一种陶瓷介质滤波器塑基喂料及其制备方法与流程

文档序号:21280644发布日期:2020-06-26 23:35阅读:163来源:国知局

本发明涉及粉末冶金技术领域,尤其涉及一种陶瓷介质滤波器塑基喂料的制备方法。



背景技术:

传统应用的滤波器一般由金属同轴腔体实现,是通过不同频率的电磁波在同轴腔体滤波器中振荡,达到滤波器谐振频率的电磁波得以保留,其余频率的电磁波则在振荡中耗散掉的作用。在3g/4g时代,金属同轴腔体凭借着较低的成本,较成熟的工艺成为了市场的主流选择。

随着移动通信网络的发展,商用的无线频段变得非常密集,导致了普通金属腔体滤波器不能实现高抑制的系统兼容问题。陶瓷介质谐振滤波器采用了一种更高q值(品质因数)的人工合成陶瓷介质材料,与传统的金属腔体滤波器相比,在陶瓷介质谐振滤波器中,电磁波主要在介质材料制成的谐振器中发生振荡而不是金属空腔中。由于介质材料的相对介电常数较高,其q值较高,损耗小,同时温度漂移小。因此,相比传统金属腔谐振器,陶瓷介质谐振滤波器具有高抑制、插入损耗小和温度漂移特性好的特点,而且功率容量和无源互调性能都得到很大的改善。陶瓷介质谐振滤波器代表着高端射频器件的发展方向,凭借其优良的性能,势必会在移动通信领域拥有广阔的应用空间。

陶瓷介质滤波器中的电磁波谐振发生在介质材料内部,没有金属腔体,因此体积较上述两种滤波器都会更小。与陶瓷介质谐振滤波器的优点类似,陶瓷介质滤波器也具有q值高、选频特性好、工作频率稳定性好和插入损耗小等优点。因此,与传统腔体滤波器相比,陶瓷介质滤波器在产品性能上更加优异,尺寸更小,功耗也更低,并且一旦实现量产其成本也会更低。

现有的制备陶瓷介质滤波器的方法大多为干压成型-烧结,是将粉料加少量黏合剂造粒,然后装入模具中,在压力机上加压,使粉粒在模具内相互靠近,并借内摩擦力牢固地结合,形成一定形状的坯体。在压制成型过程中,颗粒间以及颗粒与模壁间存在的内、外摩擦引起压力损失使压坯各部位受力不均,而无论是单向压制还是双向压制,皆会出现生坯、烧结样品密度分布不均匀的现象。

注射成形是一种近净成形工艺,不仅可以得到致密度高、力学性能好、表面粗糙度小、平面度高的零件,而且还可以大批量、高效率地生产结构复杂的零件,基本不需要后续精加工,使得零件制造成本大大降低。陶瓷注射成形(cim)技术的核心和关键是黏结剂,现有文献中报道的通过注射成形制备陶瓷介质滤波器的黏结剂均为蜡基黏结剂。由于石蜡熔点低且与陶瓷粉末的润湿性较差,在混炼时易挥发在注射时易发生粉胶分离,造成砂孔缺陷。此外,由于蜡基喂料的保形性较差,在后续的溶剂萃取脱脂时易导致生坯变形,得到的烧结件尺寸精度差,且溶剂萃取脱脂,脱脂剂为水、汽油、正庚烷、三氯乙烯等非极性溶剂,存在较大的安全隐患,且脱脂时间长(浸泡72h),因而不利于高效生产。



技术实现要素:

本发明所要解决的技术问题是:提供一种陶瓷介质滤波器的塑基喂料及其制备方法,可以高效制备致密度高、密度均匀且尺寸精度高的陶瓷介质滤波器,具有生产成本低、易于产业化应用的优点。

为此,根据本发明的一个方面,提供了一种制备陶瓷介质滤波器塑基喂料的方法,本发明的技术方案是:

一种陶瓷介质滤波器塑基喂料,包括陶瓷粉末和塑基黏结剂,该陶瓷粉末和塑基黏结剂的质量比为(6~9):(1~4)。

进一步的,所述陶瓷粉末的粒径为0.5~5μm。

进一步的,所述陶瓷粉末为cao、ca(oh)2、caco3、mgo、mg(oh)2、mgco3、caco3·mgco3、tio2、zro2、al2o3、zno、sno2、sio2、sro、nb2o5、mno2、co2o3、pbo2、moo3、wo3、b2o3、bao和baco3中的至少一种。

进一步的,所述塑基黏结剂为聚甲醛以及聚乙烯、聚苯烯、硬脂酸、硬脂酸锌、乙烯-醋酸乙烯共聚物、邻苯二甲酸二辛酯、尼龙、石蜡和抗氧化剂中的至少两种。

进一步的,所述塑基黏结剂中聚甲醛的重量百分比为50~80%。

一种制备陶瓷介质滤波器塑基喂料的方法,包括以下步骤:

(1)称重:称取所述的陶瓷介质滤波器塑基喂料;

(2)混炼预热:将所述陶瓷介质滤波器塑基喂料加入到预热好的混炼机中,预热温度不低于130℃,预热过程混炼机转速为1~15r/min,预热时间为5~120min;

(3)混炼:将预热后的陶瓷介质滤波器塑基喂料在混炼机中混合,使陶瓷粉末与黏结剂均匀混合并结成泥团状,混炼温度为150~210℃,混炼机转速20~60r/min;混炼时间为20~120min;

(4)挤出制粒:将步骤(3)混炼得到的物料加入至挤出机中,塑化后挤出并造粒,得到待注射成形的喂料;

(5)注射成形:将步骤(4)得到的喂料在注射机中注射成形得到陶瓷介质滤波器生坯,注射温度为150~220℃,保压压力为10~100mpa;

(6)催化脱脂:将所述陶瓷介质滤波器生坯在硝酸催化脱脂炉中进行脱脂,脱脂温度为90~150℃,硝酸流量为1~10g/min,脱脂时间15~30h;

(7)烧结:将催化脱脂后的所述陶瓷介质滤波器生坯放入烧结炉中进行烧结,烧结温度为1100~1800℃;烧结保温时间为2~10h。

本发明的优点是:

1、可实现复杂结构陶瓷介质滤波器的加工;

2、相较于干压工艺,此塑基喂料采用注射成形,可实现大批量、低成本生产致密性好、密度均匀、尺寸精度高的陶瓷介质滤波器;

3、相比蜡基喂料加工时产品变形、脱脂时间长,采用塑基喂料加工时产品保形性好,脱脂效率高,且脱脂的副产物为co2、h2o和n2等无污染气体,在加工时更加绿色环保。

具体实施方式

下面结合具体实施例来进一步描述本发明,本发明的优点和特点将会随着描述而更为清楚。但这些实施例仅是范例性的,并不对本发明的范围构成任何限制。本领域技术人员应该理解的是,在不偏离本发明的精神和范围下可以对本发明技术方案的细节和形式进行修改或替换,但这些修改和替换均落入本发明的保护范围内。

根据本发明,将陶瓷粉末与一定量的塑基黏结剂加入混炼机中,在一定温度下混炼后,获得混合均匀的陶瓷介质滤波器塑基喂料;喂料制备时,为使塑基黏结剂将陶瓷粉末完全包裹,陶瓷粉末与塑基黏结剂的重量比为(6~9):(1~4),优选为(7~8.5):(1.5~3),更优选为(7.1~8.1):(1.9~2.9)。

喂料制备时,塑基黏结剂组成为聚甲醛以及聚乙烯、聚苯烯、硬脂酸、硬脂酸锌、乙烯-醋酸乙烯共聚物、邻苯干甲酸二辛酯、尼龙、石蜡和抗氧化剂(bha、bht等)中的两种或多种,优选地,塑基黏结剂组成为聚甲醛以及聚乙烯、聚苯烯、硬脂酸、乙烯-醋酸乙烯共聚物、石蜡和抗氧化剂(bha、bht等)中的两种或多种,更优选地,塑基黏结剂组成为聚甲醛以及聚乙烯、硬脂酸、乙烯-醋酸乙烯共聚物和抗氧化剂(bha、bht等)的两种或多种,更优选地为聚甲醛、聚乙烯和抗氧化剂(bha、bht等)。

喂料制备时,陶瓷粉末组成为cao、ca(oh)2、caco3、mgo、mg(oh)2、mgco3、caco3·mgco3、tio2、zro2、al2o3、zno、sno2、nb2o5、mno2、co2o3、pbo2、moo3、wo3、b2o3、baco3和bao中的至少一种,优选地,陶瓷粉末组成为cao、ca(oh)2、caco3、mgo、mg(oh)2、mgco3、caco3·mgco3、tio2、zro2、al2o3、zno、nb2o5、mno2、pbo2、moo3、baco3和bao中的至少一种,更优选地,为cao、mgo、tio2、zro2、al2o3、zno、nb2o5、mno2、pbo2、moo3、baco3和bao中的至少一种。

喂料制备时,陶瓷粉末的粒度不受特别限制,优选为0.5~5μm,更优选为0.5~3μm,更优选为0.5~1.5μm;混炼预热温度不低于130℃,优选地预热温度为130~220℃,更优选为160~200℃;预热过程混炼机转速为1~15r/min,优选地转速1~10r/min,更优选地2~5r/min;预热时间不受特别限制,搅拌速率低则预热时间长,为使陶瓷粉末和黏结剂充分预热,优选地预热时间为5~120min,更优选地10~60min,更优选地在160~200℃下,混炼机转速为2~5r/min时预热20~30min。

喂料制备时,混炼温度为150~210℃,优选地混炼温度为160~200℃,更优选地为180~200℃;混炼机转速20~60r/min,优选地转速为20~50r/min,更优选地转速为30~50r/min;混炼时间为20~120min,优选地混炼时间为30~90min,更优选地混炼时间为50~70min。

注射成形时,注射温度为150~220℃,优选地为160~210℃,更优选地注射温度为180~210℃;为使模腔内注射饱和,保压压力为10~100mpa,优选地保压压力为30~100mpa,更优选地70~90mpa。

生坯催化脱脂时,脱脂温度为90~150℃,优选地脱脂温度为90~130℃,更优选地脱脂温度为100~125℃;硝酸流量为1~10g/min,优选地硝酸流量为2~8g/min,更优选地为4~7g/min;脱脂时间无特别限制,优选地脱脂时间为大于1h,更优选地脱脂时间为15~30h,更优选地脱脂时间为20~25h。

脱脂件烧结时,烧结温度为1100~1800℃,优选地烧结温度为1200~1600℃,更优选地为1300~1500℃;烧结保温时间无特别限制,优选地保温时间为2~10h,更优选地为2~5h,更优选为2~4h。根据本发明的实施例,陶瓷粉末和塑基黏结剂通过混炼制备的陶瓷介质滤波器塑基喂料,经注射成形,催化脱脂和烧结后,可以制得保形性好、密度均匀,平面度高的陶瓷介质滤波器,该陶瓷介质滤波器可以满足5g基站对滤波器的要求。

实施例一

本发明的实施例一:一种陶瓷介质滤波器喂料及其制备方法,其粉体组成为:cao、ca(oh)2、caco3、mgo、mg(oh)2、mgco3、caco3·mgco3、tio2、zro2、al2o3、zno、nb2o5、mno2、co2o3、pbo2、moo3、b2o3和baco3。将陶瓷粉末与黏结剂进行密炼,得到混合料,所述混合料中陶瓷粉末的重量百分比为60%,即,陶瓷粉末与塑基黏结剂的重量比为60:40,所述陶瓷粉末的粒径为0.5μm。塑基黏结剂为:50%聚甲醛、30%聚乙烯、10%聚苯烯、2%硬脂酸、2%乙烯-醋酸乙烯共聚物、2%邻苯二甲酸二辛酯、2%石蜡和2%抗氧化剂(bha)。

具体制备步骤如下:

混炼:混炼机预热温度设定为130℃,将称好的陶瓷粉末与塑基黏结剂放入已预热的混炼机中,预热转速为15r/min,混合料的预热时间为120min,预热结束,将混炼温度提升到210℃,混炼转速20r/min,混炼时间20min。

挤出制粒:将混炼得到的物料加入至挤出机中,塑化后挤出并造粒,得到待注射成形的喂料;

注射成形:注射成形混合料在注射成形机上注射成形得到坯体,注射温度为220℃,保压压力为10mpa,注入模具后在2分钟内脱模得到成型坯体。

催化脱脂:将注射成形得到的坯体放入硝酸催化脱脂炉中脱脂,脱脂温度150℃、脱脂时间15h、硝酸流量10g/min;

烧结:将催化脱脂后的生坯放入烧结炉中进行烧结,烧结温度1100℃,保温时间10h。

本实施例制备得到的陶瓷介质滤波器的致密度为98.6%,尺寸公差为0.04mm,平面度为0.04mm。

实施例二

本发明的实施例二:一种陶瓷介质滤波器喂料及其制备方法,其粉体组成为:cao、ca(oh)2、caco3、mgo、mg(oh)2、tio2、zro2、al2o3、zno、sno2、nb2o5、mno2、co2o3、pbo2、wo3、b2o3和bao。将陶瓷粉末与塑基黏结剂进行密炼,得到混合料,所述混合料中陶瓷粉末的重量百分比为90%,即,陶瓷粉末与塑基黏结剂的重量比为90:10,所述陶瓷粉末的粒径为5μm。塑基黏结剂为:52%聚甲醛、30%聚苯烯、8%硬脂酸锌、2%乙烯-醋酸乙烯共聚物、2%邻苯二甲酸二辛酯、2%尼龙、2%石蜡和2%抗氧化剂(bht)。具体制备步骤如下:

混炼:混炼机预热温度设定为220℃,将称好的陶瓷粉末与黏结剂放入已预热的混炼机中,预热转速为1r/min,混合料的预热时间为5min,预热结束,将混炼温度降低到150℃,混炼转速60r/min,混炼时间120min。

挤出制粒:将混炼得到的物料加入至挤出机中,塑化后挤出并造粒,得到待注射成形的喂料。

注射成形:注射成形混合料在注射成形机上注射成形得到坯体,注射温度为150℃,保压压力为50mpa,注入模具后在2分钟内脱模得到成型坯体。

催化脱脂:将注射成形得到的坯体放入硝酸催化脱脂炉中脱脂,脱脂温度90℃、脱脂时间30h、硝酸流量1g/min。

烧结:将催化脱脂后的生坯放入烧结炉中进行烧结,烧结温度1800℃,保温时间2h。

本实施例制备得到的陶瓷介质滤波器的致密度为99.6%,尺寸公差为0.03mm,平面度为0.04mm。

实施例三

本发明的实施例三:一种陶瓷介质滤波器喂料及其制备方法,其粉体组成为:caco3、mgo、mg(oh)2、mgco3、caco3·mgco3、tio2、zro2、al2o3、zno、sno2、nb2o5、mno2、co2o3、pbo2、moo3、wo3和baco3,将陶瓷粉末与塑基黏结剂进行密炼,得到混合料,所述混合料中陶瓷粉末的重量百分比为65%,即,陶瓷粉末与塑基黏结剂的重量比为65:35,所述陶瓷粉末的粒径为0.8μm。塑基黏结剂为:54%聚甲醛、30%聚苯烯、6%硬脂酸、2%乙烯-醋酸乙烯共聚物、2%邻苯二甲酸二辛酯、2%尼龙、2%石蜡和2%抗氧化剂(bha)。

具体制备步骤如下:

混炼:混炼机预热温度设定为160℃,将称好的陶瓷粉末与塑基黏结剂放入已预热的混炼机中,预热转速为10r/min,混合料的预热时间为80min,预热结束,将混炼温度维持160℃,混炼转速55r/min,混炼时间100min。

挤出制粒:将混炼得到的物料加入至挤出机中,塑化后挤出并造粒,得到待注射成形的喂料。

注射成形:注射成形混合料在注射成形机上注射成形得到坯体,注射温度为160℃,保压压力为80mpa,注入模具后在2分钟内脱模得到成型坯体。

催化脱脂:将注射成形得到的坯体放入硝酸催化脱脂炉中脱脂,脱脂温度100℃、脱脂时间28h、硝酸流量3g/min。

烧结:将催化脱脂后的生坯放入烧结炉中进行烧结,烧结温度1700℃,保温时间4h。

本实施例制备得到的陶瓷介质滤波器的致密度为99.3%,尺寸公差为0.02mm,平面度为0.03mm。

实施例四

本发明的实施例四:一种陶瓷介质滤波器喂料及其制备方法,其粉体组成为:cao、mgo、mg(oh)2、mgco3、caco3·mgco3、tio2、al2o3、zno、sno2、nb2o5、mno2、co2o3、pbo2、moo3、wo3、b2o3、b2o3和baco3。将陶瓷粉末与塑基黏结剂进行密炼,得到混合料,所述混合料中陶瓷粉末的重量百分比为70%,即,陶瓷粉末与塑基黏结剂的重量比为70:30,所述陶瓷粉末的粒径为1μm。塑基黏结剂为:56%聚甲醛、30%聚乙烯、4%硬脂酸、2%乙烯-醋酸乙烯共聚物、2%邻苯二甲酸二辛酯、2%尼龙、2%石蜡和2%抗氧化剂(bht)。具体制备步骤如下:

混炼:混炼机预热温度设定为180℃,将称好的陶瓷粉末与塑基黏结剂放入已预热的混炼机中,预热转速为8r/min,混合料的预热时间为60min,预热结束,将混炼温度提升至190℃,混炼转速40r/min,混炼时间50min。

挤出制粒:将混炼得到的物料加入至挤出机中,塑化后挤出并造粒,得到待注射成形的喂料。

注射成形:注射成形混合料在注射成形机上注射成形得到坯体,注射温度为190℃,保压压力为40mpa,注入模具后在2分钟内脱模得到成型坯体。

催化脱脂:将注射成形得到的坯体放入硝酸催化脱脂炉中脱脂,脱脂温度110℃、脱脂时间25h、硝酸流量5g/min。

烧结:将催化脱脂后的生坯放入烧结炉中进行烧结,烧结温度1600℃,保温时间6h。

本实施例制备得到的陶瓷介质滤波器的致密度为99%,尺寸公差为0.01mm,平面度为0.02mm。

实施例五

本发明的实施例五:一种陶瓷介质滤波器喂料及其制备方法,其粉体组成为:cao、ca(oh)2、caco3、mgo、mg(oh)2、mgco3、caco3·mgco3、tio2、zro2、al2o3、zno、sno2、nb2o5、mno2、moo3、wo3、b2o3、b2o3、bao和baco3。将陶瓷粉末与塑基黏结剂进行密炼,得到混合料,所述混合料中陶瓷粉末的重量百分比为70%,即,陶瓷粉末与塑基黏结剂的重量比为70:30,所述陶瓷粉末的粒径为2μm。塑基黏结剂为:58%聚甲醛、30%聚苯烯、4%硬脂酸锌、2%乙烯-醋酸乙烯共聚物、2%邻苯二甲酸二辛酯、2%尼龙和2%石蜡。具体制备步骤如下:

混炼:混炼机预热温度设定为200℃,将称好的陶瓷粉末与塑基黏结剂放入已预热的混炼机中,预热转速为2r/min,混合料的预热时间为20min,预热结束,将混炼温度维持180℃,混炼转速45r/min,混炼时间60min。

挤出制粒:将混炼得到的物料加入至挤出机中,塑化后挤出并造粒,得到待注射成形的喂料。

注射成形:注射成形混合料在注射成形机上注射成形得到坯体,注射温度为180℃,保压压力为60mpa,注入模具后在2分钟内脱模得到成型坯体。

催化脱脂:将注射成形得到的坯体放入硝酸催化脱脂炉中脱脂,脱脂温度120℃、脱脂时间20h、硝酸流量7g/min。

烧结:将脱脂后的生坯放入烧结炉中进行烧结,烧结温度1500℃,保温时间8h。

本实施例制备得到的陶瓷介质滤波器的致密度为98.8%,尺寸公差为0.02mm,平面度为0.02mm。

实施例六

本发明的实施例六:一种陶瓷介质滤波器喂料及其制备方法,其粉体组成为:cao、ca(oh)2、caco3、mgco3、caco3·mgco3、tio2、zro2、al2o3、zno、sno2、mno2、co2o3、pbo2、moo3、wo3、b2o3、bao和baco3。将陶瓷粉末与黏结剂进行密炼,得到混合料,所述混合料中陶瓷粉末的重量百分比为75%,即,陶瓷粉末与塑基黏结剂的重量比为75:25,所述陶瓷粉末的粒径为3μm。塑基黏结剂为:60%聚甲醛、30%聚苯烯、2%硬脂酸、2%乙烯-醋酸乙烯共聚物、2%邻苯二甲酸二辛酯、2%尼龙和2%抗氧化剂(bha)。具体制备步骤如下:

混炼:混炼机预热温度设定为150℃,将称好的陶瓷粉末与塑基黏结剂放入已预热的混炼机中,预热转速为12r/min,混合料的预热时间为90min,预热结束,将混炼温度提升至200℃,混炼转速30r/min,混炼时间40min。

挤出制粒:将混炼得到的物料加入至挤出机中,塑化后挤出并造粒,得到待注射成形的喂料。

注射成形:注射成形混合料在注射成形机上注射成形得到坯体,注射温度为200℃,保压压力为30mpa,注入模具后在2分钟内脱模得到成型坯体。

催化脱脂:将注射成形得到的坯体放入硝酸催化脱脂炉中脱脂,脱脂温度140℃、脱脂时间17h、硝酸流量9g/min。

烧结:将脱脂后的生坯放入烧结炉中进行烧结,烧结温度1650℃,保温时间7h。

本实施例制备得到的陶瓷介质滤波器的致密度为99%,尺寸公差为0.02mm,平面度为0.01mm。

实施例七

本发明的实施例七:一种陶瓷介质滤波器喂料及其制备方法,其粉体组成为:cao、ca(oh)2、caco3、mgo、mg(oh)2、mgco3、caco3·mgco3、tio2、zro2、sno2、nb2o5、mno2、co2o3、pbo2、moo3、wo3、b2o3和bao。将陶瓷粉末与塑基黏结剂进行密炼,得到混合料,所述混合料中陶瓷粉末的重量百分比为80%,即,陶瓷粉末与塑基黏结剂的重量比为80:20,所述陶瓷粉末的粒径为4μm。塑基黏结剂为:62%聚甲醛、28%聚乙烯、2%硬脂酸、2%乙烯-醋酸乙烯共聚物、2%邻苯二甲酸二辛酯、2%石蜡和2%抗氧化剂(bht)。具体制备步骤如下:

混炼:混炼机预热温度设定为170℃,将称好的陶瓷粉末与塑基黏结剂放入已预热的混炼机中,预热转速为9r/min,混合料的预热时间为70min,预热结束,将混炼温度维持170℃,混炼转速50r/min,混炼时间80min。

挤出制粒:将混炼得到的物料加入至挤出机中,塑化后挤出并造粒,得到待注射成形的喂料。

注射成形:注射成形混合料在注射成形机上注射成形得到坯体,注射温度为170℃,保压压力为20mpa,注入模具后在2分钟内脱模得到成型坯体。

催化脱脂:将注射成形得到的坯体放入硝酸催化脱脂炉中脱脂,脱脂温度120℃、脱脂时间20h、硝酸流量7g/min。

烧结:将催化脱脂后的生坯放入烧结炉中进行烧结,烧结温度1550℃,保温时间8.5h。

本实施例制备得到的陶瓷介质滤波器的致密度为99.1%,尺寸公差为0.02mm,平面度为0.03mm。

实施例八

本发明的实施例八:一种陶瓷介质滤波器喂料及其制备方法,其粉体组成为:cao、ca(oh)2、caco3、mgo、mg(oh)2、mgco3、8-tio2、zro2、al2o3、zno、sno2、nb2o5、mno2、co2o3、pbo2、moo3和b2o3。将陶瓷粉末与塑基黏结剂进行密炼,得到混合料,所述混合料中陶瓷粉末的重量百分比为85%,即,陶瓷粉末与塑基黏结剂的重量比为85:15,所述陶瓷粉末的粒径为2μm。塑基黏结剂为:64%聚甲醛、24%聚乙烯、2%硬脂酸锌、2%乙烯-醋酸乙烯共聚物、2%邻苯二甲酸二辛酯、2%尼龙、2%石蜡和2%抗氧化剂(bha)。具体制备步骤如下:

混炼:混炼机预热温度设定为190℃,将称好的陶瓷粉末与塑基黏结剂放入已预热的混炼机中,预热转速为7r/min,混合料的预热时间为40min,预热结束,将混炼温度维持190℃,混炼转速40r/min,混炼时间50min。

挤出制粒:将混炼得到的物料加入至挤出机中,塑化后挤出并造粒,得到待注射成形的喂料。

注射成形:注射成形混合料在注射成形机上注射成形得到坯体,注射温度为190℃,保压压力为70mpa,注入模具后在2分钟内脱模得到成型坯体。

催化脱脂:将注射成形得到的坯体放入硝酸催化脱脂炉中脱脂,脱脂温度120℃、脱脂时间20h、硝酸流量7g/min。

烧结:将催化脱脂后的生坯放入烧结炉中进行烧结,烧结温度1750℃,保温时间4.5h。

本实施例制备得到的陶瓷介质滤波器的致密度为99.4%,尺寸公差为0.02mm,平面度为0.04mm。

实施例九

本发明的实施例九:一种陶瓷介质滤波器喂料及其制备方法,其粉体组成为:cao、ca(oh)2、mg(oh)2、mgco3、caco3·mgco3、tio2、zro2、al2o3、zno、nb2o5、mno2、co2o3、pbo2、moo3、wo3、b2o3和baco3。将陶瓷粉末与塑基黏结剂进行密炼,得到混合料,所述混合料中陶瓷粉末的重量百分比为66%,即,陶瓷粉末与塑基黏结剂的重量比为66:34,所述陶瓷粉末的粒径为0.5μm。塑基黏结剂为:66%聚甲醛、24%聚苯烯、2%硬脂酸锌、2%乙烯-醋酸乙烯共聚物、2%邻苯二甲酸二辛酯、2%石蜡、2%抗氧化剂bha。具体制备步骤如下:

混炼:混炼机预热温度设定为210℃,将称好的陶瓷粉末与塑基黏结剂放入已预热的混炼机中,预热转速为3r/min,混合料的预热时间为10min,预热结束,将混炼温度维持200℃,混炼转速30r/min,混炼时间40min。

挤出制粒:将混炼得到的物料加入至挤出机中,塑化后挤出并造粒,得到待注射成形的喂料。

注射成形:注射成形混合料在注射成形机上注射成形得到坯体,注射温度为200℃,保压压力为100mpa,注入模具后在2分钟内脱模得到成型坯体。

催化脱脂:将注射成形得到的坯体放入硝酸催化脱脂炉中脱脂,脱脂温度100℃、脱脂时间28h、硝酸流量3g/min;

烧结:将催化脱脂后的生坯放入烧结炉中进行烧结,烧结温度1150℃,保温时间9.5h。

本实施例制备得到的陶瓷介质滤波器的致密度为98.7%,尺寸公差为0.03mm,平面度为0.02mm。

实施例十

本发明的实施例十:一种陶瓷介质滤波器喂料及其制备方法,其粉体组成为:ca(oh)2、mgo、mg(oh)2、mgco3、caco3·mgco3、tio2、zro2、al2o3、sno2、nb2o5、mno2、co2o3、pbo2、moo3、wo3、b2o3和bao。将陶瓷粉末与塑基黏结剂进行密炼,得到混合料,所述混合料中陶瓷粉末的重量百分比为71%,即,陶瓷粉末与塑基黏结剂的重量比为71:29,所述陶瓷粉末的粒径为4μm。塑基黏结剂为:68%聚甲醛、22%聚苯烯、2%硬脂酸、2%乙烯-醋酸乙烯共聚物、2%邻苯二甲酸二辛酯、2%石蜡、2%抗氧化剂bht。具体制备步骤如下:

混炼:混炼机预热温度设定为140℃,将称好的陶瓷粉末与塑基黏结剂放入已预热的混炼机中,预热转速为14r/min,混合料的预热时间为100min,预热结束,将混炼温度维持150℃,混炼转速60r/min,混炼时间120min。

挤出制粒:将混炼得到的物料加入至挤出机中,塑化后挤出并造粒,得到待注射成形的喂料。

注射成形:注射成形混合料在注射成形机上注射成形得到坯体,注射温度为150℃,保压压力为50mpa,注入模具后在2分钟内脱模得到成型坯体。

催化脱脂:将注射成形得到的坯体放入硝酸催化脱脂炉中脱脂,脱脂温度130℃、脱脂时间18h、硝酸流量8g/min。

烧结:将催化脱脂后的生坯放入烧结炉中进行烧结,烧结温度1450℃,保温时间3h。

本实施例制备得到的陶瓷介质滤波器的致密度为99.2%,尺寸公差为0.02mm,平面度为0.04mm。

实施例十一

本发明的实施例十一:一种陶瓷介质滤波器喂料及其制备方法,其粉体组成为:cao、caco3、mg(oh)2、mgco3、caco3·mgco3、tio2、zro2、al2o3、zno、sno2、nb2o5、mno2、co2o3、pbo2、moo3、b2o3和baco3。将陶瓷粉末与塑基黏结剂进行密炼,得到混合料,所述混合料中陶瓷粉末的重量百分比为68%,即,陶瓷粉末与塑基黏结剂的重量比为68:32,所述陶瓷粉末的粒径为0.8μm。塑基黏结剂为:70%聚甲醛、20%聚乙烯、2%硬脂酸、2%乙烯-醋酸乙烯共聚物、2%邻苯二甲酸二辛酯、2%石蜡、2%抗氧化剂bht。具体制备步骤如下:

混炼:混炼机预热温度设定为150℃,将称好的陶瓷粉末与塑基黏结剂放入已预热的混炼机中,预热转速为13r/min,混合料的预热时间为90min,预热结束,将混炼温度维持160℃,混炼转速55r/min,混炼时间100min。

挤出制粒:将混炼得到的物料加入至挤出机中,塑化后挤出并造粒,得到待注射成形的喂料。

注射成形:注射成形混合料在注射成形机上注射成形得到坯体,注射温度为160℃,保压压力为60mpa,注入模具后在2分钟内脱模得到成型坯体。

催化脱脂:将注射成形得到的坯体放入硝酸催化脱脂炉中脱脂,脱脂温度100℃、脱脂时间28h、硝酸流量3g/min。

烧结:将催化脱脂后的生坯放入烧结炉中进行烧结,烧结温度1400℃,保温时间4h。

本实施例制备得到的陶瓷介质滤波器的致密度为99.5%,尺寸公差为0.02mm,平面度为0.01mm。

实施例十二

本发明的实施例十二:一种陶瓷介质滤波器喂料及其制备方法,其粉体组成为:cao、caco3、mgo、mg(oh)2、mgco3、caco3·mgco3、tio2、zro2、al2o3、zno、sno2、mno2、co2o3、pbo2、wo3、b2o3和bao。将陶瓷粉末与塑基黏结剂进行密炼,得到混合料,所述混合料中陶瓷粉末的重量百分比为77%,即,陶瓷粉末与塑基黏结剂的重量比为77:23,所述陶瓷粉末的粒径为3μm。塑基黏结剂为:72%聚甲醛、18%聚乙烯、2%硬脂酸锌、2%乙烯-醋酸乙烯共聚物、2%邻苯二甲酸二辛酯、2%尼龙和2%抗氧化剂(bha)。具体制备步骤如下:

混炼:混炼机预热温度设定为180℃,将称好的陶瓷粉末与塑基黏结剂放入已预热的混炼机中,预热转速为8r/min,混合料的预热时间为60min,预热结束,将混炼温度维持180℃,混炼转速45r/min,混炼时间60min。

挤出制粒:将混炼得到的物料加入至挤出机中,塑化后挤出并造粒,得到待注射成形的喂料。

注射成形:注射成形混合料在注射成形机上注射成形得到坯体,注射温度为180℃,保压压力为40mpa,注入模具后在2分钟内脱模得到成型坯体。

催化脱脂:将注射成形得到的坯体放入硝酸催化脱脂炉中脱脂,脱脂温度110℃、脱脂时间25h、硝酸流量5g/min。

烧结:将催化脱脂后的生坯放入烧结炉中进行烧结,烧结温度1200℃,保温时间8h。

本实施例制备得到的陶瓷介质滤波器的致密度为99.1%,尺寸公差为0.03mm,平面度为0.04mm。

实施例十三

本发明的实施例十三:一种陶瓷介质滤波器喂料及其制备方法,其粉体组成为:cao、ca(oh)2、caco3、mgo、mg(oh)2、caco3·mgco3、zro2、al2o3、zno、sno2、nb2o5、mno2、co2o3、pbo2、moo3、wo3和b2o3。将陶瓷粉末与塑基黏结剂进行密炼,得到混合料,所述混合料中陶瓷粉末的重量百分比为78%,即,陶瓷粉末与塑基黏结剂的重量比为78:22,所述陶瓷粉末的粒径为2μm。塑基黏结剂为:74%聚甲醛、16%聚苯烯、2%硬脂酸锌、2%乙烯-醋酸乙烯共聚物、2%邻苯二甲酸二辛酯、2%尼龙和2%抗氧化剂(bha)。具体制备步骤如下:

混炼:混炼机预热温度设定为170℃,将称好的陶瓷粉末与塑基黏结剂放入已预热的混炼机中,预热转速为10r/min,混合料的预热时间为70min,预热结束,将混炼温度维持170℃,混炼转速50r/min,混炼时间80min。

挤出制粒:将混炼得到的物料加入至挤出机中,塑化后挤出并造粒,得到待注射成形的喂料。

注射成形:注射成形混合料在注射成形机上注射成形得到坯体,注射温度为170℃,保压压力为10mpa,注入模具后在2分钟内脱模得到成型坯体。

催化脱脂:将注射成形得到的坯体放入硝酸催化脱脂炉中脱脂,脱脂温度140℃、脱脂时间17h、硝酸流量9g/min。

烧结:将催化脱脂后的生坯放入烧结炉中进行烧结,烧结温度1400℃,保温时间4h。

本实施例制备得到的陶瓷介质滤波器的致密度为99.6%,尺寸公差为0.03mm,平面度为0.02mm。

实施例十四

本发明的实施例十四:一种陶瓷介质滤波器喂料及其制备方法,其粉体组成为:cao、ca(oh)2、caco3、mgo、mg(oh)2、mgco3、caco3·mgco3、tio2、zro2、zno、sno2、nb2o5、mno2、co2o3、moo3、wo3、b2o3和baco3。将陶瓷粉末与塑基黏结剂进行密炼,得到混合料,所述混合料中陶瓷粉末的重量百分比为81%,即,陶瓷粉末与塑基黏结剂的重量比为81:19,所述陶瓷粉末的粒径为5μm。塑基黏结剂为:76%聚甲醛、14%聚苯烯、2%硬脂酸锌、2%乙烯-醋酸乙烯共聚物、2%邻苯二甲酸二辛酯、2%石蜡和2%抗氧化剂(bha)。具体制备步骤如下:

混炼:混炼机预热温度设定为190℃,将称好的陶瓷粉末与塑基黏结剂放入已预热的混炼机中,预热转速为6r/min,混合料的预热时间为40min,预热结束,将混炼温度维持190℃,混炼转速40r/min,混炼时间50min。

挤出制粒:将混炼得到的物料加入至挤出机中,塑化后挤出并造粒,得到待注射成形的喂料。

注射成形:注射成形混合料在注射成形机上注射成形得到坯体,注射温度为190℃,保压压力为80mpa,注入模具后在2分钟内脱模得到成型坯体。

催化脱脂:将注射成形得到的坯体放入硝酸催化脱脂炉中脱脂,脱脂温度130℃、脱脂时间18h、硝酸流量8g/min。

烧结:将催化脱脂后的生坯放入烧结炉中进行烧结,烧结温度1100℃,保温时间10h。

本实施例制备得到的陶瓷介质滤波器的致密度为97.5%,尺寸公差为0.04mm,平面度为0.04mm。

实施例十五

本发明的实施例十五:一种陶瓷介质滤波器喂料及其制备方法,其粉体组成为:cao、ca(oh)2、caco3、mgo、mgco3、caco3·mgco3、tio2、zro2、al2o3、zno、sno2、nb2o5、co2o3、pbo2、moo3、wo3、b2o3和bao。将陶瓷粉末与塑基黏结剂进行密炼,得到混合料,所述混合料中陶瓷粉末的重量百分比为83%,即,陶瓷粉末与塑基黏结剂的重量比83:17,所述陶瓷粉末的粒径为0.8μm。塑基黏结剂为:78%聚甲醛、6%聚乙烯、6%聚苯烯、2%硬脂酸、2%硬脂酸锌、2%乙烯-醋酸乙烯共聚物、2%石蜡和2%抗氧化剂(bht)。具体制备步骤如下:

混炼:混炼机预热温度设定为160℃,将称好的陶瓷粉末与塑基黏结剂放入已预热的混炼机中,预热转速为12r/min,混合料的预热时间为80min,预热结束,将混炼温度维持160℃,混炼转速55r/min,混炼时间100min。

挤出制粒:将混炼得到的物料加入至挤出机中,塑化后挤出并造粒,得到待注射成形的喂料。

注射成形:注射成形混合料在注射成形机上注射成形得到坯体,注射温度为170℃,保压压力为70mpa,注入模具后在2分钟内脱模得到成型坯体。

催化脱脂:将注射成形得到的坯体放入硝酸催化脱脂炉中脱脂,脱脂温度150℃、脱脂时间15h、硝酸流量10g/min。

烧结:将催化脱脂后的生坯放入烧结炉中进行烧结,烧结温度1200℃,保温时间8h。

本实施例制备得到的陶瓷介质滤波器的致密度为99.2%,尺寸公差为0.02mm,平面度为0.03mm。

实施例十六

本发明的实施例十六:一种陶瓷介质滤波器喂料及其制备方法,其粉体组成为:cao、ca(oh)2、caco3、mgo、mg(oh)2、mgco3、tio2、zro2、al2o3、zno、sno2、nb2o5、mno2、pbo2、moo3、wo3、b2o3和baco3。将陶瓷粉末与塑基黏结剂进行密炼,得到混合料,所述混合料中陶瓷粉末的重量百分比为87%,即,陶瓷粉末与塑基黏结剂的重量比为87:13,所述陶瓷粉末的粒径为1μm。塑基黏结剂为:80%聚甲醛、5%聚乙烯、5%聚苯烯、2%硬脂酸、2%硬脂酸锌、2%邻苯二甲酸二辛酯、2%尼龙和2%抗氧化剂(bha)。具体制备步骤如下:

混炼:混炼机预热温度设定为180℃,将称好的陶瓷粉末与塑基黏结剂放入已预热的混炼机中,预热转速为8r/min,混合料的预热时间为60min,预热结束,将混炼温度维持180℃,混炼转速45r/min,混炼时间60min。

挤出制粒:将混炼得到的物料加入至挤出机中,塑化后挤出并造粒,得到待注射成形的喂料。

注射成形:注射成形混合料在注射成形机上注射成形得到坯体,注射温度为190℃,保压压力为90mpa,注入模具后在2分钟内脱模得到成型坯体。

催化脱脂:将注射成形得到的坯体放入硝酸催化脱脂炉中脱脂,脱脂温度140℃、脱脂时间17h、硝酸流量9g/min。

烧结:将催化脱脂后的生坯放入烧结炉中进行烧结,烧结温度1300℃,保温时间6h。

本实施例制备得到的陶瓷介质滤波器的致密度为99.3%,尺寸公差为0.01mm,平面度为0.02mm。

实施例十七

本发明的实施例十七:一种陶瓷介质滤波器喂料及其制备方法,其粉体组成为:cao、ca(oh)2、mgo、mg(oh)2、mgco3、caco3·mgco3、tio2、zro2、al2o3、zno、sno2、nb2o5、mno2、co2o3、pbo2、moo3、wo3和baco3。将陶瓷粉末与塑基黏结剂进行密炼,得到混合料,所述混合料中陶瓷粉末的重量百分比为69%,即,陶瓷粉末与塑基黏结剂的重量比为69:31,所述陶瓷粉末的粒径为2μm。塑基黏结剂为:82%聚甲醛、4%聚乙烯、4%聚苯烯、2%硬脂酸、2%硬脂酸锌、2%乙烯-醋酸乙烯共聚物、2%邻苯二甲酸二辛酯和2%石蜡。具体制备步骤如下:

混炼:混炼机预热温度设定为170℃,将称好的陶瓷粉末与塑基黏结剂放入已预热的混炼机中,预热转速为10r/min,混合料的预热时间为70min,预热结束,将混炼温度维持170℃,混炼转速50r/min,混炼时间80min。

挤出制粒:将混炼得到的物料加入至挤出机中,塑化后挤出并造粒,得到待注射成形的喂料。

注射成形:注射成形混合料在注射成形机上注射成形得到坯体,注射温度为170℃,保压压力为30mpa,注入模具后在2分钟内脱模得到成型坯体。

催化脱脂:将注射成形得到的坯体放入硝酸催化脱脂炉中脱脂,脱脂温度120℃、脱脂时间20h、硝酸流量7g/min。

烧结:将催化脱脂后的生坯放入烧结炉中进行烧结,烧结温度1250℃,保温时间8.5h。

本实施例制备得到的陶瓷介质滤波器的致密度为99.1%,尺寸公差为0.03mm,平面度为0.02mm。

实施例十八

本发明的实施例十八:一种陶瓷介质滤波器喂料及其制备方法,其粉体组成为:ca(oh)2、caco3、mgo、mg(oh)2、mgco3、caco3·mgco3、tio2、zro2、al2o3、zno、sno2、nb2o5、mno2、co2o3、pbo2、moo3、b2o3和baco3。将陶瓷粉末与塑基黏结剂进行密炼,得到混合料,所述混合料中陶瓷粉末的重量百分比为67%,即,陶瓷粉末与塑基黏结剂的重量比为67:33,所述陶瓷粉末的粒径为4μm。塑基黏结剂为:84%聚甲醛、3%聚乙烯、3%聚苯烯、2%硬脂酸锌、2%乙烯-醋酸乙烯共聚物、2%邻苯二甲酸二辛酯、2%尼龙和2%抗氧化剂(bha)。

具体制备步骤如下:

混炼:混炼机预热温度设定为190℃,将称好的陶瓷粉末与塑基黏结剂放入已预热的混炼机中,预热转速为6r/min,混合料的预热时间为40min,预热结束,将混炼温度维持190℃,混炼转速40r/min,混炼时间50min。

挤出制粒:将混炼得到的物料加入至挤出机中,塑化后挤出并造粒,得到待注射成形的喂料。

注射成形:注射成形混合料在注射成形机上注射成形得到坯体,注射温度为180℃,保压压力为20mpa,注入模具后在2分钟内脱模得到成型坯体。

催化脱脂:将注射成形得到的坯体放入硝酸催化脱脂炉中脱脂,脱脂温度900℃、脱脂时间30h、硝酸流量1g/min。

烧结:将催化脱脂后的生坯放入烧结炉中进行烧结,烧结温度1400℃,保温时间4h。

本实施例制备得到的陶瓷介质滤波器的致密度为99.4%,尺寸公差为0.02mm,平面度为0.02mm。

实施例十九

本发明的实施例十九:一种陶瓷介质滤波器喂料及其制备方法,其粉体组成为:cao、ca(oh)2、caco3、mgo、mgco3、caco3·mgco3、tio2、zro2、al2o3、zno、nb2o5、mno2、co2o3、pbo2、moo3、wo3和b2o3,将陶瓷粉末与塑基黏结剂进行密炼,得到混合料,所述混合料中陶瓷粉末的重量百分比为89%,即,陶瓷粉末与塑基黏结剂的重量比为89:11,所述陶瓷粉末的粒径为2μm。塑基黏结剂为:86%聚甲醛、4%聚乙烯、4%聚苯烯、2%硬脂酸、1%硬脂酸锌、1%乙烯-醋酸乙烯共聚物、1%邻苯二甲酸二辛酯、1%尼龙。具体制备步骤如下:

混炼:混炼机预热温度设定为200℃,将称好的陶瓷粉末与塑基黏结剂放入已预热的混炼机中,预热转速为4r/min,混合料的预热时间为20min,预热结束,将混炼温度维持150℃,混炼转速60r/min,混炼时间120min。

挤出制粒:将混炼得到的物料加入至挤出机中,塑化后挤出并造粒,得到待注射成形的喂料。

注射成形:注射成形混合料在注射成形机上注射成形得到坯体,注射温度为150℃,保压压力为60mpa,注入模具后在2分钟内脱模得到成型坯体。

催化脱脂:将注射成形得到的坯体放入硝酸催化脱脂炉中脱脂,脱脂温度120℃、脱脂时间20h、硝酸流量7g/min。

烧结:将催化脱脂后的生坯放入烧结炉中进行烧结,烧结温度1600℃,保温时间8h。

本实施例制备得到的陶瓷介质滤波器的致密度为98%,尺寸公差为0.03mm,平面度为0.03mm。

实施例二十

本发明的实施例二十:一种陶瓷介质滤波器喂料及其制备方法,其粉体组成为:cao、ca(oh)2、caco3、mg(oh)2、mgco3、caco3·mgco3、tio2、zro2、al2o3、12-sno2、nb2o5、mno2、co2o3、pbo2、moo3、wo3、b2o3和bao。将陶瓷粉末与塑基黏结剂进行密炼,得到混合料,所述混合料中陶瓷粉末的重量百分比为87%,即,陶瓷粉末与塑基黏结剂的重量比为87:23,所述陶瓷粉末的粒径为0.5μm。塑基黏结剂为:88%聚甲醛、2%聚乙烯、3%聚苯烯、2%硬脂酸、2%乙烯-醋酸乙烯共聚物、1%邻苯二甲酸二辛酯、1%石蜡和1%抗氧化剂(bht)。具体制备步骤如下:

混炼:混炼机预热温度设定为200℃,将称好的陶瓷粉末与塑基黏结剂放入已预热的混炼机中,预热转速为4r/min,混合料的预热时间为20min,预热结束,将混炼温度维持160℃,混炼转速55r/min,混炼时间100min。

挤出制粒:将混炼得到的物料加入至挤出机中,塑化后挤出并造粒,得到待注射成形的喂料。

注射成形:注射成形混合料在注射成形机上注射成形得到坯体,注射温度为160℃,保压压力为40mpa,注入模具后在2分钟内脱模得到成型坯体。

催化脱脂:将注射成形得到的坯体放入硝酸催化脱脂炉中脱脂,脱脂温度130℃、脱脂时间18h、硝酸流量8g/min。

烧结:将催化脱脂后的生坯放入烧结炉中进行烧结,烧结温度1350℃,保温时间7h。

本实施例制备得到的陶瓷介质滤波器的致密度为99%,尺寸公差为0.02mm,平面度为0.02mm。

实施例二十一

本发明的实施例二十一:一种陶瓷介质滤波器喂料及其制备方法,其粉体组成为:cao、caco3、mgo、mg(oh)2、mgco3、caco3·mgco3、tio2、zro2、al2o3、zno、sno2、mno2、co2o3、pbo2、moo3、wo3、b2o3和baco3。将陶瓷粉末与塑基黏结剂进行密炼,得到混合料,所述混合料中陶瓷粉末的重量百分比为61%,即,陶瓷粉末与塑基黏结剂的重量比为61:29,所述陶瓷粉末的粒径为0.8μm。塑基黏结剂为:89%聚甲醛、3%聚乙烯、3%聚苯烯、1%硬脂酸、1%硬脂酸锌、1%邻苯二甲酸二辛酯、1%尼龙、1%石蜡。具体制备步骤如下:

混炼:混炼机预热温度设定为160℃,将称好的陶瓷粉末与塑基黏结剂放入已预热的混炼机中,预热转速为12r/min,混合料的预热时间为80min,预热结束,将混炼温度提升至170℃,混炼转速50r/min,混炼时间80min。

挤出制粒:将混炼得到的物料加入至挤出机中,塑化后挤出并造粒,得到待注射成形的喂料。

注射成形:注射成形混合料在注射成形机上注射成形得到坯体,注射温度为180℃,保压压力为90mpa,注入模具后在2分钟内脱模得到成型坯体。

催化脱脂:将注射成形得到的坯体放入硝酸催化脱脂炉中脱脂,脱脂温度90℃、脱脂时间30h、硝酸流量1g/min。

烧结:将催化脱脂后的生坯放入烧结炉中进行烧结,烧结温度1150℃,保温时间9.5h。

本实施例制备得到的陶瓷介质滤波器的致密度为97%,尺寸公差为0.05mm,平面度为0.06mm。

实施例二十二

本发明的实施例二十二:一种陶瓷介质滤波器喂料及其制备方法,其粉体组成为:cao、ca(oh)2、caco3、mgo、caco3·mgco3、tio2、zro2、al2o3、zno、sno2、nb2o5、mno2、co2o3、pbo2、wo3、b2o3和bao。将陶瓷粉末与塑基黏结剂进行密炼,得到混合料,所述混合料中陶瓷粉末的重量百分比为63%,即,陶瓷粉末与塑基黏结剂的重量比为63:27,所述陶瓷粉末的粒径为2μm。塑基黏结剂为:90%聚甲醛、2%聚苯烯、2%硬脂酸、2%硬脂酸锌、2%乙烯-醋酸乙烯共聚物、1%邻苯二甲酸二辛酯和1%尼龙。具体制备步骤如下:

混炼:混炼机预热温度设定为180℃,将称好的陶瓷粉末与塑基黏结剂放入已预热的混炼机中,预热转速为8r/min,混合料的预热时间为60min,预热结束,将混炼温度维持180℃,混炼转速45r/min,混炼时间60min。

挤出制粒:将混炼得到的物料加入至挤出机中,塑化后挤出并造粒,得到待注射成形的喂料。

注射成形:注射成形混合料在注射成形机上注射成形得到坯体,注射温度为190℃,保压压力为100mpa,注入模具后在2分钟内脱模得到成型坯体。

催化脱脂:将注射成形得到的坯体放入硝酸催化脱脂炉中脱脂,脱脂温度100℃、脱脂时间28h、硝酸流量3g/min。

烧结:将催化脱脂后的生坯放入烧结炉中进行烧结,烧结温度1350℃,保温时间7h。

本实施例制备得到的陶瓷介质滤波器的致密度为99.5%,尺寸公差为0.03mm,平面度为0.04mm。

本发明人多年的反复探索和实践表明,本领域的技术人员没有动机去考虑本发明的技术构思,不存在采用“公知常识”或“惯用手段”的问题。退一步说,即使有了构思,涉及的多个因素往往都是相互制约的,相互影响的,并不是相互独立的,即使采用正交涉及等现代化科学手段,仍然有无穷的可能组合,而且不能预测出足够优异的技术方案,“有限次的实验”不可能得到各因素的适当取值,足够优异的技术方案更不是“显而易见”的。

本发明的以上众多实施例并不是对本发明的限定。本领域的技术人员可以理解,在不偏离本发明的精神和构思的前提下,任何对本发明技术方案的细节和形式进行的修改、补充、完善和替换,均在所附权利要求书的保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1