静电卡盘的湿法清洗的制作方法

文档序号:1373859阅读:765来源:国知局
专利名称:静电卡盘的湿法清洗的制作方法
背景半导体加工设备例如等离子体蚀刻室的一个组件—静电卡盘(ESC)可用于在例如于化学气相沉积(CVD)、物理气相沉积(PVD)或者蚀刻反应器中加工期间半导体晶片或玻璃基材(即平板显示器)的输送、固定和/或温度控制。ESC通常表现出短的寿命,导致故障包括例如动态校正故障、ESC与支承的基材的下侧之间氦冷却气体的高泄漏、增加的脱卡盘时间和基材粘合在ESC上或者脱卡盘故障。ESC的早期故障可能造成基材断裂、影响产量、导致颗粒和缺陷问题并且增加掺入这些ESC的等离子体加工设备的所有权成本。
概述提供了一种清洗可用于半导体基材上介电层的等离子体蚀刻的新的或用过的静电卡盘的方法。该卡盘包括在蚀刻期间其上支承有半导体基材的陶瓷表面。该方法包括将卡盘的至少陶瓷表面与(a)异丙醇;(b)包含过氧化氢和氢氧化铵的碱性溶液;(c)包含氢氟酸和硝酸混合物的稀酸性溶液和/或包含盐酸和过氧化氢混合物的稀酸性溶液接触;和/或(d)超声波清洗;由此将污染物从卡盘的陶瓷表面上除去。当清理先前用于在半导体基材上介电层的等离子体蚀刻期间支承半导体基材的用过的卡盘时,该方法优选进一步包括将卡盘的至少陶瓷表面与四甲基氢氧化铵接触。
详述一种用于清洗ESC的非-破坏性并且简单的方法包括湿法清洗过程,该过程不需要剥去或者至少部分除去ESC上的陶瓷层和将陶瓷层重新沉积在ESC上。该湿法清洗过程包括用有机溶剂、碱性溶液、任选的四甲基氢氧化铵(TMAH)和稀酸性溶液清洗ESC以及超声波清洗。
用过的ESC的扫描电子显微镜法(SEM)和能量分散光谱(EDS)分析表明在蚀刻之后污染物沉积在陶瓷ESC表面上。这些污染物改变了ESC的表面特性并且容易造成早期故障,因为ESC性能极大地取决于ESC表面的清洁度。在制造新的卡盘期间或者当用于电介质等离子体蚀刻时沉积在ESC表面上的污染物当中有有机杂质、金属杂质、氟化物杂质、电极杂质、硅颗粒、表面颗粒和其组合。更具体地,氟化物杂质的例子包括例如氟化铝、氟化钛和其组合;金属杂质的例子包括铁、铬、镍、钼、钒和其组合;电极杂质的例子包括钨、磷和其组合;硅颗粒的例子包括例如Si、SiO2和其组合。已经惊奇地发现借助于湿法清理过程,可以将新的ESC预先处理并且可以通过将由制造产生的或者在蚀刻期间沉积在ESC上的污染物清洗以更新陶瓷表面而将用过的ESC恢复。
本文中使用的“电介质ESC”是指用于电介质蚀刻工艺例如等离子体蚀刻氧化硅和低-k材料的ESC。例举的电介质ESC可以包括带有其上支承有半导体或基材例如晶片的陶瓷表面的金属基体(例如阳极化铝合金或非-阳极化铝合金)。作为例子,陶瓷表面可以包括烧结层压物,该层压物包含在两个陶瓷层(例如约20密耳厚的薄陶瓷层)之间图案化难熔(例如钨或钼)电极。可以用粘合材料例如含有导电粉末(例如铝、硅等)的硅氧烷基材料将该层压物粘合在金属基体上。该金属基体约1.5英寸厚,通常包括RF和DC动力进给、起模针用的通孔、氦气通道、用于温度控制的流体循环的槽、温度传感配置等。
ESC通常是Coulombic或Johnsen-Rahbek类型。Coulombic型ESC使用具有较高电阻以生成库仑静电力的电介质表面层。对于较低的外加电压通常提供较高的静电夹持力的Johnsen-Rahbek型ESC使用较低电阻的电介质表面层例如掺杂有如TiO2的Al2O3。
根据一个实施方案,Johnsen-Rahbek型ESC的陶瓷介电层可以包含94%Al2O3、4%SiO2、1%TiO2和1%CaO以及微量的MgO、Si、Ti、Ca和Mg。根据另一个实施方案,对于Coulombic型ESC,陶瓷介电层可以包含大于或等于99%的Al2O3。因此,取决于陶瓷层的组成,可以不将一些元素例如Ti、Si、Mg和Ca看作是将通过湿法清洗过程除去的污染物。相反,优选通过湿法清洗过程将一些污染物例如金属颗粒和电极颗粒(例如钨或钼)从ESC表面除去。
在新的ESC上可能发现一些污染物例如有机杂质、金属杂质和电极杂质,而一些污染物例如有机杂质、氟化物杂质和硅颗粒可能在电介质蚀刻期间沉积在用过的ESC的陶瓷表面上。湿法清洗过程的组分即有机溶剂、碱性溶液、任选的TMAH、稀酸性溶液和超声波清洗起到了将可能在陶瓷ESC表面上发现的特定污染物除去的作用。
例如,异丙醇(IPA,100%,符合SEMI规格C41-1101A,等级1或更好)起到了除去有机杂质的作用。尽管考虑了可以使用其他有机溶剂,但优选避免丙酮,因为丙酮可能侵蚀ESC粘合材料。
碱性溶液起到了除去有机杂质、金属杂质和氟化钛的作用。例举的用于湿法清洗过程的碱性溶液可以包括过氧化氢(H2O2)(30%,半导体等级,符合SEMI规格C30-1101,等级1或更好)和氢氧化铵(NH4OH)(29%,半导体等级,符合SEMI规格C21-0301,等级1或更好)。过氧化氢是具有高的标准还原电势的强氧化剂。在至少高达70℃下稳定的氢氧化铵和过氧化氢的弱碱性溶液中,过氧化氢可以与金属反应形成金属离子。过氧化氢的标准还原电势为H2O2+2H++2e-=2H2OE°=1.776V(相对于标准氢电极(SHE))并且弱碱性溶液中过氧化氢的标准还原电势为HO2-+H2O+2e-=3OH-E°=0.878V(相对于SHE)。
氢氧化铵可以与金属杂质形成络合物离子例如Cu(NH3)42+和Ni(NH3)42+。由于过氧化氢的使用提高了ESC陶瓷表面的表面电势,因此其可能减少在先前的ESC陶瓷表面的化学清洗之后金属的重新沉积或表面吸收。例如,铜的标准还原电势为Cu2++2e-=Cu
E°=0.337V(相对于SHE)并且硅的还原电势为Si+2H2O+2H++2e-=2H2OE°=-0.857V(相对于SHE)。
因此,硅可以将电子提供给Cu2+以形成铜金属,铜金属可以吸收在ESC陶瓷表面上。过氧化氢可以将电子从硅中除去,使得铜形成可以被除去的Cu(NH3)42+。
任选的TMAH(例如2.38wt%,得自于Cyantek,Corp.,Fremont,CA的CC-238S非-离子显影剂)起到了除去可能在用过的ESC上发现的污染物—氟化铝的作用。因此,优选用TMAH清洗用过的ESC。
例举的用于湿法清洗过程的酸性溶液可以包括氢氟酸(HF)(49%,半导体等级,符合SEMI规格C28-0301,等级1或更好)和硝酸(HNO3)(67%,半导体等级,符合SEMI规格C35-0301,等级1或更好)。硝酸起到除去金属颗粒和电极杂质的作用,氢氟酸起到除去硅颗粒例如SiO2的作用。氢氟酸与SiO2的反应如下4HF+SiO2=SiF4+2H2O6HF+SiO2=H2SiF6+2H2O在氢氟酸溶液中由于低的反应常数k1=1.3×10-3mol/l,因此有低浓度的H+离子和F-离子。带有普通H+离子的硝酸的存在将导致甚至更低浓度的F-离子。由于氢氟酸可能侵蚀陶瓷表面的晶粒边界,因此在将氢氟酸施加在陶瓷表面上时优选特别地注意。尽管不希望受理论的束缚,但我们认为对于金属和金属离子去污而言,硝酸的加入是有效的。由于硝酸是强的氧化剂,因此其可以与活性金属例如铁、镍、铝、锌以及惰性金属例如铜反应。硝酸的标准还原电势为NO3-+4H++3e-=NO+2H2OE°=0.957V(相对于SHE)。
另一种例举的用于湿法清洗过程的酸性溶液可以包括盐酸(HCl)(符合SEMI规格C28-0301,等级2或更好)和过氧化氢。该酸性溶液起到除去金属杂质和电极杂质的作用。陶瓷表面上的金属污染物可以包括例如铜、铁、镍、钛、铝和其他金属颗粒。根据Pourbaix图(E对pH),为了将铜污染物从ESC陶瓷表面除去,应该将清洗液的pH保持在对于Cu2+而言为小于或等于6.0或者对于Cu(OH)42-而言为大于或等于12.5,并且应该将ESC陶瓷表面上的反应电势控制在相对于SHE为0.50伏特或更高。在酸性溶液中使用硝酸和过氧化氢将提供合适的陶瓷表面电势而实现铜的有效除去。尽管将不能预期氢氟酸单独将铜污染物从ESC陶瓷表面上除去,但硝酸与氢氟酸和/或过氧化氢与氢氧化铵的溶液将提供更有效的ESC陶瓷表面的铜去污。金属颗粒例如铁、镍、钛等可以有效地通过盐酸和过氧化氢的溶液除去,因为铁和镍可溶于盐酸中并且钛可以被过氧化氢氧化并且然后溶于盐酸溶液中。包含盐酸和过氧化氢的酸性溶液表现出有效地将金属和金属离子例如铝、铁、镍和铜去污。
用于湿法清洗过程的酸性溶液可以包含氢氟酸和硝酸的混合物和/或盐酸和过氧化氢的混合物。使用的酸性溶液可以基于ESC的类型和在电介质蚀刻期间其经受的条件。例如,为了防止破坏在高功率(例如3000-6000W)下工作的Johnsen-Rahbek型ESC的陶瓷表面,该ESC优选不用氢氟酸和硝酸清洗。
优选通过擦拭使ESC的陶瓷表面与酸性溶液和TMAH接触,同时ESC位于夹具上,陶瓷表面朝下。夹具的使用使得能够用酸性溶液或TMAH清洗而不会造成酸性溶液捕集在ESC的通道中和损坏粘合层。
除了将ESC的陶瓷表面与上述湿法清洗过程的组分接触之外,可以通过小心使用擦洗垫例如3MTMwhite Scotch Brite促进局部污点的清洗。擦洗有助于除去ESC陶瓷表面上的沉积物和污染物(例如聚合物聚集物)。
超声波清洗起到除去表面颗粒以及捕集在ESC的通道例如水道、温度传感器孔、起模针孔和通孔例如氦供给孔和相关的微孔道中的颗粒。在超声波清洗之后,在ESC陶瓷表面上希望有小于0.17个颗粒/cm2的颗粒密度。
在湿法清洗过程期间不希望ESC的粘合区域被化学侵蚀。因此,通过将粘合点暴露于不同化学物质下而系统地研究ESC粘合点的耐腐蚀性,结果示于表I中。
表I
√优良的耐腐蚀性或非常轻微的腐蚀*取决于使用的粘合材料的类型○可以使用,但带有显著的腐蚀或损坏×严重的腐蚀或损坏(不能使用)
发现用MicroShieldTM掩蔽助剂(Structure Probe,Inc.,WestChester,PA)涂覆粘合区域、干燥30分钟并且用耐化学性带(例如KaptonTM带或3MTM电镀带#470、484或854)覆盖是保护粘合区域的有效方式。
类似地,与水、含水化学物质或丙酮但不与IPA接触可能负面影响ESC背面的电触点,包括与塑料绝缘器的触点和银涂覆的触点。因此,优选通过用掩蔽材料和/或耐化学性带覆盖而保护ESC上的电触点和暴露的粘合材料。
如上所述,可以在将ESC进行湿法清洗过程之前分析ESC表面例如含晶片的陶瓷表面以确定是否在ESC表面上发现污染物。另外,可以在将ESC进行湿法清洗过程之后分析ESC表面以确定是否在ESC表面上发现污染物。另外,可以在将ESC进行湿法清洗过程之前并且优选在将ESC进行湿法清洗过程之后测试ESC的等离子体蚀刻室性能。
等离子体蚀刻室性能测试包括脱卡盘性能例如不同晶片类型的脱卡盘时间、脱卡盘时间对反极性电压(RPV)、脱卡盘时间对保持电压,和到达氦气极限的时间(氦气上升时间)对保持电压。另一些腔室性能测试包括例如晶片温度测量、动态排列测量、I-V曲线测量例如极点-极点对电流,和确定反极性最优化。
等离子体蚀刻室性能测试表明在将用过的ESC湿法清洗之后(1)I-V测量期间ESC电流降低、(2)最佳RPV转化成较低电压和(3)改进氦气上升时间结果。因此,脱卡盘时间在清洗之后将降低、可以在延长的保持电压范围内将晶片脱卡盘并且最佳RPV的范围在清洗之后变宽。
在将ESC进行湿法清洗过程之前和/或之后进行的ESC测量包括表面粗糙度(21个点)、表面颜色均匀度、陶瓷电介质厚度、陶瓷介电层体积电阻率、电阻率、电介质电阻和极点到基板的电阻、表面图案观察(White Light Interferometer(Zygo,Middlefield,CT))、用于表面形态的SEM和EDS分析以及组成分析,和ESC陶瓷表面的感应耦合等离子体质谱分析(ICPMS)。
实施例提供可用于清洗新的和用过的ESC的以下湿法清洗过程用于说明,但非限制性的。
实施例1用耐化学性带保护用过的电介质ESC背面上的电触点,包括与塑料绝缘体的触点和银涂覆的触点。通过用MicroShieldTM掩蔽助剂涂覆粘合材料、干燥30分钟并且用耐化学性带覆盖而保护在ESC的边缘、刚好在陶瓷表面层以下的暴露的粘合材料。
用超纯的去离子水(UPW,25℃下电阻率≥18Mohm-cm)清洗ESC 5分钟、用过滤的(0.05-0.1μm)氮气吹掉过量的水、将ESC浸泡(浸渍)在IPA中20分钟,并且用不含棉绒的净室擦布擦拭ESC。
将ESC浸入30%H2O2溶液中20分钟,并且用不含棉绒的净室擦布擦拭陶瓷表面。如果需要,通过小心地使用3MTMwhite Scotch Brite除去局部污点。用UPW清洗ESC 5分钟并且用过滤的氮气吹掉过量的水。
采用不含棉绒的净室擦布用IPA擦拭ESC、用UPW清洗ESC 5分钟,并且用过滤的氮气吹掉过量的水。
将ESC置于夹具上,陶瓷表面朝下。用不含棉绒的净室擦布和HF∶HNO3∶H2O溶液(1∶5∶50比例)擦拭陶瓷表面最多30秒。可以将3MTMwhite Scotch Brite与该溶液一起使用。用UPW清洗ESC,包括所有的氦气孔和槽10分钟,并且用过滤的氮气吹掉过量的水。
ESC在夹具上朝下,用不含棉绒的净室擦布和HCl∶H2O2∶H2O溶液(1∶2∶10比例)擦拭陶瓷表面最多3分钟。可以将3MTMwhite ScotchBrite与该溶液一起使用。用UPW清洗ESC,包括所有的氦气孔和槽10分钟,并且用过滤的氮气吹掉过量的水。
ESC在夹具上朝下,取决于氟化物沉积程度用不含棉绒的净室擦布和2.38%的TMAH溶液擦拭陶瓷表面5-10分钟,避免金属基体与溶液的接触。可以将3MTMwhite Scotch Brite与该溶液一起使用。用UPW清洗ESC 5分钟,并且用过滤的氮气吹掉过量的水。
将ESC从夹具中取出并且将ESC浸入H2O2∶NH4OH∶H2O溶液(1∶1∶2比例)中20分钟、用不含棉绒的净室擦布或3MTMwhite Scotch Brite擦拭ESC、用UPW清洗ESC 5分钟,并且用过滤的氮气吹掉过量的水。
将ESC朝下置于夹具上,陶瓷表面朝下。用不含棉绒的净室擦布和HCl∶H2O2∶H2O溶液(1∶2∶10比例)擦拭陶瓷表面最多30秒。可以将3MTMwhite Scotch Brite与该溶液一起使用。用UPW清洗ESC,包括所有的氦气孔和槽10分钟,并且用过滤的氮气吹掉过量的水。
使用丙酮和棉拭子将MicroShieldTM掩蔽助剂从ESC边缘除去。将ESC移到Class 1000净室中并且用表面粗糙度测试仪例如FowlerPocket Surf(Fred V.Fowler Co.,Inc.,Newton,MA)测量陶瓷表面的粗糙度。在室温下将ESC置于(浸入)装满UPW的超声罐并且清洗ESC60分钟。在超声罐中将ESC定位,陶瓷表面朝下但支承在罐底部上方。在超声波清洗期间陶瓷表面应该不与罐接触。将耐化学性带从ESC背面取下、用IPA擦拭ESC,并且用IPA清洗ESC背面上的氦气孔和槽。用通过软管或软嘴的喷嘴供送的氮气吹干ESC,包括氦气孔和槽。
将ESC移到Class 100净室中并且将其置于喷灯下或者在烘箱中在120℃下将其烘焙90分钟,并且使ESC冷却至50-60℃。用例如QIII+表面颗粒探测器(Pentagon Technologies,Livermore,CA)测量陶瓷表面上的表面颗粒。
实施例2实施例2的步骤类似于实施例1的步骤。然而,如实施例2所示,清洗时间和清洗组分可以改变。保护ESC背面上的电触点并且用IPA擦拭ESC。
将ESC浸入30%H2O2溶液中20分钟,并且用不含棉绒的净室擦布擦拭陶瓷表面。如果需要,通过小心地使用3MTMwhite Scotch Brite除去局部污点或者可以使用细的垫(砂纸)。用UPW清洗ESC 5分钟并且用过滤的氮气吹掉过量的水。
将ESC浸入IPA中20分钟、采用不含棉绒的净室擦布擦拭ESC、用UPW清洗ESC 5分钟,并且用过滤的氮气吹掉过量的水。
将ESC置于夹具上,陶瓷表面朝下。用不含棉绒的净室擦布和HF∶HNO3∶H2O溶液(1∶5∶50比例)擦拭陶瓷表面最多30秒。可以将3MTMwhite Scotch Brite或细的垫与该溶液一起使用。用UPW清洗ESC,包括所有的起模针孔以及氦气供给孔和槽10分钟,并且用过滤的氮气吹掉过量的水。
ESC在夹具上朝下,取决于ESC陶瓷表面上的氟化物沉积程度用不含棉绒的净室擦布和2.38%的TMAH溶液擦拭陶瓷表面5-10分钟,避免金属基体与溶液的接触。用UPW清洗ESC 5分钟,并且用过滤的氮气吹掉过量的水。
将ESC从夹具中取出并且将ESC浸入NH4OH∶H2O2∶H2O溶液(1∶7∶8比例)中20分钟、用不含棉绒的净室擦布或3MTMwhite Scotch Brite擦拭ESC、用UPW清洗ESC 5分钟,并且用过滤的氮气吹掉过量的水。
将ESC朝下置于夹具上,用不含棉绒的净室擦布和HCl∶H2O2∶H2O溶液(1∶2∶10比例)擦拭陶瓷表面最多3分钟。可以将3MTMwhite ScotchBrite与该溶液一起使用。用UPW清洗ESC,包括所有的氦气孔和槽10分钟,并且用过滤的氮气吹掉过量的水。
在室温下将ESC置于装满UPW的超声罐并且清洗ESC60分钟。用UPW清洗ESC 5分钟并且用过滤的氮气吹掉过量的水。将耐化学性带从ESC背面取下、用IPA擦拭ESC,并且用IPA清洗ESC背面上的氦气孔和槽。将ESC吹干,包括氦气孔和槽。
将ESC移到Class 100净室中并且将其置于喷灯下或者在烘箱中在120℃下将其烘焙90分钟,并且使ESC冷却。测量陶瓷表面上的表面颗粒和表面粗糙度。
实施例3表II提供了在湿法清洗过程之前和之后用过的ESC的EDS元素表面组成分析结果。“平均”是指相对大的ESC陶瓷表面面积,例如放大200倍。因此,一些污染物不能以“平均”测得。相反,“颗粒”是指ESC的陶瓷表面上的单个颗粒或杂质,包括金属颗粒或电极颗粒。
表II
实施例4表III提供了在湿法清洗过程之前和之后用过的ESC的ICPMS元素表面浓度(×1010原子/cm2)。“提取”是指其中将化学蚀刻溶液涂覆在ESC的陶瓷表面上以使表面污染物溶于溶液中的过程。然后收集溶液用于ICPMS分析。因此,可以测量初始表面污染物含量以及在湿法清洗过程之后污染物的含量和湿法清洗过程的效率。通过将提取过程重复几次,可以确定湿法清洗过程的终点。由于加工晶片的背面将接触ESC的表面,因此在晶片生产过程中希望ESC的表面干净。
表III
实施例5-7表IV-VI提供了在湿法清洗过程之前和之后三种不同用过的ESC的ICPMS元素表面浓度(×1010原子/cm2)。
表IV
表V
表VI
按照表IV清洗的ESC的陶瓷表面层掺杂有钛。
尽管已经描述了不同的实施方案,但将理解的是本领域那些技术人员将明显知道可以诉诸于改变和改进。这些改变和改进将被看作是处于附属的权利要求书的权限和范围内。
权利要求
1.清洗可用于半导体基材上介电层的等离子体蚀刻的静电卡盘的方法,该卡盘包括在蚀刻期间其上支承有半导体基材的陶瓷表面,该方法包括以下步骤a)将卡盘的至少陶瓷表面与异丙醇接触;b)将卡盘的至少陶瓷表面与包含氢氟酸和硝酸混合物的稀酸性溶液和/或包含盐酸和过氧化氢混合物的稀酸性溶液接触;c)将卡盘的至少陶瓷表面与包含过氧化氢和氢氧化铵的碱性溶液接触;和d)将卡盘进行超声波清洗;其中将污染物从卡盘的陶瓷表面上除去。
2.权利要求1的方法,其中污染物选自金属杂质、有机杂质、氟化物杂质、电极杂质、硅颗粒、表面颗粒,和其组合。
3.权利要求2的方法,其中卡盘是先前用于在半导体基材上介电层的等离子体蚀刻期间支承半导体基材的用过的卡盘,该用过的卡盘在陶瓷表面上含有选自氟化铝、氟化钛和其组合的氟化物杂质,清洗进一步包括将卡盘的陶瓷表面与四甲基氢氧化铵接触以除去氟化物杂质。
4.权利要求2的方法,其中卡盘是新的或者先前用于在半导体基材上介电层的等离子体蚀刻期间支承半导体基材的用过的卡盘,该用过的卡盘含有有机杂质,清洗用异丙醇和/或碱性溶液除去有机杂质。
5.权利要求2的方法,其中卡盘是含有选自铁、铬、镍、钼、钒和其组合的金属杂质的新卡盘,清洗用碱性溶液和/或稀酸性溶液除去金属杂质。
6.权利要求2的方法,其中卡盘是先前用于在半导体基材上介电层的等离子体蚀刻期间支承半导体基材的用过的卡盘,该用过的卡盘含有氟化物杂质,包括氟化钛,清洗用碱性溶液除去氟化钛。
7. 权利要求2的方法,其中卡盘是先前用于在半导体基材上介电层的等离子体蚀刻期间支承半导体基材的用过的卡盘,该用过的卡盘含有选自Si、SiO2和其组合的硅颗粒,清洗用稀酸性溶液除去硅颗粒。
8.权利要求7的方法,其中该稀酸性溶液包含氢氟酸和硝酸混合物,清洗用氢氟酸除去硅颗粒。
9.权利要求2的方法,其中卡盘是含有选自钨、磷和其组合的电极杂质,和选自铁、铬、镍、钼、钒和其组合的金属杂质的新卡盘;清洗用稀酸性溶液除去电极和金属杂质。
10.权利要求9的方法,其中该稀酸性溶液包含氢氟酸和硝酸混合物,清洗用硝酸除去电极和金属杂质。
11.权利要求9的方法,其中稀酸性溶液包含盐酸和过氧化氢混合物,清洗用盐酸和过氧化氢混合物除去电极和金属杂质。
12.权利要求2的方法,其中超声波清洗将表面颗粒从陶瓷表面上除去并且除去了捕集在卡盘中的起模针孔和其他通道内的颗粒。
13.权利要求1的方法,其进一步包括通过用掩蔽材料和/或耐化学性带覆盖电触点和粘合材料而保护卡盘上的电触点和暴露的粘合材料。
14.权利要求1的方法,其中清洗包括在超声波清洗期间将卡盘浸入异丙醇、碱性溶液和/或水中。
15.权利要求1的方法,其中卡盘是先前用于在半导体基材上介电层的等离子体蚀刻期间支承半导体基材的用过的卡盘,该用过的卡盘和清洗包括用擦洗垫清洗陶瓷表面。
16.权利要求15的方法,其中该擦洗垫除去了在用过的卡盘上的聚合物聚集物。
17.权利要求1的方法,其进一步包括在清洗卡盘之前和/或之后在等离子体蚀刻室中测试卡盘的性能。
18.权利要求1的方法,其进一步包括在清洗之前和/或之后分析陶瓷表面以确定是否在陶瓷表面上发现污染物。
19.权利要求1的方法,其包括在夹具中支承卡盘,陶瓷表面朝下,同时用稀酸性溶液和/或四甲基氢氧化铵擦拭陶瓷表面。
20.权利要求1的方法,其包括将卡盘的至少陶瓷表面与包含氢氟酸和硝酸混合物的稀酸性溶液以及包含盐酸和过氧化氢混合物的稀酸性溶液接触。
21.权利要求1的方法,其中步骤b)在步骤a)之后、步骤c)在步骤b)之后,并且步骤d)在步骤c)之后。
22.按照权利要求1的方法清洗的静电卡盘。
全文摘要
用于清洗新的或用过的静电卡盘的非-破坏性并且简单的方法,包括湿法清理过程,其将沉积在静电卡盘表面上的污染物除去。
文档编号B08B7/02GK101094733SQ200580045503
公开日2007年12月26日 申请日期2005年11月21日 优先权日2004年12月1日
发明者H·什, 黄拓川, C·周, B·莫瑞尔, B·麦科米林, P·穆尔格鲁, A·阿弗彦 申请人:兰姆研究公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1