用于鼻甲缩小的系统和方法与流程

文档序号:11315441阅读:645来源:国知局
用于鼻甲缩小的系统和方法与流程

本申请是国家申请号为201410129644.0的发明专利申请的分案申请,该发明专利申请的申请日为2014年1月17日,发明名称为“用于鼻甲缩小的系统和方法”。

本发明一般涉及电外科领域,更具体地,涉及这样的外科手术系统和方法,其应用高频电能量来切除、减少和治疗目标组织,诸如鼻区内的组织。本发明特别适于鼻甲缩小手术,并作为对过度鼻引流或呼吸困难的治疗。



背景技术:

鼻窦是面骨内侧的含气腔,其开口进入鼻腔内。鼻窦炎是一个或多个副鼻窦腔的黏膜的炎症。鼻窦炎常与蔓延到鼻窦的病毒性或细菌性上呼吸道感染相关。在鼻窦开口变得阻塞时,腔充满,产生深层疼痛和压迫。鼻后引流或鼻引流、压力性鼻塞、头痛、鼻窦感染和鼻息肉通常是与慢性鼻窦炎最相关的。

轻度鼻窦炎的治疗通常包括抗生素、减充血剂及止痛剂,并且旨在阻止进一步并发症。对于多数严重或慢性鼻窦炎来说,常需要外科手术来将鼻和鼻窦恢复到正常功能,特别是对那些经历数年过敏治疗并仍然遭受鼻窦阻塞的患者、或那些天生具有小鼻窦及鼻道的患者。内窥镜外科技术和医疗设备领域中的最近发展,已经为有经验的医师提供了执行复杂鼻旁窦外科手术的器械和方法。例如,鼻腔和鼻旁窦的改进可视化现在已经使得这些解剖区域对于内镜外科医生来说更容易接近。结果,功能性鼻窦内镜手术(fess)已经成为针对鼻窦疾病的外科方法的技术选择。

其他的鼻症状、流鼻涕(例如,过敏性鼻炎或血管运动性鼻炎)通常由鼻内被称作鼻甲的小架状结构引起。鼻甲负责对流过鼻进入肺部的空气进行加热和湿润。当空气包含刺激物时,鼻甲通过肿胀和喷散粘液来对控制颗粒物反应,好像身体正努力阻塞和清洁呼吸道。为了暂时缓解肿胀的鼻甲,通常开具减充血剂鼻喷雾和药丸的处方。然而这些措施具有有限的效果,并且这些鼻喷雾的长期使用通常使问题恶化。此外,减充血剂药丸可引起高血压、增加心率,以及对一些人来说导致失眠。

在过去的几年中,诸如微型清创器设备和激光器的动力器械,已经在功能性内窥镜鼻窦手术中用于移除息肉或其他肿胀组织。微型清创器是具有旋转轴杆的一次性电动切除器,其中旋转轴杆具有锯齿状远侧尖端用于切割和切除组织。微型清创器的手柄通常是空心的,并且它容纳小腔室,其用于吸入碎屑。在该手术中,轴杆的远侧尖端通过鼻腔通道用内镜输送进入患者的鼻窦腔内,并且内窥镜通过相同或相对的鼻腔通道输送以观察手术部位。外部马达旋转轴杆和锯齿状尖端,使得尖端能够切割引起鼻窦阻塞的息肉或其他组织。一旦清除了严重阻塞物,则恢复通风和引流,并且鼻窦治愈并恢复至它们的正常功能。

虽然微型清创器很有前景,但这些设备具有许多缺点。举例来说,鼻和鼻窦腔内组织是极多血管的,而微型清创器切断组织内的血管,通常引起大量出血,阻碍了外科医生观察目标部位。控制这种出血可能是困难的,这是因为抽吸动作倾于促进该手术期间被破坏血管的出血。另外,常常必须周期性地从鼻中移除微型清创器以烧灼被切断的血管,这延长了该手术。此外,微型清创器的锯齿状边缘和其他细缝隙容易被碎屑堵塞,这需要外科医生在外科手术期间移除和清洁该微型清创器,进一步增加了该手术的长度。然而更严重的顾虑是微型清创器并不是精确的,并且在手术期间常难以区分目标鼻窦组织和鼻内的其他结构,诸如软骨、骨或头盖骨。因此,外科医生必须极其小心地最小化对鼻内软骨和骨的损害,并避免破坏诸如视神经的神经。

最初认为激光器能够理想地用于鼻窦手术,这是因为激光器利用热量消融或蒸发组织,其还用于烧灼和密封组织内的小血管。不幸的是,激光器不仅昂贵且在这些手术中使用繁重。激光器的另一缺点是难以判断组织消融的深度。由于外科医生通常在不接触组织的情况下瞄准和射出激光,他或她不接收任何触觉反馈来判断激光正在切割多深。健康的组织、软骨、骨和/或颅神经常位于鼻窦组织的非常近距离内,使得需要保持组织损伤的最小深度,这通过激光器不能够始终确保。

先前已经描述了涉及基于rf电能量的设备的治疗,其中电极主要布置在器械尖端,并且由于进入鼻腔通道所需的器械小的直径而因此在有效尺寸上受限。这些方法和设备在先前提交的申请,美国专利6,053,172、6,063,079、6,659,106、及7,442,191中进行了更充分描述,它们的全部公开内容已经通过引用并入。。



技术实现要素:

本发明公开了一种用于治疗目标部位的组织的改进的电外科设备。该设备总体上包括具有近端和远侧部的轴杆,以及布置在轴杆远侧部上的有源电极和返回电极。该设备还具有穿过有源电极的多个孔,可操作以从轴杆远端部吸走任何电导液、组织和等离子体副产物。

在一个方面,公开了一种用于从身体结构移除组织的电外科设备,该设备包括具有近端和远侧部的轴杆;其中所述远侧部包括返回电极和绝缘电极支座。返回电极可环绕该支座,并且至少一个有源电极布置在电极支座上。所述有源电极定向为使得它具有近侧部和远侧部,并且横向地位于轴杆远侧部上,具有穿过有源电极的多个抽吸孔。这些孔与靠近有源电极且位于电极支座内的液体抽吸腔流体连通。抽吸腔还与布置在轴杆内的流体抽吸元件流体地连接,并且该腔和元件一起提供了用于所抽吸物品流动通过治疗部位且从其移除的导管。

所述多个孔尺寸不同且组织为使得较大尺寸的孔朝向吸力最强的电极近侧部布置。吸力越强,越大的组织碎片和等离子体副产物可成功地从治疗部位移除。较小尺寸的孔朝向电极远侧部布置,由于这里吸力相对较弱且不能够容易地移除较大的等离子体副产物和碎片。该布置最优化了副产物的移除且最小化了流体抽吸元件的阻塞。另外,至少一个抽吸孔可优选地具有对称轴,其与流体抽吸腔的长轴接近重合或直接相邻。

在另一个方面,公开了一种用于治疗目标部位的组织的电外科设备,该设备具有细长壳体,其具有手柄端和远侧部。电极支座在远侧部,并且该支座流体耦合至第一流体导管,第一流体导管位于细长壳体内。电极支座还包括在一端具有腔斜面的抽吸腔。在电极支座架上具有有源电极,该架凹入电极支座内,且有源电极具有多个孔。远侧部还包括返回电极,其环绕至少部分电极支座。有源电极上的多个孔径至少具有多个第一孔和多个第二孔,并且所述多个第一孔尺寸大于所述多个第二孔的尺寸。所有孔与抽吸腔流体连通,并且多个第二孔定位在腔斜面上。

在另一个方面,公开了一种用于从身体结构移除组织的电外科设备,该设备包括具有近端、远侧部和远侧尖端的轴杆。所述远侧部具有管状绝缘支座构件,其具有至少一个凹入支座架,可支撑至少一个有源丝网电极。该有源电极可具有至少一个孔。所述支座构件还可具有直接位于支座下方的抽吸腔,从而流体和等离子体副产物可流动通过所述至少一个孔并进入抽吸腔,以及然后进入沿轴杆布置的流体抽吸元件。还具有布置在支座构件内的至少一个冲洗导管,其与流体供给元件和抽吸腔流体连接,从而没有任何碎屑的流体可以通过供给元件供给至远侧部,并且部分流体可冲洗抽吸腔和抽吸元件以帮助维持通畅的抽吸路径。该设备还可以包括返回电极,其围绕至少部分管状支座。所述返回电极还可具有穿过返回电极布置的至少一个流出孔,其也可流体连接所述流体供给元件。部分流体供给然后可流动通过这些流出孔的至少一个以湿润所述返回电极的外表面。

在又一个方面,公开了一种用于治疗身体结构组织的电外科系统。该系统包括电外科控制器,该电外科控制器配置以相对于返回端子在有源端子产生射频(rf)能量。该系统还包括耦合至电外科控制器的电外科棒,所述电外科棒包括细长轴杆,其具有近端、远侧部和远侧尖端,至少一个有源电极布置在轴杆的远侧部上,所述至少一个有源电极电耦合至有源端子,以及返回电极布置在轴杆的远侧部上,所述返回电极部分环绕轴杆远侧部并电耦合至返回端子。另外,具有多个穿过返回电极并流体连接至轴杆内流体输送元件的流出孔,所述多个流出孔布置在相对于所述至少一个有源电极的相反侧或下侧上。流体输送元件可供给电导液,其流经流出孔并可润湿返回电极以及改进等离子体形成。还具有穿过有源电极的多个抽吸孔,它们大小不同。靠近抽吸孔的是抽吸腔,随后是抽吸元件,并且这些一起提供了所抽吸物品流离开目标部位的管道。较大的抽吸孔朝向有源电极的近侧部布置,以及较小的抽吸孔朝向有源电极的远侧部布置。

在又一个方面,公开了一种在身体上执行医疗手术的方法。该方法包括在至少一个有源电极和靠近导电流体的返回电极之间施加电能;所述有源电极和返回电极布置在电外科棒上。随后响应该能量,靠近所述至少一个有源电极形成等离子体。然后旋转并平移有源电极以治疗组织。继而所述组织和等离子体副产物可通过穿过有源电极布置的多个抽吸孔抽吸并进入抽吸腔内,其中所述多个抽吸孔中的至少一个具有与抽吸腔的纵轴重合的对称轴。较小的组织和等离子体副产物可通过布置在有源电极远侧部上的至少一个抽吸孔抽吸;而较大尺寸的组织和等离子体副产物可通过布置在有源电极近侧部上的至少一个较大尺寸抽吸孔抽吸。

在又一个方面,公开了一种在身体上执行医疗手术的方法。该方法包括在布置于电外科带的流体导管内流通导电流体,从而导电流体从穿过返回电极布置的流出孔流通并然后绕返回电极流动,从而润湿返回电极表面,以及朝向穿过有源电极布置的抽吸孔流动。然后在有源电极和返回电极之间施加电能,并且响应于该能量,在有源电极附近形成等离子体。然后通过将有源电极置于体腔内,并在体腔内平移有源电极,来移除体腔内部分软组织。可在压力下提供导电流体,从而在移除组织时扩张体腔,这可有助于形成良好的等离子体。等离子体还可发出可见光,其可直接观察或穿过体腔壁观察,并且可响应于所观察的可见光而改变有源电极的运动。

本发明公开包括多个重要的技术优势。一个技术优势是电极的横向位置允许具有对比于最小直径器械远侧部的相对较大的电极表面区域。因此,与使得电极仅局限于置于装置尖端的器械设计相比,电极的表面区域不受限于器械直径尺寸。增加的电极表面区域可有助于该器械和系统更简单且更快捷地使用,这是因为与具有局限于器械尖端的电极的器械相比,治疗表面则会相对较大。另外的技术优势是横向流体输送孔的位置,其允许大量的流体输送能够在宽泛的表面区域上展开。通过允许更加均匀和一致地涂层表面,产生更加一致和平整得组织效应,这可以最优化返回电极“润湿”表面区域。

另外的优势是,所湿润返回电极表面区域的尺寸不像将返回电极定位在器械尖端的设计那样受限,以允许较大的治疗表面以及有源电极与返回电极之间更大、更优化的表面面积比。另一个优势是,与电极局限于器械尖端的器械(其中返回电极需要在近侧上间隔于有源电极)相比,返回电极可部分环绕有源电极而不显著增加器械的直径。另外地,将返回电极部分环绕有源电极配置可增加组织效应的均匀性。另外的优势是抽吸孔在尺寸或数量上较少受限,这潜在地允许比抽吸孔局限于器械尖端的设计来说具有更多的抽吸孔,进而产生更好的抽吸并改进临床医生观察手术部位的能力。另外的优势是最优化了吸力,从而使得由于抽吸孔和冲洗导管的布置而减少阻塞的可能性。对于本领域技术人员来说并且通过本文所提供的附图、说明书和权利要求书,另外的优势是显而易见的。

附图说明

可通过参照下面描述并结合附图进行最佳地理解本发明,其中:

图1示出了根据至少某些实施例的电外科系统的透视图;

图2a示出了根据至少某些实施例的用于治疗组织的设备;

图2b示出了根据至少某些实施例的器械轴杆远侧部;

图2c示出了根据至少某些实施例的器械远侧部的顶视图;

图2d示出了根据至少某些实施例的器械远侧部的底视图;

图2e示出了根据至少某些实施例的器械远侧部的纵剖面图;

图3示出了根据至少某些实施例的器械远侧部的可替代实施例;

图4a示出了使用根据至少某些实施例构造的电外科系统进行潜在治疗的鼻腔;

图4b示出了具有电外科器械布置于其中的鼻腔,所述器械根据至少某些实施例示出;以及

图5示出了使用根据至少某些实施例的医疗手术的流程图。

具体实施例

在详细描述本发明前,应该理解的是本发明不限定于本文所描述的特定变体,而可在不偏离本发明精神和范围的情况下,对所描述的本发明进行各种变化或改变,以及以等效物替代。在阅读本发明公开后,对本领域技术人员显而易见的是,本文所描述和所示意的各个实施例的每一个具有分离的部件和特征,它们可以在不偏离本发明精神和范围的情况下容易地与任意其他若干实施例的特征分离或组合。另外,可以做出许多改变以使特定情形、材料、物质组成、制造、制造动作或工序适应本发明目的、精神或范围的。所有这些变形均旨在本文所做出的权利要求书的范围内。

本文所叙述的方法可以按照所列举事件的逻辑上可能的任意顺序、以及所叙述的事件顺序来执行。此外,在提供数值范围的情况下,应该理解的是,在该范围上限和下限之间的每一个中间值,以及在该声明区间内的任何其他声明值或中间值都包含在本发明内。同样,应该预期的是,所描述的本发明变体的任何可选特征可以单独地、或与本文所描述的任何一个或多个特征组合地阐明并要求权利。

本文所提及的所有现有主题(例如,公开物、专利、专利申请、以及硬件)均整体在此引入作为参考,只要该主题不与本发明的主题相悖(在这样情形中,本文所呈现的应主导)。被引用的项目仅因为它们在本发明的申请日之前公开而被提供。由于发明在先,本文没有内容可以被理解为承认本发明不具有比这些材料更早的日期。

对单数项目的提及包括这样的可能性,即可能有多个相同项存在。更具体而言,如本文以及所附权利要求书中所使用的,单数形式“一个”(a/an)、“所述”和“该”包括多个所指物,除非上下文中另有清楚地指定。还应该指出的是,权利要求书可能被起草为排除任何可选元件。这样,该声明旨在作为使用与权利要求元件的叙述相结合的诸如“仅”、“只”等的排他用语或者使用“否定”限定的前提基础。最后,应该意识到的是,除非另有定义,本文所使用的所有技术和科学术语具有与本发明所属领域的普通技术人员所通常理解的相同含义。

参照图1,现在将详细描述根据本发明公开的用于组织治疗的示例性电外科系统11。电外科系统11总体上包括电外科手持件、器械、设备或探头10,其电气连接至电外科控制器(即,电源)28,用于提供高频电压至目标部位;以及流体源21,用于通过流体传输管15供应导电流体50至探头10。流体输送可通过泵40来控制,从而通过输送管16对探头10提供可变流体流量供给。此外,电外科系统11可包括内窥镜(未示出),其具有用于观察手术部位的光纤头灯,特别是在鼻窦手术或耳内或口腔后部的手术中。内窥镜可与探头10结合,或它可以是单独器械。系统11还可包括真空源(未示出),用于将吸出或抽吸管腔或管(未示出)耦合在探头10内以抽吸目标部位。

示例性电外科探头10包括手柄19以及从手柄19延伸的细长轴杆17。手柄19的近侧和远侧部通常包括塑料材料,其易于模制为适于外科医生操纵的形状。如所示,连接电缆34具有连接器26,用于将探头10上的有源电极和返回电极(在稍后附图中将更加详细描述)电气耦合至电源28。电源28具有操作者可控的电压水平调节器30,用于改变所施加的电压水平,其可在电压水平显示器32上观察。电源28还可包括第一、第二和第三脚踏开关37、38、39以及可拆卸地耦合至电源28的电缆36。脚踏开关37、38、39使得临床医生能够远程地调节施加至有源电极58的能量水平。在示例性实施例中,第一脚踏开关37用于将电源置于“消融”模式,以及第二脚踏开关38将电源28置于“亚消融”模式(即,收缩、凝结、或其他类型的组织变性而没有容积地组织移除)。第三脚踏开关39(或在一些实施例中,脚踏启动按钮)使得使用者能够调节“消融”模式内的电压水平。

各实施例的电外科系统11可具有各种可操作模式。一种这样的模式利用coblation®技术。本发明的受让人开发了coblation®技术。coblation®技术包括在棒10的一个或多个有源电极与一个或多个返回电极之间施加高频电压差,从而在目标组织附近产生高电场强度。可通过施加高频电压来产生高电场强度,所述高频电压足以蒸发有源电极的尖端和目标组织之间的区域中至少部分有源电极上的导电流体。导电流体可以是输送至或已经存在于目标部位的液体或气体,诸如等渗盐水、血液、胞外液或胞内液,或者是施加至目标部位的粘性流体,诸如胶水。

当导电流体加热到足以使得原子蒸发离开表面的速度快于它们浓缩的速度时,则形成气体。在气体充分加热以使得该过程中原子彼此膨胀产生电子释放时,则形成电离气体或等离子体(所谓的“物质第四态”)。总体而言,等离子体可通过驱动电流穿过气体、或通过照射无线电波进入该气体中,从而加热气体以及电离该气体。这些等离子体形成方法对等离子体中的自由电子直接给予能量,然后电子-原子碰撞释放更多电子,并且该过程层级进行直至实现期望的电离程度。另外,等渗盐水产生的蒸发层中的原子的电离,(包含氯化钠)导致具有例如306至315纳米(紫外光谱)及588-590纳米(可见光谱)范围内波长的高能光子的产生。

在由coblation®技术形成等离子体的情形中,横跨蒸发层的电场产生高能电子,其分解进入高能原子团内的水分子,一些高能原子团是极具化学活性的。蒸发层然后变成低温度气体,含有高能粒子,或称作“辉光放电等离子体”或“非平衡等离子体”。非平衡等离子体是低温度气体,其中每个所激发粒子发射特定光线。在棒10的有源电极浸渍在等渗盐水中时,放电通常在有源电极处产生从确定特征性黄色辉光的主导钠d线至橘色辉光的强光发射,这指示等离子体的存在。等离子体的更完整描述在普林斯顿大学等离子体物理实验室r.j.goldston和p.h.rutherford的《plasmaphysics》(1995)中找到,其全部内容在此引入作为参考。

随着等离子体或蒸发层的密度变得足够低(即,针对水溶液,小于约1020原子/立方厘米),电子平均自由程增加以使得随后注入的电子能够引起蒸发层内的碰撞电离。一旦等离子体层内的离子微粒具有足够能量,则它们朝向目标组织加速。高能电子所放射的能量(例如,3.5ev至5ev)能够随后轰击分子并破坏其结合键,将分子解离为自由原子团,它们随后结合为最终的气态或液态形式。通常,电子携带电流或吸收无线电波,并因此比离子更热。因此,离开组织朝向返回电极运载的电子携带大部分等离子体热量,使得离子以基本非热能方式分开组织分子。

通过这种分子解离(而不是热蒸发或碳化),通过将较大器官分子的分子分解为较小分子和/或原子,诸如氢、氧、二氧化碳、碳氢化合物和氮化合物,可容积地移除目标组织结构。该分子分解完全地移除组织结构,而并非如通常在利用电外科干燥和蒸发的情形中通过移除组织细胞内的液体和胞外液来干燥组织材料。该现象的更加详细描述能够在共同受让的美国专利5,697,882中找到,其全部内容在此引入作为参考。

在coblation®技术的一些应用中,高频(rf)电能施加到导电介质环境中以收缩或移除(即,切除、切割、或消融)组织结构并且密封该目标组织区域中的所切断血管。coblation®技术还用于密封较大动脉血管,例如1mm量级直径的动脉血管。在这些应用中,提供的高频电源具有消融模式,其中第一电压施加至有源电极足以实现组织的分子离解或分解,以及凝结模式,其中第二、较低电压施加至有源电极(或相同或不同的电极)足以加热、收缩、和/或实现该组织内所切断血管的止血。

coblation®装置所产生的能量的大小可通过调节各种参数来改变,诸如:有源电极的数量;电极尺寸和间隔;电极表面面积;电极表面上的凸凹不平和锐边;电极材料;所施加的电压和功率;限流装置,诸如电感;与电极接触的流体的电导率;流体密度;以及其他因子。因此,能够操纵这些因子以控制所激发电子的能级。由于不同的组织结构具有不同的分子键,coblation®装置可配置以产生足以破坏某些组织的分子键而不足以破坏其他组织分子键的能量。例如,脂肪组织(例如,动物脂肪)具有双键,其需要远高于4ev至5ev的能级(通常约8ev)来破坏。因此,coblation®技术通常不会消融或移除这些脂肪组织;然而,它可用于有效地消融细胞以释放液体形式的内脂肪含量。当然,可改变因子以使得这些双键也能够以与单键相似的方式破坏(例如,增加电压或改变电极配置以增加电极尖端的电流密度)。更加完整的描述能够在共同受让的美国专利6,355,032、6,149,120及6,296,136中找到,其全部内容在此引入作为参考。

coblation®装置的(多个)有源电极可支撑在器械轴杆的远端中或通过有机绝缘支座靠近器械轴杆的远端定位。返回电极可定位在器械轴杆上、另一器械上、或患者的体外表面上(即,扩散垫)。器械的近端包括用于将返回电极和有源电极耦合至高频电源、诸如电外科发生器的合适电气连接。

在coblation®装置与本发明一起使用的一个实例中,该装置的返回电极通常在近侧上与有源电极间隔合适距离以避免导电流体存在时有源电极和返回电极之间的电气短路。在一些情形中,返回电极的裸露表面的远侧边缘与有源电极的裸露表面的近侧边缘之间的间隔是0.5mm至25mm。当然,该距离可随着不同电压范围、导电流体、并基于组织结构与有源电极及返回之间的距离而变化。返回电极将通常具有约1mm至20mm的范围的裸露长度。

返回电极和有源电极之间施加的电压差将处于高频或无线频率,典型地在约5khz和20mhz之间,通常在约30khz和2.5mhz之间,优选处于约50khz和500khz之间,常小于350khz,以及常在约100khz和200khz之间。在一些应用中,申请人发现约100khz的频率是有益的,这是因为组织阻抗在该频率非常大。在其他应用中,诸如在心脏或头颈内或附近的手术中,期望的是更高的频率(例如,400-600khz)以最小化低频电流进入心脏或头颈的神经中。

基于有源电极尺寸、特定手术的操作频率和操作模式、或组织上的期望效果(即,收缩、凝结、切割或消融),所施加的rms(均方根)电压通常处于约5伏至1000伏的范围内,优选处于约10伏至500伏的范围内,常处于150伏至400伏的范围内。

通常,以方波形消融或切割的峰峰电压将处于10伏至2000伏的范围内,并优选处于100伏至1800伏的范围内,以及更优选地处于约300伏至1500伏的范围内,通常处于约300伏至800伏峰峰值的范围内(再次,基于电极尺寸、电子数量、操作频率和操作模式)。较低的峰峰电压将用于组织凝结、组织热加热、或胶原收缩,并将通常处于从50至1500伏、优选处于100至1000伏、以及更优选处于120至400伏峰峰值的范围内(再次,这些值使用方波形计算)。较高的峰峰值电压,例如大于约800伏峰峰值,可期望地基于诸如电极几何形状以及导电流体的成分的其他因素来用于较硬材料、诸如骨的消融。

如上所述,电压通常以电压脉冲序列或具有足够高频(例如,约5khz至20mhz)的时变电压幅度的交流电来输送,以使得电压有效地连续施加(例如与要求小深度坏死的激光相比,其通常以约10hz至20hz脉冲)。另外,针对本发明,占空比(即,在任意一秒时间间隔中施加能量的累积时间)为约50%的数量级,对比于脉冲激光通常具有约0.0001%的占空比。

本发明的优选电源输送可选的高频电流以基于被治疗的目标组织的体积、和/或针对器械尖端选择的最大允许温度产生每个电极数毫瓦至数十瓦的平均功率水平。该电源允许使用者根据特定神经外科手术、心脏手术、关节镜手术、皮肤病手术、眼科手术、开放手术、或其他内孔镜外科手术的具体需求选择电压水平。对于心脏手术以及可能地针对神经外科手术,电源会具有另外的滤波器,用于滤除处于低于100khz频率的泄露电压、特别是60khz左右的电压。可替代地,具有较高操作频率的电源,例如300khz至600khz的电源,可用于其中杂散的低频电流会产生问题的某些手术中。一种合适电源的描述能够在共同受让的美国专利6,142,992和6,235,020中找到,这两篇专利的全部内容就各方面而言在此引入作为参考。

电源可以是限流或以其他方式受控以使得不会发生目标组织或周围(非目标)组织的不期望加热。在本发明的当前优选实施例中,限流电感器与每个独立有源电极串联放置,其中电感器的电感基于目标组织的电气性质、期望的组织加热速度以及操作频率而处于10μh至50,000μh的范围内。

可替代地,可应用电容-电感(lc)电路结构,如先前地在美国专利5,697,909中所描述的,其全部内容在此引入作为参考。另外地,可选择限流电阻器。优选地,这些电阻器将具有大的电阻正温度系数,从而随着针对与低电阻介质(例如,盐水刺激物或血液)接触的任意单个有源电极的电流水平开始升高,限流电阻器的电阻显著地增加,进而最小化了从所述有源电极输送至低阻抗介质(例如,盐水刺激物或血液)的功率输送。

在低温消融模式,充足的电压施加至电极端子以建立用于组织的分子分解的必要条件(即,蒸发部分导电流体、电离蒸发层内的带电粒子以及逆着组织加速这些带电粒子)。如上所述,用于消融的必要电压水平将基于电极的数量、尺寸、形状和间隔、电极从支座延伸的距离等而变化。一旦临床医生将电源置于“消融”模式,电压水平调节器30或第三脚踏开关39可用于调节电压水平,从而调节消融的程度或攻势。

当然,应该意识到的是,电源的电压和形态可通过其他输入装置来控制,例如通过置于手柄19上的各种开关或触发器来控制。然而,申请人已经发现脚踏开关是在外科手术期间控制电源而同时操纵探头的便捷方法。

在亚消融(或凝结)模式中,电源28施加足够低的电压至有源电极以避免导电流体的蒸发以及组织的随后分子分解。外科医生可通过交替地分别踩在脚踏开关37、38上来自动地在消融和亚消融模式之间触发电源。这例如允许外科医生在原处快速地在凝结和消融之间运动,而不需将他/她的注意力从手术场所移除或无需要求助手来切换电源。通过示例,在外科医生以消融模式雕刻软组织时,探头通常将自动密封和/或凝结组织内被切断的小血管。然而,较大血管、或处于高流体压的血管在消融模式下将不会密封。因此,外科医生可简单地踩在脚踏开关38上,自动地将电压水平降低至低于用于消融的阈值水平,并施加足够压力至所切断血管上足够的时段,从而密封和/或凝结该血管。在其完成后,临床医生可通过踩在脚踏开关37上快速地返回至消融模式。

图2a示意了根据本发明公开的原理构造的示例性电外科器械90。如图2a所示,探头90总体上包括柔性或刚性的细长轴杆100,以及耦合至轴杆100近端的手柄204。轴杆100可包括弯曲或曲线部(未示出),其使得轴杆100的远侧部120能够偏离轴杆近侧段及手柄204,或处于与轴杆近侧段及手柄204不同的角度。该偏离可有利于需要内窥镜的手术,这是因为该内窥镜例如能够通过与轴杆100相同的鼻腔通道引入而不会在手柄204和内窥镜的目镜之间干扰。在可替代实施例中,轴杆100可以是有延展性的,从而外科医生能够产生曲线或弯曲部,其优选地用于特定患者或内窥镜需求。

手柄204通常包括塑料材料,其易于模制为供外科医生操作的合适形状。手柄204限定内腔(未示出),其容纳电气连接件(未示出)并提供用于连接至电气连接电缆234的合适接口。如图2a所示,流体管路或进入233延伸穿过手柄204中的开口,并可包括连接器235用于连接至流体供给源及流体供给泵(前面描述),用于供应导电流体至器械远侧部120以及随后至目标部位。基于轴杆100远侧表面的配置,流体管路233可延伸穿过轴杆100内的单个管腔(未示出),或管路233可流体连接布置在轴杆100内的流体供给导管(稍后更加详细描述),或管路233可耦合至延伸穿过轴杆100的多个管腔(未示出)。在可替代实施例中,流体管路233可沿轴杆100的外部延伸至远侧部120的刚好近侧点。探头90还可包括定位在器械90或管路233上的阀或等效结构(未示出),用于控制导电流体至目标部位的流速。

在某些实施例中,轴杆100的远侧部包括柔性材料,其可相对于轴杆100的纵轴偏转。该偏转例如可选择地通过牵引丝的机械拉力来引起,或通过能够通过外部施加温度变化而膨胀或收缩的形状记忆丝来引起。轴杆100远侧部的弯曲在鼻窦组织的治疗中是特别有利的,这是因为它使得临床医生能够随着轴杆100延伸穿过鼻腔通道而到达鼻内的目标组织。当然,应该认识到,轴杆可基于手术具有不同的角度。例如,具有90°弯曲角度的轴杆可特别地用于接近位于口腔后部的组织,以及具有10°至30°弯曲角度的轴杆可有助于接近在口腔前部或鼻处或附近的组织。

在图2a所示的实施例中,探头90总体上包括轴杆远侧部120和远侧尖端140。远侧尖端140可以不被供电,而可包括前导锋利的、锯齿状的或尖锐的缘,可操作以帮助获得进入、切割组织或产生进入组织的窗口,所述组织诸如为息肉或鼻甲。远侧尖端140可以是刚性的;使得它能够更加容易地直接进入目标身体结构并进而提供进入身体结构内侧的进入。在该实施例中,远侧尖端140可以是轴杆100的远侧近端,并可以供电,或是返回电极112的部分(稍后描述)。远侧尖端140可定向为与轴杆100的长轴成α角度,从而便于尖端140插入组织中,其中该角度相对于轴杆长轴为约40度。

远侧部120包括至少一个返回电极112和至少一个有源电极104。如图2b所更加详细描述的,返回电极112环绕至少部分轴杆远侧部120,并可相对于有源电极104在远侧上和近侧上延伸,从而有源电极104通常被环绕或至少部分被围绕。返回电极112可大约是管状形状并延轴杆100延伸。返回电极112示出以具有开口、通道或狭槽,从而裸露部分电极支座150,并且为了将返回电极112的各部分在有源电极104附近定位。如这里所示,部分返回电极112置于相对于有源电极104的轴杆的大约相反侧或内侧或表面上。返回电极112优选地以如下方式布置,即针对尽可能多的有源电极轮廓104,维持有源电极104上最靠近环绕有源电极的相邻返回电极开口边缘114的点之间的基本均匀的间隙或尺寸106。

在图2b所示的实施例中,返回电极112在有源电极104的近侧上以及有源电极104的侧边上部分环绕有源电极104。通过维持沿开口边缘的大部分长度的基本恒定距离,相信图2b中所示的返回电极的该配置能够维持沿有源电极104的侧边的近侧和近侧部的更加均匀组织效应。另外,尺寸106越小,电源产生所需组织效应所需的能量或电压则越低,并且组织效应越局部化,这产生了非常可控的组织效应,这对于临床医生来说是更偏爱的。这可以最小化目的组织外侧的不期望的组织治疗。在所示的实施例中,尺寸106可介于约0.2mm至3mm之间,并且针对某些实施例可优选地约0.8mm。

有源电极104布置在电极支座150的支座架122上,以及该支座架122基本平行于轴杆远侧部120的纵轴定向,并从轴杆远侧部120的下表面121凹进或偏离。有源电极104可包括丝网电极或基本平的电极,其中平坦表面至少部分由支座架122支撑。有源电极104从轴杆上表面121凹进或偏离,从而形成有源电极104的上表面和目标组织之间的间隙或空隙,尤其是在远侧部120插入在体腔内用于治疗时。使得组织与电极104稍微间隔开可允许有源电极104的充分湿润,产生用于等离子体形成的最佳条件,如前面所述。有源电极104具有一定厚度,其中多个不同尺寸的孔130、131及132穿过该厚度布置。与组织碎片和等离子体副产物一起的导电流体然后可经由电极孔130、131及132从有源电极104的邻近区域移除至布置在电极支座150内以及有源电极104下侧面下或上的抽吸腔135或抽吸腔(在图2c和2e中更加详细示出)。组织碎片和等离子体副产物然后可从该腔135流动进入并沿着布置在轴杆100(这里未示出)中的抽吸元件(稍后描述),所述抽吸元件流体连接抽吸腔135。支座架122优选地使电极104稍微离开目标组织凹入,以允许这些碎片和消融副产物流动离开被治疗组织表面并然后进入及穿过孔径130、131和132。

至少第一组或多个有源电极抽吸孔130和131朝向有源电极104的近侧部布置,并优选地大于布置在有源电极104远侧部上的第二组或多个抽吸孔132。另外地,特别地关于孔130,在某些实施例中,优选地是最大抽吸孔的对称轴定位与腔135的纵轴对齐(即,相对于腔135最大孔位于中心)。变化尺寸的抽吸孔的布置是为了最优化抽吸而不会同时阻塞孔或抽吸腔135。对比于有源电极104和抽吸腔135远端处的抽吸压,沿抽吸腔纵轴以及腔和有源电极104近端处所实现的抽吸压通常更强。较大的碎片和副产物然后可穿过这些较大的、第一组孔130和131,然后可成功地移除并输送出抽吸腔并通过较强吸力穿过抽吸元件。如果允许这些较大的碎片进入吸力相对较弱的有源电极104远端处的抽吸腔135以及抽吸器135的远侧部,这些碎片较高可能地收集在腔135中并促进了抽吸元件的阻塞。更特别地,较大碎片收集在抽吸压相对较低的腔135的更远侧区域会引起更多较大碎片收集在一起,并可能形成更大的碎片或增高密度的碎片,并且增加阻塞抽吸腔135和/或元件的可能性。

如前所述,最大孔130或极大孔130可定位为与抽吸腔135的纵轴对齐,用于最优化组织和消融副产物穿过该孔130移除。另外地,优选地是,如果最大孔130是不对称的,孔130应该定向以使得具有最大维度的对称轴与抽吸腔135的纵轴对齐或重合(即,在椭圆形最大孔130的情形中,具有最大维度的对称轴应该与腔长轴对齐)。因此,为了最优化抽吸性能,至少一个较大孔优选地定位朝向有源电极104的近侧部以及特别地将该具有最大维度的该孔对称轴与抽吸腔135的纵轴对齐。

孔130、131和132都通常具有锋利边缘,从而随着组织碎片流动穿过孔130、131和132时促进这些位置处消化组织碎片所需的等离子体形成。组织碎片和等离子体副产物通常通过行进穿过所述孔130、131或132中的一个从治疗部位移除,并可能会阻塞抽吸元件(这里未示出)。具有多个边缘表面的孔130、131和132可优选地促进这些位置处等离子体形成,从而进一步消化或减少行进穿过孔130、131或132的任意组织碎片或等离子体副产物的尺寸,并进而减少阻塞的可能性。另外地,任意直径或横截面的流体抽吸元件优选地大于任意的孔130、131或132,从而最小化抽吸元件的阻塞。

如前所述,器械尖端140通常是平滑的并成角度以提供进入目标的良好进入。远侧前缘141可以是锋利的从而刺穿组织以获得对目标组织的进入。远侧边缘141可电气连接返回电极112或可包括返回电极112的最远侧部,如该实施例中所示,并可使用rf电能以帮助穿过组织并形成止血。电极支座150的远侧部包括成角度平面151,其构成尖端140的部分,并且平面151可在近侧上从远侧边缘141偏离并基本平行于远侧边缘141的角度。如图2b所示,返回电极150的远侧部和电极支座150的远侧部优选地形成以使得电极支座150嵌入返回电极112内,并且它们通常通过最小锯齿状边缘平滑地拟合在一起,从而最小化器械插入期间在组织上的任何缠结。在该配置中,返回电极112环绕部分支座150。

现在参照图2c,示出了轴杆远侧部120的顶视图。电极104优选地通过近侧上延伸的电极腿105连接至电源(前面描述),所述电极腿可从近侧上朝向手柄的电极104近端延伸,在这里它可以连接与电源电气耦合的其他导电装置。电极腿105具有与有源电极104基本相同的厚度,从而便于制造并位于支座150的通道部152中。腿105可压配合在通道152中,然后可进一步使用诸如粘合剂或密封剂的机械固定装置固定就位在通道152中。电极104还可包括远侧腿103,其从电极104向远侧延伸并穿过支座构件150中的远侧支座开口153。远侧腿106主要用于稳定和固定电极104入位。远侧腿106可压配合或扣合在开口153中或使用粘合剂或密封剂机械固定。远侧腿和近侧腿105和103都示出以沿电极104的中心轴布置,并基本彼此平行和共线。图2c示出了远侧上从通道153凸出的远侧腿,并可在其接触组织时提供一些组织效应。在可替代实施例中,这里未示出,远侧腿103可凹入在通道152中并因此间隔于任意组织。有源电极104和近侧腿105及远侧腿103一起可由一片导电材料形成,并可优选地使用激光、mim或edm工艺切割形成,从而形成腿以及电极和孔径(130、131和132)的形状。

返回电极112间隔于有源电极104且不直接连接至有源电极104。为了实现电流路径,从而电流可在有源电极104和返回电极112之间流动,可使得在它们之间存在并流通导电流体(例如,等渗盐水)。现在参照图2d,为了供给流体,返回电极112包括至少一个穿过返回电极112形成的流出孔。示出了三个流出孔115a、115b和115c,每个相对于彼此轴向布置,其中它们彼此之间及与轴杆100的轴杆中心对齐。至少一个流出孔定向在关于轴杆100的基本径向方向上且在轴杆远侧部120的下侧(即,在有源电极104的轴杆相反侧)。流体优选地从流出孔115a、115b和115c流出,从而湿润返回电极112,并且然后朝向有源电极104绕远侧部120周向流动。在所示实施例中,多个孔115a、115b和115c横跨基本对应至少有源电极104长度的距离,为一行轴向间隔孔115,从而返回电极112在有源电极104附近区域足够均匀地润湿。流出孔115a、b和c可基于轴杆远侧部120的结构需求而在数量和尺寸上受限制。

在某些实施例中,流出孔115a、b和c可以在有源电极104附近布置,从而提供绕轴杆远侧部至有源电极104流动的畅通路径和均匀流体。流出孔115a、b和c基本是椭圆形状以产生尽可能大的开口,从而不会阻碍流体流动以及最大化流体流出,并且在某些实施例中,流出孔的尺寸可从近侧位置至远侧位置增大(即从孔115a至孔115c,以使得例如孔115c稍大于孔115b,等)。在可替代实施例中,这里未示出,在有源电极104两侧的任一侧上可具有一行轴向间隔的流出孔。孔115a、115b和115c连接至流体供给元件,其在后面附图中描述,并且可操作地将导电流体从流体供给元件输送至轴杆远侧部120。

孔115a、b和c的数量、尺寸和位置,以及流体供给速率决定了返回电极112被“润湿”的程度以及润湿区域的均匀性。孔115a、b和c可以具有各种形状,诸如椭圆、细长狭槽或圆形。针对流出孔的可替代实施例可包括一个细长狭槽,其可具有沿其长度变化的宽度,从而保持沿远侧部长度的均匀流体输送。孔115a、b和c的目的是最小化返回电极112表面的干燥区域。优选地,返回电极表面被均匀润湿从而产生有源电极104和返回电极112之间的更均匀电场,从而产生更加可靠和均匀的组织效应。返回电极外表面相对较干的区域会引起电阻热效应以及这些区域中的不期望组织效应。

通常,润湿返回电极面积和有源电极表面面积之间的比值应该是2:1和10:1之间,以及更优化地在8:1左右。电极表面区域可限定为有源电极104的裸露传导表面。对于本领域技术人员来说显而易见的是,有源电极表面面积基于有源电极自身的尺寸。另外,在某些实施例中,所有表面区域可使用涂层或电气绝缘层来进一步改变或调节,从而控制任意有源电极表面面积值。

现在参照图2e,示出了一个实施例的轴杆远侧部120的剖面,其中示出了支座150、抽吸腔135以及具有另外冲洗管路116的流出孔115的细节。支座构件150可优选地由诸如陶瓷的无机材料形成,或能够在施加电能期间将有源电极104与返回电极112绝缘的任何材料形成。绝缘电极支座构件150可以更加详细细节观察,其远侧平面151优选地成角度以便于器械如前所述的进入目标组织。另外地,支座150具有近侧部154,其通常形成以通过诸如压配合、粘合剂或扣合的机械手段连接器械轴杆100和返回电极112。支座150还包括近侧通道152,用于嵌入电极近侧腿105并可固定所述腿105。

在某些实施例中,支座150特征在于至少一个冲洗导管116,其布置在支座150内部并流体连接流体源114。冲洗导管116靠近流出孔115定位,并可操作以使得所供给的部分导电流体优选地流动通过冲洗管路116,并在近侧上行进穿过冲洗通道117,进入靠近有源电极104布置的抽吸腔135。冲洗导管116供给部分流体,其中没有与行进穿过有源电极孔(130、131和132)的所抽吸副产物混合的任何消融副产物或组织碎片,从而减少阻塞抽吸元件的可能性。冲洗导管116关于流出孔115的相对尺寸、形状和位置将决定流动通过所述至少一个冲洗导管116的相对流体量。这里所示出的至少一个冲洗导管按比例地小于流出孔115,并基本轴向上偏离于流出孔115。

抽吸腔135还包括抽吸腔远端处的远侧腔斜面136。申请人发现在抽吸腔135的近端和远端之间抽吸力显著减少,并且在抽吸腔135的最远部处会具有死点。斜面或弯的斜面斜面136已经示出为减少了该死点并改进了组织和消融副产物穿过电极孔130、131和132、以及流出抽吸腔进入流体抽吸元件109的抽吸和流动。斜面斜面136提供了朝下倾斜的、远离有源电极104进入抽吸腔135的表面,其中斜面136的上部最靠近有源电极,处于较远端,而斜面136的下部处于较近端并连接抽吸腔135的近侧部,其具有较大的界面宽度和深度。

抽吸孔130、131和132流体连接抽吸或抽吸腔135,其可操作以从输送流体、组织碎片、以及来自消融过程的气体237远离目标部位,并进入布置在轴杆100内的流体抽吸元件109。这里示出了针对至少部分轴杆长度,抽吸元件109包括轴杆100。在其他实施例中,抽吸元件109可包括至少一个管腔或管(未示出),其在轴杆100内从抽吸腔135延伸部分轴杆长度。可替代地,电极支座150可延伸部分轴杆长度并连接至器械手柄204内的出口或抽吸源(也未示出)。

导电流体50可通过流体输送元件供给,其包括连接流体供给管腔114的管(这里未示出)。管腔114可以是朝远侧减缩,从而改变流体速度或正好拟合在远侧部120空间需求中。管腔114可供给导电流体至流出口115及冲洗导管116。在其他实施例中,流体可通过轴杆100供给,只要抽吸元件是单独的管或管腔。

图3示出了针对有源电极204的可替代实施例,其布置在器械轴杆远侧部220上。轴杆远侧部220类似于前面附图所示的实施例,除了有源电极204具有穿过有源电极204布置的至少三个轴向间隔孔230、231和232。另外地,有源电极204具有成角度的弯曲短条235,其至少布置在有源电极204的近侧部上,以及横向短条236。这些短条235和236电气连接有源电极并可操作以减少有源电极204的任一边缘上或电极与支座240之间的间隙上累积的任何组织和消融副产物。

图3中的实施例还示出了清洗端口210,其提供了对布置于有源电极204下方的抽吸腔235的导管或进入。清洗端口210示出以具有支座元侧表面251上的开口,并可操作以在组织或消融副产物在元件内变得阻塞时为使用者提供对抽吸腔235及流体抽吸元件(这里未示出)的进入。使用者可使用合适形状的工具来移除所述阻塞物。

图4a示意了鼻腔通道,其根据本发明准备进行治疗以扩大诸如息肉或鼻甲的身体结构。在这些手术中,息肉、鼻甲或其他鼻窦组织会被消融或缩减(例如,通过组织收缩),以清除阻塞和/或防止鼻甲的进一步肿胀,从而恢复正常鼻窦功能。例如,在慢性鼻炎中,其是慢性的鼻粘膜发炎或炎症的统称,具有过度增大的鼻粘膜,下鼻甲可通过消融或收缩来缩减。可替代地,鼻甲切除或黏膜切除可通过从下鼻甲的下边缘移除组织条来减少鼻甲的体积。为了治疗鼻息肉,其包括由炎症引起的良性肉茎或固着的大形鼻或鼻窦黏膜,鼻息肉可通过本发明的方法缩减或收缩、或消融。为了治疗严重的鼻窦炎,可进行额窦手术以将电外科探头引入至阻塞部位。本发明还可用于治疗隔膜的病症,例如消融或切除部分隔膜,以进行隔膜的移除、矫正或重新植入。

本发明特别地用于通过体积地移除部分鼻甲来减少放大的鼻甲。如图4a所示,患者鼻300包括具有一组鼻甲305的鼻腔302,鼻甲305包括中间鼻甲304和下鼻甲306。下鼻甲306通常包括前部和后部。已经发现治疗下鼻甲306,通常是前部,基本不会退化其功能。根据本发明,探头90的远端可穿过鼻腔通道301引入鼻腔302。

图4b示意了根据本发明教导的示例性内窥鼻窦手术。内窥镜可首先穿过一个鼻通道301引入(未示出)以允许外科医生观察目标部位,例如鼻窦腔。轴杆100可具有弯曲或曲线部以促进内窥镜和探头90在相同鼻通道中的使用(即,在该实施例中,两个器械的操纵不会彼此干扰)。可替代地,内窥镜可穿过下软腭经口引入以观察鼻咽。

可替代地,内窥镜可包括护套,其具有内部管腔用于接纳电外科探头轴杆100。在该实施例中,轴杆100将延伸穿过内部管腔至内窥镜的远侧开口。轴杆将包括合适的近侧控制器以用于在外科手术期间操纵其远端。

如图4b所示,探头远侧部120穿过鼻通道301引入鼻腔302中。基于阻塞或肿胀位置的位置,远侧尖端140将在鼻腔302阻塞附近定位,或定位在鼻旁窦304、306中的一个中。一旦外科医生已经到达主要阻塞或肿胀的点时,外科医生可选择使用远侧尖端140通过钝的或锋利的切割来进入阻塞区域。可替代地,外科医生可选择使用可替代的器械来做出获得进入鼻窦组织的窗口。一旦已经获得进入,导电流体流可通过泵40启动,以使得导电流体可输送至远侧部120。流体在返回电极112上流动以润湿轴杆远侧部处的返回电极表面。

另外,依靠由泵40提供的流体压,提供进入鼻腔的导电流体可具有扩大开口的效果,用于进入并治疗目标标的鼻窦组织。在所进入的空腔组织内提供压力下流体的效果是扩张开口并提供空腔组织内的另外空间,其允许有源电极104处有效的等离子体形成。较大的进入空腔还增强了有源电极104远离该装置远侧部120的上表面121凹进的益处。可通过泵40、或可替代地通过阀(未示出)来控制流体流速,从而使得组织和电极支座150之间的区域持续地沉浸或涂覆流体,并且返回电极112被充分地润湿。电源28(图1中示出)然后打开并调节使得在有源电极104和返回电极112之间施加高频电压差。导电流体提供了有源电极104和返回电极112之间的传导路径。设备90则可平移和/或旋转以对鼻窦组织钻孔或去芯,从而减少或压实组织量。

基于该手术,外科医生可相对于鼻甲组织旋转和/或平移电极104以形成鼻甲内的孔洞、通道、条、皮层、坑等。另外,外科医生可故意地在这些孔洞、或通道内产生一些热破坏,从而形成抑制鼻甲在手术后肿胀的疤痕组织。在一个实施例中,医师轴向地在鼻甲内转动轴杆远侧部120,随着组织被体积地移除,从而形成鼻甲内一个或多个孔洞,其通常具有小于5mm、优选地小于2mm的直径。有源电极104通常尺寸大小设置为接近待治疗平均身体结构的长度。例如笔记可通常约10-15mm长,以及有源电极105可具有约5-20mm的长度,从而适应该特定目标鼻甲。器械90和有源电极长度可操作以在主导性的旋转运动期间通过最小的前进和收缩来治疗组织。这允许临床医生计划更可靠量的所移除或治疗组织。在另一实施例中,医师还可以轴向平移远侧部120进入鼻甲组织,随着组织被体积地移除,从而形成鼻甲内一个或多个孔洞,其通常具有小于2mm、优选地小于1mm的直径。轴杆远侧部120可以尺寸大小设置为使得能够进入鼻腔并形成这些孔洞,并因此将处于1-5mm之间、且更优选地接近2mm的直径。在另一实施例中,医师可穿过鼻甲的外表面来平移电极104,从而形成一个或多个通道或槽。

本发明的另一优点是精确地消融鼻甲内通道或孔洞而不会引起底层或周围组织、神经(例如,视神经)或骨的坏死或热损害的性能。另外,由电源28输送的电压可控制以使得引导至目标部位的能量不足以消融骨或脂肪组织(其通常具有比目标鼻窦组织更高的阻抗)。这样,外科医生能够逐一地i将组织从骨清除,而不会消融骨或引起骨的显著损害。

现在参照图5,示意了根据本文所述的至少一些实施例用于治疗组织的方法(400),其包括如下步骤:将电外科棒远侧部靠近目标部位定位(410),然后在所述至少一个有源电极和接近导电流体的返回电极之间施加(420)电能,所述有源电极和返回电极布置在电外科棒上;然后响应该能量,在所述至少一个有源电极附近形成(430)等离子体;并通过在组织内旋转所述至少一个有源电极来治疗(440)组织;以及通过穿过有源电极布置并进入抽吸腔的多个抽吸孔来抽吸(450)组织和等离子体副产物,其中多个抽吸孔中的至少一个具有与抽吸腔纵轴重合且平行的对称轴;以及最后通过布置在有源电极远侧部上的至少一个抽吸孔来抽吸(460)限定为较小尺寸的组织和等离子体副产物;并且通过布置在有源电极近侧部上的至少一个抽吸孔来抽吸较大尺寸的组织和等离子体副产物。

在形成步骤期间,至少部分等离子体对于使用者是可见的橘色辉光,这是由于等离子体包括具有紫外线光谱波长的光子。该橘色辉光可用作位置指示器并辅助使用者确保目标区域是正确的以及等离子体正在形成。特别地,由等离子体发射的橘色辉光在直接窥视进行治疗的体腔内时对于使用者是可见的,或通过观察穿过围绕体腔的皮肤或解剖结构的辉光。以所发射的可见光波长形式的等离子体的视觉观察可为使用者提供有价值的信息,用于标记装置位置,以及用于具体地做出调节,以响应目标组织治疗期间装置平移、旋转、或定位及调节时该装置的有源电极的所观察位置和深度。另外,该方法还可包括在布置于电外科棒的流体输送管腔内流通导电流体的步骤,其中导电流体通过穿过返回电极布置的多个流出孔来流出。部分导电流体还可以引导通过至少一个冲洗导管以冲洗抽吸腔。可替代的清洗流体源可用于帮助冲洗所抽吸的产物并帮助保持抽吸元件没有阻塞物或碎片。目标组织可包括患者鼻腔或鼻旁窦内的阻塞物,或更具体而言是肿胀组织、鼻甲、息肉、瘤、以及衬里在鼻腔内表面的肿胀黏膜。

也可以治疗鼻腔外侧的其他组织,诸如前列腺、心脏或任意其他身体结构。高频电压可以是交替的或充分足的,其实现了供给步骤期间组织内所切断血管的止血。电外科探头还可包括远侧尖端,可操作以生硬地剖开组织或产生进入身体结构的窗口。

尽管已描述仅本发明的少数实施例,应该理解的是本发明可在不偏离本发明精神和范围的情况下呈现为许多其他特定形式。因此,本发明的实例应该理解为示意性而不是限制性的,并且本发明不应该限定为本文所给出的细节,而是可以在所附权利要求书的范围内变化。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1