自适应反馈控制下的磁场定位系统的制作方法

文档序号:1058654阅读:196来源:国知局
专利名称:自适应反馈控制下的磁场定位系统的制作方法
技术领域
本发明涉及通过检测磁场来确定物体空间位置和/或方向的系统。
背景技术
迄今已经有各种采用磁场或电磁场来检测物体位置和/或方向的系统问世。这些系统一般采用放置在固定参考系已知位置上的场发射机(例如电磁铁线圈)和安装在待定位的物体上的传感器(例如线圈或其它换能器)。每台发射机在固定参考系发射随空间变化的场。每台发射机的空间变化模式互不相同。例如发射机可以一模一样但是放置的位置或方向不同。由此使发射机的场模式相对另一台发射机和相对固定的参考系位移或旋转。物体上的传感器检测物体所在位置上的场参量,例如物体所在位置上场的大小和/或方向或者物体所在位置上的场在一个或多个预选方向上单个分量的大小。发射机可以以预选的时序启动从而在任意时刻都只有一台发射机处于激活状态,因此物体所在位置上的场等于一台发射机形成的场加上地磁场或者其它环境场源引起的背景场。另外发射机也可以受不同的频率驱动,从而使来自传感器的随不同频率而变的信号分量代表不同发射机对物体所在位置上场的贡献。根据检测到的单台发射机的场参量和已知的每台发射机场变化模式,计算机系统在发射机的固定参考系计算出传感器的位置和方向,由此确定放置传感器的物体所在的位置。这种系统的变例是物体携带一台或多台发射机,而将多个传感器放置在在固定参考系中不同的位置或方向上。物体的位置和/或方向从代表各个传感器所在位置处场参量的信号中推导出来。
在美国专利No.4,849,692、4,642,786、4,710,708、4,613,866和4,945,305中揭示了这种普通类型的系统。这种通用设计系统可以用于向计算机提供三维空间输入。在公开号为WO94/04938的国际申请中揭示了这种类型的另一系统。在该国际申请中,待定位物体可以是医用内诊镜。这种系统可以包括安装在内诊镜顶端的传感器,这样当传感器放入病人体内时可以确定出内诊镜顶端的位置和/或方向。这使得医生在监视内诊镜诊断过程中无需借助荧光检测或其它电离辐射技术来确定仪器的位置。在该国际申请的其中一个实施例(第26-27页)中,对于多个发射线圈同时启动以“操纵”最终磁场的方向并由此使磁场随传感器排列的设计方案进行了仔细考察。该国际申请表征这种设计方案是不合需要的。在美国专利No.5,042,486、5,099,845、5,211,165、5,251,635、5,253,647、5,255,680、5,265,610和5,391,199中揭示了其它根据发射场定位医学仪器(例如内诊镜和导尿管)的其他系统。
这种系统的场强度一般以发射机距离的三次方或者更高的幂次变化。因此场强在不同位置之间的变化非常大。在医学设备定位系统中,为了能满足在0.5-1.0米尺度感测空间内确定传感器位置的需要,场强从感测空间一端到另一端要经历多个数量级的变化。当传感器和待定位物体恰好靠近某一发射机时,它们将接受到异常大的场强,而当传感器和物体位于远离某一发射机的感测空间另一端时,它们从发射机接受的只是非常微弱的场强。这要求传感器具备极宽的动态范围,能够精确地监视极强和极弱的场强。由此对传感器设计提出了苛刻的要求并需要更大的传感器。而且监视极弱场强时的信噪比较差,因此系统精度不及优化状态下的精度。在医用系统中,传感器必须小到能够放入医学设备(例如内诊镜和导尿管)的内部,因此上面两点是非常重要的考虑因素。虽然这样的系统可以提供有用的结果,但是还需作进一步的改进。对于待定位物体上的线圈或其它发射机以及在固定参考系中多个传感器的系统来说,也会出现同样的问题。就特定的传感器而言,其所受非常强的或非常弱的场强辐射同样也取决于发射机与传感器之间的距离。
以普通方式转让的共同待批的美国专利08/132,479揭示了一种解决这些问题的方案。按照该申请的某些较佳实施例包括可以用来产生多个不同磁场的电磁铁。在感测空间内,每个磁场至少在一个特定方向上具有恒定或随距离线性或接近线性变化的非零分量。与场强呈距离的三次方或更高幂次变化的技术方案相比,这种技术方案使得整个感测空间内的场强变化较小。因此在准线性磁场的情形下,给定感测空间内最小与最大场强之差大大减小。这在很大程度上缓解了上述问题。但是对于采用线圈来提供这种准线性变化磁场的技术方案来说,并不一定方便。

发明内容
本发明的一个方面是提供一种包括产生多个磁场的场发生装置的定位装置。场发生装置被设计成所产生磁场的参量(例如场强和/或磁场方向)根据已知的变化模式在感测空间内随位置而改变。每个磁场的变化模式互不相同。例如,场发生装置包括多个发射线圈,线圈位于感测空间不同的位置和/或方向上。按照本发明这个方面的装置还包括至少一个传感器,所述传感器适于检测位于感测空间内未知位置上的传感器的一个或多个场参量并提供代表这些检测参量的一个或多个传感器信号。例如传感器可以包括一个传感器主体和多个放置在传感器主体上的分量传感器,每个分量传感器用来测量在相对于传感器主体的预选局部方向上的磁场分量大小以提供代表传感器所在位置上特定场分量的分量传感器信号。装置进一步包括根据传感器信号和未知的场变化模式计算传感器位置和方向的计算装置。装置还包括用来为响应传感器信号或传感器计算位置或二者而调节场发生装置以改变至少一个已知的场变化模式的反馈控制装置,由此在预选定的范围内维持变化场的检测参量不变。例如,场发生装置包括多个靠近感测空间放置的发射机,反馈控制装置可以设计成在传感器远离该发射机时提高发生场强,而在传感器靠近发射机时降低发射场强。这样在传感器位置上检测得到的场参量总是落在相对较窄的数值范围内。由于被发射场的改变方式是已知的,所以简单地将改变的场作为计算基础仍然可以计算出传感器的位置和/或方向。例如,反馈控制装置增加流至电磁线圈的电流,由此相应调整了代表特定线圈发射场强的计算参量。
按照本发明这方面的装置即使在场强以大于距离一次方的关系变化时(例如场强随线圈距离的三次方变化),也可以使较窄范围内的传感器位置上检测到的场参量(例如该位置上的场强)保持不变。因此即使传感器很小,系统也能提供高信噪比。而且无需对线圈进行特殊设计以形成线性或准线性场。例如,在某一医学应用中,可以将多个线圈放置在病床下面或者一侧的各种位置上。
虽然按照本发明这方面的装置可以采用任何类型的传感器,但是采用磁阻传感器或者其它在强磁场下精度会下降的传感器具有额外的优点。由于磁场保持在较窄范围内,所以,传感器的不会处于其受到影响的磁场中。在经过进一步改进的本发明实例中,启动反馈控制系统以保持每个传感器所在位置的场参量在可达的最窄范围内。这样反馈控制使得传感器处的场参量基本上为恒定值。这里发射场的改变方式也是已知的,并且采用改变的场作为计算基础仍然可以计算出传感器的位置。
本发明进一步方面提供的装置包括至少一个适于安装在待定位物体上的发射机和靠近感测空间放置的多个传感器。按照本发明这方面的装置包括根据传感器信号和发射机的已知场变化模式确定计算的发射机位置的计算装置。提供的反馈控制装置用来为响应传感器信号或发射机计算位置或二者而调节场发生装置以改变至少一个发射机的已知场变化模式,由此在预选定的范围内的每个传感器位置上维持至少一个发射机的场参量。除了发射机或发射机组放置在待定位物体上而传感器位于感测空间的固定参考系内以外,这种技术方案于上述的相似。这里,当发射机靠近传感器时,或者发射机与传感器的取向造成发射场与传感器之间的强耦合时,场强又得以减小。如果发射机离传感器较远,或者取向不适宜,则控制装置提高发射场强。这种技术方案具有与上述类似的优点。
本发明的进一步方面提供了检测物体在参考系内方位(位置、方向或者二者)的装置。按照本发明这方面的装置包括发射机装置,它包含至少一个提供磁场的发射机;以及传感器装置,它包括至少一个检测其位置上的一个或多个场参量并提供一个或多个指示这种参量的传感器信号的传感器。发射机装置和所述传感器装置协同定义了多个发射机-传感器对,每对包括作为组成单元的一个发射机和一个传感器,每个这样的对中其中一个单元被放置在物体上而对中另一个单元被放置在所述参考系中的已知方位上。典型的情况是,每个发射机-传感器对至少有一个单元放置在与其它对的相应单元不同的位置和方向上。装置还进一步包括根据所述传感器信号确定所述物体方位的计算装置和响应所述传感器信号对所述发射装置进行调节以使所述至少一个传感器信号保持在预先选定范围内的反馈控制装置。
本发明的进一步方面提供了确定位置和/或方向的方法,其中根据传感器的信号或者计算得到的传感器和发射机位置通过反馈控制来改变场发生装置的操作,以保持每个传感器要检测的场参量保持在预选选定的范围内。
通过以下结合附图对本发明的描述,可以更容易地理解本发明的其它目标、特征和优点。
附图的简要说明

图1为按照本发明一个实施例的装置部分的视图;
图2为图1所示装置某一部分的分解视图;图3为图1和图2所示装置部分的功能框图;图4为按照本发明的方法的某些步骤的示意框图;图5和图6为按照本发明进一步实施例的装置部分的分解视图。
实施发明的较佳方式按照本发明一个实施例的装置包括三个共面放置的普通螺旋发射机线圈10。线圈10放置在病床12参考系中的固定位置上。如图1所示,参考系用直角坐标系X,Y和Z表示。病人P躺在病床上。线圈的轴11互相平行。病床12正好延伸到线圈10平面的上方。装置进一步包括物体或探头14。探头适于插入诸如导尿管16之类的医学仪器中并定位在导尿管中所需位置上,例如导尿管的远端或者沿导尿管长度方向上的另一位置上。探头14安装在传感器18上。传感器18包括三个分量传感器20、22和24,它们适于检测互为正交的局部方向X’,Y’和Z’上的磁场分量。即,分量传感器20对方向X’上的磁场敏感,但是对Y’和Z’方向上的磁场很不敏感,而分量传感器22和24分别对方向Y’和Z’上的磁场敏感。这些传感器适于提供代表分离的分量传感器信号。传感器18可以是在上述国际申请WO95/09562中所述的固态传感器,该申请作为参考文献包含在这里。如上所述,每个分量传感器可包括普通的平面型磁敏薄膜,例如磁阻薄膜或者霍尔效应传感薄膜。这种薄膜对垂直于薄膜平面方向上的磁场敏感。传感器18也可以包括小型线圈列阵,线圈的轴互为正交。虽然这些都是较好的传感器,但是其它磁敏器件基本上也是可以采用的,例如磁光传感器和磁通量闸磁强计。
分量传感器20、22和24经电缆28,利用每个传感器的分离引线连接至指令单元28。指令单元28(图3)包括输入放大和模拟-数字(A/D)转换部分30,它适于接受来自传感器18的分量传感器20、22和24的单独信号,将其放大并转换为数字形式。放大和A/D转换单元30还可以包括其它的普通信号处理装置,例如模拟或数字带通滤波和噪声去除装置以及信号平均器。指令单元28进一步包括计算单元32。计算单元32可以用通用编程计算机实现。如下所述,位置计算单元被设计成从传感器信号中计算传感器18的方位,由此计算出导尿管头上的物体或探头的方位。与前面一样,单元的“方位”指的是单元的位置、方向或者二者兼而有之。因此计算单元被设计成计算传感器18的位置、方位或者比较好的是同时计算位置与方位。命令单元28可以连接至显示器装置(未画出),它将探头或物体14的位置以人们能够理解的形式表示。这种形式可以是表示物体14在X,Y和Z坐标系中的位置和方向的数值信息,比较好的是叠加在病人图像上的物体和导尿管的图像。
命令单元28进一步包括控制单元34。控制单元34通过输出线路36、38和40连接至三个分离的线圈驱动器42、44和46上。每个线圈连接至其中一个分离的发射机线圈10上。每个线圈适于通过相连的发射线圈提供直流。每个线圈驱动器被设计成控制这种电流的幅度并闭合或关断电流以响应从控制单元34接收的信号。控制单元被设计成将信号传递给线圈驱动器以按照交替的序列向发射线圈提供电流,从而在线圈10b和10c处于非激活状态时线圈10a接收电流;在线圈10a和10c处于非激活状态时线圈10b接收电流并且在线圈10b和10a处于非激活状态时线圈10c接收电流。控制单元从放大和转换部分30接收数据并如下所述启动线圈驱动器以改变流至每个线圈的电流幅度。控制单元可以包括普通的接口装置,例如数字-模拟转换器或者总线接口单元,从而使控制单元的输出与每个线圈驱动器的控制输入相一致。虽然这里示出的控制单元与命令单元28的其它逻辑单元是分开的,但是应该注意的是控制单元也可以与命令单元和其它单元共为一体。例如如果命令单元包括通用计算机,则计算机的处理器可同时服务于位置计算单元和控制单元,不同时刻执行的功能与不同的单元对应。
在按照本发明一个方面的方法中,导尿管16进入病人P的体内。带传感器18的探头14放置在导尿管头。导尿管头位于线圈10平面上方的某个未知位置。控制单元34依次启动线圈驱动器,采用初始或者缺省值作为提供给每个线圈10的电流的幅度。在电流开始流经每个线圈时,放大和转换单元30以预定的时序从每个分量传感器20、22和24的信号中采样。例如,在电流开始流经发射线圈10a后,单元30以预定的时刻采样来自每个分量传感器20、22和24的信号,并转换为数字格式。命令单元28随后根据这些单独的信号计算总的场强。总场强为|B10a|=(k20S20)2+(k22S22)2+(k24S24)2]]>这里B10a为线圈10a启动时传感器18处磁场矢量的大小;
K20为传感器20的信号强度相对X’轴的磁场分量的灵敏度因子;S20为启动期间传感器20的信号强度;以及K22、S22和K24与S24为其它传感器22和24类似的灵敏度常数和信号强度。
同样,系统依次启动线圈10b和10c,采用缺省的电流强度。系统计算线圈10b启动期间传感器处总的场矢量大小并独立计算线圈10c启动期间传感器处总的场矢量大小。
如图4所示,在检测分量信号并计算每个线圈启动期间传感器处总的场强大小之后,控制单元确定所有的场强是否落在预定范围之内。该预定范围选在传感器18的优化操作范围内。因此选择最小的场强使之远大于系统的噪声阈值和传感器的最小灵敏度级,而选择最大的场强使之远小于传感器最大线性度极限和保证精度前提下最大的场强水平。对于典型的磁阻传感器而言,当场强小于4高斯时精度和重复性最好,所以预选选定的场强范围大约为1.0-2.5高斯。对于典型的霍尔效应传感器而言,当场强大于30高斯时精度最好,所以预选选定的场强范围将大于30高斯。如果在三个单元10a,10b和10c启动期间三个场矢量大小都落在预选选定范围内,则系统将采用普通的位置寻找算法计算传感器18的位置和方向,由此计算出探头14和导尿管头16的位置和方向。例如,可以采用在美国专利4,710,708中揭示的一种数学方法,该方法通过利用发射或接收站以及多轴传感器来定位。所述的该专利作为参考文献包含在这里。简而言之,每个分量传感器20、22和24的分量传感器信号所代表的局部或传感器方向X’,Y’和Z’上的场强是线圈总场强(也称为线圈的磁偶极矩)、某一线圈到传感器的距离和机车传感器旋转角(即局部方向X’,Y’和Z和参考方向X,Y和Z上的线圈系统’之间的角度)的函数。当在三个分立线圈启动期间收集三个分量传感器的读数并且使分量大小(它们表示为到某一线圈的场坐标的函数)相等时,它们构成6个未知量的9方程系统(传感器的X,Y和Z坐标和三个转角)。这些方程的推导参见附录A。可以采用迭代方法(例如Marquardt方法)或者Broyden方法(用于非线性方程的过确定系统的最小二乘方解法)来求解该方程系。命令单元随后提供指示传感器位置和方向因此也是探头和导尿管头的位置和方向的输出。
如果有一个或多个场强超出预定范围,则系统不会计算位置和方向。控制单元34改变线圈的场强或者场强超出范围的线圈。例如如果探头14和传感器18比较靠近线圈10a,则线圈10a启动时检测到的总场强将超出预定范围。控制单元34因此将命令线圈驱动器42在下一启动循环期间降低流至线圈10a的电流。相反,如果探头和传感器离线圈10c较远,则在线圈10c启动期间缺省电流值下检测到的场强将小于预定范围。因此控制单元将命令线圈驱动器46在下一循环期间增加流至线圈10c的电流。线圈驱动器可以设计为通过逐步改变电流来逐步改变每个线圈的总场强或者偶极矩。由控制单元所命令的每一次增量或每一次减量可以是一个步骤。控制单元也可以计算正比于预定范围内偏离目标值的总场强的增量或减量。这样当场强远远超出范围时可以作较大的改变,而当场强接近范围或落在范围内时作较小的改变。校正过程一直持续下去直到所有的场强都落在预定范围内,在此基础上系统计算位置和方向。在系统找到所寻找场强落在预定范围内的线圈电流值后,下一启动循环就采用这些电流。在操作期间,当医生用的是导尿管16时,可以改变导尿管头的位置和探头14以及传感器18的位置。任何这样的改变都可能导致一个或多个场强超出预定范围,因此系统将重新调节流至线圈的电流。
当反馈控制单元重新调整流至线圈的电流时,改变的电流值被转换为新的单个线圈场强数值,该数值被用于前述位置确定方程。系统以这种方式确保传感器无论放置在线圈10平面上方延伸至预定区域的感测空间内何处,其都暴露在位于预定范围内的场强下。感测空间50的精确大小取决于预定场强大小范围和线圈驱动器42、44和46的动态范围,即线圈驱动器的电流改变幅度的广度。传感器将从线圈接收预定场强范围内的磁场,相应的感测空间50大小还取决于线圈的位置。但是,对于三个线圈放置在40厘米长等边三角形顶点的系统来说,感测空间包括从线圈平面向上延伸60厘米左右的区域。在线圈平面上,感测空间超出线圈围成的等边三角形之外20厘米。
在上述描述中,只采用一个传感器来确定一个物体的位置和方向。但是也可以采用多个物体和多个传感器。如同在国际申请WO95/09562中所述,可以采用多个基准标记。每个基准标记可以包括传感器主体52、标记53和与传感器18类型相同并松散地连接至传感器主体52的传感器54。放大和转换单元30按照与传感器18同样的方式连接至每个附加的传感器上。每个传感器的标记附着在病人身上,并且可以采用成像方法来获取病人图像,这些成像方法(例如磁共振成像、X射线、CAT扫描等)示出了所需的病人身体结构和标记53。由此根据所需的图像方法选择便于成像的标记。如果是X射线成像,则可以采用辐射不透明物质作标记;如果是磁共振成像,则标记可以是容易引起磁共振并且能与人体组织区分开来的材料。一般情况下在采用上述导尿管或探头之前获取图像。传感器54一般不会在成像过程中出现。在成像过程之后,传感器主体54和基准标记用传感器附着在标记位置的人体上。当采用导尿管时,导尿管内探头上的传感器18的信号与基准标记上传感器52的信号同时获得。系统按照确定传感器18和探头14相同的方式,利用线圈10的磁场确定传感器54的位置和方向,因此确定基准标记的位置和方向。获取的基准标记52的位置和方向可以用来以传感器18和探头14的位置和方向数据标记前面获取的病人图像。例如,如果传感器18和探头14的位置和方向作为导尿管头16的图像显示在荧光屏上,则也可以显示出由磁场定位方法确定的基准标记的位置和方向。前面获取的图像数据可以显示为病人人体结构图像,该图像包括标记53的画面。前面获取的标记53的图像与通过将一幅或其它图像进行变换的磁场定位方法得到的基准标记一起登记直到前面获取图像中的标记图像叠合获取图像中的基准标记。这种登记可以通过在视觉匹配显示图像时手动调整图像显示系统的输入来完成,例如上述国际申请所揭示的那样,或者通过自动完成图像登记所需的参数变换和旋转计算完成。这类参数可以通过使磁定位参考系内的三个或多个基准标记传感器的位置(图1的X,Y,Z坐标)与未知的旋转矩阵(即未知的变换矩阵)修正的图像参考系内标记53的位置相等完成计算过程。如附录B所述,最终的矩阵方程产生非线性方程的过确定系统,该方程包括旋转角和变换距离。当图像经过正确的登记之后,导尿管头的位置就被准确地显示在病人体内某一位置和方向上。同样,可以定位更多的基准标记或者更多的医学仪器。
在采用多传感器(例如传感器18和54)的系统中,线圈可以在独立的循环内工作从而向每个传感器提供在适于传感器的场强预选范围内的磁场。例如控制单元34可以启动线圈驱动器42、44和46,由此使线圈10在第一、第二、第三和第四循环内发射磁场。在第一循环内,获取的是传感器18的信号而基准标记传感器54的信号被忽略。在第一循环期间,调整线圈以在传感器8处产生位于上述预选范围内的场强。在第二循环期间,获取的是第一基准标记传感器54a的信号,传感器18和其它基准标记传感器54b,54c的信号被忽略并且调整线圈电流以在传感器54a处提供位于预选范围内的场强。在第三循环期间,获取的是传感器54b的信号而忽略其它信号;在第四循环期间,获取的是传感器54c的信号而忽略其它信号。循环可以顺序进行,整个第一循环完成之后再开始整个第二循环。循环也可以交叉进行。例如可以首先启动线圈驱动器42以提供适于在第一传感器18处产生合适的场的电流并依次启动基准标记传感器54a,54b和54c以提供合适的场,随后以多重启动方式启动其它线圈。同样,如果采用更多的传感器,则可以采用与传感器数量相等的循环。如果已知某些传感器互为靠近,或者某些传感器的数据与其它传感器的数据无大的差别,则循环数可以小于传感器数。由此可以调整给定循环内所用的电流以提供属于传感器预选范围内的磁场。虽然对于其它传感器来说场强可能超出了其预选范围,但是在该循环期间还是可以获取其它传感器的信号。在某些情况下,一些循环期间内的线圈电流是固定的而其它循环期间内的电流是可以调节的。例如如果采用许多基准标记,则当从基准标记获取数据时可以利用固定的线圈电流产生磁场来达到可以接收的登记精度,而当数据从有源装置或导尿管的传感器获取时,线圈电流可以按照上述方式调整。
某些传感器在超过预定最大值的磁场辐照下会损失精度。例如如果受到超过4高斯的磁场辐照,某些磁阻传感器会暂时丢失精度。如果在多传感器系统中采用这种传感器,则可以采用合适的措施使传感器避免受到磁场的过度辐照。例如如果传感器54a靠近线圈10b放置,而传感器18远离线圈10b放置,则在系统调整线圈10b电流以使其在传感器18处产生合适的磁场时,传感器54a可能会受到极高的磁场辐照。为了避免出现这种情况,在要获取所有循环期间内所有传感器的数据,并且控制单元34可以设计成当需要增加电流时以渐进方式在几个循环期间内增加线圈电流。在特定循环内未用于位置监视的传感器数据可以用来在场强达到不必要的危险水平时禁止电流的进一步增加。因此如果系统组件逐步增加线圈10b内的线圈电流以在传感器18处提供合适的磁场,则当与第一传感器18有关的读取循环期间第二传感器54a处的场强达到第二传感器最大水平时,系统停止这样的电流增加。如果发生这样的情况而第一传感器处的场强仍然低于预定范围,则系统可以显示出错信息或者试图根据超出范围的传感器信号计算位置或方向,或者同时采取这两种措施。如果可以使传感器恢复原来的精度,则可以采用名义上无用的传感器的数据来初始化恢复过程。例如某些磁阻传感器采用偏置磁场。如果这种传感器受到过强的磁场辐照,则在过强磁场消失之后,通过调整传感器上的偏置磁场可以重设和恢复传感器的精度。命令单元可以设计成如果传感器在与另一个传感器有关的循环期间受到过强磁场辐照则启动该传感器的重设过程。
在前述讨论中,线圈以时间复用方式交替驱动。频域复用也是可以采用的。因此每个线圈可以在不同载波频率的驱动电流下启动,并且可以持续进行这样的启动。传感器18的信号将包括以不同载波频率变化的分量,它可以用模拟或数字滤波方式滤波加以分开。因此以线圈10a的载波频率变化的分量传感器20、22和24的信号可以用来计算线圈10a对总场强的贡献。其值依次用于触发器反馈控制单元34以调整线圈10a的电流。其它线圈内的电流也可以采用随各载波频率变化的分量,以相同的方式调整。频分复用方法可以扩大到多个传感器。例如每个线圈可以受多个载波频率驱动,载波频率的数量等于传感器的数量,每个线圈的载波频率互不相同。可以检测得到以各自的第一载波频率变化的第一传感器信号中的分量并由此调整各第一载波频率下的线圈电流强度,从而使传感器18处第一载波频率下的磁场强度落在所需的范围内。在这一阶段,以其它载波频率变化的分量忽略不计。对于基准标记传感器54a来说过程是相反的。这种方法可以推广到更多数量的传感器。而且可以将频率复用和时间复用方法结合起来。因此每个线圈可以只在一个载波频率下驱动。在第一循环期间,启动第一传感器18并监视随所有载波频率变化的分量。由此调整线圈电流以使每个载波频率下的磁场落在所需范围内。在第二循环期间,采用第二传感器54a(第一基准标记传感器)并且以同样方式调整线圈电流,对于其它的基准标记传感器依此类推。
在进一步的变例中,线圈电流以及每个发射机的场强可以调整为使每个分量传感器检测得到的场分量落在预选范围内。在这种系统中,每个线圈分别相对每个分量传感器进行调整。在第一循环期间,调整流向发射线圈10a的电流使得分量传感器20的传感器信号(表示局部X’方向上的场分量大小)落在预选范围内。在该循环期间,可不顾其它分量传感器22和24的信号。在下一循环期间,重新调整线圈10a使主要方向上的场分量落在预选范围内并使Y方向的分量传感器22的信号落在优化范围内。随后同一线圈10a使局部方向Z’上的场分量落在预选范围内,并监视主要方向分量传感器24的信号。对于每个其它发射线圈重复同样的操作序列。这种方法可以推广到多个传感器,其中的每个传感器包含多个分量传感器。系统再次通过每个分量传感器跟踪产生磁场的线圈电流的大小。线圈电流在联立方程的线圈偶极矩(总场强)项中得到了反映。
如果与某一分量传感器相关的局部方向是正交或近似正交于某一线圈在传感器处产生的磁场方向,则不可能使局部方向上的分量落在预选范围内而不超出线圈驱动器的电流容量或者产生强度损坏其它传感器的磁场。但是在本例中,至少有一个其它的分量传感器将接收属于预选范围内的分量。在该变例中,可以在与某一分量传感器相关的循环内监视所有分量传感器的信号。线圈上的最大电流是限制在不能使其它不用的分量传感器在其检测方向上受过强磁场辐照的水平。
在这种方法的又一个变例中,任何特定方向上场分量的预选范围都控制在只包括一个预选的数值,比较好的是在某一分量传感器的精度优化范围内。反馈控制系统由此调整线圈电流直到场分量大小为这样的一个数值。位置和方向的计算按照上述方式进行。这种变例的优点是分量传感器响应的非线性不会影响系统的精度。假定传感器的某一读数对应于场分量大小的预选值,则分量大小与分量大小的其它值的传感器读数之间的线性关系的偏离不会影响系统的精度。
某些场传感器具有所谓“离轴敏感性”的性质。即当存在与轴正交的强的场分量时,变换函数或者沿着某一分量传感器的灵敏轴的场分量大小与分量传感器的读数之间的线性关系将发生变化。通过利用两个分量传感器的读数来评估垂直于第三分量传感器灵敏轴的场强和利用该场强来确定对第三分量传感器读数的校正因子可以校正这种离轴灵敏度。
在上述系统中,当线圈受直流驱动时,放大和转换单元30在电流产生之后以预选的延迟时间从每个分量传感器采样。在该系统的改进型中,命令单元根据某一启动中施加的电流大小调整电流产生到采样之间的时间延迟。在电流产生之后,电流逐渐升高至稳态值,并且总场强或偶极矩等也同样逐渐增大。改变的磁场在存在于感测空间内或附近的导电材料中涡流电流。这些电流感应出可能产生错误的传感器读数的附加磁场。当电磁变化速率随着磁场达到稳态值而减小时,涡流电流逐渐消失。延迟时间应该足以保证电流升高到接近稳态值和涡流电流耗散掉,从而不会引起可观的误差。场强越小,所需的延迟时间也越小。
图5和6所示的系统与上述讨论的除了发射机与传感器的角色互逆以外其它都相似。即在待跟踪的探头或物体114上配备包括三个沿互相正交轴放置的小型线圈120、122和124的发射机118。这些连接到与图3所属相似的控制系统和线圈驱动器上(未画出)。固定参考系统具有三个无方向传感器110a,110b和110c,它们相对病床112固定。传感器安装在公共平面内。传感器的公共平面一般在病床的一侧垂直延伸。感测空间150从病床上方分传感器公共平面向外延伸。
该系统的运行方式基本上与上述系统的相似。流倒每个线圈的电流和与线圈相关的发射场的偶极矩经过调整使得每个传感器处传感器检测方向上的场分量大小落在预选范围内。
在不偏离本发明实质的前提下可以对上述特征进行各种组合和改进。在实例的方式中,图1的发射线圈可以如图5中传感器所示放置在垂直平面内。而且发射机和传感器的数量可以改变。例如如同在国际申请WO94/04938中所揭示的那样,系统可以包括一个包含三个互相正交轴的传感器和在固定参考系内具有公共中心的一组三个的正交发射线圈。系统也可以包括位于待定位物体上的单轴发射线圈和固定参考系上的三组传感器,每个这样的传感器组包括适于检测正交方向上磁场的接收线圈或分量传感器。反过来,采用三组正交发射线圈和待定位物体上的单轴传感器的设计也是可以的。传感器和发射机一般应该定义多个发射机-接收机对,每对包括一个位于物体上的单元和位于固定参考系上的单元。
在进一步的改进型中,系统调整发射机的输出以响应计算得到的跟踪物体的位置,而不是直接响应分量信号或总场强。这样系统可以在缺省的电流值下开始运行;得出物体位置和方向的初始读数并利用这样开始得到的位置和方向来计算每个线圈所需达到的设定值以在传感器处获得所需的场强。选择这种所需的设定以产生场强在预选范围内的磁场,这里假定物体的位置和方向可以从初始读数中获得。在下一循环中,利用所谓的计算得到的线圈电流并重复该过程。在该方法的改进型中,系统可以存储一张列出物体位置与方向各种组合下合适的线圈电流的查询表。利用这种初始确定的位置和方向,系统在下一循环中从所用查询表检索出合适的线圈电流值。
在上述实施例中,传感器与导尿管相连。同样的系统也可以用于其他医疗仪器,例如内诊镜和手术器具。系统还可以用来确定除了医学仪器以外的物体的方位。例如可以用来跟踪计算机的输入设备。
本发明可以在不偏离其实质的前提下作各种改进,因此本发明由后面所附权利要求限定。
工业应用本发明可以用于医学和外科领域以及保健行业。
附录A位置和方向的计算假定我们已知操作期间位置固定的场发生器(发射机)的物理结构,则传感器检测得到的磁场是传感器位置和方向的函数。在我们的系统中,场发生器顺序激励。传感器(每个探头3个分量传感器)所检测到的场可以用位置X,Y,Z和方向α,β,γ(分别为横摆角,纵摆角和偏向角)表示为B[传感器][线圈]=f[传感器][线圈](X,Y,Z,α,β,γ)这里[传感器]表示某一传感器而[线圈]表示某一发射机线圈。
如果线圈起作用时传感器测量的实际的场为B’[传感器][线圈],则理论上B’[传感器][线圈]=B[传感器][线圈],即B’[传感器][线圈]-f[传感器][线圈](X,Y,Z,α,β,γ)=0.0由于我们有3个传感器和3个线圈,所以总的方程数为9而未知量为6(X,Y,Z为探头的空间位置而α,β,γ为方向)。利用非线性最小二乘方方法,我们可以求出探头的唯一解X,Y,Z,α,β,γ。
上面所示为算法的总体思路。具体为假定正交X,Y,Z参考坐标系(磁场位置的笛卡尔坐标)用矩阵表示为eI=el11el13el13el21el22el23el31el32el33]]>则探头的正交系为ep=ep11ep12ep13ep21ep22ep23ep31ep32ep33]]>并且由于探头上的这三个传感器可能互相不正交,所以它们的非正交轴表示为en=en11en12en13en21en22en23en31en32en33]]>
后面计算用的变换矩阵T[i][j]可以从下面获得T[i][j]=en[i]·ep[j]i,j∈{1,2,3}另外也可以采用的矩阵ortho_ov[i][j]定义为ortho_OV[i][j]=el[i]·er[j]i,j∈{1,2,3}由于我们用横摆角(α),纵摆角(β),偏向角(γ)定义探头方向,所以ortho_ov[i][j]可描述为ortho_ov[1][1]=cos(α)cos(γ)-sin(α)sin(β)sin(γ)ortho_ov[1][2]=cos(α)sin(γ)-sin(α)sin(β)cos(γ)ortho_ov[1][3]=-sin(α)cos(β)ortho_ov[2][1]=-cos(β)sin(γ)ortho_ov[2][2]= cos(β)cos(γ)ortho_ov[2][3]=sin(β)ortho_ov[3][1]=sin(α) cos(γ)+cos(α)sin(β)sin(γ)ortho_ov[3][2]=sin(α)sin(γ)-cos(α)sin(β)cos(γ)ortho_ov[3][3]=cos(α)cos(β)因此通过前面定义的矩阵T与ortho_ov的矩阵乘法可以计算出正交矢量矩阵ov=T*ortho_OV正交系在传感器位置产生的沿eT[i]方向的理论磁场可以表示为
f[coil][i](x,y,z,α,β,γ)这里f为已知的函数,并且包括大小正比于某一线圈内电流的偶极矩项。在非正交校正(传感器不再互相垂直)后,磁场传感器测量应该是B[sensor][coil]=Σl=13f[coil][i](x,y,z,α,β,γ)×ov-1[i][sensor]]]>假定当线圈起作用时传感器检测得到的实际磁场为B’[传感器][线圈],则B’[传感器][线圈]-B[传感器][线圈]≈0.0因此待求解的X,Y,Z,α,β,γ的9个方程为B′[sensor1][coil1]-Σl=13f[coil1][i](x,y,z,α,β,γ)×ov-1[sensor1]=0.0]]>B′[sensor1][coil2]-Σl=13f[coil2][i](x,y,z,α,β,γ)×ov-1[i][sensor]=0.0]]>B′[sensor1][coil3]-Σl=13f[coil3][i](x,y,z,α,β,γ)×ov-1[i][sensor1]=0.0]]>B′[sensor2][coil1]-Σl=13f[coil1][i](x,y,z,α,β,γ)×ov-1[i][sensor2]=0.0]]>B′[sensor2][coil2]-Σl=13f[coil2][i](x,y,z,α,β,γ)×ov-1[i][sensor2]=0.0]]>B′[sensor2][coil3]-Σl=13f[coil3][i](x,y,z,α,β,γ)×ov-1[i][sensor2]=0.0]]>B′[sensor3][coil1]-Σl=13f[coil1][i](x,y,z,α,β,γ)×ov-1[i][sensor3]=0.0]]>B′[sensor3][coil2]-Σl=13f[coil2][i](x,y,z,α,β,γ)×ov-1[i][sensor3]=0.0]]>B′[sensor3][coil3]-Σl=13f[coil3][i](x,y,z,α,β,γ)×ov-1[sensor3]=0.0]]>可以采用众所周知的非线性最小二乘方方程解法求解上述方程并求出探头位置x,y,z和方向α,β,γ。
附录B基准标记的登记假定我们已知图像数据(MR等)坐标系中三个基点的坐标(图像坐标){(Mx1,My1,Mz1),(Mx2,My2,Mz2),(Mx3,My3,Mz3)}并且磁场定位装置固定参考系X,Y,Z坐标系内相同的三个基点的坐标为{(Px1,Py1,Pz1),(Px2,Py2,Pz2),(Px3,Py3,Pz3)}基点{(x1,y1,z1),(x2,y2,z2),(x3,y3,z3)}可以通过对{(a1,b1,c1),(a2,b2,c2),(a3,b3,c3)}的旋转R和平移T形成。旋转矩阵R为R=RxxRyxRzxRxyRyyRzyRxzRyzRzz]]>这里Rxx=cos(α)×cos(γ)-sin(α)×sin(β)×sin(γ)Rxy=cos(α)×sin(γ)+sin(α)×sin(β)cos(γ)Rxz=-sin(α)×cos(β)Ryr=-cos(β)×sin(γ)Ryy=cos(β)×cos(γ)Ryz=sin(β)Rzx=sin(α)×cos(γ)+cos(α)×sin(β)×sin(γ)Rzy=sin(α)×sin(γ)-cos(α)×sin(β)×cos(γ)Rzz=cos(α)×cos(β)平移矩阵T为T=xyzxyzxyz]]>
图像位置与磁场定位装置参考系位置之间的关系为Mx1My1Mz1Mx2My2Mz2Mx3My3Mz3R+T=Px1Py1Pz1Px2Py2Pz2Px3Py3Pz3]]>或Mx1My1Mz1Mx2My2Mz2Mx3My3Mz3R+T-Px1Py1Pz1Px2Py2Pz2Px3Py3Pz3=000000000]]>这构成了9个单一的方程Mx1×Rxx+My1×Rxy+Mz1×Rxz+x-Px1=0Mx1×Ryx+My1×Ryy+Mz1×Ryz+y-Py1=0Mx1×Rzx+My1×Rzy+Mz1×Rzz+z-Pz1=0Mx2×Rxx+My2×Rxy+Mz2×Rxz+x-Px2=0Mx2×Ryx+My2×Ryy+Mz2×Ryz+y-Py2=0Mx2×Rzx+My2×Rzy+Mz2×Rzz+z-Pz2=0Mx3×Rx3+My3×Rxy+Mz3×Rxz+x-Px3=0Mx3×Ryx+My3×Ryy+Mz3×Ryz+y-Py3=0Mx3×Rx3+My3×Rzy+Mz3×Rzz+z-Pz3=06个未知量α,β,γ为旋转角,x,y,z为空间平移量。
登记程序用来通过求解上面9个方程得到旋转角度α,β,γ和空间平移量x,y,z。
登记程序的伪编码为
登记(){初始化数据缓冲器;将基准参考点分配给图像数据(通常是3个点);初始化磁场定位系统;测量所选基点的1ab位置;采用方程求解方法(非线性最小二乘方)来求解方程(*),并且寻找旋转角度α,β,γ和空间平移量x,y,z;从α,β,γ形成旋转矩阵并从空间平移量x,y,z形成平移矩阵T;}旋转矩阵R和平移矩阵T可以用于下一获得的位置,包括与导尿管相连的传感器的位置。
权利要求
1.一种定位装置,其特征在于包括(a)场发生装置(10),用来产生多个磁场,每个所述磁场具有根据已知的变化模式在感测空间内(50)随位置变化的参量,每个所述磁场的所述变化模式互不相同;(b)至少一个传感器(18),所述传感器适于检测位于所述感测空间内未知位置上的传感器的一个或多个所述参量以提供代表一个或多个所述参量的一个或多个传感器信号;(c)计算装置(32),用来根据所述传感器信号和所述已知的场变化模式计算传感器方位的计算装置;以及(d)反馈控制装置(34),用来为响应所述传感器信号、所述计算位置或者二者而调节所述场发生装置以改变至少所述场的所述已知场变化模式,由此维持所述传感器处每个所述变化的场的所述参量在预选范围内。
2.一种定位装置,其特征在于包括(a)多个传感器(110),适于检测位于每个传感器处一个或多个磁场参量以提供代表一个或多个所述参量的一个或多个传感器信号,所述传感器位于靠近感测空间(150)的不同位置、方向或者二者都不同的方位;(b)包括至少一个磁场发射机(118)的场发生装置,所述磁场发射机可以在所述感测空间内相对未知的位置运动并且适于在所述感测空间内至少提供一个磁场,从而使每个发射机的磁场根据已知的变化模式随相对发射机的位置变化,由此使所述传感器信号表示所述至少一个发射机的磁场的一个或多个参量;(c)计算装置(32),用来根据所述传感器信号和所述已知的场变化模式确定至少一个所述发射机的计算装置;以及(d)反馈控制装置(34),用来为响应所述传感器信号、所述计算位置或者二者而调节所述场发生装置以改变至少一个所述场的所述已知场变化模式,由此维持每个所述变化的场的所述参量在预选范围内。
3.如权利要求1或2所述的装置,其特征在于所述场发生装置在所述感测空间内提供直流磁场。
4.如权利要求3所述的装置,其特征在于所述场发生装置包括多个线圈(10,120,122,124)和用直流间断启动每个所述线圈的装置(34,42,44,46),所述反馈控制装置包括改变每个所述直流大小的装置,并且所述计算装置包括在经过每个间断开始启动之后的延迟时间从传感器采样的装置,所述反馈控制装置进一步包括根据启动时施加的电流大小改变每次启动延迟时间的装置,从而在所用电流较小时减小延迟时间而在所用电流较大时增加延迟时间。
5.如权利要求1或2所述的装置,其特征在于所述场发生装置在所述感测空间内提供交流磁场。
6.如权利要求1或2所述的装置,其特征在于每个所述传感器在预选优化范围内对于每个所述参量具有最大的精度并且每个所述参量的所述预选范围基本上与所述优化运行范围对应。
7.如权利要求1或2所述的装置,其特征在于每个所述参量的所述预选范围由单个数值组成,并且所述反馈控制装置使每个传感器处的磁场的每个所述参量基本保持在所述单个数值上。
8.如权利要求1所述的装置,其特征在于所述场发生装置包括放置在所述感测空间附近的多个发射机(10)。
9.如权利要求2或8所述的装置,其特征在于所述发射机发射的磁场强度以rn的幅度减小,r为离发射机的距离而n是大于1的数。
10.如权利要求9所述的装置,其特征在于每个所述发射机辐射的磁场强度基本上等于k/r3的幅度变化,k为实数,并且所述反馈控制装置对k进行调整。
11.如权利要求1所述的装置,其特征在于进一步包括传感器主体(18),所述至少一个传感器包括多个放置在所述传感器主体上的分量传感器(20,22,24),每个所述分量传感器测量相对传感器主体的预选局部方向上的磁场分量大小。
12.如权利要求11所述的装置,其特征在于所述场发生装置包括多个靠近所述感测空间的隔开的位置上的发射机(10),所述反馈控制装置调整每个所述发射机发射多个磁场从而使每个磁场沿所述分量传感器局部方向的分量的大小落在预选范围内。
13.如权利要求11所述的装置,其特征在于每个所述分量传感器为霍尔效应传感器、磁阻传感器、磁光传感器或磁通量闸磁强计。
14.如权利要求1或2所述的装置,其特征在于每个所述传感器包括一个线圈而所述场发生装置被设计成在所述感测空间内提供交流磁场。
15.如权利要求1所述的装置,其特征在于所述场发生装置包括多个位于参考平面一侧的隔开的位置上的发射机并且所述感测空间延伸到所述参考平面的另一侧。
16.如权利要求15所述的装置,其特征在于所述发射机基本上位于共平面内。
17.如权利要求2所述的装置,其特征在于所述多个传感器位于参考平面一侧隔开的位置上的并且所述感测空间延伸到所述参考平面的另一侧。
18.如权利要求17所述的装置,其特征在于所述传感器基本上位于共平面内。
19.如权利要求1或2所述的装置,其特征在于所述至少一个传感器包括多个传感器,并且所述多个传感器可能受到分量超过预定阈值的磁场辐照而损坏,所述反馈控制装置包括控制所述场发生装置的装置以确保传感器不受分量超过阈值的磁场的辐照。
20.如权利要求1或2所述的装置,其特征在于所述至少一个传感器包括多个传感器,并且所述多个传感器可能受到分量超过预定阈值的磁场辐照而损坏,但是在辐照后经过重设例行程序可以恢复,所述反馈控制装置包括辐照后初始化重设例行程序的装置。
21.一种检测参考系内物体方位的装置,其特征在于(a)包括至少一个提供磁场的发射机的发射机装置(10);(b)传感器装置(18),它包括至少一个检测其位置上的一个或多个场参量并提供一个或多个指示这种参量的传感器信号的传感器。所述发射机装置和所述传感器装置协同定义了多个发射机-传感器对,每对包括作为组成单元的一个发射机和一个传感器,每个这样的对中其中一个单元被放置在物体上而对中另一个单元被放置在所述参考系的已知方位上;(c)根据所述传感器信号计算所述物体在所述参考系内方位的计算装置(32);以及(d)响应所述传感器信号对所述发射装置进行调节以使所述至少一个传感器信号保持在预先选定方位内的反馈控制装置(34)。
22.一种确定物体在参考系内方位的方法,其特征在于包括以下步骤(a)提供一个或多个具有相对所述参考系的已知变化模式的磁场;(b)检测所述物体处所述一个或多个磁场的一个或多个参量以提供指示所述一个或多个参量的一个或多个传感器信号;(c)根据所述传感器信号和所述已知变化模式计算所述物体在所述参考系内的方位;(d)响应所述传感器信号、计算得到的方位或者二者而改变所述一个或多个磁场中至少一个的所述已知变化模式以使所述物体处每个这样改变的所述场参量保持在预选选定的范围内。
23.一种确定物体在参考系内方位的方法,其特征在于包括以下步骤(a)提供一个或多个具有在相对物体的空间内的已知变化模式的磁场;(b)检测在所述参考系内方位已知的一个或多个传感器处的所述一个或多个磁场的一个或多个参量以提供指示所述一个或多个参量的一个或多个传感器信号;(c)根据所述传感器信号和所述一个或多个磁场的所述已知变化模式计算所述物体在所述参考系内的方位;(d)响应所述传感器信号、计算得到的方位或者二者而改变所述一个或多个磁场中至少一个的所述已知变化模式以使所述传感器中至少一个的每个这样改变的所述场参量保持在预选选定的范围内。
全文摘要
一种定位系统,它根据固定参考系内的线圈向物体上的传感器(20,22,24)发射磁场来确定诸如病人(P)体内医学仪器(16)之类的物体的方位。线圈内的电流经过调整以确保传感器接收的场强在预选范围内而不论物体在空间的位置如何。这保证了传感器工作在优化范围内,并且采用小型发射机和传感器。
文档编号A61B5/06GK1186549SQ96194456
公开日1998年7月1日 申请日期1996年6月3日 优先权日1995年6月7日
发明者D·E·艾克 申请人:巴依奥桑斯股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1