器中使用这样的进程,可以检测cml事件。但是,在该实施例中,假阴性优于假阳性。为此,检测持续嘴泄漏cml事件开始的标准比检测cml事件结束的标准更严格。在该实施例中,如之前提及,长呼吸的测量值的检验可确保比如通气和泄漏剧增的事件在以下情况下发生:(a)当第一次开始该治疗设备时;(b)当面罩被放置在患者脸上之前开始该治疗设备时;或(c)由于其它延长现象,不被错误地分类为cml事件。以在776和778之前记录的起始值检验泄漏和/或通气测量值能确保即使在不利状况下,也可以检测到cml事件的结束。例如,在有些情况下,cml事件可能继续从而隐藏泄漏,并且可能不具有稳定的协方差,然而,所描述的检测器进程依然可预示cml结束。在一些实施例中,可以基于770处的进程而记录泄漏和通气的起始值。但是该起始值也可以指的是在以这样的时刻检测到的相关时段为开始的时间上一致的通气和泄漏值:刚好在检测到当前cml事件开始之前检测到协方差特征c的符号最后改变时。在一些实施例中,776和778进程的阈值比较可以涉及泄漏和通气的起始值以及通气和泄漏缓冲区的平均值,例如,起始泄漏可以与泄漏缓冲区的泄漏值的平均泄漏值比较,而起始通气可以与通气缓冲区的通气值的平均通气值比较。例如,如果该通气缓冲区的平均值比起始通气值更大,该检测器可以预示该cml事件已经结束。此外,如果泄漏缓冲区的平均值比起始泄漏更小,该检测器可以预示该cml事件已经结束。在一些实施例中,如768的进程所使用,核对阀类嘴泄漏事件的前面若干紧邻的呼吸(例如,在最后5-15次呼吸的范围内的若干呼吸,比如优选10次)可能是可取的。在严重的情况下,延长的vml事件可引起通气显著减少,这可能反而被检测为cml事件。但是,768的进程可减少该问题。图7a描述了基于累积协方差ac检测cml的另一实施例。该进程的该方法与图7的进程是可比较的。但是,省略了图7的764处的长呼吸核对,766处长呼吸流逝的核对和768处的最后几次呼吸的核对。此外,图7a在769增加了另外的可选的核对。在769,检测通气测量值从而确定其是否已经下降至低于一定的量,比如,通过使该其与阈值比较。所述阈值与起始通气值相关。因此,当在760检测到潜在的cml事件开始时,进程前进至769从而确定通气是否已经充分下降,比如下降量低于760处的核对之前的通气百分数(例如,约85%)。在一些情况下,巨大的面罩泄漏和微小的通气变化可能具有稳定的协方差,但不会是真实的持续嘴泄漏事件的结果。微小的通气变化可能与患者的呼吸方式有关。因此,如果通气没有充分变化,该核对可用于防止cml事件的假阳性指示。在此虽然没有展示,但这种核对也能可选地用于图7的进程的例子中。与图6类似,图6a展示了与cml事件的检测相关的信号轨迹的另外的图。但是,在该版本中,描述了另外的信号,其可以代表cml状态变量的状况(图6a表示为cml-s),该状况可以通过之前所述的任何方法设置。流量信号f,cml状态信号cml-s,泄漏信号l,通气信号v,协方差信号c和累积协方差信号ac也绘制在共同的时间轴上。该cml事件描述为发生在时间出现t1和时间出现t2之间的时段。如图6a所示,cml事件开端的真实时间和其检测之间可能会有延迟。这样的延迟可能由于协方差的处理,并特别是可能由于在一些实施例中使用的协方差缓冲区的时间长度。为了补偿这种延迟,该检测器的一些版本可以使用协方差时间延迟(cov延迟),该协方差时间延迟可作为用于将cml状态变量设置为非检测状态的另外的条件,或可能用于检测cml事件的时间。该延迟如图6a所示。在该图中,点d1(当cml事件在时间出现t1真正开始时)和点d2(当该检测器在时间出现t1-d初次检测到该事件时)之间描述了该延迟。该cov延迟时间以线d1--d2的时间段表示。因此,在一些实施例中,检测到的事件的时间段的确定可通过与检测的时间延迟(例如,t1-d减去t1)相关的延迟时间调节。例如,该时间可能增加至该事件的结束t2处名从而检测该事件的总时间。可选择地,设置cml状态变量为关(例如,图7a的过程780)的方法能以这样的计时器的运转为条件:在cml状态变量设置为关(在时间出现t2-d)之前,具有cov延迟的流逝时间段。例如,该计时器可在图7a的进入进程780后开始运转,并且当该计时器已经过cov延迟时间段时,该cml状态变量可设置为关。b.vml泄漏事件检测实施例用于检测vml类泄漏事件的方法的例子可参见图8和9。在一些实施例中,这样的进程可分析来自患者流量信号的数据从而检测尖锐的负值峰,比如在呼气期间的,可以视为代表典型的阀类嘴泄漏的负值峰。在这样一个实施例中,该进程可以测量在呼气期间患者流量低于选定的截止流量水平的持续时间。如果该持续时间被认为非常短,那么,可以认为这是很可能发生阀类嘴泄漏的尖锐的负值峰。例如,如图8所示,在这样一个实施例中,在880,检测器的处理器可确定第一出现和第二出现,所述第一出现与呼吸中低于阈值的流量测量值相关,所述第二出现与在该呼吸中高于阈值的流量测量值相关。在882,该处理器可分析与第一和第二流量出现相关的持续时间。在884,该处理器可基于分析识别泄漏事件。这样的过程可基于之前所述的流量缓冲区,该流量缓冲区包含来自流传感器的数据和来自过滤的流量信号的可参考数据。该缓冲区的数据可代表一次完整呼吸。因此,此处的vml检测过程可在表示一次完整呼吸的数据的基础上逐次呼吸地进行。来自检测过程的输出可被认为是vml状态变量,该vml状态变量指示分析的呼吸是否包含阀类嘴泄漏事件。因此,在该实施例中,检测器处理来自具体呼吸的患者流量信号的数据并确定在该呼吸中是否存在vml事件。这样的过程可参见图9的流量信号轨迹的图。在图9的患者流量轨迹f中,呼吸b具有阀类嘴泄漏。在该进程中,在检测阀类泄漏中可参考在比正常呼吸nb的流量小的具体流量下消耗的时间。在该vml检测过程的实施例中可使用下面的计算:(1)确定qcutoff的值,该值为预定流量的预定比例,该预定流量在具体呼吸的最小流量qmin和峰值流量992或最大流量qmax之间。例如,这个比例可代表具体呼吸的最大流量qmax的分数或百分数。该百分数可在约5%-30%的范围内,但优选约17%比如17.5%;(2)确定呼吸中流量初次低于qcutoff的点994-a的出现;(3)确定在相同的呼吸中流量恢复至高于qcutoff的点994-b的下一次出现;(4)确定点994-a和994-b之间的持续时间(例如:时间,或样品数)。例如,时间的持续时间可通过获得时间t1和t2(如,分别与点994-a和994-b相关的图9的示意图所示)并从t2中减去t1而确定。可选择地,该样品数可用作持续时间而不用实际换算为时间的测量值,比如通过计算t1和t2之间的样品的数量;(5)比较确定的持续时间与阈值。例如,如果阈值在很短的时间内,比较持续时间和时间阈值,该时间阈值可由一个或多个患者的已知数据通过经验确定,比如通过机械学习。例如,合适的时间阈值可以为在0.05至0.4秒的范围内,比如0.14或0.18,或约0.3s。可选择地,基于样品数的持续时间可与代表预定样品数的阈值比较;(6)基于比较设置vml状态变量。例如,如果持续时间低于阈值,该vml状态变量可设置为开,从而指示在该呼吸中检测vml事件;否则,该vml变量可设置为关,从而指示在该呼吸中没有检测到vml事件。这种事件的数量和计时可在治疗时期中记分。可选地,可获得呼吸中具体vml事件的确定的持续时间,并以量化具体的vml事件的重要性的测量值报告。c.进一步的实施例本技术的进一步的例子可参见图10至17的实施例的图,该实施例也可进行cml和/或vml事件检测。在该实施例中,持续嘴泄漏的确定,比如通过进程算法,可能基于通气信号和泄漏信号。在该实施例中,如果通气减少同时泄漏增加,这预示cml开始。同样,通气增加伴随泄漏减少指示cml结束。图10描述了在cml时段中捕捉的,一个典型时期的数据。典型地,在该时段持续的空气流进入嘴中并且表面通气将减少,而通过流发生器检测到的泄漏将增加。图10包含在共同时间刻度上的信号图,该信号图包括总流量信号(tfs),所述总流量信号为原始的鼓风机流量信号,比如来自流传感器。同样展示了患者流量信号(pfs),所述患者流量信号为从总流量信号中减去瞬时泄漏信号和排气流量信号而获得的信号。尽管可以使用任何泄漏测量值(参见美国专利号6,659,101),在该具体实施例中,瞬时泄漏信号(ils)可以为通过当前压力修正的面罩平均流量。这种瞬时信号的概念可将时间的当前瞬间认为是当前瞬间泄漏。该通气信号(vs)可以是通过低通过滤患者流量计算的分钟通气(例如,3分钟)。在此更详细地论述了数据的处理以产生这些信号。在该实施例中,阀嘴泄漏的确定,比如通过过程算法,可以基于患者流量信号。例如,通过检测阀类嘴泄漏的典型的尖锐的负值峰。在这样的情况下,一种算法可测量呼气期间患者流量低于截止流量水平的(在每次呼吸中)持续时间。如果该持续时间非常短,可以看作是尖锐的负值峰并且可能发生vml。图11描述了阀类嘴泄漏的一段时间中捕捉的,一个典型时期的数据。早期呼气中,尖锐的负值峰也被称为“阀类”效应,其发生在早期呼气嘴打开时。在图11中所示的总流量信号,患者流量信号,瞬时泄漏信号和通气信号与图10的信号是可比较的。(1)进程概述图12为嘴泄漏检测进程算法的例子的高水平概述图。该算法可具有3个信号输入:来自患者流量信号进程1210的患者流量信号,来自通气信号进程1214的通气信号和来自瞬时泄漏信号进程1212的瞬时泄漏信号。嘴泄漏模块进程1216用这些输入进行计算,然后报告嘴泄漏状况信息1218,比如指示嘴泄漏的二进制真/假输出。该实施例的输入1210,1212和1214中涉及的进程可如下:1.患者流量或患者流量信号:这可以是呼吸流量信号并且可以是来自流传感器的过滤测量值(在1210);2.通气流量或通气流量信号-这可以在1214计算或确定为设置的时间段(例如3分钟)中患者流量信号的绝对值的积分值的一半。三分钟通气信号可以是3分钟或180秒中患者流量信号的积分值;3.瞬时泄漏或瞬时泄漏信号:这可以通过下面的进程在1212计算或确定:-通过获得总流量并减去排气流量或排气流量信号计算面罩流量或面罩流量信号(该排气流量可以是通过用于气道正压治疗的排气面罩的排气口的流量)。-通过低通过滤具有恒定或可变的时间常数的面罩流量计算面罩平均流量。(这可以认为是面罩流量信号的有效的“dc”组分或平均值。)-通过用当前面罩压力求平方根,然后用具有恒定或可变时间常数的低通过滤器过滤该平方根,计算均方根面罩压力。面罩压力可以是从压力传感器测得的压力,比如位于呼吸治疗装置的流发生器的压力传感器,该压力传感器用于调节由于在输送压力治疗,比如气道正压(pap)中使用的特定软管和面罩造成的压力损失。-当前面罩压力的平方根除以均方根面罩压力,再乘以平均面罩流量,从而计算出瞬时泄漏。可选择地,可用最初计算出的平均泄漏而不是使用瞬时泄漏计算所述的嘴泄漏。(b)嘴泄漏模块进程实施例1216处的嘴泄漏模块进程可进一步参见图13的示意图。1216处的模块划分为4个子模块部分或子进程部分,该子模块部分或子进程部分包括1322处缓冲进程,1324处的vml特征计算进程,1326处的cml特征计算进程和1328处的嘴泄漏分类进程。1322处的缓冲区进程可基于分别在1210至1214的患者流量进程,瞬时泄漏进程或通气进程产生的数据更新缓冲区1322。因此,该进程的输入可以包括代表患者流量,通气和泄漏的信号。来自该进程的输出可以包括泄漏缓冲区,通气缓冲区,患者流量缓冲区。该泄漏和通气缓冲区可用于维持近期数据记录,比如记录的值的最后若干秒(例如,约120秒)。该输入信号可能被抽样,比如,以大约0.5hz的频率,从而产生缓冲区。例如,来自每个输入信号的最新样品可每2秒增加至分别的缓冲区,并且因为仅可使用粗略的趋势,最旧的样品可移除。也可以使用其它样品比率。该患者流量缓冲区可以是来自患者流量的环形缓冲区并且可包括当前呼吸的流量。呼吸暂停,呼吸功能不全或rera的出现可引起呼吸信号的波动,这可能与嘴泄漏事件的出现混淆。因为这,在一些实施例中,该缓冲区的填充可受限于或基于呼吸暂停,呼吸功能不全和/或呼吸相关觉醒(rera)事件症状的检测。例如,如果呼吸事件比如呼吸暂停,呼吸功能不全或rera发生,那么在一段时间比如180秒,在使用3分钟通气信号的事件中,样品不可以加入通气或泄漏缓冲区,之前所述的。此外,在该呼吸暂停,呼吸功能不全或rera事件中,所述嘴泄漏(ml)状况在该事件中和在与通气缓冲区的时间常数可相比的一段时间可设置为假。1326处的cml特征计算进程该模块的进程可计算指示持续嘴泄漏存在的特征,比如在此更详细描述的修正协方差特征和/或协方差总和特征。这可以基于包括通气缓冲区和/或泄漏缓冲区的输入数据。该输出可包括修正协方差信号和/或协方差总和信号。如在此更详细的描述,可以确定该修正协方差和协方差总和。如之前所述,分别以[(v={v)]1,v2,...,vn}和[(l={l)]1,l2,...,ln}表示通气和泄漏缓冲区,该协方差可以用下面等式计算:该协方差可乘以泄漏缓冲区(l)的梯度符号,从而区别嘴泄漏片段的开始(泄漏增加)和结束(泄漏减少)。该梯度可根据以下确定:其中:l为泄漏缓冲区;li为ith泄漏值;为泄漏缓冲区的平均值;t为计算梯度的区间(ti=1,2,...,n);并且为区间t的平均值。“修正”协方差值(modifiedcov)可通过下面的公式确定:modifiedcov=sign(grad(l))×cov(v,l)最后,通过下面的等式对修正协方差(cov)信号求和计算协方差总和(covsum)。如果协方差(cov)从正数转变为负数或从负数转变为正数,那么在继续求和之前该协方差设置为0。covsumi=modifiedcovi×tslow+covsumi-1其中:covsumi为时间的当前瞬间的协方差总和;covsumi-1为时间的前一瞬间的协方差总和;modifiedcovi为时间的当前瞬间的修正协方差;以及tslow可以为想要的常数,比如值为2.图14展示了代表这些cml特征的信号。这些信号基于持续嘴泄漏时段的患者流量信号(“pfs”)计算。如所述,如果瞬时泄漏信号(“ils”)和通气信号(“vs”)同时反向移动,修正协方差信号(图14中标记为“c”)将变成负值,而如果信号同时同向移动,那么其将变成正值。因此,该协方差信号在嘴泄漏片段开始时和嘴泄漏结束时将变成负值。为了区分嘴泄漏的开始和结束,将该协方差信号乘以泄漏缓冲区的梯度符号(在嘴泄漏开始时梯度符号将为正值,并且在嘴泄漏事件结束时为负值,因此,在嘴泄漏开始时修正协方差信号将为负值,并且在嘴泄漏事件结束时为正值)。在图14中该协方差总和信号标记为信号“cs”。1324处的vml特征计算进程该模块的进程评估一次呼吸中患者流量信号,从而确定在该呼吸中是否存在vml事件。在图15所示的患者流量信号轨迹中,对于带有vml(左边所示)的呼吸,在流量qcutoff下消耗的时间比正常呼吸(如右边所示)消耗的时间少。在该例子中,该模块的输入可为患者流量缓冲区,并且输出特征可以是指示vml的信号,在此,以vml水平表示。该特征可通过下面的方法确定。-计算总呼气面积。如图15所示,用圆圈突出的面积与用条纹突出的面积相加。一般地,qcutoff下的面积为带圆圈的面积。-计算qcutoff下的面积(用圆圈突出的面积)-通过qcutoff下的面积除以总呼气面积计算vml比率(例如,图15带圆圈的面积除以带圆圈的面积和带条纹的面积的总和);-如果vml比率低于预设成值为0.2的vml阈值,增加1至vml缓冲区。否则增加0至vml缓冲区;-如果vml缓冲区的总和大于想要的阈值比如2,将vml水平设置为2;-如果vml缓冲区的总和大于0并且小于或等于2,将vml水平设置为1;-如果vml缓冲区的总和等于0,那么将vml水平设置为0.虽然该实施例的方法通过计算qcutoff下的面积和总呼气面积的比率预测vml的存在,但也可以使用其它方法,比如基于图16所示的方法。图16展示了呼吸的患者呼气流量部分。在该实施例中,vml指示可通过计算一个或多个时间比率获得。例如,为此目的,可评估比率的大小,比如t1/(t1+t2+t3),(t1+t2+t3)/(t1+t2+t3+t4),和/或(t2+t3)/(t1+t2+t3+t4)。这些比率可指示峰和/或相对狭窄的峰的相对尖锐上升(下降),从而提供vml指示。1328处的嘴泄漏分类进程该模块将嘴泄漏状况分类。用于该模块的输入包括修正协方差和协方差总和(来自1326)以及vml水平(来自1324)。该输出可以是当前ml状况,当前ml状况可以是指示嘴泄漏状况或存在为真或假的标志或“ml”标志。图17或图17a描述了用于该模块进程的流程图的例子。以下ml分类表中概述的规则可用于将ml状况分类。在该实施例中,该规则设计为:只用当cml标志为真并且有很少或没有vml时(即,vml水平低于或等于1),ml状况为真。因此ml状况变量可认为是本质上是连续的,并且基于排除了潜在阀类嘴泄漏事件的假设的嘴泄漏事件的指示。尽管ml状况变量可能作为输出报告给用户,并不一定需要报告该vml水平本身,因为其的临床意义可能有限。但是,ml状况变量也可以对流发生器的算法的控制功能是有用的,所示流发生器可以基于嘴泄漏检测。因此,ml状况变量可用作控制输入,比如用于呼吸治疗装置的压力治疗控制的输入。ml分类表cml标志=真cml标志=假vml水平=0ml状况=真ml标志=假vml水平=1ml状况=真ml标志=假vml水平=2ml状况=真ml标志=假因此,该模块也可以计算ml标志的设置中评估的cml标志。该cml标志是持续嘴泄漏的代表。用于设置cml标志和ml状况的进程的实施例可结合图17的流程图进一步考虑。在1701,决定当前修正协方差是否为负值。如果是,那么进程前进至1703。如果不是,那么进程前进至1702。在1702,如果该cml标志当前设置为真,那么前进至1704。否则,该cml标志设置为假,那么该进程将前进至1710。在1703,如果处于时间的前一瞬间,修正协方差标志设置为正值的,结束ml计数器变量将重置为0,并且开始ml计数器变量将设置为1(因为这是新的嘴泄漏“可能”时段的开始)并且进程将前进至1701。该结束ml计数器变量用于追踪嘴泄漏事件的结束。该进程会等待一定的时间流逝(例如,该计数器将需要达到一定的阈值),然后仅设置cml假标志。这可有助于确保该进程不会错误地终止嘴泄漏事件的检测。该开始ml计数器变量可用于追踪嘴泄漏事件的开始。该进程会等待一定的时间流逝(例如,计数器达到一定的阈值),然后仅设置cml真标志。这可确保该进程不会错误地识别嘴泄漏事件。嘴泄漏“可能”时段为进程启动该开始嘴泄漏检测计数器,但不设置cml真标志,因为该计数器不符合必要的阈值,并且太早决定真实的嘴泄漏时段是否已经发生。否则,在1703,如果处于时间的前一瞬间,该修正协方差标志设置为负值并且系统已经处于嘴泄漏“可能”时段,该进程将继续从而使开始ml计数器变量增值并且该进程将前进至1705。在1704,如果处于时间的前一瞬间,修正协方差标志设置为正值,开始ml计数器变量将重置为0并且结束ml计数器变量将设置为1(因为这是嘴泄漏“可能”结束时段的开始),并且该进程将前进至1701。嘴泄漏“可能”结束时段为这样的时间,在该时间,进程启动结束嘴泄漏计数器,但不设置cml假标志,因为该计数器不符合必要的阈值并且太早决定所述嘴泄漏时段是否真正结束。否则,在1704,如果处于时间的前一瞬间,该修正协方差标志设置为正值并且系统已经处于嘴泄漏“可能”结束时段,那么继续使结束ml计数器变量增值并且前进至1706。在1705,如果开始ml计数器变量高于阈值,那么进程将前进至1707。否则在1705,该进程将前进至1710。在这瞬间,该阈值可为任何想要的预设值(例如,30)。这样的值可预示嘴泄漏“可能”时段已经足够长并且确实已经发生嘴泄漏事件。在1706,如果结束ml计数器变量高于阈值,该进程将前进至1709。否则,该进程前进至1710。在该瞬间,所述阈值可为任何想要的预设值(例如,30)。这样的值可预示嘴泄漏“可能”结束时段已经足够长并且嘴泄漏事件确实刚刚已经结束。在1707,核对该协方差总和。如果其低于阈值,该进程将前进至1708。否则,该进程前进至1701。在该核对中,该阈值用于估计该协方差总和是否足够小以保证嘴泄漏时段。这是为了确保通气和泄漏具有足够明显的变化以便将嘴泄漏时段划分为真。该阈值可为任何合适的预设值(例如,-0.125)。在1708,cml标志变量设置为真,并且该进程前进至1711。在1709,该cml标志变量设置为假,并且该进程前进至1714。在1710,该进程不改变cml标志并且该进程前进至1701。在1711,核对vml水平变量。如果该变量低,那么进程前进至1712。否则,在1711,如果该变量不低,那么该进程前进至1714。如果有很少或没有阀类嘴泄漏,那么该vml水平被认为“低”。一个或多个阈值可用于“低”核对。例如,在本实施例中,如果该vml水平变量为1或0,那么其被认为“低”。如果该vml水平变量为2,那么其被认为足够高从而不划分为嘴泄漏。在1712,可以核对一些另外的情况。例如,可以评估下面2个情况a和b(如下所述)并且如果其中一个为真,那么该进程返回真并且前进至1714。否则在1712,该进程将前进至1713。在1712这种核对中,这两个情况(情况a和情况b)可以如下:情况a:如果当前通气值大于开始通气值的阈值(例如,约95%)并且在通气缓冲区的最旧通气值大于开始通气,那么返回真。情况b:如果当前泄漏值低于开始泄漏值的阈值(例如,约105%)并且在泄漏缓冲区的最旧值大于开始泄漏值,那么返回真。在1713,该进程将ml状况标志变量设置为真并前进至1701。在1714,该进程将ml状况变量设置为假并前进至1701。在cml标志和ml状况标志的设置中涉及的进程的另一实施例可结合图17a的流程图的例子考虑。图17a的进程与图17的进程是可比较的。但是,1816处的另外的核对可用于图17a的版本中。在该实施例中,由于1706处的阈值比较,如果结束ml计数器高于该阈值,那么该进程前进至1816。在1816,核对协方差总和,比如通过将其与阈值比较。如果该协方差总和高于该阈值,那么进程前进至1709.但是,如果该协方差总和不高于该阈值,那么进程前进至1710。1816处协方差总和的核对可代表嘴泄漏事件是否已经结束的确定。如果该协方差总和足够大,那么其被视为嘴泄漏事件已经结束的指示。用于该核对的阈值可以是任何合适的预设值(例如,0.125)。d泄漏严重性分析实施例除了通过先前方法确定的泄漏事件相关数据,比如该vml持续时间和cml持续时间已经这些事件的总数,泄漏严重性的联合测量值可以基于数个量化不同类型的泄漏事件的测量值的检测。例如,这样的测量值可以是泄漏严重性指数,用户或内科医生能通过该检测器确定、记录和/或报告该泄漏严重性指数。在一个能够可选地使用模糊逻辑分析的实施例中,单个泄漏严重性指数在cml和vml持续时间的基础上确定。也可以提供关于严重性的文本信息(例如,“高”,“非常高”,“低”等等)。在这样的实施例中,在例如治疗时期或睡眠时期,可对cml事件的持续时间求和,从而提供cml事件的总持续时间。类似地,可对vml事件的持续时间求和从而提供vml事件的总持续时间。这些持续时间可转换为在检测到泄漏事件或利用该治疗装置期间总治疗时间或睡眠时期的比例。例如,如果多个cml事件占八小时睡眠时期中的四个小时,那么cml持续时间可以表示为50%。在一些实施例中,治疗时期的总时间能可选地代表多个时期。在模糊逻辑的实例中,处理器可以将检测到的不同的泄漏事件的持续时间(例如,cml事件的百分比持续时间(lc)和vml时间的百分比持续时间(lv))处理成模糊集合。在这点上,图18和19描述了隶属函数。对于图18和19中分别展示的lv和lc两者,其有4个“模糊集合”或类别标记为如下:低,中等,高,以及非常高。lv和lc的任何测量结果可属于这些集合中的任何一个,或可以部分在两个集合中。例如,lv测量结果20%可认为大约在高和非常高之间,并且将部分地落入两个类别中。某些测量结果属于某些集合或类别的程度由模糊集合的隶属函数表示。因此,每个函数的输出是0和1之间的值。在这点上,虽然其它函数是可能的,但在该实例中,每个隶属函数是不对称的,并且包括(a)隶属值等于1的区间;(b)隶属值等于0的区间;以及(c)线性分段的连续段之间。表a中定义了函数表a在该实例中,也有5个输出集合,其可标记为:非常低,低,中等,高和非常高。图20描述了这些集合的隶属函数。在该实施例中,每个输出隶属函数是对称的,并且包括(a)隶属值等于1的单个点;(b)隶属值等于0的区间;以及(c)线性分段的连续段之间。表b定义了这些函数表b为了将输入绘制成输出,可能有如下若干规则:规则1-低lc和低lv输出非常低;规则2-低lc和非常高lv输出中等;[...]规则16-非常高lc和非常高lv输出非常高;这些规则可用于定义用于确定输入集合的哪个组合导向哪个输出集合的规则表。表c中总结了这种规则表。表c下面的模糊逻辑函数可以应用于确定输出指数。一般说来,可以假设对于任何变量x,集合a的隶属度用μa(x)表示,而对于任何变量y,集合b中的隶属度用μb(y)表示。基于上面。可以评定下面的逻辑函数。模糊与xandy=min(μa(x),μb(y))模糊或xory=max(μa(x),μb(y))模糊非notx=1-μa(x)基于模糊规则的分类能以这些模糊逻辑函数进行。一般地,用于cml持续时间(例如,占总时期的百分比)和vml持续时间(例如,占总时期的百分比)的变量可分别用xc和xv表示,模糊集合设置为ac和av,并且输出变量可用y~[0,1],模糊集合b表示。同样,每个这些持续时间的测量值可用lc和lv表示。基于所有16条规则的贡献,该检测器的进程可根据总输出隶属函数μtot(y)产生严重性指数。为此,每条规则的贡献可表示为:每个贡献可与模糊与结合从而获得最终的输出隶属函数。最后,这些隶属函数的重心可用于确定适合用作严重性指数的最终输出值(例如,包含在0和1之间的值)。d结构实施例图21的方框图中描述了执行泄漏检测器102的控制器的系统结构的实施例。在该图中,泄漏检测设备2101或通用计算机可以包括一个或多个处理器2108。该设备还可包括显示界面2110,从而,比如在显示器或液晶面板输出泄漏检测报告(例如,泄漏总数和/或严重性测量值,比如图1所示的数据),结果或图(例如,图6或9所示的任何信号轨迹),如在此描述。也可提供用户控制/输入界面2112,例如,键盘,触摸屏,控制按钮,鼠标等,以激活在此描述的方法。该设备还可包括传感器或数据界面2114,比如信息通路,用于接收/发送数据,如编程指令、流量数据、泄漏检测数据、泄漏相关数据等等。该设备通常还可以包括存储器/数据存储组件,所述存储器/数据存储组件包括上述方法的控制指令存储。在2122,这些可包括,流量信号处理的处理器控制指令(例如,预处理方法,过滤器,缓冲器,瞬时泄漏测量值,通气测量值等),如在此更详细的描述。在2124,它们也可包括用于泄漏测量的处理器控制指令(例如,cml检测,vml检测,协方差计算,累积协方差计算,截止点计算,严重性指数确定等等)。在2126,它们也可包括基于泄漏检测的治疗控制的处理器控制指令。最后,它们也可以包括用于这些方法的存储数据2128,比如检测到的泄漏事件、持续嘴泄漏、阀类嘴泄漏、事件持续时间、事件出现时间、事件总数、百分数、截止点、峰、最大流量、协方差数据、累积协方差数据、严重性指数、时间持续时间、总持续时间、阈值、报告和图等等。在一些实施例中,用于控制上述方法的处理器控制指令和数据可以包含在计算机可读记录介质中,比如通用计算机使用的软件,这样,根据在此描述的任何方法将该软件下载至通用计算机后,通用计算机可作为专用计算机使用。e压力处理控制进程如之前所述,上述方法的一些实施例可通过呼吸治疗装置用于压力治疗比如气道正压控制中。这样一个实施例在图22和23中有描述。这样的实施例可以包括嘴泄漏压力控制进程模块2228,比如嘴泄漏关闭环模块,该嘴泄漏压力控制进程模块2228基于嘴泄漏检测输出信号控制压力设置值,如图22所示。在这样的实施例中,该控制器可以伺服控制压力随检测到的泄漏信号变化,从而减少或消除泄漏检测模块的输出信号代表的泄漏。例如,在图22的实施例中,该模块可用于产生信号从而基于当前嘴泄漏(ml)状况发布治疗压力的变化。在一些实施例中,如果之前所述的ml状况变量为真,那么可以调节压力设置值。为了消除ml状况变量代表的泄漏事件,可以增加或减少该压力设置值。在控制这种压力变化中,压力控制进程模块2228可接收各种输入信号。例如,嘴泄漏检测进程2222可产生泄漏检测信号,比如,如之前所述,可代表持续嘴泄漏检测的嘴泄漏状况变量。可选地,患者流量缓冲区进程2224模块,比如,如之前所述,产生患者流量缓冲区的进程组件,可用患者近期流量数据给压力控制进程模块2228提供更新的缓冲区。类似地,面罩压力进程模块2226可产生指示用于压力控制进程模块2228的面罩压力的信号。例如,从面罩中的压力传感器或流发生器测得的压力信号可提供合适的信号。该信号可以过滤并且其可调节为用于任何可归因于患者界面的压力下降的数目,然后提供给压力控制进程模块2226。压力控制进程模块2228的方法可基于当前ml(嘴泄漏)状况变量。如果该模块检测到嘴泄漏状况变量为真(例如,检测到持续嘴泄漏事件),那么进行可能性计算。这样的可能性可被认为是泄漏调节可能性。例如,这样的可能性可以用ml闭环可能性变量实施。该可能性可以是这样的方向的测量值:在该方向,应该改变当前治疗压力以响应ml状况变量(例如,如果ml状况为真,为了消除相关泄漏事件,压力应该增加还是降低?)。例如,如果该可能性大于一些阈值(例如,0.5),那么将会公布压力上升。如果该可能性小于一些阈值(例如,0.5),那么将会公布压力下降。在一个实施例中,ml闭环可能性可以随当前患者流量缓冲区的变化而计算。如之前所述,该缓冲区可包括用于近期呼吸(例如,一个呼吸循环)的流量,并可以认为是“呼吸轮廓”。该可能性可以用呼吸轮廓的特征计算,比如,其形状,潮气量,吸气时间等等,这些特征可以指示压力过低或过高。可选地,如果计算出的可能性大于阈值(例如,约0.5),那么可以公布压力上升控制信号,比如具有恒定速率(例如,0.5cmh20/秒的速率)的压力。可选地,该速率也可以随当前泄漏信号的大小(例如,量化检测到的,触发ml状况变量设置的持续嘴泄漏的程度的值)和/或可能性本身而变化。如果该可能性小于阈值(例如,约0.5),那么能以恒定速率(例如0.5cmh20/秒的速率)发布压力下降。可选地,该速率也可以随当前泄漏信号的大小和/或可能性本身而变化。图23展示了嘴泄漏压力控制进程模块2228使用的泄漏控制实施例。该图在共同的时间刻度上包括若干信号,该信号包括患者流量信号(pfs),面罩压力信号(mps),瞬时泄漏信号(ils)和通气信号(vs)。在图23中,2310所示的压力中尖锐的上升引起2312所示的嘴泄漏。基于泄漏检测和可能性评估,该嘴泄漏压力控制进程模块2228引起压力下降直到该压力下降使得嘴泄漏逐渐消失,如2314所示。在该时刻,不再检测泄漏并且基于该泄漏检测取消对压力下降的控制。在前面的描述和附图中,特定术语、公式和图形符号是为了深入了解本发明而提供的。在有些情形下,所述术语和符号可以代表具体细节,这些细节对本发明而言不是必需的。例如,虽然本文中使用了术语“第一”和“第二”,但除非有特别指明,否则这些术语不代表特定的顺序,而只是帮助解释本发明的不同元件。此外,虽然检测方法的过程步骤在附图中体现为一种顺序,这种顺序却不是必需的。本领域技术人员会认识到,这种顺序可以修改和/或它们的各个方面可以同时进行。此外,虽然在此描述的本技术结合了具体的实施例,但应该理解的是这些实施例仅用于描述本技术的原理和应用。因此,应该理解的是所述的实施例可作出大量的修改并且可以发明其它的设置而不脱离本技术的精神和范围。例如,虽然使用了模糊逻辑以结合检测出的各种不同的泄漏数据,但也可以使用其它方法从而基于检测出的不同类型泄漏的量产生严重性指数。此外,应该清楚的是,所述的方法不仅仅通过基于测得的流量和泄漏的瞬时值计算各种特征,而且该计算也可以基于平均化预定的时间量,比如1分钟,3分钟等等的平均值。此外,一些实施例中使用的测试具有相对性。例如,当图17中的1707测试测得如果cov总和低于一定的阈值,这是基于该测试的协方差总和是负值这样的事实。因此,类似的测试可应用于各个值的绝对值,在这种情况下,可以证明cov总和的当前值是否大于各个阈值。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1