含氧化层锆铌合金分区骨小梁股骨髁假体及制备方法与流程

文档序号:23805336发布日期:2021-02-03 08:20阅读:98来源:国知局
含氧化层锆铌合金分区骨小梁股骨髁假体及制备方法与流程

[0001]
本发明涉及医用植入物材料技术领域,具体涉及含氧化层锆铌合金分区骨小梁股骨髁假体及制备方法。


背景技术:

[0002]
全膝关节置换术是目前临床上针对终末期膝关节疾患的有效治疗方式,其通过人工设计的关节假体替代损伤的膝关节组织,从而解除病患疼痛,恢复其膝关节功能,改善其生活质量。与人体解剖结构相对应,膝关节假体的组成包括股骨髁、胫骨平台及平台垫。随着医疗器械技术的飞速发展以及人们对假体产品安全与有效性要求的不断提高,膝关节假体设计和制造技术将需要不断的优化和提升。
[0003]
目前,临床上应用的膝关节假体包括骨水泥型和生物型(非骨水泥固定)两大类。其中,骨水泥型假体依靠骨水泥的固化和填充,将关节假体与骨组织机械固定。但多年的临床应用发现,骨水泥固定可带来诸多安全与有效性问题:骨水泥单体聚合释放热量,造成周围组织损伤;骨水泥颗粒如果进入血液或在填充时引起髓腔高压,会导致肺栓塞和脂肪栓塞。
[0004]
生物型膝关节假体可有效消除骨水泥带来的安全与有效性风险,通常利用表面多孔结构促进骨长入,获得长期稳定性。但其表面多孔结构通常采用喷砂、涂层、烧结等表面处理工艺制得,与实体结合强度低,易脱落,降低假体使用寿命。并且,根据wolff定律:应力使骨产生形变(又称微应变)后可启动原始信号来调节骨的合成与分解代谢,且应变范围只有在最低有效应变阈值和超生理应变阈值之间才能促进骨生长。因此,设计一种膝关节股骨髁假体,实现骨组织大部分区域微应变在最低有效应变阈值和超生理应变阈值之间,利于骨长入,具有重要意义。
[0005]
锆铌合金具有优异耐腐蚀性、力学性能和良好生物相容性,被逐渐应用于医疗器械领域。锆铌合金可与n、c、o等元素反应在表面形成坚硬的陶瓷层,具有优异耐磨性和低磨损率,可降低对软体材料的磨损,即具有关节面界面的优异耐磨性;且陶瓷层可降低金属离子的释放,具有优异生物相容性,即具有骨整合界面的优异生物相容性。低磨损率的关节面与骨长入性能优异的骨整合界面(骨小梁)有机配伍,可使假体同时实现两界面优点。但现有技术未能同时实现此优化设计。
[0006]
3d打印技术,作为一种增材制造技术,突破面向制造工艺的产品设计概念,实现面向性能的产品设计理念,即解决复杂零件难以整体成型难题,又减少机加工制造带来的原材料和能源浪费。但3d打印产品实体部分易存在显微组织不均匀、内部缺陷等问题,力学性能不佳;骨小梁部分结构中粉末未能得到良好熔结,力学性能差。因此,制备力学性能优异、同时实现两界面优点的含氧化层锆铌合金分区骨小梁股骨髁假体具有重要意义。


技术实现要素:

[0007]
本发明的目的在于克服现有技术不足,提供一种含氧化层锆铌合金分区骨小梁股
骨髁假体。
[0008]
本发明的第二个目的是提供一种含氧化层锆铌合金分区骨小梁股骨髁假体的制备方法。
[0009]
本发明的技术方案概述如下:
[0010]
含氧化层锆铌合金分区骨小梁股骨髁假体的制备方法,包括如下步骤:
[0011]
1)以锆铌合金粉为原料,经3d打印一体成型得到含氧化层锆铌合金分区骨小梁股骨髁假体的第一中间产物,将所述第一中间产物放入热等静压炉,在惰性气体保护下,升温至1250℃-1400℃,在140mpa-180mpa,恒温放置1h-3h,降至常压,随炉冷却至200℃以下取出,得到第二中间产物;
[0012]
2)将第二中间产物放置于程序性降温盒中以1℃/min的速度降温至-80℃~-120℃,恒温放置5h-10h,从程序性降温盒中取出;在液氮中再放置16h-36h,调节温度至室温,得到第三中间产物;
[0013]
3)将第三中间产物放置于程序性降温盒中以1℃/min的速度降温至-80℃~-120℃,恒温放置5h-10h;从程序性降温盒中取出;在液氮中再放置16h-36h,调节温度至室温;得第四中间产物;
[0014]
4)将第四中间产物进行机加工修整、抛光、清洗和干燥,得第五中间产物,所述第五中间产物的关节面粗糙度ra≤0.050μm;
[0015]
5)将第五中间产物放置于管式炉内,通入含氧质量百分比为5%-15%的常压惰性气体,以5℃/min-20℃/min加热至500℃-700℃,以0.4℃/min-0.9℃/min降温至400℃-495℃,再自然冷却至200℃以下取出,得到含氧化层锆铌合金分区骨小梁股骨髁假体;
[0016]
含氧化层锆铌合金分区骨小梁股骨髁假体的第一中间产物、第二中间产物、第三中间产物、第四中间产物、第五中间产物与含氧化层锆铌合金分区骨小梁股骨髁假体的结构相同;所述惰性气体为氦气或氩气;
[0017]
上述含氧化层锆铌合金分区骨小梁股骨髁假体的结构,包括左右设置的内侧髁11和外侧髁12,内侧髁11的内侧髁前端1101与外侧髁(12)的外侧髁前端1102为一体,内侧髁11的后端部与外侧髁12的后端部通过限位挡块15连接;所述内侧髁11外侧壁和外侧髁12外侧壁均设置有把持凹槽16,所述内侧髁11具有内侧髁固定面110,所述外侧髁具有外侧髁固定面120;所述内侧髁固定面110包括依次相连的第一固定面111、第二固定面112、第三固定面113、第四固定面114和第五固定面115,所述外侧髁固定面120包括依次相连的第六固定面121、第七固定面122、第八固定面123、第九固定面124和第十固定面125;所述第三固定面113和第八固定面123中部设置有安装孔17,所述第一固定面111和第二固定面112相交形成第一交线181;第二固定面112与第三固定面113相交形成第二交线182;第三固定面113与第四固定面114相交形成第三交线183;第四固定面114与第五固定面115形成第四交线184;第六固定面121和第七固定面122的交线与第一交线181共线;第七固定面122和第八固定面123的交线与第二交线182共线;第八固定面123和第九固定面124的交线与第三交线183共线;第九固定面124和第十固定面125的交线与第四交线184共线;所述第一交线181、第二交线182、第三交线183及第四交线184相互平行;
[0018]
所述第一固定面111与第二固定面112的夹角与第六固定面121与第七固定面122的夹角相等,为130
°-
140
°
;第二固定面112与第三固定面113的夹角与第七固定面122与第
八固定面123的夹角相等,为130
°-
140
°
;第三固定面113与第四固定面114的夹角与第八固定面123与第九固定面124的夹角相等,为130
°-
140
°
;第四固定面114与第五固定面115的夹角与第九固定面124与第十固定面125的夹角相等,为130
°-
140
°

[0019]
所述第一固定面111、第五固定面115、第六固定面121和第十固定面125设置有第一种骨小梁191;
[0020]
所述第二固定面112、第四固定面114、第七固定面122和第九固定面124设置有第二种骨小梁192;
[0021]
所述第三固定面113和第八固定面123设置有第三种骨小梁193;
[0022]
所述第一种骨小梁191孔径和孔隙率依次小于第二种骨小梁192和第三骨种小梁193。
[0023]
所述锆铌合金粉的化学成分按质量百分比为85.6%-96.5%的zr,1.0%-12.5%的nb,其余为不可避免的杂质;所述锆铌合金粉的粒径为45-150μm。
[0024]
步骤2)、3)所述调节温度为:升温至-120℃~-80℃,恒温保持3h-5h;再升温至-40℃~-20℃,恒温保持3h-5h;再升温至4℃-8℃,恒温保持1h-3h,升温。
[0025]
第一种骨小梁191孔径为0.74mm-0.85mm,孔隙率为70.0%-74.7%,通孔率为100%;
[0026]
所述第二种骨小梁192孔径为0.86mm-0.99mm,孔隙率为74.8%-77.5%,通孔率为100%;
[0027]
所述第三种骨小梁193孔径为1.00mm-1.10mm,孔隙率为77.6%

85%,通孔率为100%。
[0028]
第一种骨小梁191、第二种骨小梁192和第三种骨小梁193的厚度相等,为0.5mm-3mm。
[0029]
在第二固定面和第七固定面的结合部设置有矩形的第一种实体结构21;第一固定面和第六固定面的结合部设置半圆形的第二实体结构20,第一实体结构21和第二实体结构20的厚度与骨小梁厚度相等,为0.5mm-3mm。
[0030]
在内侧髁固定面110、外侧髁固定面120和限位挡块15构成的固定面的边缘设置有侧壁22。
[0031]
上述方法制备的含氧化层锆铌合金分区骨小梁股骨髁假体。
[0032]
与现有技术方案相比,本发明具有以下有益效果:
[0033]
本发明含氧化层锆铌合金分区骨小梁股骨髁假体,实现股骨髁骨组织大部分区域的微应变在最低有效应变阈值和超生理应变阈值之间,利于骨长入,提升长期稳定性。
[0034]
本发明采用3d打印一体成型,解决传统机加工无法制备复杂结构的难题,且骨小梁与实体结合强度高,不易脱落,提升假体寿命。
[0035]
本发明含氧化层锆铌合金分区骨小梁股骨髁假体的骨小梁部分具有优异抗压性能;实体部分抗压屈服强度增强,塑性增强。
[0036]
本发明所述含氧化层锆铌合金分区骨小梁股骨髁假体一体化实现骨整合界面的优良生物相容性、骨长入性和摩擦界面的超强耐磨性、低磨损率。本发明含氧化层锆铌合金分区骨小梁股骨髁假体的氧化层与基体之间存在富氧层,富氧层有过渡层作用,提高氧化层与基体之间附着力,避免氧化层脱落;且氧化层硬度高。
[0037]
本发明含氧化层锆铌合金分区骨小梁股骨髁假体低伪影,对核磁干扰小,可进行核磁检测。
附图说明
[0038]
图1为本发明含氧化层锆铌合金分区骨小梁股骨髁假体从外侧髁观察的轴测图。
[0039]
图2为本发明含氧化层锆铌合金分区骨小梁股骨髁假体(含第一实体结构、第二实体结构)从内侧髁观察的轴测图。
[0040]
图3为本发明含氧化层锆铌合金分区骨小梁股骨髁假体从股骨髁前方观察的轴测图。
[0041]
图4为实施例1的含氧化层锆铌合金分区骨小梁股骨髁假体从股骨髁前方观察的有限元分析应变云图。
[0042]
图5为实施例1的含氧化层锆铌合金分区骨小梁股骨髁假体从股骨髁后方观察的有限元分析应变云图。
[0043]
图6为对照组1的实体部分金相显微结构图(a为放大50倍观察;b为放大500倍观察)。
[0044]
图7为实施例1的未进行制备方法中步骤4)和步骤5)的实体部分金相显微结构图(a为放大50倍观察;b为放大500倍观察)。
[0045]
图8为对照组1的骨小梁部分sem图。
[0046]
图9为实施例1的未进行制备方法中步骤4)和步骤5)的骨小梁部分sem图。
[0047]
图10为实施例1的氧化层与基体的横截面sem图。
[0048]
图11为实施例1的氧化层表面的xrd曲线。
具体实施方式
[0049]
本发明含氧化层锆铌合金分区骨小梁股骨髁假体,采用3d打印一体成型。
[0050]
下面结合附图和实施例对本发明作进一步的说明。
[0051]
实施例1
[0052]
含氧化层锆铌合金分区骨小梁股骨髁假体的制备方法,包括如下步骤:
[0053]
1)以锆铌合金粉为原料,经3d打印一体成型得到含氧化层锆铌合金分区骨小梁股骨髁假体的第一中间产物,将第一中间产物放入热等静压炉,在氦气保护下,升温至1250℃,在180mpa,恒温放置3h,降至常压,随炉冷却至200℃以下取出,得到第二中间产物;
[0054]
2)将第二中间产物放置于程序性降温盒中以1℃/min的速度降温至-80℃,恒温放置10h,从程序性降温盒中取出;在液氮中再放置16h,调节温度至室温,得到第三中间产物;
[0055]
3)将第三中间产物放置于程序性降温盒中以1℃/min的速度降温至-80℃,恒温放置10h;从程序性降温盒中取出;在液氮中再放置16h,调节温度至室温;得第四中间产物;
[0056]
步骤2)、3)调节温度具体步骤是:升温至-120℃,恒温保持5h;再升温至-40℃,恒温保持5h;再升温至4℃,恒温保持3h,升温。
[0057]
4)将第四中间产物进行机加工修整、抛光、清洗和干燥,得第五中间产物,所述第五中间产物的关节面粗糙度ra=0.012μm;
[0058]
5)将第五中间产物放置于管式炉内,通入含氧质量百分比为5%的常压氦气,以5
℃/min加热至500℃,以0.4℃/min降温至400℃,再自然冷却至200℃以下取出,得到含氧化层锆铌合金分区骨小梁股骨髁假体;
[0059]
含氧化层锆铌合金分区骨小梁股骨髁假体的第一中间产物、第二中间产物、第三中间产物、第四中间产物、第五中间产物与含氧化层锆铌合金分区骨小梁股骨髁假体的结构相同;
[0060]
锆铌合金粉的化学成分按质量百分比分别为85.6%的zr,12.5%的nb,其余为不可避免的杂质;所述锆铌合金粉的粒径为45-150μm,购置于西安赛隆金属材料有限责任公司。
[0061]
上述含氧化层锆铌合金分区骨小梁股骨髁假体(见图1-3)的结构,包括左右设置的内侧髁11和外侧髁12,内侧髁11的内侧髁前端1101与外侧髁(12)的外侧髁前端1102为一体,内侧髁11的后端部与外侧髁12的后端部通过限位挡块15连接;所述内侧髁11外侧壁和外侧髁12外侧壁均设置有把持凹槽16,所述内侧髁11具有内侧髁固定面110,所述外侧髁具有外侧髁固定面120;所述内侧髁固定面110包括依次相连的第一固定面111、第二固定面112、第三固定面113、第四固定面114和第五固定面115,所述外侧髁固定面120包括依次相连的第六固定面121、第七固定面122、第八固定面123、第九固定面124和第十固定面125;所述第三固定面113和第八固定面123中部设置有安装孔17,所述第一固定面111和第二固定面112相交形成第一交线181;第二固定面112与第三固定面113相交形成第二交线182;第三固定面113与第四固定面114相交形成第三交线183;第四固定面114与第五固定面115形成第四交线184;第六固定面121和第七固定面122的交线与第一交线181共线;第七固定面122和第八固定面123的交线与第二交线182共线;第八固定面123和第九固定面124的交线与第三交线183共线;第九固定面124和第十固定面125的交线与第四交线184共线;所述第一交线181、第二交线182、第三交线183及第四交线184相互平行;
[0062]
所述第一固定面111与第二固定面112的夹角与第六固定面121与第七固定面122的夹角相等,为135
°
;第二固定面112与第三固定面113的夹角与第七固定面122与第八固定面123的夹角相等,为135
°
;第三固定面113与第四固定面114的夹角与第八固定面123与第九固定面124的夹角相等,为135
°
;第四固定面114与第五固定面115的夹角与第九固定面124与第十固定面125的夹角相等,为135
°

[0063]
所述第一固定面111、第五固定面115、第六固定面121和第十固定面125设置有第一种骨小梁191;
[0064]
所述第二固定面112、第四固定面114、第七固定面122和第九固定面124设置有第二种骨小梁192;
[0065]
所述第三固定面113和第八固定面123设置有第三种骨小梁193;
[0066]
所述第一种骨小梁191孔径和孔隙率依次小于第二种骨小梁192和第三骨种小梁193。
[0067]
第一种骨小梁191孔径为0.80mm,孔隙率为72%,通孔率为100%;
[0068]
所述第二种骨小梁192孔径为0.93mm,孔隙率为76%,通孔率为100%;
[0069]
所述第三种骨小梁193孔径为1.05mm,孔隙率为80%,通孔率为100%。
[0070]
第一种骨小梁191、第二种骨小梁192和第三种骨小梁193的厚度相等,为1.5mm。
[0071]
还可以在第二固定面和第七固定面的结合部设置有矩形的第一种实体结构21;第
一固定面和第六固定面的结合部设置半圆形的第二实体结构20,第一实体结构21和第二实体结构20的厚度与骨小梁厚度相等,为1mm,也可以0.5mm-3mm中选任意值,如0.5、0.6、0.7mm、0.9、1.1、1.5、2.0、2.5或3mm。
[0072]
在内侧髁固定面110、外侧髁固定面120和限位挡块15构成的固定面的边缘设置有侧壁22。
[0073]
实施例2
[0074]
含氧化层锆铌合金分区骨小梁股骨髁假体的制备方法,包括如下步骤:
[0075]
1)以锆铌合金粉为原料,经3d打印一体成型得到含氧化层锆铌合金分区骨小梁股骨髁假体的第一中间产物,将第一中间产物放入热等静压炉,在氦气保护下,升温至1325℃,在160mpa,恒温放置2h,降至常压,随炉冷却至200℃以下取出,得到第二中间产物;
[0076]
2)将第二中间产物放置于程序性降温盒中以1℃/min的速度降温至-100℃,恒温放置7h,从程序性降温盒中取出;在液氮中再放置24h,调节温度至室温,得到第三中间产物;
[0077]
3)将第三中间产物放置于程序性降温盒中以1℃/min的速度降温至-100℃,恒温放置7h;从程序性降温盒中取出;在液氮中再放置24h,调节温度至室温;得第四中间产物;
[0078]
步骤2)、3)调节温度的步骤为:升温至-100℃,恒温保持4h;再升温至-30℃,恒温保持4h;升温至6℃恒温保持2h,升温;
[0079]
4)将第四中间产物进行机加工修整、抛光、清洗和干燥,得第五中间产物,所述第五中间产物的关节面粗糙度ra=0.035μm;
[0080]
5)将第五中间产物放置于管式炉内,通入含氧质量百分比为10%的常压氦气,以15℃/min加热至600℃,以0.7℃/min降温至450℃,再自然冷却至200℃以下取出,得到含氧化层锆铌合金分区骨小梁股骨髁假体;
[0081]
含氧化层锆铌合金分区骨小梁股骨髁假体的第一中间产物、第二中间产物、第三中间产物、第四中间产物、第五中间产物与含氧化层锆铌合金分区骨小梁股骨髁假体的结构相同;
[0082]
所述锆铌合金粉的化学成分按质量百分比分别为93.4%的zr,5.1%的nb,其余为不可避免的杂质;所述锆铌合金粉的粒径为45-150μm,购置于西安赛隆金属材料有限责任公司;
[0083]
含氧化层锆铌合金分区骨小梁股骨髁假体的结构同实施例1的结构,所不同的是:
[0084]
所述第一固定面111与第二固定面112的夹角与第六固定面121与第七固定面122的夹角相等,为130
°
;第二固定面112与第三固定面113的夹角与第七固定面122与第八固定面123的夹角相等,为130
°°
;第三固定面113与第四固定面114的夹角与第八固定面123与第九固定面124的夹角相等,为130
°
;第四固定面114与第五固定面115的夹角与第九固定面124与第十固定面125的夹角相等,为130
°

[0085]
所述第一固定面111、第五固定面115、第六固定面121和第十固定面125设置有第一种骨小梁191;
[0086]
所述第二固定面112、第四固定面114、第七固定面122和第九固定面124设置有第二种骨小梁192;
[0087]
所述第三固定面113和第八固定面123设置有第三种骨小梁193;
[0088]
所述第一种骨小梁191孔径和孔隙率依次小于第二种骨小梁192和第三骨种小梁193。
[0089]
第一种骨小梁191孔径为0.74mm,孔隙率为70.0%,通孔率为100%;
[0090]
所述第二种骨小梁192孔径为0.86mm,孔隙率为74.8%,通孔率为100%;
[0091]
所述第三种骨小梁193孔径为1.00mm,孔隙率为77.6%,通孔率为100%。
[0092]
第一种骨小梁191、第二种骨小梁192和第三种骨小梁193的厚度相等,为0.5mm。
[0093]
实施例3
[0094]
含氧化层锆铌合金分区骨小梁股骨髁假体的制备方法,包括如下步骤:
[0095]
1)以锆铌合金粉为原料,经3d打印一体成型得到含氧化层锆铌合金分区骨小梁股骨髁假体的第一中间产物,将所述第一中间产物放入热等静压炉,在氩气保护下,升温至1400℃,在140mpa,恒温放置1h,降至常压,随炉冷却至200℃以下取出,得到第二中间产物;
[0096]
(2)将第二中间产物放置于程序性降温盒中以1℃/min的速度降温至-120℃,恒温放置5h,从程序性降温盒中取出;在液氮中再放置36h,调节温度至室温,得到第三中间产物;
[0097]
(3)将第三中间产物放置于程序性降温盒中以1℃/min的速度降温至-120℃,恒温放置5h;从程序性降温盒中取出;在液氮中再放置36h,调节温度至室温;得第四中间产物;
[0098]
步骤2)、3)调节温度具体步骤是:升温至-80℃,恒温保持3h;再升温至-20℃,恒温保持3h;再升温至8℃,恒温保持1h,升温。
[0099]
(4)将第四中间产物进行机加工修整、抛光、清洗和干燥,得第五中间产物,所述第五中间产物的关节面粗糙度ra=0.050μm;
[0100]
(5)将第五中间产物放置于管式炉内,通入含氧质量百分比为15%的常压氩气,以20℃/min加热至700℃,以0.9℃/min降温至495℃,自然冷却至200℃以下取出,得到含氧化层锆铌合金分区骨小梁股骨髁假体;
[0101]
含氧化层锆铌合金分区骨小梁股骨髁假体的第一中间产物、第二中间产物、第三中间产物、第四中间产物、第五中间产物与含氧化层锆铌合金分区骨小梁股骨髁假体的结构相同;
[0102]
所述锆铌合金粉的化学成分按质量百分比分别为96.5%的zr,1%的nb,其余为不可避免的杂质;所述锆铌合金粉的粒径为45-150μm,购置于西安赛隆金属材料有限责任公司;
[0103]
含氧化层锆铌合金分区骨小梁股骨髁假体的结构同实施例1的结构,所不同的是:
[0104]
所述第一固定面111与第二固定面112的夹角与第六固定面121与第七固定面122的夹角相等,为140
°
;第二固定面112与第三固定面113的夹角与第七固定面122与第八固定面123的夹角相等,为140
°
;第三固定面113与第四固定面114的夹角与第八固定面123与第九固定面124的夹角相等,为140
°
;第四固定面114与第五固定面115的夹角与第九固定面124与第十固定面125的夹角相等,为140
°

[0105]
所述第一固定面111、第五固定面115、第六固定面121和第十固定面125设置有第一种骨小梁191;
[0106]
所述第二固定面112、第四固定面114、第七固定面122和第九固定面124设置有第二种骨小梁192;
[0107]
所述第三固定面113和第八固定面123设置有第三种骨小梁193;
[0108]
所述第一种骨小梁191孔径和孔隙率依次小于第二种骨小梁192和第三骨种小梁193。
[0109]
第一种骨小梁191孔径为0.85mm,孔隙率为74.7%,通孔率为100%;
[0110]
所述第二种骨小梁192孔径为0.99mm,孔隙率为77.5%,通孔率为100%;
[0111]
所述第三种骨小梁193孔径为1.10mm,孔隙率为85%,通孔率为100%。
[0112]
第一种骨小梁191、第二种骨小梁192和第三种骨小梁193的厚度相等,为3mm。
[0113]
对照组1
[0114]
以锆铌合金粉(同实施例1)为原料,经3d打印一体成型和机加工修整,得到结构同实施例1的股骨髁假体。
[0115]
实验验证:
[0116]
对本发明实施例1的有限元模型进行有限元分析,如图4-5所示,应变云图只显示范围为1000-3000的微应变(阴影部分),本发明实施例1在股骨髁骨组织有限元模型上1000-3000微应变区域在整个股骨髁骨组织有限元模型的占比为65.2%,提示本发明所述含氧化层锆铌合金分区骨小梁股骨髁假体实现大部分区域微应变在最低有效应变阈值和超生理应变阈值之间,具有优异骨长入性能。
[0117]
倒置万能材料显微镜(axio vert.a1,德国蔡司zeiss公司,德国)对对照组1的实体部分和实施例1的未进行所述制备方法中步骤4)和步骤5)的实体部分进行金相显微组织观察。结果如图6-7所示,对照组1的金相照片中可以观察到细小α马氏体,组织较细小,易产生应力集中,塑性较差;实施例1金相显示为α相,呈网篮结构,晶粒细化。结果提示,本发明股骨髁假体基体部分(不含氧化层)具有优异的强度和塑性。
[0118]
扫描电子显微镜(crossbeam340/550,蔡司,德国)对对照组1的骨小梁部分和实施例1的未进行所述制备方法中步骤4)和步骤5)骨小梁部分进行观察分析,结果如图8-9所示,与对照组1相比,实施例1的骨小梁结构中锆铌合金粉发生进一步熔结,提示骨小梁综合性能提高。
[0119]
电子万能试验机(utm5105,深圳三思纵横科技股份有限公司,中国)对实施例1未进行所述制备方法中步骤4)和步骤5)的实体压缩试件(试件大小为:8*8*10mm3)和对照组1的实体压缩试件(试件大小为:8*8*10mm3)进行压缩性能测试,实施例1和对照组1的实体压缩试件各5个。结果如表1所示,实施例1的抗压屈服强度为546.72mpa,优于对照组1(p<0.05),提示本发明制得的含氧化层锆铌合金分区骨小梁股骨髁假体实体部分具有优异抗压缩性能。
[0120]
表1对照组1和实施例1的实体试件抗压缩实验结果(n=5,*p<0.05,与对照组1比较)
[0121][0122]
电子万能试验机(utm5105,深圳三思纵横科技股份有限公司,中国)对对照组1的孔径为0.80mm,孔隙率为72%,通孔率为100%的骨小梁压缩试件和实施例1的未进行所述
制备方法中步骤4)和步骤5)的孔径为0.80mm,孔隙率为72%,通孔率为100%的骨小梁压缩试件(试件大小为:8*8*10mm3)进行压缩实验,对照组1和实施例1的骨小梁压缩试件各5个。结果如表2所示,实施例1的骨小梁屈服强度为18.39mpa,显著高于对照组1(p<0.05),提示本发明制得的含氧化层锆铌合金分区骨小梁股骨髁假体骨小梁部分抗压性能优异。
[0123]
表2对照组1和实施例1的骨小梁试件抗压缩实验结果(n=5,*p<0.05,与对照组1比较)
[0124][0125]
扫描电子显微镜(crossbeam340/550,蔡司,德国)对实施例1股骨髁假体的锆铌合金基体与氧化层的横截面进行观察,(见图10)。并对实施例2、3股骨髁假体的锆铌合金基体与氧化层的横截面进行观察,其氧化层厚度分别为10.3μm、17.2μm和20.6μm,且氧化层与锆铌金属基体之间存在富氧层,增强锆铌合金基体与氧化层之间的结合力。
[0126]
xrd(d8discover,bruker,德国)对实施例1的股骨髁假体的氧化层进行分析(图11),氧化层包含单斜相二氧化锆和四方相二氧化锆。
[0127]
显微硬度仪(mhvs-1000plus,上海奥龙星迪检测设备有限公司,中国)对实施例1-3的含氧化层锆铌合金分区骨小梁股骨髁假体进行显微硬度测量,测试载荷为0.05kg,试件载荷时间为20s,每个试件取8个点。实施例1-3测得平均硬度值为1948.6hv、1923.7hv和1967.2hv,提示本发明含氧化层锆铌合金分区骨小梁股骨髁假体的氧化层硬度高。
[0128]
实验证明,实施例2、3制备的含氧化层锆铌合金分区骨小梁股骨髁假体的骨小梁部分的锆铌合金粉熔结程度、抗压性能,实体部分抗压性能、金相组织,氧化层的晶体结构、厚度和硬度与实施例1制备的含氧化层锆铌合金分区骨小梁股骨髁假体相似。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1