变型喷嘴和使长丝纱变形的方法

文档序号:1759208阅读:293来源:国知局
专利名称:变型喷嘴和使长丝纱变形的方法
技术领域
本发明涉及一种借助于变形喷嘴使长丝纱变形的方法,有一个贯通的纱线通道,里面在纱线输送方向上送入4bar以上的压缩空气,其中,在出口端上纱线通道以大于10°的扩展角最好锥形扩展,用于产生超音速流。此外,本发明还涉及一种利用贯通的纱线通道使长丝纱变形的变形喷嘴,带有一个入口端,一个带进风孔最好圆柱体的中间段以及一个带大于10°扩展角的出口端。
背景技术
变形的概念是指部分尚需整理纺丝丝束或相应的长丝纱,目的是赋予纱线纺织的特性。在下面的介绍中,变形的概念是指在单个长丝上产生大量的扭结或制造喷气变形丝。EP 0 088 254介绍了一种用于变形较过时的解决方案。将长丝纱在变形喷嘴的入口端上输送到导纱通道,并在喇叭口形出口端上通过超音速流的力变形。导纱通道的中间段在整个长度上为横截面不变的圆柱体。入口为容易导入未处理的纱线略微倒圆。处于喇叭口形出口端上的是一个导纱器,其中,在喇叭口造型和导纱器之间进行纱线扭结。纱线以大量传递输送到变形喷嘴。为纱线扭结需要在每个单个长丝上传递,从而造成出口端上纤度增加的后果。
EP 0 088 254公开了一种装置,用于利用供给压力介质的喷嘴变形至少一个由大量长丝组成的长丝纱,包括一个导纱通道以及至少一个径向上通入通道内的压力介质输送装置。这类喷嘴具有一个向外扩展的通道出口和一个伸入通道内与通道形成一个环形间隙的球形或半球形的导纱器。可以看出,在变形纱线方面,无论是在加工过程期间还是在加工过程之后,成品上保持纱线特性是这些纱线可应用性的重要评判标准。此外,两个或者多个纱线和变形纱线单个长丝混合度的程度对取得均匀的织物外观具有重要意义。稳定性在此方面作为质量概念使用。为确定纱线的不稳定性I,在纱框上形成各一米范围的四卷纱绞,正如借助纤度167f68分特聚酯复丝所说明的那样。然后将这些绞丝加载25cN一分钟,随后确定长度X。对其然后同样加载1250cN一分钟。在去负载的一分钟后对绞丝重新加载25cN一分钟并在继续一分钟后确定长度y。从中得出不稳定值I=Y·XX·100%]]>不稳定性说明通过所施加的负载造成百分之几的塑性伸长。EP 0 088 254的目的在于提供一种所述类型的改进的装置,利用该装置可以取得保证纱线高度稳定性以及单个长丝高度混合度的最佳变形效果。作为解决方案提出,通道凸起弯曲出口的外径至少等于4倍的通道直径并至少等于0.5倍的球形或半球形导纱器(5)的直径。作为最佳效果生产速度处于100至高于600m/min的范围内。有趣的是这种事实,即申请人经过15年多的时间成功地将相应的喷嘴市场化。由此生产的纱线质量通过15年的时间得到非常好的评价。但要求增加效率的呼声日益增长。申请人利用依据EP 0 880 611的解决方案成功地将效率大幅度提高到1000m/min以上的纱线输送速度。提高效率的核心思想在于加强扩展超音速通道内,也就是产生纱线扭结区域内的流动比。作为特殊的检验标准是来自变形喷嘴出口上的纱线张力。大量系列研究表明,在依据EP 0088 254的解决方案中,在约600m/min的纱线输送速度后纱线张力大幅度下降。这一点最终表明这种类型喷嘴的效率极限。
EP 0 880 611加强超音速通道内流动的建议意外提高了纱线张力,这种张力可以将输送速度提高到1000m/min以上。与此同时加工的纱线质量也开始受到虽然同样但并非更好的评价。但实践表明在结果上就此而言是出乎意料的,似乎在大量应用方面纱线质量并不符合所期望的要求。
本发明的目的在于开发一种方法和变形喷嘴,可以提高效率,特别是远远高于1000m/min,但在尽可能所有应用方面产生最高的纱线质量。

发明内容
依据本发明方法的特征在于,压缩空气为加强纱线开松以大于48°,特别是大于50°的送风角送入纱线通道。
利用迄今为止的所有研究只能证实,利用EP 0 088 254所述的变形喷嘴所测定的数据处理空气的最佳送风角为48°。只要超过48°就导致变形恶化。为此也可以参阅A.Demir刊登在1990年2月(Vol.112/97)“Journal of Engineering forIndustry”上的大量研究结果。文章作者有机会利用大量系列研究验证重要参数。在此采用30°、45°以及60°送风角对喷嘴进行研究。60°送风角的喷嘴在各种情况下更差,特别是因为在60°时大部分能量击中对面壁并消失。因此科学证明,在依据EP 0 088 254变形喷嘴开发的框架中它来自经验,而且在结果上也是毋容置疑的。在EP 088 661的更新型喷嘴的开发中,没有理由怀疑多年积累的专业意见,即45°-48°的送风角为最佳范围。这种特征也写入EP 0 880 611解决方案的介绍中。正如已经介绍的那样,在寻求改善纱线质量方面其中也重新开始考虑送风角的影响。事实证明完全出乎意料的是,采用EP 0 880 611的喷嘴加大送风角在初次系列试验中就意外提高了变形纱线的质量。发明人结果认识到,两个过程区,即-纱线的开松和-纱线的变形必须相互最佳协调。多次反复的试验表明,在EP 0 088 254的解决方案中,变形区内存在极限并因此提高纱线开松只能带来缺陷。在纱线涡流变形方面公知在90°的送风角时纱线开松效果最大。涡流变形的目的是在纱线上均匀打结。作为涡流变形的例子参阅DE 195 80 019。而在纱线变形时绝对不容许打结。对于打结和纱线扭结的两种完全不同的方法来说,必然存在送风角的极限范围。但是还没有能够确定这些极限。到目前为止,认为送风角的范围为49°,但小于80°,最好50°至约70°。上限还没有最终测定。纱线通道具有一个最好圆柱体的中间段,该段在输送方向上无突变转移到锥形扩展部分内,其中,压缩空气与锥形扩展的超音速通道以足够的距离送入圆柱体段内。
与本发明相关的试验主要带来三个新的认识·如果将送风角提高到48°以上的话,在依据EP 0 880 611带有加强超音速流的变形喷嘴上任何纱线纤度情况下均可以提高质量。
·随着在48°以上将角度提高加大质量开始显著提高。
·在送风角大于52°,部分达到60°和甚至65°时,纱线质量令人惊异地保持不变。但最佳的送风角也取决于纱线纤度。
因此提出,送风角作为纱线质量,特别是纱线纤度的函数在48°-80°,最好50°-70°的范围内确定。本发明的优点可以利用仅具有唯一一个孔的变形喷嘴,通过该孔将压缩空气以大于48°或50°送入。但优选压缩空气通过三个在圆周上以120°位错的孔送入纱线通道内。在任何情况下重要的是纱线开松通过将压缩空气送入纱线通道内得到加强,但避免纱线上打结。
依据本发明变形喷嘴的特征在于,用于加强纱线开松的压缩空气以大于48°,最好大于50°的送风角送入纱线通道。优选圆柱体段内的送风部位与锥形扩展部分间隔距离设置,其中,该距离至少大致相当于纱线通道的直径。根据现有技术,开松和变形这两个过程阶段的长度在依据较过时的EP 0 088 254的喷嘴情况下过短。这一点是采用依据该较过时解决方案类型的喷嘴限制输送速度的原因之一。
本发明带来不同的认识1.纱线的开松以及纱线的变形本身必须得到优化;2.两个完全不同功能的优化在位置上必须分开;3.但短时间依次进行,使开松之后直接变形或纱线开松过程的结束直接转入变形。
至少变形喷嘴的圆柱体中间段以及锥形扩展的出口段是喷嘴芯的部件。喷嘴芯优选是变形喷嘴头内的插入件,并由一种由耐磨材料,特别是陶瓷组成的材料制成。
特别具有优点的是喷嘴芯是更换芯,使其可以使用具有最佳内部尺寸和入射角的喷嘴芯。因此可以例如采用较少的手工操作更换现有技术的现有喷嘴芯并利用本发明的所有优点。在锥形扩展段的出口端上如现有技术那样设置一个导纱器,它至少可横向进给直至接近锥形扩展的出口段。因此可以达到进一步稳定纱线质量的目的。变形喷嘴优选是变形头的部件,其中,空气分配设置在变形头内的三个送风孔上。下面参阅EP 0 880 611,只要涉及到变形的过程阶段,它就是本发明的基础和出发点。
EP 0 880 611认为质量的第一关键在于变形喷嘴后的纱线张力。只有在成功提高纱线张力情况下才能提高质量。当气流的流动提高到2马赫以上的范围时会产生断线。大量系列试验证实,不仅要提高质量,而且还要将因提高生产速度对质量的消极影响保持在非常小的程度上。马赫数略微超过2就会产生明显后果。对相应加强变形过程的最佳解释在于,速度差在冲击正面的前后直接加大,它直接影响到空气对长丝的相应作用力。冲击正面范围内提高的力引起纱线张力的增加。通过提高马赫数直接提高了冲击正面上的作用。依据本发明认为规律性是更高的马赫数=更强的冲击=更强的变形。得到加强的超音速流在更宽的正面上并更强地控制已开松纱线的单个长丝,从而纱线扭结不会从侧面位错冲击正面的作用区。因为加速通道内超音速流的产生以膨胀为依据,所以通过提高马赫范围,也就是例如以2.5马赫取代1.5马赫也可以提高或几乎加倍增加有效出口横截面。通过令人惊异的不同观察并结合本发明可以证实-在使用提高马赫范围构成的超音速通道时,与较过时的现有技术相比在相同的生产速度下变形得到质量上的提高。
-采用单个纱线纤度的试验生产速度一直提高到1000-1500m/min,而变形没有中断。
-测量技术方面显示纱线张力可以平均提高近50%。提高的数值为此在例如400-700m/min的较大速度范围上几乎不变。
-此外情况表明,在压缩空气的供给压力上也存在显著的影响因素。为确保更高的马赫数,在许多情况下需要更高的供给压力。该压力大致处于6-14bar之间,但也可以提高到20bar和更高。
依据EP 0 088 254现有变形技术的比较试验和EP 0 880 611范围内新的解决方案,在相当宽的范围内产生下列规律性变形质量在较高的生产速度时与利用低马赫范围构成超音速通道的较低生产速度情况下的变形质量相比至少相同或者更好。变形过程在冲击正面高于2马赫,也就是例如2.5-5马赫的空气速度情况下增强,使其在最高的纱线通过速度下也几乎毫无例外地控制所有纱线扭结并在纱线上良好编入。在加速通道内部高马赫范围产生空气速度的作用是,变形直至最高速度也不会再中断。其次是将整个复合丝从明确的外部通道边缘均匀地并直接导入冲击正面区内。本发明积极作用本身的重要标准在于,纱线的稳定性同时得到提高。如果对本解决方案的变形纱线施加拉伸力并重新松开,那么可以确定织物密度,也就是固定的复合部位和纱线扭结几乎不变或保持不变。这一点对于后面的加工来说是一个关键因素。
在加速通道内,纱线由加速的气流牵引过相应的行程段,继续开松并转移到直接连接的变形区。气流在加速通道后面无偏转通过不连续和强扩展段。可以相同或者不同的传递导入一个或者多个纱线并以400至高于1200m/min的生产速度变形。超音速通道内的压缩空气流加速度到2.0-6马赫,最好2.5-4马赫。如果纱线通道的出口端通过一个冲击体这样限制,使变形的纱线基本与纱线通道轴线直角通过间隙排出,那么可以达到最佳效果。
特别优选气流在本发明中也按照径向原则从纱线通道圆柱体段内的输送部位直接在轴向上以基本恒定的速度一直输送到加速通道。如在EP 0 880 611的现有技术中那样,也可以利用本解决方案以极其不同的传递变形一个或者多个纱线。超音速通道理论上全部有效的扩展角从最小到最大直径应高于10°,但低于40°,最好处于15°-30°内。根据目前通用的粗糙系数,与系列生产相关形成35°-36°的最高极限角(总角度)。在锥形加速通道内压缩空气基本上连续加速。直接处于超音速通道前的喷嘴通道段优选基本圆柱体构成,其中,利用输送元件在对着加速通道的方向上向圆柱体段内送风。纱线上的拉入力随着加速通道的长度加大。喷嘴扩展或马赫数的提高产生变形的强度。加速通道应具有至少一个1∶2.0,优选1∶2.5或者更大的横截面扩展区。此外提出,加速通道的长度大于加速通道首端上纱线通道直径的3-15倍,最好4-12倍。加速通道可以全部或者部分连续扩展,具有锥形段和/或者略微球面的形状。但加速通道也可以精细分级构成并具有不同的加速区,带有压缩空气流的至少一个大加速区以及至少一个小加速区。此外,加速通道的出口区圆柱体或者近似圆柱体和入口区强扩展,但小于36°扩展。如果依据本发明遵守加速通道的边缘条件,那么证明加速通道所称的变化是几乎等值的或者至少是等效的。纱线通道在超音速通道后面具有强凸起的优选喇叭口形以大于40°扩展的纱线通道口,其中,从超音速通道到纱线通道口内的过渡最好不连续。关键因素在于,利用冲击体主要对变形空间内的压缩比例产生积极影响并可以保持稳定。变形喷嘴优选方案的特征在于,它具有一个带里面通入空气的圆柱体中间段的贯通纱线通道以及一个在纱线运行方向上直接连接在圆柱体段上张开角(α2)大于15°的锥形加速通道,以及一个张开角(α)大于40°连接的扩展段。


现借助具有其他细节的几个实施例对本发明进行说明。其中图1示出依据本发明处于纱线开松区和变形区范围内的纱线通道;图2示意示出变形时纱线张力的检测;图3以放大比例示出依据本发明的喷嘴芯;图4示出带有加速通道出口端上冲击体的喷嘴芯;图5示出带有冲击体的整个喷嘴头;图6示出依据现有技术的变形纱线与本发明在纱线张力方面的比较;
图7a-7c和8a-8c示出从以48°送风角的现有技术喷嘴出发于不同送风角相关的试验结果;图9示出在与变形结合下使用加热阶段;图10a-10d示出通过加热丝加热的应用。
具体实施例方式
下面参阅图1。变形喷嘴1具有一个带圆柱体段2的纱线通道4,该段同时也相当于直径为d的最窄横截面3。纱线通道4从最窄的横截面3无横截面突变过渡到加速通道11内并然后喇叭口形扩展,其中,喇叭口造型可利用半径R确定。根据产生的超音速流可以测定相应的冲击正面直径DAE。根据冲击正面直径DAE可以相当精确地测定开松部位或者分离部位A1、A2、A3或者A4。对于冲击正面的作用参阅EP 0 880 611。空气的加速区也可以通过最窄横截面3部位以及草图部位A的长度l2确定。因为涉及真正的超音速流,所以可以从中大致计算出空气速度。
图1示出锥形的加速通道11,它相当于长度l2。张开角α2标注为20°。开松部位A2在超音速通道的末端上标出,纱线通道从那里以张开角α>40°过渡到不连续强锥形或者喇叭口形的扩展部分12内。根据几何形状产生一个冲击正面直径DAE。作为举例大致产生下列关系L2/d=4.2;vd=330m/sec.(1马赫); 延长带有相应张开角的加速通道11的作用是加大冲击正面直径DAE。直接在冲击正面形成的区域内出现最大可能的压缩冲击正面13连同断续连接的增压区14。真正的变形在压缩冲击正面13的区域内进行。空气大致快于纱线运动50倍。通过大量实验可以测定,开松部位A3、A4也可以转移到加速通道11内,也就是在供给压力下降的情况下。实践上适用于为每个纱线测定最佳的供给压力,其中,加速通道的长度(l2)根据不利情况确定,也就是宁可过长选择。MB表示送风孔15的中心线,MGK表示纱线通道4的中心线SM表示,MB和MGK的交点。Pd为加速通道11首端上最窄横截面的位置,l1表示SM和Pd的距离,l2表示从Pd到加速通道(A4)末端的距离。Lff大致表示纱线开松区的长度,Ltex大致表示纱线变形区的长度。B角越大,纱线开松区向后扩大得越多。
图2示出内装喷嘴芯5的整个变形头或喷嘴头20。未加工的纱线21通过输出罗拉22输送到变形喷嘴1,并作为变形纱线21′继续输送。处于变形头出口区13内的是冲击体23。压缩空气连接管P侧面设置在喷嘴头20上。变形纱线21′以输送速度VT通过第二输出罗拉25运行。将变形纱线21′从质量传感器26导过,例如商标名称HemaQuality所称的ATQ,在里面测量变形纱线21′的拉伸力(单位cN)以及瞬时拉伸力的偏差(Sigma%)。测量信号输送到计算机单元27。相应的质量测量是最佳监测生产的前提条件。这些数值也是纱线质量的指示器。就此而言,在气流变形过程中当不存在确定的纱线扭结规格时质量确定变得困难。对用户的反映比对好的质量更容易确定。利用ATQ-系统可以做到这一点,因为纱线结构及其偏差通过纱线张力传感器26确定、分析并通过唯一的特性数值AT-值显示。纱线张力传感器26以模拟电子信号测定变形喷嘴之后的纱线拉伸力。在此方面,从纱线拉伸力测量值的平均值和变化中连续计算出AT-值。AT-值的大小取决于纱线的结构并由使用者根据其自身的质量要求确定。如果在生产期间纱线拉伸力或者纱线张力的变化(均匀性)有所改变,那么AT-值也会变化。上下极限值所处的位置可以利用纱线水平面、针织或者织物样品测定。它们根据质量要求有所不同。ATQ-测量的优点在于同时测定生产过程中不同类型的干扰,例如变形的位置相同性、纱线润湿、断丝、喷嘴污染、冲击球距离、热针-温度、压缩空气差、插入区、纱线喂入等等。
下面参阅图3,该图以放大横截面示出整个喷嘴芯5的一个优选实施方式。外部配合形状优选与现有技术的喷嘴芯精确配合。这一点主要涉及临界安装尺寸、孔直径BD、总长度L、喷嘴头高度KH以及压缩空气连接管PP′的距离LA。试验表明,最佳送风角β必须大于48°。相应压缩空气孔15的距离X与加速通道相关临界。纱线通道4在纱线的入口区内(箭头16)具有导纱锥6。通过在纱线输送方向上定向的压缩空气通过倾料的压缩空气孔15,向后的排气流有所减少。“X”(图6)表示空气孔优选至少大致以最窄横截面3直径d的尺寸后移。在输送方向上看(箭头16),变形喷嘴1或喷嘴芯5具有导纱锥6、圆柱体的中间段7、同时相当于加速通道11的锥面8以及扩展的变形空间9。变形空间与气流横交由喇叭口造型12限制,它也可以作为敞开的锥形喇叭头构成。图3示出带有三个压缩空气孔的变形喷嘴1,压缩空气孔各以120°位错并在同一点Sm上通入纱线通道4。
图4以相对于实际尺寸放大数倍示出喷嘴芯5连同冲击体14。该新型喷嘴芯5可以作为用于现有技术迄今为止的喷嘴芯的更换芯设计。特别是尺寸Bd、EL作为安装长度LA+KH以及KH因此优选不仅相同,而且也以相同的公差制造。此外优选外部出口区内的喇叭口造型也与现有技术相同,带有相应半径R。冲击体14可以具有任意的形状球面、球形扁平面或者甚至球窝形的形状。冲击体14在出口区上的准确位置通过保持外部尺寸获得,相应地还有一个落纱间隙Spl。变形空间18向外保持不变,但向后定向并通过加速通道11确定。变形空间也可以根据所选择的压缩空气的程度加大进入加速通道内。喷嘴芯5如现有技术中那样由陶瓷、硬金属或者特殊钢这种高级材料制造并也是变形喷嘴本身的贵重部件。在该新型喷嘴方面重要的是圆柱体壁表面21也同壁表面22一样在加速通道的区域内具有最高的质量。喇叭口扩展的特性在考虑到纱线摩擦的情况下确定。
图5示出整个喷嘴头20连同喷嘴芯5以及冲击体14,后者通过臂27可调固定在公知的外壳28内。为了引线,冲击体14利用臂27按照公知的方式与箭头29相应从变形喷嘴的工作区30中拉出或摆出。压缩空气从外壳室31通过压缩空气孔输送。喷嘴芯5通过夹紧夹32固定在外壳33上。取代球形冲击体也可以具有球窝形。
图6左下纯示意示出依据EP 0 088 254现有技术的变形。在此方面强调两个主要参数。一个开松区Oe-Zl,一个冲击正面直径DAs,从直径d出发与喷嘴相应,如同EP 088 254中所介绍的那样。与此相应右上示出依据EP 0 880 611的变形。在此方面可以清楚地看出,数值Oe-Z2以及DAE更大。纱线开送区Oe-Z2在压缩空气输送P区域内的加速通道之前不久开始,并与依据EP 088 254的解决方案相当短的纱线开送区相关已经明显加大。
图6主要说明依据现有技术(曲线T311)<2马赫的曲线张力以及依据本发明(曲线S315)>2马赫的变形喷嘴以及新型喷嘴的曲线图比较。在曲线图的垂直线中,纱线张力单位为cN。在水平线中,生产速度Pgeschw.单位为m/min。可以看出,在生产速度为500m/min时纱线张力明显重合。高于约650m/min时,变形与依据EP 0 880 254的喷嘴连结。与此相反,曲线S315利用EP 0 880 611的相应喷嘴示出,纱线张力不仅非常高,而且在400-700m/min的范围内几乎不变,在更高的生产范围内也仅缓慢下降。马赫数的提高是加强变形的最重要的参数之一。加大送风角是变形质量最重要的参数之一,正如利用新型喷嘴作为第三实施例左上所示的那样。作为举例列出采用50°-60°范围的送风角。纱线开松区Oe-Z3大于右上(依据EP 0 880 611)的解决方案并明显大于左下(依据EP 088 254)的解决方案。其他方法技术上的方法参数在所有三个解决方案中均相同。除了45°-48°范围不同的送风角和新的高于45°外,令人惊异的积极效果在于纱线开松区的第一段,如Z1以及Z2或如相应的圆圈中所标注的那样。如利用图7和8所示,外部区别仅在于送风角的改变。纱线张力的明显上升在角度高于48°时开始,并只有利用组合的作用才能理解。至少目前在这种程度上这种令人惊异的效果得到理解,它意味着48°送风角是一道门槛,但只有在依据EP 0 880 611的变形喷嘴中是这样。这种类型的变形喷嘴具有足够的功率储备,从而自动把略微加强的纱线开松转换成提高纱线质量。
图7a-7c和8a-8c曲线示出与现有技术(T341K1以及S346)以及依据本发明送风角50°-58°的变形喷嘴相关不同参数的关系。在图8a中,纱线张力从左至右显著地从约20CN-56cN上升。纱线张力在所示的实施例中采用本发明平均翻了一番。图7a示出纱线张力开始时不太陡峭地上升。到目前的所有试验均说明了两个曲线图7a和8a框架内的变化并因此带来新的认识,高于48°的送风角纱线张力明显增高。图7c如图8c一样示出各三个不同变形的纱线图形。上面的纱线图形采用现有技术的喷嘴产生,最上面依据EP 0 088 254(T-喷嘴)和中间依据EP 0 880 611(S-喷嘴)。最下面的图形利用依据本发明的变形喷嘴产生。在现有技术的纱线图形中,立即可以看出相当远的纱线扭结,在紧凑部位上存在缺陷。尺寸B1和B2表示大部分远离的纱线扭结的距离尺寸。在下部两个纱线图形中,尺寸B3明显变小。但可以看出特别是在短距离内非常紧凑的部位和带有许多纱线扭结的相当紧密的部位。但重点现在在于这些纱线图形在负荷下状态极其不同。如果依据现有技术的纱线图形(上部和中间)经受拉伸力,纱线扭结过强扯松并在取消拉伸力后部分消失。与此相反,依据本发明的纱线图形上的纱线扭结在取消拉伸力后仍几乎完全保留。这意味着,变形的质量可以在双方面显著提高,这一点在迄今为止进行的所有检验的纱线纤度中得到验证。此外有趣的是,在依据WO99/45182的热作用下,利用本发明也可以验证质量和效率的提高。EP 1 058 745对相应附加的组合效果作为一体化的组成部分进行了说明。
下面参阅图9,该图示出与新型变形过程相关的示意概况图。从上至下连续示出单独的过程阶段。平整纱线100从上面通过第一输出罗拉LW1以规定的输送速度V1输送到变形喷嘴101并通过纱线通道104。通过连接在压缩空气源Pl上的压缩空气通道103,最好不加热的高压缩空气以角α在纱线的输送方向上送入纱线通道104。纱线通道104此后直接锥形这样打开,使锥形段102内出现超音速最好超过2马赫的强加速气流。如在前面提到的WO97/30200中详细介绍的那样,冲击波产生固有的变形。从纱线通道104内送风部位105的第一段到锥形扩展部位102的第一段内用于开松和打开平整纱线,从而单个长丝经受超音速流。变形根据可供使用气压的程度(9...12至14bar或更高)或者还在锥形部分102的内部或者出口区内进行。马赫数和变形之间存在直接的比例关系。马赫数越高,冲击效果越强,变形也就越明显。对于生产速度来说产生两个临界参数·所要求的质量标准,以及·在继续提高输送速度时会导致变形中断的摆动。
其中Th.vor.热预处理,可能仅采用纱线加热或者采用过热蒸汽。
G.mech利用压缩空气流(超音速流)的机械作用进行纱线处理。
Th.nach.采用过热蒸汽进行热后续处理(可能仅利用热量和热空气)。
D 蒸汽。PL 压缩空气。
生产速度可以利用附加的热处理无变形中断和无摆动地一直提高到1500m/min,其中,极限通过现有的试验设备规定。在远远高于800m/min生产速度的情况下可以取得最佳的变形质量。令人惊异的是,本发明人发现了一个或两个全新的质量参数,其中,上述其他规律性(更高的马赫数=更强的冲击=更强的变形)在所有试验中就能得到验证。所发现的参数一方面处于变形前置和/或者后置的热处理方面,而另一方面处于通过提高气压以及相应构成加速通道提高马赫数方面。
a)热后续处理或者松弛变形方面一个重要的质量标准是专业人员借助于出自变形喷嘴纱线的纱线张力的评价,该纱线也被认为是变形强度的标准。纱线张力在变形喷嘴(TD)以及输出罗拉LW2之间的变形纱线106上出现。在变形喷嘴(TD)和输出罗拉LW2之间的该区域内,现在对处于拉伸力下的纱线进行热处理。
在此方面,将纱线加热到约180℃。无论是采用热针或者加热的导丝辊还是采用热片(无接触式),均可以卓有成效地结束初次试验,令人惊异的结果是,质量极限与输送速度相关得到大幅度提高。目前设想所介绍的热后续处理对变形的纱线施加一种定位并同时施加一种收缩效果并由此支持变形。
b)热预处理令人更加惊异的是,热预处理有规律地对变形过程具有积极影响。在这里,纱线通道内送风部位之间的该段和超音速速度区域内锥形扩展部分的第一部件内收缩以及纱线开松之间的一种组合效果是成功的原因。通过纱线加热降低了刚性,从而改善了变形过程中纱线扭结的前提条件。为此无论是采用热片或热针还是热源均可以成功地结束试验。利用纱线的热预处理还可能有助于避免由于变形喷嘴上的空气膨胀造成的消极冷却作用,并因此在纱线加热时改善变形。当输送速度非常高时,纱线内的一部分热量自动保存在纱线扭结的区域内。
图9示出加工介质的影响,它可以通过热空气、过热蒸汽或者其他的热气在运行的纱线上短时间或直接依次进行。工艺作用按照这种方式并不是孤立的,而是汇集在两个输出罗拉之间的共同作用之中。这意味着,纱线仅在开始和结束时保持,在此期间既进行机械的空气作用,也进行热作用。热处理在处于通过压缩空气产生的机械应力下的长丝或纱线上进行。
图10a-10d示出位置分开的机械和热作用的例子。热作用在空间上处于真正的变形之前或之后。在此方面,尽管程度很小,但纱线加热对变形仍能产生积极影响。图10a-10d示出将所谓的加热和传动导丝辊用于具有几个重要应用可能性的热处理。导丝辊上的温度数据各自示出是否涉及到加热位置。具有意义的是,在所有图示中分别也仅使用一个热片或者依据本发明的直通蒸汽室。
权利要求
1.借助于变形喷嘴使长丝纱变形的方法,有一个贯通的纱线通道,里面在纱线输送方向上送入4bar以上的压缩空气,其中,在纱线通道的出口端上以大于10°的扩展角最好锥形扩展,用于产生超音速流,其特征在于,压缩空气为加强纱线开松以大于48°,最好大于50°的送风角送入纱线通道。
2.按权利要求1所述的方法,其特征在于,送风角为49°-80°,最好为50°-70°。
3.按权利要求1或2所述的方法,其特征在于,纱线通道具有一个最好圆柱体的中间段,该段在输送方向上无横截面突变转移到锥形扩展部分内,其中,压缩空气与圆柱体段内的锥形扩展部分间隔距离送入纱线开松段内。
4.按权利要求1-3所述的方法,其特征在于,送风角作为纱线纤度的函数在48°-80°,最好50°-70°的范围内确定。
5.按权利要求1-5之一所述的方法,其特征在于,纱线开松通过将压缩空气以大于48°但小于80°的角送入纱线通道进行,其中,避免长丝的涡流变形。
6.按权利要求1-6之一所述的方法,其特征在于,在变形段的前面和/或者后面纱线经受热作用。
7.利用贯通的纱线通道使长丝纱变形的变形喷嘴,带有一个入口端,一个带进风孔的最好圆柱体的中间段以及一个带大于10°但小于40°的扩展角最好圆锥形的出口端,其特征在于,送风孔与纱线输送方向以大于48°但小于80°的送风角设置。
8.按权利要求7所述的变形喷嘴,其特征在于,仅具有一个送风孔。
9.按权利要求7所述的变形喷嘴,其特征在于,具有三个以120°位错的送风孔,它们在同一送风部位上通入。
10.按权利要求7-9之一所述的变形喷嘴,其特征在于,送风部位与锥形扩展部分间隔距离设置在圆柱体段内,其中,该距离至少大致相当于纱线通道的直径。
11.按权利要求7-10之一所述的变形喷嘴,其特征在于,至少圆柱体的中间段以及锥形扩展的出口段是喷嘴芯的部件,其中,喷嘴芯最好是变形喷嘴体内的插入件,并由一种由耐磨材料,特别是陶瓷组成的材料制成。
12.按权利要求11所述的变形喷嘴,其特征在于,喷嘴芯是更换芯,使具有最佳内部尺寸和入射角的喷嘴芯可作为备件使用,并在锥形扩展段的出口端上最好设置一个导纱器,它至少可横向进给直至接近锥形扩展的出口段,其中,变形喷嘴最好是变形头的部件,而且空气分配特别是最好设置在变形头上纱线通道内的三个送风孔上。
全文摘要
本发明涉及一种用于长丝纱借助于变形喷嘴变形的方法,带有一个贯通的纱线通道,里面在纱线输送方向上送入4bar以上的压缩空气,其中,在出口端上纱线通道以大于10°的扩展角最好锥形扩展,用于产生超音速流,此外,本发明还涉及一种长丝纱利用贯通的纱线通道变形的变形喷嘴,带有一个入口端,一个带进风孔最好圆柱体的中间段以及一个带大于10°但小于40°扩展角最好圆锥形的出口端。
文档编号D02G1/16GK1759209SQ03826226
公开日2006年4月12日 申请日期2003年3月28日 优先权日2003年3月28日
发明者G·伯奇, K·克莱塞尔 申请人:希伯莱因纤维技术公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1