本申请是申请日为2013年5月22日、申请号为201310333790.0、名称为“外科手术导航系统”的中国发明专利申请的分案申请。
本发明涉及使用外科手术导航系统以执行外科手术。更具体地说,本发明涉及使用导航系统,以利用基准图案实现治疗方案。
背景技术:
电外科设备已经被广泛地使用。电外科手术涉及在外科手术期间利用热能和/或电能来对生物组织进行切割、解剖、消融、凝结、烧灼、密封或其他处理。电外科手术通常使用手持件进行,所述手持件包括适于在电外科手术期间传输能量至组织部位的外科设备(例如,末端执行器或消融探头)、可操作地输出能量的远程电外科发生器、以及将所述外科设备可操作地连接至远程发生器的电缆组件。
某些疾病的治疗需要破坏恶性组织(例如肿瘤)生长。在诸如癌症的疾病治疗中,已经发现某些类型的肿瘤细胞在与通常会对健康细胞有害的温度相比稍低的高温下变性。已知的治疗方法,诸如高温疗法,通常包括将患病细胞加热至高于41℃的温度而保持邻近健康细胞低于不可逆的细胞破坏发生的温度。这些方法可以涉及施加电磁辐射以加热、消融和/或凝结组织。有多种不同类型的电外科设备能够用于执行消融术。
可以使用二维(2d)术前计算断层扫描(ct)图像和“消融区图”来执行癌性肿瘤或良性肿瘤的肿瘤微创消融术,“消融区图”通常描述消融针在实验的、离体组织中在一系列输入参数(功率、时间)上的特征。能量剂量(功率、时间)能够与消融组织效应(体积、形状)关联以进行具体设计。能够通过微波天线设计控制输送至组织的能量剂量,例如,可利用天线扼流圈来提供从设备至组织的在已知位置的微波传输。在另一实例中,电介质缓冲使得能够进行独立于不同的或变化的组织特性的、从设备至组织的相对恒定的能量输送。
在用户确定应该使用哪种消融针来实现目标的处理后,用户通过超声引导来进行处理。通常,需要高水平技能来将外科设备置于由超声识别的目标中。其中最重要的是,有选择引导设备朝向超声图像表面(例如,正在成像的目标处)所需的角度和进入点的能力。
超声引导介入涉及使用实时超声成像(经腹、术中等)来精确地引导外科设备至它们的预定目标。这可以通过经皮应用和/或术中应用来进行。在每种情形中,超声系统将包括换能器,其对患者组织成像,并用于识别目标以及预期和/或跟随朝向目标的器械的路径。
超声引导介入目前广泛用于穿刺活检术以确定已检测的可疑病变(乳房、肝脏、肾脏、以及其他软组织)的恶性。另外,用来获得颈静脉通路(jugularaccess)以及允许输送药物的中心线布置是共同的。最后,新兴用途包括肿瘤消融和器官(肝脏、肺脏、肾脏,等等)的手术切除。在肿瘤消融的情形中,在实现超声引导定位后,可利用活检类针来输送能量(rf、微波、冰冻,等等)以杀死肿瘤。在器官切除的情形中,对解剖期间表层下解剖结构的密切了解、以及外科设备关于该解剖结构的显示,对于获得成功的手术切缘而避开致命结构来说是关键的。
在这些情形中的每种情形中,超声引导通常提供二维图像平面,其从施加到患者的换能器的远端获取。为了成功定位设备,对用户而言最重要的是能够可视化和表征目标、选择器械角度和进入点以到达目标、以及观察外科设备及其朝向目标的运动。目前,用户对目标成像并使用高水平技能来选择器械角度和进入点。用户必须移动超声换能器来观察器械路径(因此丢失目标部位)或假定路径是准确的直至设备到达图像平面。最重要的是,选择引导设备朝向超声图像平面(例如,正在成像的目标处)所需的角度和进入点。
技术实现要素:
本发明可使用短语“在一个实施方式中”、“在各个实施方式中”、“在一些实施方式中”、或“在其他实施方式中”,其中每个指代根据本发明的一个或多个相同或不同的实施方式。出于描述目的,以形式“a/b”的短语意指a或b。出于描述目的,以形式“a和/或b”的短语意指“(a)、(b)、或(a和b)”。出于描述目的,以形式“a、b、或c中的至少一个”的短语意指“(a)、(b)、(c)、(a和b)、(a和c)、(b和c)、或(a、b和c)”。
如附图所示的以及整个下文说明书所描述的,在指代外科设备上的相对定位时与传统一样,术语“近侧”指代设备更接近用户或发生器的端,而术语“远侧”指代设备远离用户或发生器的端。术语“用户”指代任何医务人员(即,医生、护士、等),其执行包括使用本文所述的本发明各个方面的医疗程序。
如本说明书中所使用的,术语“外科设备”通常指代外科手术工具,其施加电外科能量以治疗组织。外科设备可包括但不限于针、探针、导管、内窥镜器械、腹腔镜器械、血管闭合设备、外科缝合器等。术语“电外科能量”通常指代任何形式的电磁、光、或声能。
电磁(em)能通常通过频率的增加或波长的降低分类为无线电波、微波、红外线、可见光、紫外线、x射线和伽马射线。如本文所使用的,术语“微波”通常指代处于300兆赫(mhz)(3×108循环/秒)至300千兆赫(ghz)(3×1011循环/秒)的频率范围的电磁波。如本文所使用的,术语“rf”通常指代具有比微波更低频率的电磁波。如本文所使用的,术语“超声”通常指代具有大于人类听力上限的频率的循环声压(cyclicsoundpressure)。
如本说明书中所使用的,术语“消融术”通常指代任何消融术,诸如微波消融、射频(rf)消融或微波消融辅助切除。如本说明书所使用的,“能量施加器”通常指代能够用于从诸如微波或rf电外科发生器的能量发生源传输能量至组织的任何设备。
如本说明书中所使用的,术语“能量源”和“电源”指代以适于使电子电路运转的形式的任何电能量源(例如,电池)。如本说明书中所使用的,“传输线路”通常指代能够用于使信号从一点至另一点传播的任何传输介质。如本说明书所使用的,术语“开关”或“各开关”通常指代任意电动致动器,机械致动器,电子机械致动器(可旋转致动器、可枢转致动器、触发器类致动器、按钮等),光学致动器,或通常实现电子设备、或其组件、器械、设备、输送线路或连接线及其上附件、或软件的连接和断开连接目的的任何合适设备。
如本说明书所使用的,“电子设备”通常指代利用在真空、气体、或半导体中运动的电子或离子的特性的设备或对象。如本文所使用的,“电子线路”通常指代电子或离子运动的路径,以及由设备或对象为电子或离子提供的方向。如本文所使用的,“电气电路”或简单来说“电路”通常指代多个电气设备和导体的组合,它们在彼此连接时形成导电路径以实现期望的功能。除了互连部分以外,电路的任何组成部件可以称为“电路元件”,其可包括模拟和/或数字组件。
术语“发生器”可指代能够提供能量的设备。这样的设备可包括能量源以及电路,所述电路能够将能量源输出的能量改变为具有期望强度、频率、和/或波形的输出能量。
如本说明书中所使用的,“用户接口”通常指代任何视觉、图形、触觉、听觉、感官、或其他机构以提供信息至用户或其他实体,和/或从用户或其他实体接收信息。本文所使用的术语“用户接口”可指代人类用户(或操作者)与一个或多个设备之间的接口,以使得能够在用户和设备(多个)之间通信。本发明的各个实施方式中可利用的用户接口的实例包括但不限于:开关、电位计、按钮、拨号盘、滑动器、鼠标、定点设备、键盘、小键盘、操纵杆、轨迹球、显示屏、各种类型的图形用户接口(gui)、触摸屏、麦克风、以及其他类型的可接收人类发出的某种形式的刺激并产生响应其的信号的传感器或设备。如本文所使用的,“计算机”通常指代以目的方式传输信息的任何事物。
本文所述的系统还可以利用一个或多个控制器来接收各种信息并变换所接收的信息以产生输出。控制器可包括任何类型的计算设备、计算电路、或能够执行存储在存储器中的一系列指令的任何类型的处理器或处理电路。控制器可包括多个处理器和/或多芯中央处理单元(cpu),并可包括任何类型的处理器,诸如微处理器、数字信号处理器、微控制器等。控制器还可包括存储器以存储数据和/或算法以执行一系列指令。
本文所述的任何方法、程序、算法或代码可以转化为编程语言或计算机程序、或以编程语言或计算机程序来表达。“编程语言”和“计算机程序”是用于向计算机指定指令的任何语言,并包括(但不限于)这些语言和它们的派生:assembler、basic、batchfiles、bcpl、c、c+、c++、delphi、fortran、java、javascript、machinecode、操作系统命令语言、pascal、perl、pl1、脚本语言、visualbasic、自身指定程序的元语言、以及所有的第一、第二、第三、第四及第五代计算机语言。还包括数据库和其他数据模式、以及任意其他元语言。出于限定目的,在经解释、编译的语言,或使用编译和解译方法的语言之间没有区别。出于限定目的,在程序的编译版和源版本之间没有区别。因此,对于程序,当编程语言能够以多于一种状态(诸如源、编译、对象、或链接语言)存在时,可以指代任何的状态以及所有状态。该限定还包括有效指令和这些指令的含义。
本文所述的任何方法、程序、算法或代码可以包含在一个或多个机器可读介质或存储器中。术语“存储器”可包括提供(例如,存储和/或传输)机器(诸如处理器、计算机、或数字处理设备)可读形式的信息的机构。例如,存储器可包括只读存储器(rom)、随机存取存储器(ram)、磁盘存储介质、光存储介质、闪存设备、或其他任何易失性或非易失性存储器存储设备。包含在它们之上的代码或指令可通过载波信号、红外信号、数字信号、和其他类似信号来表达。
如本说明书中所使用的,短语“治疗计划”指代选定的消融针、能量水平、和/或治疗持续时间以实现目标治疗。术语“目标”指代准备要治疗的组织区域,并且可包括且不限于肿瘤、纤维瘤、和待消融的其他组织。短语“消融区”指代将消融的组织区域和/或组织体积。
如本说明书中所使用的,短语“计算机断层扫描”(ct)或“计算机轴向断层扫描”(cat)指代利用由计算机处理产生的断层扫描的医疗成像方法。数字几何处理用于从绕单个旋转轴采集的大量二维x射线图像来生成对象内部的三维图像。
如本说明书中所使用的,术语磁共振成像(mri)、核磁共振成像(nmri)、或磁共振断层扫描(mrt)指代在放射学中使用的用以可视化内部细节结构的医疗成像技术。mri利用核磁共振(nmr)特性来对体内的原子核成像。mri机器使用强力磁场来排列(align)体内的一些原子核的磁化,同时使用射频场来系统地改变该磁化的排列。这引起核产生可由扫描器检测的旋转磁场,并且该信息被记录以构建所扫描身体区域的图像。
如本说明书中所使用的,术语“三维超声”或“3d超声”指代提供三维图像的医疗超声技术。
如本说明书所使用的,术语“医学数字成像和通信”(dicom)指代用于处理、存储、打印、和传输涉及医疗成像的信息的标准。它包括文件格式定义和网络通信协议。通信协议是应用协议,其使用tcp/ip以在各系统间通信。dicom文件可以在能接收dicom格式的图像和患者数据的两个实体之间交换。
本文所述的任意系统和方法可通过有线网络、无线网络、点对点通信协议、dicom通信协议、传输线路、可移动存储介质等在其间传输数据。
本文所述系统可利用被配置为检测组织的一个或多个属性和/或周围环境的一个或多个传感器。所述属性包括但不限于:组织阻抗、组织类型、组织透明度、组织顺应性、组织或钳口构件(jawmember)的温度、组织中的水含量、钳开口角度、组织中的水移动性、能量输送、以及钳闭合压。
在本发明的一个方面,提供了一种导航系统。所述导航系统包括:超声设备,具有布置于其上的基准图案,其被配置以获得扫描平面中的超声图像;以及外科设备,其具有图像获取设备,被配置以获取基准图案的基准图像。控制器被配置以接收超声图像和基准图像,其中所述控制器基于基准图像确定外科设备关于扫描平面的位置,并且显示器被配置以基于外科设备关于扫描平面的位置来显示外科设备的虚拟图像和超声图像。
在导航系统中,基准图案固定至超声设备上的已知位置,并且图像获取设备固定至外科设备上的已知位置。基准图案具有存在于已知拓扑结构中的具有相对位置和已知特征的多个标记。控制器将基准图像对应至模型图像,评估摄影机的位姿、并将外科设备转换至模型坐标系。控制器还针对透镜畸变来校正基准图像。另外,控制器能够识别基准标记中的拓扑结构,其中拓扑结构参照两个或更多个独立唯一标识符,它们定位在标记上的单个图案上的已知位置。
附图说明
本发明的上述和其他方面、特征、和优势将在结合附图时根据下面的详细描述而变得更加明显,其中:
图1是根据本发明的一个实施方式的规划和导航系统的系统框图;
图2a和2b是根据本发明的一个实施方式的消融针的示意图;
图3是图2a和2b的消融针的辐射图的示意图;
图4是根据本发明的一个实施方式的规划系统的示意图;
图5是描绘根据本发明的一个实施方式的规划系统的整体操作的流程图;
图6和7是用于根据本发明的一个实施方式的规划系统中的图形用户界面的示意图;
图8是描绘根据本发明的一个实施方式的图像分割和逆向规划的算法的流程图;
图9是描绘根据本发明的一个实施方式的用于分割结节的算法的流程图;
图10a-图10b是消融区和能量输送之间的关系的图形表示;
图11a是根据本发明另一实施方式的血管和目标之间的关系的示意图;
图11b是根据本发明另一实施方式的替代剂量曲线的图形表示;
图12a-图12c是根据本发明另一实施方式的规划方法的示意图;
图13是根据本发明的一个实施方式的导航系统的示意图;
图14a和14b是用于图13的导航系统的图形用户接口的示意图;
图15是描绘根据本发明的一个实施方式的基准跟踪算法的流程图;
图16a和16b分别描绘了由摄影机获得的图像以及该图像的校正版本;
图17是描绘根据本发明的一个实施方式的用于找到白色圆圈的算法的流程图;
图18a-图18c描绘了图17中所描绘的算法的中间图像结果;
图19是描绘根据本发明的一个实施方式的用于找到黑色圆圈和黑色区域的算法的流程图;
图20a-图20d描绘了图19中所描绘算法的中间图像结果;
图21a是描绘根据本发明的一个实施方式的对应算法的流程图;
图21b是描绘根据本发明的一个实施方式的用于施加拓扑限制的算法的流程图;
图22a-图22d是用于图21a的算法的基准模型的示意图;
图23是根据本发明另一实施方式的集成的规划和导航系统的示意图;
图24是根据本发明又一实施方式的集成的规划和导航系统的示意图;
图25a和图25b是适于与图24的系统一起使用的导航系统的示意图;以及
图26-图29是根据本发明各个实施方式的用于图24的系统的图形用户界面的示意图。
具体实施方式
本发明的特定实施方式将在下文中参照附图进行描述;然而,应该理解的是,所公开的实施方式仅是本发明的实例并且可以各种形式体现。没有详细描述公知的功能或构造以避免以不必要的细节使本发明晦涩。因此,本文公开的具体结构和功能细节不能解释为限制,而仅仅作为权利要求书的基础,以及作为教导本领域技术人员以实际上任何合适的细节结构来不同地利用本发明的代表性基础。在整个附图描述中同样的参考数字指代相似或相同的元件。
转向附图,图1描绘了根据本发明各实施方式的规划和导航系统的整体视图。如图1所示,患者“p”的术前图像15通过图像获取设备10获取。图像获取设备10可包括但不限于获得二维(2d)或三维(3d)图像的mri设备、cat设备、或超声设备。图像获取设备10存储传输至规划系统100的术前图像15。术前图像15可以通过将图像15上传到网络、通过无线通信装置传送图像15至规划系统100、和/或将图像15存储在插入规划系统100的可移动存储器中而传输至规划系统100。在本发明的一个实施方式中,术前图像15以dicom格式保存。在一些实施方式中,图像获取设备10和规划系统100可结合为一个独立单元。
规划系统100(其将在下文更加详细描述)接收术前图像15并确定目标尺寸。基于目标尺寸和选定的外科设备,规划系统100确定设置,其包括实现目标治疗的能量水平和治疗持续时间。
导航系统200,其在下文将更加详细描述,利用布置于医疗成像设备(例如,超声成像设备)上的基准图案来确定外科设备的体内位置。外科设备的体内位置在显示设备上关于由医疗成像设备获得的图像来显示。一旦外科设备定位在目标附近,用户就基于由规划系统确定的治疗区设置来实现目标的治疗。
在一些实施方式中,用户使用规划系统100来确定治疗区设置,并在使用导航系统200实现治疗时利用治疗区设置。在其他实施方式中,当外科设备处于目标附近时,规划系统100传输治疗区设置至导航系统200以自动实现目标的治疗。另外,在一些实施方式中,规划系统100和导航系统200结合为单个独立系统。例如,单个处理器和单个用户接口可用于规划系统100和导航系统200,单个处理器或多个用户接口可用于规划系统100和导航系统200,或者多个处理器和单个用户接口可用于规划系统100和导航系统200。
图2a示出了根据本发明一个实施方式的外科设备的实例。具体而言,图2a示出了具有扼流圈72的消融针60的变体的侧视图,以及图2b示出了沿图2a的2b-2b的剖面图。消融针60示出了辐射部62,其通过馈线(或轴杆)64电连接至近侧定位的耦合器66。辐射部62被示出为具有涂覆在节段62上的密封层68。扼流圈72被示出为部分地布置在馈线64的远侧节段上以形成扼流部70,其靠近辐射部62定位。
为了改善消融针60的能量聚焦,扼流圈72用于将场传播或辐射图案包含在消融针60的远端。通常,扼流圈72布置在消融针60上靠近辐射段处。扼流圈72置于介电材料上,所述介电材料布置在消融针60上。扼流圈72是导电层,其可以通过管路或涂层覆盖以迫使该导电层与底层消融针60相符合,进而形成更加远离或接近辐射部62的电连接(或短路)。扼流圈72和底层消融针60之间的电连接还可以通过其他连接方法(诸如软焊、焊接、铜焊、压接、使用导电粘合剂等)实现。消融针60电耦接至发生器,其为消融针60提供电外科能量。
图3是根据本发明的消融针60的一个实施方式的剖面图,其示出以发射的辐射图的图形表示。
图4-图12c描述了根据本发明各个实施方式的规划系统100的操作。转向图4,规划系统100包括接收器102、存储器104、控制器106、输入设备108(例如,鼠标、键盘、触摸板、触屏等)、以及显示器110。在规划系统100的操作中,接收器102接收dicom格式的术前图像15并将这些图像存储在存储器104中。控制器106随后处理图像15(这将在下文更详细描述),并将经处理的图像显示在显示器110上。使用输入设备108,用户可以导航通过图像15,从图像15中选择一幅图像,在所选择图像上选择种子点,选择消融针,调节能量水平,以及调节治疗持续时间。由输入设备108提供的输入显示在显示器110上。
图5描绘了由规划系统100使用的用以确定治疗方案的的算法的概图。如图5所示,在步骤120中,通过无线连接、网络、或通过从可移动存储介质下载图像来获取dicom格式的图像,并将其存储在存储器104中。控制器106随后执行图像15的自动三维(3d)渲染,并在步骤122中显示3d渲染的图像(如图6所示)。在步骤124,执行图像分割以对特定感兴趣区域划界并计算感兴趣区域的体积。如下所述,分割可以是用户驱动或自动的。在步骤126,控制器执行逆向规划操作,其还将在下文中更为详细地描述,从而确定治疗感兴趣区域的治疗算法。该治疗算法可包括外科设备、能量水平、和/或治疗持续时间的选择。作为选择,用户可以选择外科设备、能量水平、和/或治疗持续时间以满足治疗医生的意愿,其将包括治疗目标的“边缘值”以及周围组织的边缘。
图6和7描绘了可在显示器110上显示的图形用户界面(gui)。如图6和7所示,每个gui分割为多个区域(例如,区域132、134和136)以用于显示经渲染的dicom图像。例如,区域132显示了患者“p”沿横剖面的图像,以及区域134显示患者“p”沿冠状剖面的图像。区域136描绘了患者“p”的3d渲染。在其他实施方式中,矢状面也可显示在gui上。gui允许用户在下拉菜单131中选择不同的消融针。gui还允许用户分别在区域133和135中调节功率和时间设置。此外,gui在区域137中具有多个附加工具,其包括但不限于:启动种子点选择的规划工具、对比工具、缩放工具、拖动工具、用于滚动通过dicom图像的滚动工具、以及用于显示dicom数据集的体渲染的3d渲染工具。
图8的流程图描绘了用于执行图像分割步骤124和逆向规划步骤126的基本算法。如图8所示,用户在步骤140中选择种子点(参见图6,其中,十字线位于区域132和134中目标“t”的中心)。在手动选择种子点后,规划系统100在步骤142中分割结节以对感兴趣体积划界。在其他实施方式中,可基于像素的强度值自动检测种子点。
图9描绘了用于分割结节的算法的流程图。如图9所示,一旦在步骤151中识别了种子点,该算法在步骤152中创建感兴趣区域(roi)。例如,roi可包括4cm3的体积。在步骤153中,连接的阈值滤波器施加阈值并在存储于存储器104中的dicom图像中寻找连接至种子点的所有像素。例如,在分割肺结节时,阈值可开始于-400houndsfield单位(hu)并终止于100hu。
在步骤154,控制器106应用几何滤波器来计算对象的尺寸和形状。几何滤波器使得能够测量标示体积中所有对象的几何特征。该标示体积能够例如表示分割为不同解剖结构的医疗图像。这些对象的各个几何特征的测量结果能够提供对图像的其他深入了解。
该算法在步骤155中确定是否检测到预定形状。如果未检测到预定形状,则算法行进至步骤156,其中阈值增加预定值。该算法重复步骤153至155直至检测到预定的对象。
一旦检测到预定对象,该算法在步骤157处终止,并且规划系统100行进至步骤144以执行体积分析。在体积分析期间,可通过控制器106计算球形对象的下述属性:最小直径、最大直径、平均直径、体积、球形度、最小密度、最大密度、以及平均密度。所计算的属性可以在显示器110上显示,如图7的区域139中所示。体积分析可使用几何滤波器来确定最小直径、最大直径、体积、延伸率、表面积、和/或球形度。在步骤144,图像强度统计滤波器还可与几何滤波器结合使用。图像强度统计滤波器计算最小密度、最大密度以及平均密度。
在步骤146中,针对划界目标计算功率和时间设置。图10描绘了对于给定时间段沉积至组织中的能量和所产生的消融区域之间的关系的各个曲线图。该关系通过考虑目标组织(即,肿瘤、纤维瘤等)的维度和特征以及指定消融针的能量剂量/天线设计而允许逆向规划。下表1示出了消融针的消融体积、功率、和时间之间的关系的示例。
表1
使用表1中的值,能够从该表中导出线性等式,从而计算最佳功率和时间设置。例如,使用线性回归分析,表1提供了下面等式:
体积=0.292381*功率+8.685714*时间-44.0762(1)
其能够写成
功率=(体积-8.685714*时间+44.0762)/0.292381(2)
能够利用来自体积分析的最大直径加上1厘米边际来计算期望的体积,如下:
期望体积=4/3*pi*期望半径^3(3)
其中,期望半径可如下计算:
期望半径=最大结节直径/2+边际(4)
将期望体积代入等式(1)或(2)留下两个未知数:功率和时间。使用等式(2),控制器106能够通过代入时间值解出功率。控制器106选择将功率保持低于70w或某个其他预定值的时间最小值,从而用户可以尽可能快地执行该过程并同时保持功率处于安全范围。
一旦计算了功率和时间146,功率和时间显示在显示器110上,如图7所示(参见133和135)。用户可分别使用控件133和135调节计算的功率和/或时间,从而调节治疗区138a和/或边际138b。
存储器104和/或控制器106可存储对应于不同外科设备的多个等式。当用户在下拉菜单131中选择了不同的外科设备时,控制器106可执行上面所述的相同分析来确定保持功率低于70w或某个其他预定值的最小时间值。
虽然上述过程描述了使用单个种子点来确定预定对象,一些目标可具有不规则形状,其不能够通过预定治疗区来治疗而不对其他组织造成损伤。在这样的情形中,可使用多个种子点来创建不规则形状的治疗方案,其使用以多个位置重新定位的单个外科设备或可同时使用的多个外科设备来治疗不规则形状的区域。
在其他实施方式中,存储器104和/或控制器106可存储外科设备和治疗区性能的目录,其包括功率、时间、器械数量、以及到达体外或体内治疗区所需的器械间隔。基于图像分割和体积分析的结果,控制器可自动选择设备类型、设备数量、多个设备的间隔、和/或针对每个设备的功率及时间设置,以对roi进行治疗。作为选择,用户可以使用gui手动选择治疗roi的设备类型、设备数量、多个设备的间隔、针对每个设备的功率和/或时间设置,从而产生治疗方案。
在根据本发明的另一实施方式中,规划系统100还可对除了目标之外的器官和其他重要结构进行分割。器官和其他结构(如血管)的分割用于提供更加先进的治疗方案。如上关于图10所述的,治疗区与能量输送以规则方式相关联。此外,公知的是大于三(3)毫米的血管可消极地影响治疗区形成。血管的分割将允许血管和待评估目标之间的交互,包括血管直径(d1)以及血管与提出的目标之间的距离(d2)(参见图11a)。该交互可通过用户手动地评估或通过控制器106自动地评估。使用血管直径d1和距离d2,规划系统100可自动地建议用于治疗目的的替换剂量曲线,如图11b所示。作为选择,控制器106可通过显示器110为用户推荐以移动治疗区。另外,不同的治疗区投影可以显示在显示器110上。此外,在图8的计算功率和时间设置步骤146中,控制器可基于血管直径和到目标区域的距离来影响不同的曲线。
图12a-图12c描绘了使用器官分割的先进治疗规划。器官分割在规划疗程中具有至少两个优势。在第一个情形中,通常选择微创治疗以进行器官保留。通过分割器官,控制器106可以计算器官体积160并减去确定的消融区162以确定保留的器官164的体积,如图12a所示。如果控制器106确定保留的器官体积太小,则控制器106可以提醒用户需要替换治疗方案或者它可以建议替代治疗方案。
图12b和12c描绘了针对定位在器官表面上的目标“t”的治疗方案。传统上,通常避免靠近器官表面的治疗,或需要另外的技术以在执行治疗前将该器官与其他器官隔离。在根据本发明的另一实施方式中,在分割器官后,还可以确定目标“t”的位置。如果治疗方案中的治疗区162凸出于器官表面外并且目标“t”位于表面上,则控制器106可以提醒用户治疗区162可影响在目标“t”附近的其他器官和/或结构,以及该治疗方案需要变更。在另一实施方式中,控制器106可自动为用户提出指示外科设备、能量水平、治疗持续时间的建议。控制器106还可建议如图12b中示出的较小治疗区162,或者它可以建议如图12c所示的移动治疗区162。
在其他实施方式中,在分割目标、组织、器官、和其他结构后,已知的组织性质可归因于这些结构。这些组织性质包括但不限于:跨频率的电导率和介电常数、热导率、热对流系数,等等。图8的规划算法可使用归因于分割肿瘤、组织、器官、和其他结构的组织性质来求解pennes生物传热方程,从而计算出消融选定目标所需的剂量。成功实现使用生物传热方程更全面求解的关键包括:利用处于稳态的已知组织性质来预测初始空间温度分布,利用温度上升时的组织性质来根据温度的升高调节空间性质,以及利用处于液-气相变的组织性质。
转向图13,根据本发明一个实施方式的导航系统通常被示为200。一般而言,导航系统200结合固定至超声换能器202的参考贴片或基准贴片204。基准贴片204可印制在超声换能器202上、通过粘结剂附接至超声换能器202、或可移除地耦接至超声换能器202。在一些实施方式中,基准贴片布置在支撑结构上,所述支撑结构被配置成可移除的固定,如“夹在”,超声换能器的外壳上。超声换能器202耦接至产生声波的超声发生器210。超声换能器202和超声发生器210可组合为独立单元。超声换能器202朝患者“p”发射声波。所述声波从患者“p”内的各结构反射离开并由超声换能器202接收。超声换能器202将所反射的声波传输至超声发生器210,其将所反射的声波实时转换为二维(2d)图像。所述2d图像传输至控制器212。控制器212处理2d图像并在显示器214上显示该2d图像作为包括目标220的图像218。图像218是可以包括目标“t”的扫描平面“s”的实时表示。
导航系统还结合有固定至外科设备206的摄影机208。摄影机208实时地获取基准贴片204的图像以确定外科设备206关于扫描平面“s”的位置。具体地讲,基准贴片204具有针对扫描平面“s”的限定的空间关系。该限定的空间关系存储在控制器212中。摄影机208还具有针对外科设备206的已知空间关系,其存储在控制器212中。为了确定外科设备206和扫描平面“s”之间的空间关系,摄影机208获取基准贴片204的图像并将该图像传输至控制器212。通过使用基准贴片204的图像,控制器212可计算外科设备206和扫描平面“s”之间的空间关系。
在控制器212确定了外科设备206和扫描平面“s”之间的空间关系后,控制器212在显示器214上显示该关系。如图13所示,显示器214包括扫描平面“s”的图像218,其包括目标“t”的目标图像220。另外,控制器212关于图像218叠加外科设备206的虚拟图像206a以指示外科设备206关于扫描平面“s”的位置。基于消融针206的角度和位置,控制器212可计算外科设备206的轨迹,并显示所计算的轨迹,通常以216示出。在一些实施方式中,十字线或目标可叠加在图像218上以指示外科设备206将与扫描平面“s”相交的位置。在其他实施方式中,所计算的轨迹216可以红色或绿色示出以指示导航状态。例如,如果外科设备206处于将要与目标“t”相交的路径上,所计算的轨迹216将以绿色示出。如果外科设备206未处于将要与交叉目标“t”相交的路径上,所计算的轨迹216将以红色示出。
控制器212还可以通过用户输入外科设备类型、能量水平、以及治疗持续时间来控制。外科设备类型、能量水平、以及治疗持续时间可以在显示器214上显示,如图14a所示。在外科设备206与目标“t”相交时,虚拟消融区222投影在图像218上,如图14b所示。能量水平和治疗持续时间则可由用户调节,并且控制器212将调节虚拟消融区222以反映能量水平和治疗持续时间的变化。
下面将参照图15-图22描述基准跟踪系统。在基准跟踪系统中,控制器212接收来自摄影机208的基准图像。控制器212还包括先前存储于其上的摄影机208的摄影机校准和畸变系数、基准系统模型、以及摄影机-天线校准数据。在其他实施方式中,摄影机208的摄影机校准和畸变系数、基准系统模型、以及摄影机-天线校准数据可以在导航过程期间输入至控制器212中。基于基准图像、摄影机208的摄影机校准和畸变系数、基准系统模型、以及摄影机-天线校准数据,控制器212可将消融针206的位置以及诊断帧速率、残留误差、和跟踪状态输出至显示器214。在一些实施方式中,摄影机208和基准贴片204之间的距离可以在约5厘米至约20厘米的范围内。在一些实施方式中,摄影机208和基准贴片204之间的距离可以在约1厘米至约100厘米的范围内。
图15示出了控制器212所利用的基准追踪算法的基本流程图。如图15所示,在步骤230中获取图像帧。在步骤231,控制器212使用摄影机校准和畸变系数来校正透镜畸变。由摄影机208获取的图像可呈现透镜畸变,如图16a所示。因此,在图像能够用于进一步计算前,图像需要对畸变进行校正。在导航过程中使用摄影机208前,摄影机208用于采集不同角度上棋盘状图案的多幅图像。该多幅图像和多个角度用于创建摄影机矩阵和畸变系数。控制器212随后利用摄影机矩阵和畸变系数来对透镜畸变进行校正。
在步骤232中,控制器212在图像帧中使用图17的算法找到白色圆圈。如图17所示,步骤241(图18a)中所接收到的图像帧在步骤243中使用动态阈值(参见图18b)阈值化。当使用动态阈值时,在每个有效帧后,动态阈值算法针对下一帧使用在有效帧中发现的圆圈来计算新的阈值。使用在有效帧中发现的圆圈,控制器212基于下面公式(5)来计算新的阈值:
阈值=(黑圆圈强度平均+白圆圈强度平均)/2(5)
可使用预定阈值来获取初始有效帧,其随后用于计算新的阈值。
作为选择,控制器212可通过测试阈值范围来扫描寻找初始阈值,直至发现产生有效帧的阈值为止。一旦发现了初始阈值,控制器212将基于有效帧使用公式(5)以用于动态阈值。
在其他实施方式中,可使用固定阈值。固定阈值可以是存储在控制器212中的预定数字,或者它可以这样确定,即,测试阈值范围直至发现导致有效帧的阈值为止。
在阈值和自动增益控制被施加至图像后,在步骤244中执行连通分量分析以发现阈值化图像中的所有对象。在步骤245,将几何滤波器应用至连通分量分析的结果以及图像帧。几何滤波器计算对象的尺寸和形状,并仅保持圆形及差不多如图18c中所示的合适尺寸的那些对象。对于所有圆形对象计算加权质心并将其存储。
返回图15,除了在步骤232中找到白色圆圈外,控制器212还在步骤233中使用图19中描绘的算法来找到黑色圆圈。用于找到黑色圆圈的算法类似于图17中所示的用于找到白色圆圈的算法。为了找到黑色圆圈,在步骤241中接收到图像帧后(参见图20a),控制器212在步骤242中反转图像帧的强度,如图20b所示。然后,如上面关于图17所述的,对图像进行如图20c所示的阈值化,并执行连通分量分析,并应用几何滤波器来获得图20d所示的图像。在步骤248中对于所有的黑色圆圈计算加权质心并将其存储。此外,在步骤245,控制器212应用几何滤波器来确定除图像帧内的黑色圆圈之外的黑色区域。控制器212在步骤249中存储已确定的黑色区域。
在图15的步骤234,控制器212使用图21a中所示的算法找到基准图像和基准模型之间的对应关系。在图21a的步骤251,控制器212使用拓扑限制来选择四个白色圆圈,如图21b所示。如图21b所示,在步骤261,控制器212获得图19的步骤249中存储的黑色区域并获得图17的步骤246中存储的白色圆圈。控制器212接着在步骤263中选择第一黑色区域,并在步骤264中对第一黑色区域中的白色圆圈数量进行计数。在步骤265,控制器212确定位于选定黑色区域中的圆圈的数量是否匹配圆圈预定数量。如果圆圈数量不匹配圆圈预定数量,则算法行进至步骤266,在该步骤选择下一个黑色区域,并且在步骤264中对下一黑色区域中的圆圈数量再次计数。该过程重复直至步骤264中计数的圆圈数目匹配圆圈预定数目为止。一旦步骤264中计数的圆圈数目匹配圆圈预定数目,则算法行进至步骤267,在该步骤完成拓扑限制算法。在其他实施方式中,控制器212通过选择四个最圆的圆圈来选定四个白色圆圈。
在选择了四个圆圈后,它们使用步骤252中的凸壳算法以顺时针顺序布置。针对实向量空间v中点集x的凸壳或凸状包络是包含x的最小凸集。如果所有点都位于一条直线上,则凸壳是连接最外侧两点的线段。在平面情形中,凸壳是凸多边形,除非所有点位于相同直线上。类似地,在三维中,凸壳通常是最小凸多面体,其包含该集中的所有点。另外,模型中的四个匹配基准点也以顺时针顺序布置。
在步骤253,计算平面单应矩阵。在计算了平面单应矩阵后,使用该单应矩阵来将基准模型转换为图像坐标,其使用图22中所示的四个对应基准模型以找到最近的匹配图像基准点(步骤254和255)。控制器212还在步骤256中计算残留误差。该算法使用产生的3d变换来将3d基准模型转换为2d图像。它随后比较映射在2d图像中的基准点与2d图像中检测到的基准点之间的距离。该残留误差是像素的平均距离。该误差用于检验精度以及部分地确定红色/绿色导航状态。控制器212则选择具有最高匹配度和最小残留误差的模型。为了更加精确的结果,需要最小数量(例如,三个)的黑色基准点匹配。
在图15的步骤235中,执行摄影机的位姿评估。摄影机位姿评估包括通过迭代地将模型基准点转换至基准图像平面上以及最小化像素残留误差,来计算摄影机和选定模型之间的3d变换。目标是找到误差函数的全局最小值。可发生的一个问题是误差函数中出现的显著的局部最小值(例如,从左侧成像的天线看上去类似于从右侧成像的天线),这需要避免。控制器212通过从多个起始点执行最小化以及选择具有最小误差的结果来避免局部最小值。一旦计算了3d变换,控制器就可以使用3d变换来将外科设备206的坐标转换至模型空间,并将外科设备206显示为显示器214中的虚拟外科设备206a。
由于对象边界在不同照明条件下扩展和收缩,传统的方角基准点位置可基于照明条件而变化。基准贴片204使用黑色和白色圆圈,并因此不被该问题妨碍,因为圆圈的中心始终保持不变并持续良好地工作以计算加权质心。其他对比图像或颜色也是能预料的。
在本发明的另一实施方式中,以及如图23所示,提供了规划和导航系统300。系统300包括规划系统302和导航系统304,它们连接至控制器306。控制器306连接至显示器308,其可包括单个显示屏或多个显示屏(例如,两个显示屏)。规划系统302类似于规划系统100,并且导航系统304类似于导航系统200。在系统300中,显示器308显示上面所描述的规划操作和导航操作。规划操作和导航操作可以作为分区屏幕布置显示在单个显示屏上,规划操作和导航操作可显示在单独的屏幕上,或者规划操作和导航操作可显示在相同屏幕上并且用户可在各视图之间切换。控制器306可从规划系统引入剂量设置,并在导航操作期间使用该剂量设置来显示消融区维度。
在本发明的其他实施方式中,ct导航和软件可以与规划系统100集成。转向图24、25a和25b,规划和导航系统通常以400示出。系统400包括图像获取设备402,其获取患者“p”的ct图像,患者“p”具有电磁参考点428和/或光学参考点438。ct图像以dicom格式提供至规划系统404,其与规划系统100类似。规划系统400用于确定如上所述的治疗方案,并且该治疗方案被提供至控制器408并在显示器410上作为规划屏412显示,如图26所示。
导航系统406可利用图25a所示的电磁跟踪系统、或图25b所示的红外线跟踪系统或光学跟踪系统。转向图25a,导航系统420包括电磁场发生器422、具有电磁换能器426的外科设备424、以及布置在患者上的电磁参考点428。场发生器422发射电磁波,该电磁波由外科设备424和电磁参考点428上的电磁传感器(未明确示出)检测,然后用于计算外科设备424和电磁参考点428之间的空间关系。该空间关系可由场发生器422计算,或场发生器422可提供数据至控制器408以计算消融针424和电磁参考点428之间的空间关系。
图25b描绘了可替代的导航系统430,其类似于上面图13所述的导航系统。在图25b中,光学参考点或基准点438置于患者上。附接至外科设备424的摄影机436采集基准点438的图像并传输该图像至控制器408以确定消融针关于基准点438的位置。
在从导航系统406接收数据后,控制器408可将外科设备424的位置与ct图像关联,从而将外科设备424导航至目标“t”,如下文所述。在该情形中,患者参考点(任意类型)上也可具有不透射线的标记,以允许ct期间可视化。这允许控制器将患者ct图像坐标系关联至器械跟踪坐标系。
控制器408和显示器410彼此协作以将ct图像显示在导航屏440上,如图27所示。如图27所示,显示屏440包括横向视图442、冠状图444、以及矢状图446。每个视图包括目标“t”和消融区452(包括边际)的视图。横向视图442、冠状图444、以及矢状图446、消融区452全部从规划系统404引入。另外,所有规划元件(例如,设备选择、能量水平、以及治疗持续时间)都自动的传输至导航屏440。导航屏440也是图形用户界面,其允许用户调节设备选择、能量水平、以及治疗持续时间。
导航引导屏448设置在显示屏440上以辅助将消融针导航至目标“t”。基于从导航系统406接收的数据,控制器可确定外科设备424是否与目标“t”对准。如果外科设备424没与目标“t”对准,则圆圈454将偏离外圆圈453的中心。用户然后将调节外科设备424的进入角度直至圆形454的中心与外圆圈453的中心对准。在一些实施方式中,在圆圈454的中心与外圆圈453的中心不对准时,圆圈454可显示为红色圆圈,或者在圆圈454的中心与外圆圈453的中心对准时,圆圈454可显示为绿色圆圈。另外,控制器408可计算目标“t”和外科设备424之间的距离。
在图28描述的另一实施方式中,控制器408将虚拟外科设备424a叠加在3d渲染图像上,并在屏幕462上显示该组合图像。类似于上面所述的方法,用户可以将圆圈453的中心与圆圈454的中心对准以将外科设备424导航至目标“t”。作为选择,用户可以通过观察屏幕462上的虚拟外科设备424a来确定外科设备424关于目标“t”的位置,从而将外科设备424导航至目标“t”。
图29描绘了本发明的另一实施方式,类似于上面的屏幕462,在图29的实施方式中,屏幕472描绘了与先前采集并渲染的ct图像成空间关系的虚拟外科设备424a。ct图像已经被体渲染以划界目标“t”及另外的结构、血管、和器官。通过对目标“t”及另外的结构、血管、和器官进行体渲染,用户能够将外科设备424导航进入患者,而同时避开了另外的结构、血管、和器官以防止不必要的伤害。
应该理解的是,前面描述仅是本发明的示意性描述。本领域技术人员能够做出各种替代和修改而不偏离本发明的范围。因此,本发明旨在包含所有这些替代、修改和变体。参照附图所述的实施方式仅呈现以示范本发明的某些实例。与上文和/或所附权利要求书中描述的那些非实质性不同的其他元件、步骤、方法和技术也旨在包括在本发明的范围内。