伊曲康唑缓释微球的制备及应用

文档序号:32344439发布日期:2022-11-26 10:52阅读:375来源:国知局
伊曲康唑缓释微球的制备及应用

1.本发明属于医药技术领域,具体涉及伊曲康唑缓释微球的制备及应用。


背景技术:

2.侵袭性真菌感染(invasive fungal infections,ifis)是指深部皮肤结构、肌肉、粘膜以及内脏器官遭受的真菌感染,又称为深部真菌感染或系统性真菌感染。在重症监护室(icu) 中,ifis约占微生物感染的20%,主要包括念珠菌属(~80%)和曲霉菌属(~10%)。真菌感染死亡中80%以上的死亡是由念珠菌、曲霉菌和隐球菌引起的。且随着器官移植的普及、免疫抑制剂等的普遍使用、白血病及艾滋病等恶性病慢性病患者的增多,导致各种严重免疫缺陷病患者的数量显著增加,同时致使侵袭性真菌感染的发生率呈明显上升趋势。
3.伊曲康唑是一类fda批准的三唑类广谱抗真菌药,对念珠菌病、曲霉菌病、甲真菌病等多种真菌感染疾病具有良好的治疗效果。伊曲康唑主要是通过抑制真菌细胞膜上的关键酶麦角固醇合成酶的合成,进而影响真菌细胞膜的结构和功能,从而达到抗真菌作用。目前市售的itz剂型主要有注射剂和口服制剂,但全身性的治疗方式会造成一些不良反应,如肝肾毒性以及头痛腹痛等,且到达患病部位的药物浓度较低。


技术实现要素:

4.为解决上述问题,本发明将伊曲康唑制备成缓释微球剂型,一方面通过肺部给药提高局部药物浓度降低毒副作用,另一方面通过缓释制剂延长体内停留时间,实现长期抗真菌效果。
5.本发明通过将抗真菌药物伊曲康唑(itraconazole,itz)通过乳化包囊的方法包封于白蛋白(albumin,alb)中,通过调节其工艺参数制得包封率高、粒径尺寸适合吸入的alb-itz 微球;同时通过单因素筛选出具有最好抗菌效果的壳聚糖,从而制备cs-alb-itz微球。本发明cs-alb-itz微球粒径大小适用于肺部给药,且可以在一周内缓释伊曲康唑,体外的细胞毒性实验显示微球具有良好的生物相容性。
6.本发明技术方案:
7.本发明提供一种制备伊曲康唑缓释微球的制备方法,包括如下步骤:
8.(1)制备alb-itz微球:伊曲康唑itz溶于甲醇中配制得itz溶液;白蛋白alb溶于水中配制得alb水溶液;将itz溶液与alb水溶液混合,混匀作为水相;将液体石蜡作为油相,加入乳化剂,然后将水相逐滴缓慢加入油相中,乳化得到w/o型初乳;然后加入戊二醛溶液进行固化,得到alb-itz微球;
9.(2)制备cs-alb-itz微球:将壳聚糖溶于冰醋酸溶液中配制得壳聚糖的乙酸溶液,并调节ph至3-4.5;将三聚磷酸钠tpp溶于水中配制得tpp溶液,并调节ph至6.5-7.5;将步骤(1)所得的alb-itz微球溶于水中获得alb-itz微球分散液;再将alb-itz微球分散液缓慢滴加至壳聚糖的乙酸溶液中,混匀,作为分散相;tpp溶液加入至分散相中,混匀进行反应;反
应结束后,固液分离,收集固体,洗涤、干燥,得到伊曲康唑缓释微球,记作 cs-alb-itz微球。
10.在本发明的一种实施方式中,步骤(1)中,itz溶液的浓度为20-30mg
·
ml-1
;具体可选 25mg
·
ml-1

11.在本发明的一种实施方式中,步骤(1)中,alb水溶液的浓度为40-60mg
·
ml-1
;具体可选50mg
·
ml-1

12.在本发明的一种实施方式中,步骤(1)中,伊曲康唑itz与白蛋白alb的质量比为1: (5-10);具体可选1:8。
13.在本发明的一种实施方式中,步骤(1)中,液体石蜡与水相的体积比为(8-12):1;具体可选10:1。
14.在本发明的一种实施方式中,步骤(1)中,乳化剂相对水相的用量为0.5-2g/ml;具体可选1.5g/ml。
15.在本发明的一种实施方式中,步骤(1)中,乳化剂为司盘-80、吐温-80中任意一种或多种。
16.在本发明的一种实施方式中,步骤(1)中,乳化的条件为500-1500rpm转速搅拌下乳化10-30min;具体可选乳化15min。
17.在本发明的一种实施方式中,步骤(1)中,戊二醛溶液的浓度为5wt%-10wt%;具体可选8wt%。
18.在本发明的一种实施方式中,步骤(1)中,戊二醛溶液相对水相的体积分数为5%-10%, v/v;具体可选8%,v/v。
19.在本发明的一种实施方式中,步骤(1)中,固化的时间为1-2h。
20.在本发明的一种实施方式中,步骤(1)中还包括:固化结束后,离心收集下层沉淀,用无水乙醇和水多次清洗微球,冷冻干燥。
21.在本发明的一种实施方式中,步骤(2)中,壳聚糖的乙酸溶液中壳聚糖的浓度为5wt%-15 wt%;具体可选10wt%。
22.在本发明的一种实施方式中,步骤(2)中,tpp溶液的浓度为0.02-0.5wt%;具体可选 0.05wt%。
23.在本发明的一种实施方式中,步骤(2)中,alb-itz微球分散液的浓度为10-20mg/ml;具体可选15mg/ml。
24.在本发明的一种实施方式中,步骤(2)中,壳聚糖与alb-itz微球的质量比为1:(0.1-05);具体可选1:0.15。
25.在本发明的一种实施方式中,步骤(2)中,tpp相对壳聚糖的质量份数为0.1%-0.5%;具体可选0.125%。
26.在本发明的一种实施方式中,步骤(2)中,反应的温度为室温(20-30℃);时间为2-4h。
27.本发明基于上述制备方法制备提供的伊曲康唑缓释微球。
28.本发明还提供上述伊曲康唑缓释微球在抗菌剂制备领域中的应用。
29.有益效果:
30.本发明所得cs-alb-itz呈球形,包封率为(98.44
±
1.24)%,粒径为(4.20
±
0.26)
μm,电位为(2.27
±
0.54)mv。体外释放结果显示,微球可缓慢持续释放7天。体外抗真菌结果表明,与游离伊曲康唑和alb-itz相比,当药物浓度为1μg
·
ml-1时,cs-alb-itz的抑制率达99%。结论:cs-alb-itz具有明显的抗真菌效果,有望将其应用为抗真菌药物新制剂。
附图说明
31.图1(a)为x射线衍射图谱;(b)差示扫描量热分析图;(c)为傅里叶红外光谱;(d) 为alb-itz的显微照片。
32.图2(a)为微球的粒径分布图;(b)为微球的电位图;(c)为alb-itz的sem图;(d) 为cs-alb-itz的sem图。
33.图3为alb-itz和cs-alb-itz的药物释放曲线。
34.图4为不同分子量壳聚糖的抗菌效果图:(a)control组;(b)分子量:25w;(c)分子量:10w;(d)分子量:5w。
35.图5(a)不同原料及微球涂布后菌落生长情况;(b)不同原料及微球处理白色念珠菌后的抑制率。
36.图6(a)不同浓度载药微球涂布后菌落生长情况;(b)不同浓度载药微球处理后白色念珠菌的存活率。
37.图7不同组分载药微球的抑菌圈。
具体实施方式
38.药品与试剂:白蛋白(生工生物工程上海股份有限公司);马铃薯葡糖糖琼脂培养基(青岛海博生物技术有限公司);酵母提取物(oxoid公司);胰蛋白胨(oxoid公司);其他试剂均为市售的分析纯。
39.x射线衍射(xrd):使用xrd对样品进行晶型分析。扫描速率为5
°
·
min-1
,2θ扫描范围为10
°–
60
°

40.差示扫描量热分析(dsc):采用ta-q2000差示扫描量热分析仪对样品进行差示扫描量热分析。温度检测范围为30℃-600℃,升温速度为10℃
·
min-1
.
41.傅里叶变换红外光谱分析(ft-ir):取原料药及冻干后的微球样品,用傅里叶变换红外对其在4000-400cm-1
的波长范围内进行测试分析,分辨率为4cm-1

42.扫描电子显微镜(sem):将冻干后的不同微球颗粒粘在样品台的导电胶上,真空下喷金,以5kv加速电压观察样品的形貌。
43.粒径和zeta电位:将制备的微球在6000rpm离心5min,去上清,将沉淀重新分散在水溶液中。采用zeta电位及纳米粒度分析仪测定产物的粒径、粒径分布及zeta电位。
44.包封率和载药量的测定:精密称取微球5mg,加入15ml甲醇超声破碎10min之后持续搅拌48h,以甲醇为对照,在262nm波长处分别测定吸光度,代入itz标准曲线方程计算含量,根据公式计算包封率ee和载药率dl。
45.ee%=we/w
t
*100%
46.dl%=we/wm*100%
47.其中,w
t
、we和wm分别是投药量,包封的药量和称取的载药微球量。
48.实施例1cs-alb-itz微球的制备
49.制备alb-itz微球:
50.称取5mg itz溶于0.2ml甲醇,配置成25mg
·
ml-1
的itz溶液;40mg alb溶于0.8ml 超纯水,配制成50mg
·
ml-1
的alb水溶液。将0.2mlitz溶液加入0.8ml alb水溶液中,作为水相;另外量取10ml液体石蜡作为油相,加入1.4g的司盘-80、0.1g吐温-80作为乳化剂。在900rpm转速搅拌下,将水相逐滴缓慢加入油相,继续乳化15min,得到w/o型初乳。再加入0.08ml 8wt%戊二醛溶液,接着固化2h,5000rpm离心10min,收集下层沉淀,用无水乙醇和水多次清洗微球,冷冻干燥即得alb-itz微球。所得alb-itz微球的包封率为(98.44
±
1.24)%。
51.制备cs-alb-itz:
52.将壳聚糖溶于1wt%冰醋酸水溶液中,制成10wt%的壳聚糖的乙酸溶液,搅拌24h,过0.45μm滤膜,并将其ph分别调至4。将三聚磷酸钠(tpp)溶于水中,制成0.05wt%三聚磷酸钠(tpp)溶液,过0.45μm滤膜,并将其ph分别调至7。
53.将取60mg所得alb-itz微球溶于4ml超纯水,得到alb-itz微球分散液;将分散液缓慢滴加至40ml壳聚糖的乙酸溶液中,混匀,作为分散相;再将10ml 0.05wt%tpp溶液加入至分散相中,混合均匀,室温反应4h;反应结束后,5000rpm离心10min,收集下层沉淀,用水多次清洗微球,冷冻干燥即得cs-alb-itz微球。
54.所得alb-itz微球的表征:
55.xrd图谱用于进行药物的晶型评价。如图1a所示,alb表现出广泛的典型alb无定形峰;itz原料药在14.6
°
、17.7
°
和20.6
°
处显示出明显的itz特征峰,表明itz原料药具有较高的结晶度;alb和itz的物理混合物同时显示出alb的无定形峰和itz的特征峰; alb-itz类似于alb,无itz特征峰,表明itz在载药微球中失去其晶体结构并以无定形形式或分子状态存在。
56.dsc分析曲线(图1b)显示alb在210-238℃之间有一个较宽的吸热峰,物理混合物中同时存在相似峰;itz原料药和物理混合物均在167.9℃处显示出明显的吸热峰,说明itz 到达熔点开始融化,表明itz原料药具有结晶性;alb-itz中itz显示很弱特征峰,说明itz 均匀分散在聚合物基质中,导致药物由晶体转化为无定形。
57.ft-ir光谱(图1c)显示,itz的典型ft-ir光谱出现在400-1800cm-1
处,这与之前报道的数据一致
15.;同时在itz和alb的混合物中也观察到itz的特征峰;但在alb-itz中 itz的特征峰消失,只存在alb的典型特征峰。此外,alb-itz与itz的光谱相比,无明显的新峰,但在1643cm-1
处峰明显变强,这归因于在微球形成的过程中,与戊二醛交联后形成的-c=n-键的特征吸收峰,这证明了交联剂戊二醛上的醛基-cho与alb上的-nh2发生了缩合反应,从而交联制得微球。
58.微球的粒径、电位和形貌:实施例1所得的alb-itz和cs-alb-itz的粒径、电位和形貌结果如图2所示。由图2a可知,alb-itz和cs-alb-itz的粒径分别为(3.346
±
0.14)μm 和(4.20
±
0.26)μm,pdi分别为0.071和0.124。为了有效的肺部给药,最佳的粒子大小应该在1~5μm范围内(最高的给药效率),因为大于5μm的粒子在吸入的过程中容易沉积在口咽和喉部,而小于这个范围的颗粒则容易随呼吸而呼出。该微球具有良好的粒径用于肺部吸入给药。通过sem观察可知微球大小较均一,且形貌成规整球形。cs-alb-itz的电位较 alb-itz从(-14.5
±
1.8)mv升高至(2.27
±
0.54)mv,说明cs成功包载在alb-itz微球表面。由于真菌
细胞膜表面带负电荷,正电性粒子更易结合到细胞膜表面发生作用渗透至真菌内进行反应,从而影响核酸的合成并抑制蛋白的合成。
59.实施例2 alb-itz微球制备条件的探究:
60.条件1:参照实施例1,将搅拌速度调整为600rpm,其他不变,得到相应的alb-itz 微球。
61.条件2:参照实施例1,将itz调整为6.67mg,乳化时间调整为20min,搅拌速度调整为600rpm,其他不变,得到相应的alb-itz微球。
62.条件3:参照实施例1,将itz调整为10mg,乳化时间调整为25min,搅拌速度调整为 600rpm,其他不变,得到相应的alb-itz微球。
63.条件4:参照实施例1,将itz调整为6.67mg,搅拌速度调整为750rpm,其他不变,得到相应的alb-itz微球。
64.条件5:参照实施例1,将itz调整为10mg,乳化时间调整为20min,搅拌速度调整为 750rpm,其他不变,得到相应的alb-itz微球。
65.条件6:参照实施例1,将乳化时间调整为25min,搅拌速度调整为750rpm,其他不变,得到相应的alb-itz微球。
66.条件7:参照实施例1,将itz调整为10mg,其他不变,得到相应的alb-itz微球。
67.条件8:参照实施例1,将乳化时间调整为20min,其他不变,得到相应的alb-itz微球。
68.条件9:参照实施例1,将itz调整为6.67mg,将乳化时间调整为25min,其他不变,得到相应的alb-itz微球。
69.相应不同条件所得的alb-itz微球的包埋效果如表1所示。
70.表1不同条件所得的alb-itz微球的包封率结果
71.制备条件包封率(%)条件181.48
±
0.28条件253.85
±
0.15条件346.04
±
0.31条件484.58
±
1.02条件567.26
±
0.10条件687.11
±
0.36条件771.15
±
0.24条件895.63
±
0.60条件986.70
±
0.52
72.实施例3 cs-alb-itz微球的体外药物释放测定
73.选择ph为7.4的pbs作为释放介质。每组各取20ml释放介质于试管中,加入负载itz 的微球,置于恒温振荡器振荡(100rpm,37℃),分别在1h、2h、4h、6h、8h、24h、48 h、72h、5d和7d取出等量的溶液,用紫外测定其在262nm处的吸光度。通过标准曲线回归方程计算含药量,计算其不同时间的累积释放率。
74.如图3所示,alb-itz和cs-alb-itz微球在24h内的累计释放量均达到约40%,这可能是由于存在药物黏附在微球表面导致药物突释,表明给药后能够快速到达感染部位并抑
制真菌的生长。在接下来的6天内,可以持续释放药物,但是相较于前24h释放速率减慢,持续缓慢释放药物。至第7天,alb-itz和cs-alb-itz的累积释放率分别达到96.8%和86.7%。相比于alb-itz,cs-alb-itz在72d后释放更缓慢,即作用时间更久。
75.实施例4体外抑菌性能评价
76.不同分子量壳聚糖的抗菌性能:
77.实验过程:采用平板涂布计数法来评价不同分子量壳聚糖的抗菌性能。以溶剂1%乙酸作为空白对照组,将紫外灭菌的分子量为25w、10w和5w的cs分别溶于1%乙酸,分别稀释至1mg
·
ml-1
。将活化培养好的菌液稀释至1
×
106cfu
·
ml-1
,取30μl菌液和30μl不同分子量的cs涂布于pda培养基平板,置于28℃恒温生化培养箱培养24h,筛选最优抗真菌效果的壳聚糖分子量。
78.实验结果:由于不同分子量壳聚糖的抗菌效果存在差异,将同一浓度的不同分子量的壳聚糖对c.albicans进行抗菌实验,结果表明,分子量为100000的壳聚糖效果最好(图4),所以选择分子量10w的壳聚糖进行后续实验。
79.最小抑菌浓度(mic)测定:
80.采用微量稀释法测定化合物的最小抑菌浓度。分别用培养基对不同微球进行稀释,然后吸取100μl至无菌96孔板1-10号孔中,使各孔的最终itz药物浓度依次为32、16、8、4、 2、1、0.5、0.25、0.125和0.0625μg
·
ml-1
,11、12号分别加入不含药物的培养基100μl。将菌株活化后接种于马铃薯葡萄糖琼脂(pda)平板上,于28℃培养24小时,挑取单菌落重悬至无菌水中,用培养基调整密度至5.0
×
10
2-2.5
×
103cfu
·
ml-1
。吸取100μl调整浓度后的菌悬液,加入每排的1-11号孔中,12号则加入100μl无菌水。11号孔作为阳性生长对照, 12号孔作为空白对照。接种后的96孔板静置于28℃恒温生化培养箱中,培养48小时后,使用酶标仪测定od 600
值。
81.采用微量稀释法测定载药微球和游离itz的最小抑菌浓度,评估其抗真菌活性。结果显示,itz的mic
90
为0.25μg
·
ml-1
,cs-alb-itz的mic
90
为0.0625μg
·
ml-1
,其mic
90
是itz 的1/4,说明itz和cs的共同作用优于itz的单独疗效。
82.稀释涂布平板计数法测定:
83.采用稀释平板涂布计数法来评价微球的抗菌性能。以二甲基亚砜(dimethyl sulfoxide, dmso)为对照组,游离itz、alb-itz和cs-alb-itz分别溶于dmso,cs稀释至500μg
·
ml-1
,游离itz、alb-itz均稀释至最终药物浓度为0.25μg
·
ml-1
,制备相同相应浓度的cs-alb-itz。将活化培养好的菌液稀释至1
×
106cfu
·
ml-1
,取30μl菌液和30μl不同浓度的各组别涂布于pda培养基平板,置于28℃恒温生化培养箱培养24h,对菌落进行计数。根据公式计算白色念珠菌的存活率。
84.存活率(%)=cfu exp/cfu con
×
100%
85.以上述为基础,探究不同浓度微球的抗菌效果。将游离itz、alb-itz和cs-alb-itz 分别稀释至itz的最终药物浓度为0.25、0.5和1μg
·
ml-1
。培养及测试方法同上。
86.采用稀释涂布平板计数法进行评价不同原料及微球的抗真菌效果。如图5a和b所示,相比于对照组,cs、itz和alb-itz对c.albicans的抑制率不超过40%,而cs-alb-itz的抑制率约97%,超过cs和itz的理论加和作用(80%),表明cs和itz存在协同作用具有更好的抗真菌效果。
87.采用稀释涂布平板计数法进行评价不同浓度载药微球和itz的抗真菌作用效果。如图6a 和b所示,相比于对照组,itz和alb-itz的菌落数均明显减少,且随着浓度升高,菌落数相应减少。cs-alb-itz组低浓度的菌落数均比其他两组少,高浓度itz下抑制率高达99%,再次表明cs和itz的协同作用具有更强的抗真菌效果。
88.琼脂纸片扩散法测定:
89.用无菌水将游离itz、alb-itz和cs-alb-itz稀释至最终itz药物浓度为1μg
·
ml-1,将无菌空白药敏纸片浸泡在不同浓度组别中2h,以无菌水稀释相同体积的不同溶剂作为空白对照。将活化培养好的菌液稀释至1
×
106cfu
·
ml-1
,取30μl菌液进行涂板,每组做三次平行。将涂布好的平板置于28℃恒温生化培养箱培养24h,使用游标卡尺对抑菌圈进行测量。
90.琼脂纸片扩散法测定抑菌圈大小的结果如图7所示,空白组均无明显抑菌圈,即其抑菌圈为药敏纸片的直径6mm;游离itz的抑菌圈为(10.81
±
0.79)mm;alb-itz与itz无明显差别,其抑菌圈为(10.61
±
0.69)mm;但cs-alb-itz的抑菌圈明显大于其他两组,其数值为(12.44
±
0.74)mm。再次证明cs-alb-itz组具有更优的抗真菌疗效。该结果与最小抑菌浓度结果保持一致,即mic
90
值越小,则相同浓度下其抑菌圈愈大。
91.本发明通过大量实验摸索,获得具有高包封率的alb-itz微球,并通过单因素筛选出具有最好抗菌效果的壳聚糖,从而制备cs-alb-itz微球。本发明制备得到的cs-alb-itz粒径大小适用于肺部给药,且可以在一周内缓释伊曲康唑,体外的细胞毒性实验显示微球具有良好的生物相容性。
92.由于侵袭性真菌感染中,一半甚至更高比例的感染部位为呼吸系统,而肺部给药不仅可以提高局部药物浓度,增强抗真菌效果,而且可能会降低对全身性的毒副作用,降低耐药性。选择肺部吸入的给药方式,即需要控制粒径在1~5μm范围内,本发明制备的最终制剂微球粒径约3.9μm,具有良好的肺部沉积条件。
93.本发明成功制备了cs-alb-itz。体外实验结果表明,cs-alb-itz中各组分协同增效,显著增强其抗真菌活性。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1