三维结构平的纤维组织及其制造方法

文档序号:1659318阅读:314来源:国知局
专利名称:三维结构平的纤维组织及其制造方法
技术领域
本发明涉及三维结构的平的纤维组织。
“三维结构”在这里是指这些平的纤维组织,即,在观察的二维平面内各纤维的方向和彼此在空间上的配置与在下一个二维平面内的不同。
本发明尤其涉及这些平的纤维组织,即它们至少有一个无纺织物层,它与至少一个由稀松结构、格栅或网格构成的层连接。
提供了一种制造的方法。
由USP4302495已知此类平的纤维组织。
一个或多个由不连续的热塑聚合纤维构成的层和一个或多个由粗的连续的熔喷热塑纤维互相按预定的角度交叉形成的稀疏网格构成的层,互相通过热焊或片状或点状地复合成一种具有均匀厚度的平的纤维组织。无定向的短纤维在单位面积重量为10至15g/m2时直径在0.5与30μm之间。介绍了格栅/微细纤维层/格栅的组合,也介绍了微细纤维层/格栅/微细纤维层的组合。一种优选的既用作微细纤维又用作格栅的长丝,其材料是聚丙烯。这种平的纤维组织有极高的拉伸强度,有可准确调整的成对的孔隙率。熔喷微细纤维层确定外部表象和例如过滤特性,而一个或多个热塑网格则用来强化、控制孔隙率以及必要时模拟织造织物的表象。因此这种材料不仅适用作为过滤器,而且适合于在外科方面用作无菌的包装材料。另一些应用领域是化学的内部过滤介质或衣服、手套或靴用的重量轻的防水隔热层。
层与层互相热连接例如在加热的轧辊之间通过加压实现,其中一个轧辊有与期望的点焊相应的刻纹。此外,在加热前可在轧辊之间施加热辐射。加热作用的程度调整为使纤维材料软化,但温度不升高到它的晶体熔点。
人们发现,这种平的纤维组织当它们在包装、长期储存和运输时受到高压和达60℃的温度时,不能长期地在没有明显压缩的情况下经受住压力峰值或其他大的机械力,上述温度例如在热带地区发送货物时是非常普通的。
本发明的目的是改进先有技术的上述三维结构平的纤维组织,使之即使温度达60℃,也能经受得住垂直于二维平面作用的达1psi的压力峰值而不破坏。
此外本发明应提供一种这种平面纤维组织的制造方法。
通过具有第一项权利要求的特征的三维结构多层平面纤维组织以及按第一项方法权利要求所述的方法达到此目的。在从属权利要求中说明了有利的设计。
至少一个无纺织物层与一个稀松结构层连接。无纺织物层由互相机械和/或热连接的纤维构成,并沿平面方向有形式上为几何上重复的隆凸或波纹的皱褶状走向。
在按本发明的结构内存在至少一个热塑稀松结构、格栅或网格层,它有互相交叉并在交叉点通过熔化连接的在它们的交叉点之间厚度为150至2000μm以及在交叉点增厚至此值7倍的长丝。为了简化,此层在下面始终称为稀松结构,即便它涉及具有交叉的单根长丝的其他结构。
稀松结构的网眼尺寸,亦即两个最近的长丝交叉点沿纵向的距离乘以沿横向的相应距离,在长丝交叉点沿纵向和沿横向彼此的距离按不小于0.10mm的标准时为0.01至9cm2。
在纤维层与稀松结构层之间具体的连接可以是全面的、逐点的、线或面图案状的。
稀松结构的长丝例如由聚乙烯、聚丙烯、聚酰胺6、聚酰胺6.6、聚对苯二甲酸丁二酯、聚对苯二甲酸乙酯、聚酯弹性体、由乙烯和乙酸乙烯酯或由聚氨酯组成的共聚酯、共聚物制成。
按本发明有利的设计,稀松结构由一个双轴拉伸的网格构成。拉伸沿两个长丝延伸方向进行,按已知的方法沿纵向借助于经过一个运行较慢和一个运行较快的轧辊之间的间隙,其中运行得较快的轧辊与运行得较慢的轧辊速度比决定了拉伸比。沿横向则借助于一个扩宽的拉幅机进行拉伸。
这种已有的方法促使在相对的交叉点之间的长丝粗细减小并因而减小单位面积重量达95%。
还借助于在一面或两面涂熔点和粘合温度(Klebepunkt)比长丝的塑料低得多的热熔性粘合剂层,使按本发明的对象是层合的平面组织。
在本发明的范围内,稀松结构一面或两面用无纺织物覆盖也可以按这样的方式进行,即每一个无纺织物层在其皱褶的设计或其固有的性质例如单位面积重量、纤维种类、纤维抱合力方面有不同的特性。
通常专家选择无纺织物在组成、纤维种类、纤维抱合力和纤维方向等方面的参数时全凭他已知的这些层应当具有的性质决定。对于隆凸和波纹高的自身刚度而言人们关心的是,无纺织物的纤维彼此应有必要的强力连接。
在纤维通过粘合剂定型的情况下应优选一种具有粗硬手感的粘合剂,因为由此在总体上提高了此平面纤维组织的自身刚度和机械强度。
按本发明另一项有利的设计,存在的每一个无纺织物层可有面状熔化的纤维,在这种情况下这些熔化面与稀松结构热连接。
恰当的是在稀松结构中从一个长丝交叉点到下一个长丝交叉点的距离以及拉伸度和长丝粗细沿纵向和横向基本相同,因为这样一来在收缩过程后形成具有圆形基底截面的隆凸。业已证实这种隆凸对于垂直于二维平面的压力荷载有最大的抵抗能力。
取决于选择的原材料,可制成重量为20至3000g/m2多层平的纤维组织。具有小的单位面积重量的制品例如适用于尿布内的那些用于吸收和分布液体的层,高达3000g/m2的制品适用于具有高的滤液存储能力的大容积滤垫。
下面借助于附图进一步说明本发明

图1按本发明的对象俯视图;图2沿图1中线A-A的横截面;图3与图2一样的视图,但有不同种类的无纺织物层。
首先可观察图1,在这里表示了本发明可能的一种实施形式的俯视图。此复合物1由经收缩的稀松结构4和两个无纺织物层2和3组成。它们按这样的方式连接在经收缩的稀松结构上(但它们互相不连接),即在稀松结构两侧的无纺织物上构成隆凸6和凹陷7。在隆凸之间和它们的下方有空腔12、13,它们允许液态介质渗透并容纳其中的微粒和粉尘。此稀松结构由交叉的单丝5组成。
图2表示沿图1中线A-A的横截面,无纺织物2和3在凹陷7的区域8内借助粘合剂连接在稀松结构4的单丝5上。
图8表示经收缩的由无纺织物和稀松结构组成复合物,其中,在稀松结构的长丝5与隆凸6顶9之间的距离用10表示。与图2不同,此横截面有非对称结构。无纺织物隆凸6只沿一个垂直于稀松结构的二维平面的方向延伸。稀松结构的长丝在一侧带有共同挤塑的其熔点和软化点均明显低于稀松结构其余材料的热塑粘合剂11。无纺织物通过热塑粘合剂11强力地与稀松结构连接,在这里,位置11同时表示凹陷7的最低点。借助位置标号10确定稀松结构平面与隆凸6顶9之间的距离。隆凸有明显增大表面的效果,从而增加要分离的微粒的容纳量。在无纺织物垂直于二维平面定向的隆凸6与稀松结构平面之间的空腔12以及在凹陷7与隆凸6顶9之间的露天的空腔13都足够大,以便能自发吸收低粘度到中等粘度的液体以及由固体部分和水溶液组成的多分散系,并或许传送给位于下面的吸水层。
为了实施制造三维结构平的纤维组织的方法,将一个3-300g/m2重的由热塑长丝构成的未经收缩的稀松结构、网格或格栅一面或两面用无纺织物平面状覆盖,并用已知的层合技术复合成一个扁平的无纺织物。此无纺织物可采取各种已知的措施制造,亦即通过梳理或供气、排水或通过由熔体挤压纺丝得到纤维或长丝来干燥。接着进行热处理复合,这种热处理足以使稀松结构遭受一次面积收缩。本身没有进行过或与稀松结构相比进行过低得多的面积收缩的无纺织物层,为构成垂直于二维平面的隆凸而偏离。无纺织物可整个面积或部分面积连接。对于按本发明的方法也可以采用穿孔的无纺织物。
通过进一步提高温度,使无纺织物内的稀松结构收缩。收缩强度取决于稀松结构所基于的热塑性塑料的软化温度范围和熔化温度范围。为了引发收缩,此温度必须在这两个温度之间,在这种情况下,实际作用在织物上的热流越接近热塑性塑料的熔点,收缩量便越大。专家们当然知道,在规定的收缩温度下的保持时间也会对面积收缩的大小带来影响。沿纵向和横向能达到的收缩量或两个量相互的比例可主要通过选择稀松结构预定。不接触和无阻碍地收缩的前提条件是,稀松结构沿纵向和横向有相同的纤度和相同拉伸度使纵向和横向收缩之比为1∶1若希望沿纵向和横向有不同的收缩,则选择织物的单丝沿纵向和横向被不同拉伸或在拉伸度相同时它们的纤度有明显的差别。也可采用这种稀松结构,即它沿纵向和横向的单丝由不同的热塑性塑料构成。在这种情况下收缩量和收缩方向取决于稀松结构软化温度低的组分,在这时选择的收缩温度应处于稀松结构中熔化温度较低的那个组分的软化温度与熔化温度之间。
无纺织物在稀松结构上的连接和层合也可以在唯一的一个步骤内实现。这种方法经济性好。在这种情况下,稀松结构定位在两个疏松的纤维网层之间,接着机械地或用射水针刺成复合物,并借助于已知的浸渍技术加粘合剂。
作为非纤维的粘合剂采用水状的塑料弥散胶体,它们压在复合物一面或两面,或在泡沫浸渍装置内用发泡混合物实施完全的浸渍,或用不发泡的混合物通过用水状塑料弥散胶体全身溶浸渍。接着干燥和粘合剂在加热时交联。
通过在无纺织物内部粘合的纤维热塑性塑料的活化,可造成附加的内部固化。
在高压射水针刺的情况下,按本发明的一种特殊的设计形式,还可以同时在无纺织物中造成穿孔。
在纵向与横向收缩之间的比例决定了无纺织物层中隆凸的形状。当纵向/横向比为1∶1时,形成具有理想的圆形基底的圆头隆凸。当纵向/横向比不等于1时形成具有平行于基底的理想椭圆形截面的隆凸。若收缩例如只是沿纵向完全受阻,则在无纺织物上形成沿纵向连续延伸的条状隆凸,它们沿其整个长度有理想的相同幅度。
令人惊讶的是,重量小于10g/m2的稀松结构尽管两面有重量至少7g/m2的无纺织物面层,但仍能收缩到原始长度的80%。确切地说人们曾认为无纺织物会妨碍稀松结构的收缩,尤其在稀松结构原始单位面积重量很小时。然而实际上并非这种情况。
下述工艺方案业已证明由于其简单因而是特别有利的稀松结构一面或两面用不连接的纤维网覆盖并进行一次热压花或超声压花。由此得到的扁平的两层或三层的平面组织有足够的复合强度。接着在不使用粘合剂的情况下加热或用水蒸气收缩。对于这种工艺方案采用具有并列型偏心或同心的芯皮结构的复合纤维。无纺织物覆盖层(一个或两个)可由100%这种复合纤维构成,或使用热塑性塑料和非热塑性塑料的单组分纤维的混合。有关单组分纤维的选择没有任何限制的必要。
复合纤维的熔点必须使熔点较低的组分的熔点小于或等于稀松结构中引发收缩的单丝的熔点。恰当的是熔点差不超过40℃,以防无纺织物层严重脆化。
是否采用有助于熔接的热塑聚合物并非关键,在单面覆盖无纺织物时业已证明恰当的是采用这样一种热塑组分,它对于稀松结构的热塑聚合物应有化学亲合力。要不然在层合后存在复合强度差的危险。在这方面恰当的是,例如对于由聚对苯二甲酸乙酯长丝构成的稀松结构,在无纺织物内使用聚酯复合纤维,包括熔点高于200℃的共聚酯或聚对苯二甲酸丁二酯作为皮的组分。
尤其在稀松结构和无纺织物应通过热压花或超声固化复合时,有利的是稀松结构两面覆以纤维网。在压花后两个网在稀松结构的上面和下面花纹状地互相焊接在稀松结构的敞口区上。稀松结构不可分离地夹在此复合物内。在无纺织物与稀松结构之间在此未收缩的半成品材料(Halbmaterial)上热焊点的数量很少到可以忽略不计。压辊的刻纹面积占整个支承面的4-30%。
尤其在稀松结构与复合纤维皮组分之间的熔点差别很小的情况下,恰当的是使用具有的焊接面积只占总面积4-14%的刻纹轧辊。
制造由纤维网、稀松结构和另一个纤维网构成的未收缩的层合材料,也可以在两个加热的光滑钢辊之间在加压的情况下进行。
在收缩过程中,无纺织物内原始的连接大部分至甚至全部脱开,所以稀松结构的收缩不遇到阻力。只是在冷却时才在无纺织物纤维间进行重新连接。
收缩通过仅一次的热处理便已引发。一旦已收缩和冷却的层合材料,便不可能通过第二次热处理重新使之收缩。
按本发明多层三维结构的平面组织可以交替地由无纺织物和稀松结构组成。在稀松结构两面的无纺织物在结构和重量方面可以相同或不同。在特殊情况下也可以采用由两个相继的无纺织物构成的内层。
这种具有某种结构的平面纤维组织可用于所有此类领域,即,其中存在大的单位表面、在有大的微粒储存能力的情况下大的流体流量或在受机械负荷时尤其在高温下有高的抗压缩性。例如过滤器以及卫生或医学制品。按本发明的制品还可在家庭中用于装饰的目的,例如墙壁覆盖层。
例1一个由聚丙烯长丝构成经双轴拉伸重量为7.8g/m2和网孔大小为7.6mm·7.6mm的塑料网定位在两个交叉铺叠疏松的重量分别为10g/m2的纤维网之间,并通过在一个光滑的和一个刻纹的钢辊之间压花进行点焊固化。刻纹辊的焊接面积为9.6%,刻纹深度为0.73mm。在温度为140℃和线压30kp/cm以及移动速度为6m/min的情况下压花。货物宽度为50cm。
无纺织物由90%皮芯纤维构成,包括由聚对苯二甲酸乙酯制的芯和由共聚酯制的皮,它在120℃时熔化。其余是粘胶短纤维。皮芯纤维的纤度为4.8dtex,它的切割长度为55mm。粘胶短纤维的纤度为3.3dtex,切割长度为60mm。
此三层的平的总重量为27.8g/m2的平面纤维组织接着在170℃和保持时间为2min至20S的带式干燥机内进行热收缩处理。此原始宽度50cm的半成品材料在收缩和冷却后宽度只还有16cm和单位面积重量为20g/m2。由此达到沿横向的线收缩为68%,面积收缩为76.8%以及沿纵向的线收缩为27.6%。
计算收缩的数学公式为S□=[1-Gv/Gn]·100[%]Sq=[1-bn/bv]·100[%]SL=[1-Gv·bv/Gn·bn]·100[%]式中Gv收缩前单位面积重量g/m2Gn收缩后单位面积重量g/m2bv收缩前货物宽度 mbn收缩后货物宽度 mS□面积收缩 %Sq沿横向的线收缩 %SL沿纵向的线收缩 %在下表内列出了室温下受不同负荷作用以及存放48小时后加负荷1psi时测得的厚度。采用后面说明的公式计算压缩阻力K、恢复能力W和抗蠕变性KB,分别用%表示。用于计算抗蠕变性的厚度测量在支承压力为0.2psi的情况下进行。
厚度测量进行如下试件用支承压力0.6205kPapsi加载,时间为30秒,在此30秒钟结束后读出厚度值。紧接着,支承压力通过更换在厚度测量仪上的重量提高到1.3789kPa,并同样在再经过30秒后在准确相同的测量位置读出厚度。
再次按支承压力为3.4473、6.8947和重新为0.6205kPa的顺序分别经过30秒重复同一个过程。
为了确定抗蠕变性KB,试样在48小时长的时间内温度为60℃的情况下加压力1psi,然后确定在支承压力为1.3789kPa时的厚度。
KW、W和KB的计算如下
将受6.8947kPa力时的厚度用受0.6205kPa力时的厚度除并与100相乘便得出值KW(表示为%)。
将经过测量周期后受6.8947kPa力时的厚度用受6.8947kPa力时最初测得的值除并与100相乘便得出值W(表示为%)。
将60℃下经过48小时用6.8947kPa的力压缩后试件的厚度用未经压缩的试件受1.3789kPa力时测量的厚度除并与100相乘便得出值KB(表示为%)。
权利要求
1.三维结构平的纤维组织由垂直于二维平面交替存在的网眼尺寸为0.01至9cm2的长丝层和与之面状或点状热固定连接密实的短纤维层组成,在这里网眼大的长丝层表现为一种稀松结构、格栅或网格,其中,150至2000μ m粗的热塑性塑料长丝交叉地在它们的接触点互相热焊接,以及,长丝交叉点沿纵向和横向彼此相距不小于0.10mm,其特征为短纤维层有重复的皱褶状或波纹状隆凸。
2.按照权利要求1所述的平的纤维组织,其特征为沿横截面方向无纺织物和稀松结构交替相继。
3.按照权利要求1所述的平的纤维组织,其特征为由无纺织物构成至少两个彼此相继的内层。
4.按照权利要求1至3之一所述的平的纤维组织,其特征为一个或多个稀松结构层的长丝在交叉点增粗至它们在交叉点之间的粗细的7倍。
5.按照权利要求1至4之一所述的平的纤维组织,其特征为稀松结构的一面或两面有热熔性粘合剂。
6.按照权利要求1至5之一所述的平的纤维组织,其特征为无纺织物的单根纤维用手感硬的粘合剂互相连接。
7.按照权利要求1至5之一所述的平的纤维组织,其特征为无纺织物层由芯皮双组分纤维或并列型复合纤维组成,其中,每根纤维的组分的软化点不同。
8.按照权利要求1至7之一所述的平的纤维组织,其特征为无纺织物有面状熔化的纤维,在这种情况下熔化面与稀松结构热连接。
9.制造按权利要求1设计的三维结构平的纤维组织的方法,其中,至少一个由塑料长丝构成的、网眼尺寸为0.01至9cm2、相邻的长丝交叉点的距离不小于0.01mm、重量为3至300g/m2的格栅、稀松结构或网格一面或两面用无纺织物覆盖,各层用已知的层合技术互相面状连接,其特征为接着,此层合塑料的所有层一起在一个温度下经受一次收缩过程,此温度处于此稀松结构的材料的软化温度范围与熔化温度范围之间。
10.按照权利要求9所述的方法,其特征为在这些层互相层合的同时,在一个或多个无纺织物层内造成内部的纤维抱合,为此,将稀松结构定位在疏松的纤维网层之间,接着将此整体机械地或借助射水针刺并加粘合剂,之后接着实施干燥和收缩过程。
11.按照权利要求9或10所述的方法,其特征为在射水针刺的同时在无纺织物内造成穿孔。
12.按照权利要求9所述的方法,其特征为将一个或多个稀松结构在一面或两面用不连接的纤维网覆盖,此纤维网至少部分由具有较高的熔点和较低的熔点的组分组成的双组分纤维构成,其中熔点较低的组分的熔点最高等于稀松结构能收缩的组分的熔点;将此整体进行一次热压花或超声压花;以及,接着通过加热作用或借助水蒸气实施收缩。
13.按照权利要求9至12之一所述的方法,其特征为一个或多个稀松结构在加工成多层平的纤维组织之前,沿纵向在运行速度互不相同的轧辊之间以及沿横向借助于一个扩宽的拉幅机进行拉伸。
14.按照权利要求9或13所述的方法,其特征为将一面或两面涂有热熔性粘合剂的稀松结构加上无纺织物层,以及将此整体在加热作用下收缩,在这里的热熔性粘合剂选择为,它有比稀松结构的长丝材料低的熔点和粘合温度。
15.按照权利要求9或12至14之一所述的方法,其特征为在收缩前,为了连接纤维无纺织物层与稀松结构,通过超声波或借助热压,在规定的区域内成片地熔化无纺织物纤维,并与此同时将此熔化面压在稀松结构上。
全文摘要
本发明涉及一种三维结构平的纤维组织,它由垂直于二维平面交替存在的长丝层和与之面状或点状热固定连接密实的短纤维层组成,其中,网眼大的长丝层表现为一种稀松结构、格栅或网格。按本发明,在短纤维层上有重复的皱褶状或波纹状隆凸。按本发明的制造方法,层合塑料的所有层在一个温度下共同经受一次收缩过程,此温度处于稀松结构的材料的软化温度范围与熔化温度范围之间。
文档编号D04H13/00GK1333849SQ99815459
公开日2002年1月30日 申请日期1999年10月29日 优先权日1999年1月8日
发明者迪特尔·格勒茨施, 格哈德·绍特, 汉斯-约尔格·格林 申请人:卡尔·弗罗伊登伯格公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1