用于制造耐热震性陶瓷蜂窝结构体的含多模纤维的胶接剂的制作方法

文档序号:1846175阅读:206来源:国知局
专利名称:用于制造耐热震性陶瓷蜂窝结构体的含多模纤维的胶接剂的制作方法
用于制造耐热震性陶瓷蜂窝结构体的含多模纤维的胶接剂本申请要求2009年6月四日递交的美国临时申请61/221,434的优先权。本发明涉及具有改进的耐热震性的陶瓷过滤器及其制造方法。尤其是,该过滤器和方法涉及使用改进的陶瓷胶接剂将陶瓷微粒过滤器组装在一起以制成较大耐热震性过
1 ' O柴油发动机由于其操作方式而排放烟灰粒子,非常细小的冷凝物液滴或两个(微粒)的聚集体以及典型有害的汽油发动机排气(即,烃和CO)。这些“微粒”(本文的柴油烟灰)富含冷凝的多核烃,其中一些可能是致癌的。因为对柴油烟灰造成的健康危害的关注与柴油发动机所提供的更高热效率的需求相冲突,已经执行了限制柴油烟灰所允许的排放量的规章。为了应对这些挑战,已经使用了烟灰过滤器。当使用这种过滤器时,过滤器必须通过烧掉烟灰而定期再生。烟灰的这种燃烧导致来自轴向和径向温度差异的应力,所述应力可造成过滤器的开裂。为了克服应力,陶瓷蜂窝如热交换器和过滤器已通过将较小蜂窝组合成较大蜂窝而减少了应力和使蜂窝开裂的可能性。已经在蜂窝之间使用胶接剂层,例如,用于增加导热率以减少在组装蜂窝中达到的最终温度,例如描述于EP1508355。为了实现改进的导热率, 这些胶接剂/密封层/粘合剂使用了陶瓷微粒以增加热质/导热率和涂敷到较小蜂窝片段上的容易性。通常这些胶接剂通过如下方法而增强使用例如描述于美国专利5,914,187 的陶瓷纤维,陶瓷粘结剂和有机粘结剂,以促进在烧制之前的胶接剂涂敷(如,减少微粒的隔离)和提高胶接剂的一些机械性能如韧性。遗憾的是,这些增强材料的使用导致胶接剂使用时的问题或有效性下降。例如,有机粘结剂必须从胶接剂中去除,从而减慢了制造部件的过程,而且冒着由于有机物燃烧造成的热梯度和所释放气体的压力而产生损坏的危险。先前在胶接剂中使用纤维的努力倾向于由于低效填充和不能将纤维任何大程度地加载到载流流体中且不过度增加粘度而降低胶接剂层的热质和导热率。粘度是胶接剂组合物的一个重要特性,因为该组合物必须足够稀以容易涂敷,但要足够粘稠使其在被涂敷之后保持就位而不从部件流失。因此,需要提供一种由胶接在一起的较小陶瓷蜂窝组成的组装的较大蜂窝。需要提供一种避免了一个或多个上述问题的制造这种组装的较大蜂窝结构体的方法。本发明的一个方面涉及一种形成蜂窝结构体的方法,所述方法包括使第一蜂窝片段在其外表面的至少一个上与包含无机纤维,载流流体和胶体无机溶胶的胶接剂组合物接触,其中纤维占胶接剂组合物的固体的至少约10重量%,并且纤维具有多模长度分布, 使得一部分纤维具有至少10微米至高达1000微米的长度,并且至少一个其他部分的纤维是长度大于1毫米,优选大于1至100毫米,更优选2至100毫米并且甚至更优选5至30毫米的较长纤维,使第二蜂窝片段与第一蜂窝片段机械接触,使得胶接剂组合物被插入所述蜂窝片段之间,使得所述蜂窝片段被粘附,和充分烧制粘附的片段以使胶体转化成粘结相, 所述粘结相将胶接剂的纤维粘合在一起并将胶接剂粘合至蜂窝片段上以形成蜂窝结构体。较长纤维优选占无机纤维的总重量的1至50,更优选3至30并且甚至更优选5至 25%。混合长度纤维提供某些优点。较少比例的较长纤维的存在倾向于在给定胶接剂中的纤维含量的情况下增加胶接剂组合物的粘度。胶接剂组合物的粘度应该稍高,但不过高,这样它可以容易被涂敷和成型而不在其可以干燥之前在蜂窝上流挂或流失。较少比例的较长纤维的存在可允许实现良好的工作粘度而不过度增加纤维含量。如果总体纤维含量变得太高,则可能在组合物中没有足够的胶体硅石和/或胶体矾土以使纤维相互或与蜂窝片段充分粘结。在现有技术胶接剂组合物中,胶接剂的强度倾向于随着纤维长度的增加而下降,因为纤维的数目随着其长度的增加而下降(在给定纤维加载量下),而较少的纤维意味着它们可被粘结在一起的交叉点较少。但是,当如本发明中使用较短和较长纤维的混合物时,所述胶接剂的强度通常比得上仅包含相同重量的短纤维的胶接剂的强度。因此,较短纤维和较少比例的较长纤维的混合物可提供明显的处理益处且较少有或没有相应缺点。另一方面,本发明涉及一种包含无机纤维,载流流体和胶体无机溶胶的胶接剂组合物,其中纤维占胶接剂组合物的固体重量的至少约10 %,并且纤维具有多模长度分布,其中一部分纤维具有至少10微米至高达1000微米的长度,并且至少一个其他部分的纤维是具有至少1毫米的长度的较长纤维。再一方面,本发明涉及一种陶瓷蜂窝结构体,所述陶瓷蜂窝结构体包含至少两个单独的已通过第一方面的方法粘附在一起的较小陶瓷蜂窝。陶瓷蜂窝结构体可用于要求耐受热气体或液体的任何场合如热交换器,催化剂载体和过滤器(例如,熔融金属和烟灰过滤器)。胶接剂可用于制造需要改进的耐热震性的多孔陶瓷如前述蜂窝结构体。

图1是本发明蜂窝结构体的透视图。图2是显示本发明胶接剂和两种对比胶接剂组合物在锭子旋转速度范围内的粘度的曲线图。图3是按照本发明的蜂窝结构体在四点弯曲试验中的负荷位移曲线的曲线图。图4是对比蜂窝结构体在四点弯曲试验中的负荷位移曲线的曲线图。图5是对比蜂窝结构体在四点弯曲试验中的负荷位移曲线的曲线图。图6是显示本发明胶接剂和对比胶接剂组合物在锭子旋转速度范围内的粘度的曲线图。图7是显示对比胶接剂组合物在锭子旋转速度范围内的粘度的曲线图。转到图1,显示了由通过胶接剂层15结合在一起的片段Fl组成的蜂窝结构体9。 蜂窝片段Fl具有被交叉壁16限定的轴向延伸蜂房(cells) 14。较小陶瓷蜂窝Fl (即,蜂窝片段)可以是任何合适的多孔陶瓷,例如,如本领域已知用于过滤柴油烟灰的那些。示例性陶瓷包括矾土,氧化锆,碳化硅,氮化硅和氮化铝,氧氮化硅和碳氮化硅,莫来石,堇青石,β锂辉石,钛酸铝,硅酸铝锶,硅酸铝锂。优选的多孔陶瓷体包括碳化硅,堇青石和莫来石或其组合。碳化硅优选为如描述于美国专利US6, 669,751Β1, ΕΡ1142619Α1或W02002/070106A1的一种。其他合适的多孔体描述于 US4, 652,286 ;US5, 322,537 ;W02004/011386Α1 ;W02004/011124A1 ;US2004/0020359A1 和 W02003/051488A1。莫来石蜂窝优选具有针状微结构。这些针状莫来石陶瓷多孔体的实例包括由美国专利 5,194,154 ;5,173,349 ;5,198,007 ;5,098,455 ;5,340,516 ;6,596,665 和 6,306,335 ; 美国专利申请出版物2001/0038810 ;和国际PCT出版物W003/082773所描述的那些。
构成蜂窝片段Fl的陶瓷一般具有约30%至85%的孔隙率。优选地,多孔陶瓷的孔隙率为至少约40%,更优选至少约45%,甚至更优选至少约50%,并且最优选至少约55% 至优选至多约80 %,更优选至多约75 %,并且最优选至多约70 %。蜂窝结构体9中的片段Fl可具有任何有用的量,尺寸,排列,和形状如在陶瓷热交换器,催化剂和过滤器领域中熟知的那些,其实例由美国专利4304585 ;4335783 ;4642210 ; 4953627 ;5914187 ;6669751 ;和 7112233 ;EP1508355 ; 1508356 ;1516659 和日本专利公布 6-47620描述。另外,片段Fl可具有拥有任何有用的尺寸和形状的通道14,例如描述于刚才提及的技术和美国专利4416676和4417908。壁16的厚度可以是任何有用的厚度,例如描述于前述技术和美国专利43四162。胶接剂层15的厚度可以是任何有用的厚度,例如描述于前一段落的第一句的技术中。胶接剂层可以是连续或不连续的(不连续层的实例描述于美国专利4335783中)。 典型地,胶接剂层15的厚度是约0. Imm至约10mm。该层的厚度可以是至少0. 2,0. 5,0. 8或 Imm到至多约8,6,5,4或3mm。胶接剂层的孔隙率可广泛变化,但一般是约20%至90%多孔。通常,孔隙率是至少约 25%,30%,35%,40%,45%或 50%到至多约 85%,80%,75%或 70%。片段Fl通过胶接剂15粘附在一起。胶接剂15包含使用粘结相粘合在一起的无机纤维。纤维具有多模长度分布,其中一部分纤维具有至少10微米至高达1000微米的长度,并且至少一个其他部分的纤维是具有长度为至少1毫米,优选1至100毫米,更优选2 至100毫米并且甚至更优选5至30毫米的较长纤维。“多模”是指,各个纤维的长度落入两个或多个离散的尺寸范围内。因此,当将纤维数量对纤维长度作图时,所得图具有被一个最低值分开的至少两个最大值,所述最低值表示其中有较少或没有纤维的纤维长度范围。较长纤维优选占无机纤维的总重量的1至50,更优选3至30并且甚至更优选5至 25%。一般,纤维的纤维直径是约0. 1微米至约20微米。纤维直径可以是至少约0. 2, 0. 4,0. 6,0. 8,1,2或4微米到至多约18,15,12,10或8微米。纤维可以是任何有用的无机纤维如本领域已知的那些。纤维可以是非晶态或结晶的或部分非晶态和部分结晶的。纤维可在开始时是非晶态的并通过在操作过程中加热和使用,例如,在柴油微粒捕捉器中结晶至一定程度,例如描述于美国专利5322537。纤维可以是非晶态硅酸盐或硅铝酸盐纤维,其可结晶形成或具有,例如,在纤维内并被玻璃包围的莫来石晶体。硅酸盐或硅铝酸盐纤维也可含有显著量(即,按摩尔计大于并且优选按摩尔计至少约2 %,3 %,4%,5 %,7 %,或10 %到至多约40 % )的其他化合物如稀土,锆或碱土。 具体实例是可以商品名FIBERFRAX得自Unifrax LLC, Niagara Fall, NY的硅铝酸盐纤维; 以商品名IS0FRAX也可得自Unifrax的碱土纤维(Mg-硅酸盐纤维)和可得自Mffil LTD. Cheshire, UK 的 SAFFIL(如,SAFFIL RF)矾土纤维。在一个具体实施方案中,纤维是碱土硅铝酸盐,碱土硅酸盐或其组合。尤其是,碱土是Mg,Ca或其组合。优选地,纤维是Mg,Ca或其组合的硅酸盐。甚至更优选地,纤维是 Mg-硅酸盐如上述的IS0FRAX材料。除了上述的无机纤维之外,胶接剂组合物还可包含低纵横比无机填料粒子。这些无机填料粒子不同于且不包括表皮形成组合物的胶体硅石和/或胶体矾土组分。无机填料粒子在表皮形成组合物干燥时不形成粘结相。无机填料粒子在整个干燥过程中却保持其微粒性质,尽管它们可被粘结相粘结至其他粒子上或至无机纤维上。“低纵横比”是指低于10, 优选低于5的纵横比。就本发明而言,这些低纵横比无机填料粒子可被划分为两种类型。第一种类型的粒子在烧制步骤完成之后具有与无机纤维相同的CTE或非常几乎相同的CTE ( S卩,在 100-600°C温度范围内在约lppm/°C内)。该比较基于烧制胶接剂而进行,以解决在烧制步骤过程中,由于例如结晶度和/或组成可能发生的变化而可能导致纤维和/或其他粒子出现的CTE变化。这种类型的粒子一般具有与无机纤维相同或几乎相同的化学组成。这种类型粒子的常见来源是所谓的“注射(shot) ”材料,它是一些纤维制造工艺的副产物并且存在于许多商业等级的无机纤维中。但这种类型的无机填料粒子也可由其他来源供给。第二种类型的无机填料粒子具有在烧制步骤完成之后明显不同于无机纤维的 CTE( S卩,在温度范围100至600°C内与无机纤维的CTE相差大于lppm/°C,更优选至少 2ppm/°C )。本发明的一个优点在于,无需加入填料或另外努力使胶接剂的热膨胀系数与下方蜂窝的热膨胀系数“匹配”。第二种类型的无机填料粒子的实例是矾土,碳化硅,氮化硅, 莫来石,堇青石和钛酸铝。在制造本发明蜂窝结构体时,胶接剂组合物通过形成混合物而制成,所述混合物含有上述纤维,胶体固体,典型地载流流体和任选的其他材料,包括如上所述的低纵横比填料。为了实现纤维的所需尺寸和分布,需要时,纤维首先通过任何合适的方式如球/鹅卵石研磨,碾磨,喷射研磨或类似方式在本领域普通技术人员针对特定技术容易确定的条件下粉碎。说明性地,市售纤维如上述的FIBERFRAX或IS0FRAX在球磨机中使用陶瓷介质如锆石,矾土,石英鹅卵石,氧化锆或不会弓I入有害杂质的任何其他研磨介质磨干。合适长度的纤维随后典型地与胶体无机粒子在载流流体中混合以制备胶接剂组合物。胶体在本文中是指数均粒子尺寸低于1微米,优选低于250nm的微粒。胶体可以是结晶或非晶态的。优选地,胶体是非晶态的。胶体优选为硅酸盐,铝酸盐或硅铝酸盐溶胶。理想地,胶体是阳离子(碱或铵)稳定化的硅酸盐溶胶,通常称作具有碱性PH的硅石胶体或硅石溶胶。这些硅石胶体的表面电荷是负性的,如由已知的电泳技术测定的。当溶胶是矾土溶胶/胶体时,它理想地是具有酸性pH的溶胶,其中矾土粒子具有如通过电泳技术测定的正电荷。说明性的胶体包括本领域已知的那些,如可以在如下商品名下得到的那些 如 KASIL 禾口 N,PQ 公司,PO Box 840,Valley Forge, PA. ;ZACSIL, Zaclon Incorporated, 298!Independence Rd. , Cleverand, OH ;娃酸钠,Occidental Chemical 公司,Occidental Tower, 5005LBJ Freeway, Dallas, TX ;NYACOL Nexsil 胶体硅石和 A120 胶体矾土,Nyacol Nanotechnologies Inc., Ashland MA 禾口 Aremco 644A 禾口 644S, Aremco Products Inc., Valley Cottage, NY。在一个具体实施方案中,片段是莫来石,并且用于形成胶接剂的胶体是硅石和矾土的混合物。说明性地,当使用硅石和矾土溶胶的混合物时,胶体溶胶的硅石与矾土的重量比可以是任何有用的比率如1 99至99 1。理想地,该比率是5 95,10 90,20 80 30 70,40 60,或 50 50,或它们的倒数。载流液体可以是,例如,水或任何有机液体。合适的有机液体包括醇,二醇,酮,醚, 醛,酯,羧酸,羧酸酰氯(carboxylic acid chlorides),酰胺,胺,腈,硝基化合物,硫醚,亚砜,砜,和类似物。烃,包括脂族,不饱和脂族(包括烯烃和炔烃)和/或芳族烃,是有用的载液。有机金属化合物也是有用的载液。优选地,载流流体是水,脂族,烯烃或醇。更优选地,载液是醇,水或其组合。当使用醇时,它优选为甲醇,丙醇,乙醇或其组合。最优选地,载流流体是水。胶接剂组合物可含有其他有用的组分,如制造陶瓷胶接剂领域中已知的那些。 其他有用的组分的实例包括分散剂,抗絮凝剂,絮凝剂,增塑剂,消泡剂,润滑剂和防腐剂,这㈣例如描述于陶瓷加工原理介绍introduction to the Principles of Ceramic Processing)的第 10-12 章,J. Reed, John Wiley 和 Sons, NY, 1988 的那些。当使用有机增塑剂时,它理想地是聚乙二醇,脂肪酸,脂肪酸酯或其组合。胶接剂组合物也可包含一种或多种粘结剂。粘结剂的实例包括纤维素醚,如描述于陶瓷力口工原理介绍(Introduction to the Principles of Ceramic Processing)的第 11章,J. Reed, John Wiley和Sons, NY, NY, 1988中的那些。优选地,粘结剂是甲基纤维素或乙基纤维素,如可以商标METH0CEL和ETH0CEL购自陶氏化学公司(The Dow Chemical Company)的那些。优选地,粘结剂溶解在载流液体中。胶接剂组合物也可包含一种或多种成孔剂(porogens)。成孔剂是被特意加入以在干燥胶接剂中产生空隙的材料。典型地,这些成孔剂是在加热过程中分解,蒸发或以某种方式挥发掉以留下空隙的微粒。实例包括面粉,木屑,碳微粒(非晶态或石墨的),核果壳粉或其组合。在一个具体实施方案中,胶接剂组合物在没有有机成分(除载流流体之外,条件是该载流流体是有机溶剂如醇)的情况下制造。优选地,当制造该胶接剂实施方案时,载流流体是水。在本发明的一个优选的实施方案中,通过如下制备胶接剂组合物将纤维与具有特定表面电荷的纤维(如,如在碱性水中具有负表面电荷的硅石胶体)在载流流体内混合,直至形成良好的混合物,并随后加入具有相反电荷的第二胶体(如,如在酸性水中具有正表面电荷的矾土胶体)加入或在其中混合,以形成所述胶接剂组合物。惊人地,该方法得到具有优异剪切稀化流变的胶接剂,其限制了胶接剂组分的任何隔离并使得容易通过已知的用于涂敷这些糊的方法(如,喷雾,涂抹,打腻子,和任何其他合适的技术,包括向糊施加剪切并使它与片段的外表面接触)而涂敷在片段上。胶接剂组合物的合适的布氏粘度在25°C是至少151 · s,优选至少251 · s,更优选至少50 *s,如使用#6锭子在5rpm旋转速度测定的。在那些条件下的布氏粘度可高达 1000,在那些条件下优选高达500Pa · s。纤维应该占胶接剂组合物的固体重量的至少10%。就该计算而言,“固体”由在胶接剂组合物烧制之后留在胶接剂中的胶接剂组合物的无机材料,包括填料和无机粘结相组成。在大多数情况下,固体将由无机纤维,胶体硅石和/或胶体矾土,加上可能存在的任何无机填料粒子构成。载流流体和有机材料一般在一个或多个干燥步骤过程中从组合物中损失并且不再存在于干表皮中。典型地,纤维占胶接剂组合物的固体按重量计的至少30%,优选至少50 %并且更优选至少60 %。纤维优选占不超过固体重量的85 %,进一步更优选不超过 80%。胶体溶胶粒子应该占胶接剂组合物的固体重量的高达70%。溶胶粒子合适地占胶接剂组合物中的固体重量的10至70%,优选15至50%并且更优选20至40%。低纵横比填料,如果根本存在,可占纤维和低纵横比填料的总重量的高达三分之二。优选地,低纵横比填料占纤维和低纵横比填料的总重量的不超过25%,进一步更优选不超过15%。上述第一类型的低纵横比填料(具有与纤维的CTE接近的CTE)可占纤维和低纵横比填料的总重量的高达三分之二,优选高达25%并且更优选高达10%。上述第二种类型的低纵横比填料(具有与纤维的CTE相差至少lppm/°C的CTE)优选占胶接剂组合物的固体的不超过5%。纤维和低纵横比填料可共同占胶接剂组合物中的固体重量的30至90%,优选50 至85 %并且进一步更优选60至80 %。在一个优选的实施方案中,胶接剂组合物含有作为填料的,仅无机纤维,来自无机纤维的“注射”材料,和任选的第二种类型的无机填料粒子,其存在量可以是胶接剂的固体重量的0至5%,但基本上没有(低于5重量%,优选不超过1%)第一种类型的其他有机填料粒子。在另一优选实施方案中,无机填料仅含有无机纤维和基于固体重量为0-5重量% 的第二种类型的无机填料,但没有“注射”材料或第一种类型的其他无机填料。因此,胶接剂组合物可根本不含第二种类型的无机填料粒子,或可仅包含非常小比例的该粒子,例如, 胶接剂组合物的固体的0至3%或0至2%或0至1%。使用的载流流体的总量可在宽范围内变化,取决于其他有机添加剂如以下描述的那些和纤维的固体加载量纤维和用于使片段接触在一起的技术。载流流体的总量一般是胶接剂组合物的至少约40体积%到至多约90体积%。在一个或多个片段在其外表面与胶接剂组合物接触之后,使片段在一起使得胶接剂组合物被插入片段间。这可使用任何合适的方法进行。蜂窝片段可在涂敷胶接剂组合物之前用净载流流体或胶体溶胶润湿。在后者情况下,胶体矾土和/或硅石可变得分布遍及每一片段。这已被令人惊奇地发现可用于捕捉柴油发动机所释放的非常小的液体和烟灰的微粒级分。胶体溶胶可在胶接剂组合物已被涂敷和干燥之后被引入蜂窝结构体的片段。用于润湿蜂窝片段的方法可以是任何适用于涂敷流体的技术,如浸渍,喷雾,注射,刷涂或其组合。溶胶可以是本文已描述的那些中的任何一种。说明性地,片段,如果具有正方形横截面,可被固定在模板中并将胶接剂组合物喷射或注射在片段之间的间隙中。片段具有沉积到所需表面上的胶接剂组合物,如使转角组装成斜面并由该第一正方形堆积成所需的任何图案。该斜面可根据需要具有也被内装的隔离物使得片段的第一层具有等距的间隔,从而使胶接剂层厚度更均勻。另外,片段可被放在平整表面上并按照类似于砖砌的方式构造。一旦使片段在一起,就去除载流流体,烧掉粘结剂和其他有机添加剂(如果有的话),并将胶接剂组合物烧制以使胶体转化成粘结相。载流流体可通过加热或任何合适的方法而去除,可仅包括室温蒸发或任何其他有用的方法如本领域已知的那些。载流流体的去除也可在烧制步骤过程中发生。片段或胶接剂中的粘结剂和其他有机添加剂一般通过加热而去除。该加热方法可以是任何合适的方法如本领域已知的那些。有机材料的去除也可在烧制步骤过程中发生。为了产生粘结相,胶接剂在升高的温度烧制。该温度不应太高使得蜂窝结构体下垂或粘结相迁移至造成对蜂窝结构体性能的有害影响的程度。典型地,在烧制步骤过程中的温度是至少约600°C,6500C,7000C,750°C或800°C到至多约1200°C,1150°C, 1100°C,1050 °C 或 IOOO0Co在烧制之后,胶接剂含有上述的无机纤维,由胶体溶胶形成的粘结相,任选的如前所述的其他低纵横比填料。这些组分的比率与存在于胶接剂组合物的固体中的比率基本上相同。粘结相是铝酸盐,硅酸盐或硅铝酸盐。粘结相可以是非晶态,结晶或部分非晶态和部分结晶的。令人惊奇地,本发明烧制胶接剂的热膨胀系数(CTE)可基本上不同于蜂窝片段的热膨胀系数。烧制胶接剂的CTE可与蜂窝片段的CTE相差超过lppm/°C或至少2ppm/°C。例如,当片段是莫来石(CTE 5. 5ppm/°C )时,CTE为 8ppm/°C的本发明胶接剂(如,使用矾土溶胶作为唯一的粘结剂以及mg-硅酸盐纤维)与具有几乎相配CTE的胶接剂同样有效地降低热震而对蜂窝结构体没有任何变质。这使得一种胶接剂组合物可用于多个不同的片段并且甚至可用于胶接不同组成和CTE的片段。实施例1和对比样品A、B和C将4重量份未切削的硅酸锆铝纤维(Fiberfrax长大路细纤维(Fiberfrax Long Staple Fine Fiber),可得自Unifrax LLC,长度> 50mm,直径4-8微米),26份球磨硅酸锆铝纤维(得自Unifrax LLC,长度100-500微米,直径4_8微米),16份胶体矾土(AL20SD, 可得自 Nyacol Nano Technologies, Inc.,Ashland, ΜΑ) ,48 份水,3 份甲基纤维素和 3 份 400分子量聚乙二醇混合直至均勻。混合物的粘度在不同旋转速度使用具有6号圆盘锭子的Brookfield RVDV-I Prime型粘度计在室温测定。结果如图2中的线1所示。为了制造4-点弯曲样品,将约50mm X 20mm X 7. 5mm的两个蜂窝片段使用该组合物胶接在一起,烧制至1100°c,冷却,并且使用hstron 5543负荷架(Load Frame)在0. 02 英寸/分钟的受控速度下测试。上跨度是40mm并且下跨度是80mm。对照位移记录负荷数据。将另一部分胶接剂组合物铸成块,将其按照相同方式烧制并冷却。从烧制块上切出8mm X 4mm X 40mm的条,并由这些条根据ASTM 1259-98测定干燥胶接剂的模量。胶接剂组合物的模量是1. 5GPa。4-点弯曲试验中的胶接剂条的载荷位移曲线如图3所示。对比样品A按照相对于实施例1所述的相同方式制备。在这种情况下的胶接剂组合物是43份球磨硅酸锆铝纤维(来自Unifrax LLC,长度100-500微米,直径4_8微米), 13 份胶体矾土(AL20SD,可得自 Nyacol Nano Technologies, Inc.,Ashland, ΜΑ),39 份水, 2. 5份甲基纤维素和2. 5份400分子量聚乙二醇。所得胶接剂混合物不含长纤维。胶接剂组合物的粘度按照实施例1的相同方式测定。结果如图2中的参考标记A所示。4-点弯曲测试针对由胶接剂制成的条进行,如实施例1所述。结果如图4所图示。对比样品B按照相对于实施例1所述的相同方式制备。在这种情况下的胶接剂组合物是27份球磨硅酸锆铝纤维(来自Unifrax LLC,长度100-500微米,直径4_8微米), 17 份胶体矾土(AL20SD,可得自 Nyacol Nano ^Technologies,Inc.,Ashland,MA),50 份水, 3.0份甲基纤维素和3.0份400分子量聚乙二醇。所得胶接剂混合物不含长纤维。短纤维的量与实施例1的短纤维量大约相同。胶接剂组合物的粘度按照实施例1的相同方式测定。 结果如图2中的参考标记B所示。
图2显示仅含有30重量%纤维的实施例1的粘度稍大于对比样品A的粘度,即使对比样品A的纤维含量高得多(43%)。这些结果显示,可工作的胶接剂粘度可在较低总纤维加载量下得到,条件是存在少比例的长纤维。这使得总纤维含量被减少,其又使得较高比例的无机粘结剂(胶体矾土,在这种情况下)被包括在组合物中。图2还显示了对比样品B 的明显较低粘度。对比样品B的总纤维含量近似等于实施例1的总纤维含量,区别在于对比样品B仅含有短纤维。图3和4显示,尽管纤维含量低得多,但是实施例1在4-点弯曲试验中的表现近似相当于对比样品A。对比样品C按照相对于实施例1所述的相同方式制备。在这种情况下的胶接剂组合物是10重量份未切削硅酸锆铝纤维(Fiberfrax长大路细纤维(Fiberfrax Long Staple Fine Fiber),可得自 Unifrax LLC,长度> 50mm,直径 4_8 微米),20 份胶体矾土(AL20SD, 可得自 Nyacol Nano Technologies, Inc. , Ashland, ΜΑ), 62 份水,4· 0 份甲基纤维素和 4. 0 份400分子量聚乙二醇。所得胶接剂混合物不含短纤维。胶接剂组合物的粘度类似于实施例1,尽管纤维的总加载量较低。由该组合物制成的胶接剂条进行4-点弯曲试验评估。结果如图5所图示。该胶接剂组合物的强度比实施例1的强度低得多,这可通过图5与图3 比较而看出。实施例2和对比样品D和E胶接剂组合物如实施例1所述制备。将4重量份切削硅酸镁纤维(Isofrax,可得自Unifrax LLC,长度l_50mm,直径3-4. 5微米),26份球磨硅酸镁纤维(Isofrax,可得自 Unifrax LLC,长度100-500微米,直径3-4. 5微米),16份胶体矾土(AL20SD,可得自Nyacol Nano Technologies, Inc.,Ashland, ΜΑ), 48份水,3份甲基纤维素和3份400分子量聚乙二醇混合直至均勻。混合物的粘度在不同旋转速度使用具有6号圆盘锭子的Brookfield RVDV-I Prime型粘度计在室温测定。结果如图6中的参考标记2所示。对比样品D按照相同的方式制备。在这种情况下的胶接剂组合物是42份球磨硅酸镁纤维(Isofrax,可得自Unifrax LLC,长度100-500微米,直径3-4. 5微米),13份胶体巩 土(AL20SD,可得自 Nyacol Nano Technologies, Inc.,Ashland, ΜΑ),40 份水,2· 5 份甲基纤维素和2. 5份400分子量聚乙二醇。所得胶接剂组合物不含长纤维。胶接剂组合物的粘度按照用于实施例1的相同方式测定。结果如图6中的参考标记D所示。从图6可以看出,实施例2的粘度与对比样品D的粘度大约相同,尽管具有低得多的总纤维含量(30%对42% )。对比样品E按照相对于实施例1所述的相同方式制备。在这种情况下的胶接剂组合物是27份球磨硅酸镁纤维(Isofrax,可得自Unifrax LLC,长度100-500微米,直径 3-4. 5 微米),17 份胶体矾土(AL20SD,可得自 Nyacol Nano Technologies, Inc. ,Ashland, ΜΑ), 50份水,3. O份甲基纤维素和3. O份400分子量聚乙二醇。所得胶接剂组合物不含长纤维。短纤维的量与实施例1中的大约相同。该胶接剂组合物的粘度按照用于实施例1的相同方式测定。结果如图7中所图示。该胶接剂组合物的粘度比实施例2和对比样品D的粘度低大约一个数量级,从而再次说明仅使用较短纤维时需要大的纤维加载量以得到可工作的胶接剂粘度。
权利要求
1.一种形成蜂窝结构体的方法,所述方法包括使第一蜂窝片段在其外表面的至少一个上与包含无机纤维,载流流体和胶体无机溶胶的胶接剂组合物接触,其中所述纤维占所述胶接剂组合物的固体的至少约10重量%,并且所述纤维具有多模长度分布,使得一部分所述纤维具有至少10微米至高达1000微米的长度,并且至少一个其他部分的所述纤维是长度大于1毫米,优选大于1至100毫米,更优选2至100毫米并且甚至更优选5至30毫米的较长纤维,使第二蜂窝片段与所述第一蜂窝片段机械接触,使得所述胶接剂组合物被插入所述蜂窝片段之间,使得所述蜂窝片段被粘附,充分烧制粘附的片段以使胶体转化成粘结相,所述粘结相将所述胶接剂的所述纤维粘合在一起并将所述胶接剂粘合至所述蜂窝片段上以形成所述蜂窝结构体。
2.权利要求1所述的方法,其中所述纤维占所述胶接剂组合物的固体重量的30至 85%。
3.权利要求1或2所述的方法,其中所述胶体无机溶胶占所述胶接剂组合物的固体的 15至50重量%。
4.权利要求1-3中任何一项所述的方法,其中所述较长纤维占所述无机纤维的总重量的1至50%。
5.权利要求4所述的方法,其中所述较长纤维占所述无机纤维的总重量的3至30%。
6.权利要求5所述的方法,其中所述较长纤维占所述无机纤维的总重量的5至25%。
7.权利要求1-6中任何一项所述的方法,其中所述胶接剂组合物进一步包含在所述纤维中含有的注射材料。
8.权利要求1-7中任何一项所述的方法,其中所述胶接剂组合物没有任何其他的低纵横比无机粒子。
9.权利要求1-8中任何一项所述的方法,其中所述纤维是非晶态硅铝酸盐纤维。
10.权利要求1-8中任何一项所述的方法,其中所述纤维包含碱土硅酸盐。
11.权利要求10所述的方法,其中所述碱土是Mg。
12.权利要求1-11中任何一项所述的方法,其中所述较小蜂窝包含针状莫来石。
13.权利要求1-12中任何一项所述的方法,其中所述胶接剂组合物具有约20%至约 80%的孔隙率。
14.一种陶瓷蜂窝结构体,所述陶瓷蜂窝结构体包含至少两个单独的已通过权利要求 1-13中任何一项所述的方法粘附在一起的较小陶瓷蜂窝。
15.一种胶接剂组合物,所述胶接剂组合物包含无机纤维,载流流体和胶体无机溶胶, 其中所述纤维占所述胶接剂的固体重量的至少10%,并且所述纤维具有多模长度分布,其中一部分所述纤维具有至少10微米至高达1000微米的长度,并且至少一个其他部分的所述纤维是长度大于1毫米的较长纤维。
16.权利要求15所述的胶接剂组合物,其中所述较长纤维占所述无机纤维的总重量的 1 至 50%。
17.权利要求16所述的胶接剂组合物,其中所述较长纤维占所述无机纤维的总重量的 3 至 30%。
18.权利要求17所述的胶接剂组合物,其中所述较长纤维占所述无机纤维的总重量的 5 至 25%。
19.权利要求15-18中任何一项所述的胶接剂组合物,其中所述纤维是非晶态硅铝酸盐纤维。
20.权利要求15-18中任何一项所述的胶接剂组合物,其中所述纤维包含碱土硅酸盐。
21.权利要求15-20中任何一项所述的胶接剂组合物,其中所述胶体无机溶胶是胶体矾土,胶体硅石,或胶体矾土和胶体硅石的混合物。
22.一种陶瓷蜂窝结构体,所述陶瓷蜂窝结构体包含至少两个单独的已通过权利要求 1-14中任何一项所述的方法粘附在一起的较小陶瓷蜂窝。
全文摘要
一种陶瓷蜂窝结构体,包含至少两个单独的已通过包含无机纤维和粘结相的胶接剂粘附在一起的较小陶瓷蜂窝,其中所述较小蜂窝和纤维通过包含硅酸盐,铝酸盐或硅铝酸盐的粘结相粘合在一起。所述纤维具有多模尺寸分布,其中一些纤维具有高达1000微米的长度并且其他纤维具有超过1mm的长度。胶接剂组合物可在没有其他无机和有机添加剂的情况下制成,同时获得一种剪切稀化胶接剂,例如,通过如下获得将带相反电荷的无机粘结剂在水中混合在一起,这样制成一种可用于涂敷到所要胶接的较小蜂窝上的胶接剂组合物。
文档编号C04B35/80GK102470359SQ201080029339
公开日2012年5月23日 申请日期2010年6月24日 优先权日2009年6月29日
发明者亚历山大·约瑟夫·皮茨克, 梁宽昊, 蔡军, 迈克尔·T·马兰加 申请人:陶氏环球技术有限责任公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1