用于执行现场伸长量测量的方法以及设备与流程

文档序号:22889035发布日期:2020-11-10 18:10阅读:246来源:国知局
用于执行现场伸长量测量的方法以及设备与流程

相关申请的优先权

本申请要求于2018年1月19日提交的序列号为62/709,458的美国临时申请的权益,该临时申请通过援引以其全部内容并入本文。

本发明总体上涉及后张拉混凝土施工,尤其涉及后张拉钢筋束伸长量的测量。



背景技术:

后张拉施工是一种用钢丝绳加强混凝土的方法。钢筋混凝土是一种复合材料,其比传统混凝土具有更大的抵抗纯力的强度,如果以某种方式对钢筋施加应力以抵抗预期的建筑物荷载,则钢筋强度甚至可以变得更大。

在后张拉施工中,在浇注混凝土之前,将松弛的钢筋束设置在混凝土浇筑件中。后张拉钢筋束被封闭在塑料护套中,塑料护套填充有油脂并紧紧地包裹或浇筑在钢筋束上,以保护钢筋束防止腐蚀并防止固定在混凝土上。钢筋束在其护套内具有横向移动的自由度,直到钢筋束的两端都锁定在其锚固件中为止。带护套的钢筋束放置或固定在预成型混凝土浇筑区域内的位置和几何形状被设计成在混凝土凝固和钢筋束张紧后施加所需的力。这些钢筋束典型地被布置为分配压缩力、防止开裂、并且抵消预期放置在结构上的所有荷载。

钢筋束的一端可以设置在固定在浇筑模板上的锚固件中,使得钢筋束不会离开混凝土浇筑区域;以这种方式锚固的端部称为“死端”。通过围绕钢筋束设置多个半圆锥形抓持装置(称为“楔形件”)并将其安置在锚固件中,将钢筋束设置在锚固件中。当施加适当的计示压力时,楔形件将被锁定至锚固件。

替代性地,钢筋束的端部最初可能留有‘尾部’,该尾部延伸穿过其锚固件并超出浇筑模板,以供以后张拉;这样的端部被称为“活端”或“施力端”。较长的钢筋束通常将两端都作为活端或施力端。

在浇注混凝土时,浇筑模板内带护套的钢筋束被混凝土完全包围,只露出活端尾部。锚固件被浇筑到混凝土中,并且大部分被混凝土包围,其外表面的一部分露在负空间的“凹穴”内,该负空间由设置在混凝土结构外表面中的塑料凹穴模板形成。钢筋束的活端的尾部从混凝土结构伸出。当混凝土凝固后,拆下浇筑模板和凹穴模板,并擦去露出的钢筋束上的油脂为标记过程做准备(将在下文讨论)。施力端“预设”有楔形件,这些楔形件围绕钢筋束并且部分地进入锚固件中。在张拉期间,当施加足够的张力时,预设楔形件将锁定至锚固件,并且完全安置在锚固件中。直到楔形件被锁定,楔形件才会部分地从锚固件中伸出,并且在完全就位后可能会延伸到锚固件的外部。

在混凝土凝固到可接受的强度后,将以千磅为单位测量的所需的张力加载到钢筋束上。这是典型地通过液压千斤顶(可互换地称为“千斤顶”或“柱塞”)完成的。市场上有许多可用的千斤顶,比如美国专利号4,805,877中披露的装置。钢筋束可以在浇筑后24至72小时内被预加部分荷载(总体上为30%)的“应力”,或者在混凝土凝固7至10天后被完全加载张力,或者以其他方式实现指定的最小混凝土强度。柱塞将其端头安装到凹穴中,并用其齿抓持钢索。柱塞抵抗锚固件内的楔形件拉动抓持的钢筋束,以向钢筋束加载所需的力(大约33千磅)。柱塞压靠在向前推入锚固件的楔形件上。千斤顶在最近校准的仪表或计量器上施加所需的力的大小(以千磅为单位)。理想地,这个测得的大小的力传递到钢筋束中,当钢筋束试图放松时,传递到混凝土中。

然而,有几个原因使柱塞的计量器不能可靠地指示传递到钢筋束中的力。这些原因包括但不限于:安置损耗;蠕变;锚固应变;计量器校准不当;钢筋束受损;钢筋束材料有缺陷;摩擦量异常,其可能是由于固定在混凝土上或安置不充分而造成的;以及人为误差。由于这些和其他风险,现场伸长量测量已经成为标准的质量控制程序,并且被专业和行业组织(比如后张拉研究所)所要求。

现场伸长量测量总体上如下执行:在张拉之前,在凹穴区域外部的每个‘活端’的钢筋束‘尾部’上做参考标记。此标记是通过在混凝土外部面上放置引导件(通常为2×4的板)来制作的,该引导件确保标记放置在柱塞抓持钢筋束的点的外侧。使用引导件作为参考,用喷漆或其他方法在钢筋束上做标记。一旦做好了此参考标记并在锚固件中预设了楔形件,柱塞便对钢筋束加载所需的张力的大小。这将标记从其初始位置移动一段距离,该距离等于钢筋束的伸长量。然后拆下柱塞,将长度相等的引导件(优选为与做初始标记所用的引导件相同)靠着混凝土的面放置,并用l型直角尺测量从引导件边缘到参考标记的距离。

计算钢筋束理论伸长量的方程在本领域中是公知的。采用第三方伸长量测量并对照理论值进行核查。与理论值的偏差可能表明对钢筋束加载的张力的大小不足,或者钢筋束受损或有缺陷。如果理论值(通常为0.078”每英尺钢筋束)与观测值之间存在差异,并且该差异大于可接受的阈值(通常为7%至10%),那么结构工程师将要求重新访问现场,以确认现场伸长量报告本身不是使用者错误。如果确认报告没有转录和没有测量错误,或者差异仍然存在,那么工程师可以命令进行剥离试验和/或重新拉伸,以确认问题钢筋束的伸长量。此试验很少进行第三次,因为张拉动作会导致张力损失,并且因为张拉过程对钢筋束不是完全无损的,这是由于每次拉动和重新安置楔形件时,楔形件的齿会伤害钢筋束。

由于后张拉施工的性质,混凝土结构内通常有大量的钢筋束随时受到应力。所有伸长量的测量都倾向于一次完成,将结果手写在数据表上,数据表之后可以手动转换成数字化形式,并送往程师核查。转录错误、测量错误、无序报告错误和一次性遗漏是常见的,并且导致在第二次现场访问之前对钢筋束伸长量的核查延迟,以尝试在记录工程师核查之前对伸长量报告进行文书修改。

当前方法的问题是由于缺乏标准引导件引起的。做标记步骤期间使用的参考引导件通常与测量时使用的装置不同。这种差异可能是由于使用同一引导件的不同轴线、或者错误地认为两个不同的引导件共享共同的长度;因为变化通常出现在标称大小为2×4的板之间。

当前方法的额外的问题是由于凹穴处混凝土的外部面或边沿的缺陷或角度。钢筋束凹穴的边沿不是完全齐平的,边沿的一些边缘可能比其他边缘延伸得离混凝土的平面更近或更远。因此,由引导件形成的标记将根据引导件被放置抵靠的凹穴的边缘而不同。

当前方法的额外的问题是由于平坦引导件与圆形钢筋束之间的界面小。油漆引导件与钢筋束之间的界面很小,并且会仅在其最顶部产生易碎的分散标记。钢筋束是加过油脂的,并且如果清洁不当,油脂可能会使标记变形。标记变得不能读取的风险随着制作标记的时间与伸长量最终核查之间的时间而持续增大。

当前试验过程是时间密集的,并且当出现错误或需要重新试验时,需要重新访问现场。这些错误通常上直到试验团队离开项目现场后才被发现,并且通常需要第二次现场访问才能继续工作。



技术实现要素:

作为现有方法的这些问题和其他问题的解决方案,本发明是一种用于执行现场伸长量测量的改进方法和设备。在其当前的实施例中,该设备被分成多个操作部分(称为装置,比如‘做标记装置’和‘测量装置’)。作为装置提到操作部分不应被理解为对本发明的限制。在上下文不另外要求的情况下,通常不需要将设备的操作部分实施为物理上分开的装置。

使用设备前,必须擦去模板、凹穴空隙、以及油脂,并清除碎屑。该设备包括标准化定位头部(长度优选为4英寸),该定位头部直接放置在凹穴中,围绕钢筋束,并与锚固件多点磁性接触。头部具有穿过中心的通道,该通道安装在钢筋束上并安置在钢筋束上。头部在其锚固端设置有凹坑,该凹坑被设计成围绕预设在锚固件中并从锚固件部分延伸的楔形件安装并避免与其接触。

头部的接触表面在多个点与锚固件磁性连接,这确保头部垂直于锚固件延伸并与钢筋束齐平安置。当头部已经与锚固件和钢筋束磁性接触并抵靠通道的顶部安置时,设备的其余部分相对于锚固件和钢筋束对准到准确的位置。

做标记装置包括定位头部和做标记工具。做标记装置用于形成参考标记,该参考标记限定钢筋束离开头部的尾侧边缘的横向平面。通过任何无损的做标记方式,比如喷漆和防护物,或者通过将编码的识别标签或胶带固定到钢筋束上,在距锚固件的标准距离(优选为4英寸)处做标记。

然后,通过标准装置(比如柱塞式装置)对钢筋束施加张力。柱塞必须在参考标记的内侧和锚固件的外侧的某个点处抓持钢筋束或对其施加张力。一旦张力被加载到钢筋束上,锚固件和楔形件就安置在一起,以防止钢筋束松弛。

测量装置包括定位头部和测量工具。测量装置的定位头部被设计成与做标记装置的头部相同。这种对称性保证了测量装置安置在钢筋束上、进入凹穴中、与锚固件平齐接触、并保持与做标记装置上的定位头部的位置相同的位置。测量装置的尾侧平面与用于设置参考标记的尾侧平面相同。

测量装置的优选版本具有连接至脊柱件上的定位头部,脊柱件继而连接至测量本体上。在这个实施例中,脊柱件连接至测量装置的定位头部上,并以允许该本体沿着脊柱件侧向地滑动的方式穿过测量本体。这种版本的测量本体的底部具有安置通道,该安置通道允许测量本体安置在钢筋束上。当测量装置的头部保持与锚固件接触时,本体具有沿着钢筋束和脊柱件侧向地滑动的自由度。在操作期间,本体会沿着钢筋束滑动,直到其头侧边缘位于参考标记的正上方。一旦就位,测量装置通过测量参考标记的当前位置与原始位置之间的距离来确定伸长量。

本发明解决了与现有方法相关联的许多问题。该设备的标准化头部通过与锚固件直接接触,绕过了与从由凹穴的外沿限定的点对钢筋束做标记相关联的问题。其他后张拉工具与凹穴相互作用,但是这些工具或者通过向钢筋束施加张力而将其自身抵靠锚固件固定,和/或推压楔形件或者以其他方式与楔形件相互作用。做标记装置的优选版本与钢筋束表面的上半部分接触,在钢筋束的周长的至少40%上留下清晰的标记,改善了由现有方法制作的标记小、不清晰、以及扩散。

一些版本的测量装置包括在每次测量时确定其位置的可选装置。在这些版本中,当进行测量时,位于测量本体的头侧边缘的天线用于确定测量装置的位置。测量装置的位置可以通过任何可购买到的测量方法来确定,比如gps或三角测量系统。这种版本的测量装置将通过比较测量时的位置和已知的钢筋束位置来确认被测钢筋束的身份。伸长量数据与钢筋束识别码进行对照,并保存至测量装置。该数据文件将被传输到计算机或基本上类似的装置,并用于生成伸长量报告,该报告将更准确的伸长尺寸与正确识别的钢筋束联系起来,从而减少了人为误差的主要来源。

附图说明

为了更完整地理解本发明及其优点,现在参考以下结合附图进行的描述,其中:

图1a是做标记装置的实施例的后侧立体图,图示了其部件的总体取向。

图1b是做标记装置的实施例的前侧立体视图,示出了放置在钢筋束周围。

图2a是做标记装置的替代性实施例的侧面立体图,具有内部的局部线框视图,图示了部件的总体取向和放置。

图2b是做标记装置的替代性实施例的侧面立体图,具有内部的局部线框视图,图示了装置和识别标签或胶带的正确放置。

图3是做标记装置的截面视图,示出了定位头部在凹穴中的放置和操作。

图4a是测量装置的侧面立体图,图示了凹穴内部件的总体取向。

图4b是截面视图,图示了测量装置的正确放置和使用。

图5a是确定做标记装置的替代性实施例的位置的可选基站的立体图。

图5b是可选基站的正视图,示出了确定测量装置的实施例的位置。

具体实施方式

在上面的发明内容和下面要求保护的本发明的具体是实施方式中,以及在附图中,提到了本发明的特定特征(包括方法步骤)。应理解,在本说明书中本发明的公开内容包括这些特定特征的所有可能组合。例如,在本发明的特定方面或实施例或特定权利要求的上下文中披露了特定特征的情况下,该特征也可以在可能的程度上与本发明的其他特定方面和实施例组合使用和/或在本发明的其他特定方面和实施例的上下文中使用,以及总体上在本发明中使用。

术语“包括”以及其语法等效物在此用来是指其他组成部分、成分、步骤等是可选地存在的。例如,“包括”(或“其包括”)组成部分a、b和c的物品可以包括(仅包含)组成部分a、b和c,也可以不仅包含组成部分a、b和c还包含一个或多个其他组成部分。

在本文中提到包括两个或更多个确定步骤的方法的情况时,所确定的步骤能以任何顺序或同时(除非上下文排除了这种可能性)进行,并且该方法可以包括一个或多个其他步骤,这些其他步骤在任何确定的步骤之前、在两个确定的步骤之间、或在所有确定的步骤之后(除非上下文排除了这种可能性)进行。

后面跟有数字的术语“至少”在此用来表示以该数字开始的一个范围(可以是具有上限或没有上限的范围,这取决于所限定的变量)的起点。例如,“至少1”是指1或多于1。

解剖学术语用来指示各种结构、表面、以及元件的位置。术语“上面”和/或“头侧”是指靠近或接近装置头部的部分,其中装置的上部或最头侧部分是锚固侧接触表面。术语“下面”和/或“尾侧”是指背离头部或在背离头部的方向上的部分。术语“外侧”是指装置或钢筋束背离所述装置或钢筋束的中心移动的部分。钢筋束的最外侧部分是尾部的末端。术语“内侧”是指装置或钢筋束的倾向于装置或钢筋束的中心的部分。钢筋束的最内侧部分是在混凝土结构的中心。术语“顶部”、“上部”和/或“背侧”是指装置或钢筋束的朝向天线、手柄、显示器、或基站的部分。术语“下部”、“底部”和/或“腹侧”是指总体上远离天线、手柄、显示器、或基站方向的装置的部分。术语“横向平面”描述了分离头侧和尾侧表面的平面。术语“纵向”轴线是指物体的长度的轴线。当用于修饰两个或更多个值、特征、或元件的相似性或相等性时,术语“基本上”意指包括相似的值、特征、或元件,其替换不会从根本上改变初始值、特征、或元件的功能,如相关领域的普通技术人员所理解的。

通过参考附图中描绘的设备的图示实施例,可以最好地理解本发明的原理及其优点,其中相同的数字表示相同的部分。在以下的描述中,呈现了公知的元件而没有详细描述,以免在不必要的细节上使本发明模糊。在大多数情况下,由于这样的细节在相关领域普通技术人员的技能范围内,所以省略了获得对本发明的完全理解不必要的细节。

定位头部

标准化定位头部(“头部”)100是被称为做标记装置200和测量装置400的设备的操作部分所共用的。参考图3和图4a,测量装置的头部100与做标记装置的头部100必须是相同的。做标记装置的定位头部具有相同的组成元件、几何形状、尺寸,并且以与测量装置中的定位头部相同的方式连接至锚固件。

参考图1a和图3,头部具有标准化长度104(优选为4英寸),并且包括通道108、接触表面101、一个或多个磁性表面102a、以及楔形件凹穴103。接触表面101被限定为在头部的最头侧部分处的平坦表面。接触表面101由与接触表面基本上共面的一个或多个磁性表面102a、102b、102c构成或内嵌有这些磁性表面。楔形件凹穴103是设置在头部本体107的头侧端部内侧的凹坑,其具有足够的凹陷深度(优选为1/2英寸),以允许接触表面与锚固件磁性接触,而头部不与必须在锚固件中的一组楔形件004接触。如在背景技术部分所陈述的,‘预设’楔形件将部分地延伸出锚固件,并且甚至在楔形件用计示压力‘锁定’在锚固件上之后可能继续从锚固件中伸出;在任一种情况下,楔形件将会被楔形件凹穴封闭,而不会与头部发生物理接触(参见图3)。

头部的优选版本包括圆柱形头部本体107和设置在其腹侧表面中的“u”形通道108,该通道被设计成围绕钢筋束001安置。在这个实施例中,头部本体由硬塑料制成,该硬塑料不会随着使用而变形,但是任何基本上相似的材料都可以代替。当头部处于正确位置时,钢筋束靠着通道的顶部安置,并且接触表面与锚固件003形成磁性多点接触(参见图3)。在这个位置,接触表面将与钢筋束的纵向轴线垂直。

图1b进一步示出了通道108的优选实施例,该通道具有足够的大小和深度以同轴地围绕钢筋束001安置,使得通道的背侧表面与通道内所述钢筋束的上表面的至少40%接触,通道的其余部分向外扩口。尽管优选实施例具有如图所示的连续穿过圆柱形头部本体腹侧表面的通道,但是没有任何东西固有地阻止该通道被头部本体完全封闭。如在下面的实施例中所讨论的,头部附接至工具构件,比如做标记工具或测量工具。在操作期间,头部相对于锚固件和钢筋束的正确放置确保了工具构件及其工件的正确对准。

做标记装置

图1a和图1b单独示出了做标记装置200的版本,该做标记装置放置在设置在混凝土结构002的凹穴006内的凹穴006内。做标记装置包括标准化定位头部和用于在钢筋束上无损形成参考标记的装置。标记装置的优选实施例被示出为具有连接至可选的手柄201和油漆防护物202的标准化定位头部100。可选的手柄201被示出固定至头部100的背侧表面,以便于操作者使用。

图1a和图1b示出了油漆防护物202以油漆防护物的尾侧表面与头部的尾侧表面106共面的方式附接至头部100。油漆防护物包括的一个表面连接至头部的尾侧表面106,该表面被设计成沿着钢筋束001与头部的通道108的尾侧边缘的界面204引导喷漆(未示出)。油漆在由界面204限定的横向平面中形成参考标记205,该参考标记优选地覆盖该平面内钢筋束的周长的至少40%,从而形成又大又清晰的参考标记。图1a和图1b示出了可选的翼部,这些翼部成倾斜的角度连接至防护物203a、203b,这些翼部被定向成将油漆引导到钢筋束上并捕获扩散的油漆。

测量装置

测量装置包括定位头部和用于确定参考标记和头部的尾侧表面的直线距离的装置。接下来参考图4a和图4b,这些图示出了测量装置400的优选实施例的立体图和截面图,该测量装置包括通过刚性矩形脊柱件401连接的定位头部100和测量本体411,该脊柱件侧向地穿过测量本体中平行于头部的通道108的矩形通路406。脊柱件可以由钢、铝、塑料、或任何其他不会失去其形状的基本上类似的材料制成。在这个实施例中,脊柱件401固定在定位头部的尾侧表面106中,并在内部穿过封闭的矩形通路406,该矩形通路侧向地穿过测量本体411,以允许测量本体沿着脊柱件来回滑动的自由度,同时禁止旋转,以便与钢筋束保持成一直线。

在做标记装置的这个实施例中,头部本体的尾侧表面106附接至脊柱件401和测量目标件105。测量目标件被设置在定位头部的尾侧表面中或者与定位头部的尾侧表面共面。

图4a和图4b进一步示出了这种版本的测量装置如何具有设置在测量本体的腹侧表面中的“u”形通道(“本体安置通道”)407。本体安置通道407与设置在头部100中的通道108成一直线、具有相同的最背侧点、并且具有基本上相似的形状。图4b示出了容纳眼睛单元403的测量本体的版本。图4a和图4b示出了测量本体411如何安置在钢筋束001上。本体具有沿着钢筋束和脊柱件侧向地滑动的自由度,而不旋转,以便与头部保持成一直线。在操作期间,当测量本体沿着钢筋束滑动时,头部保持与锚固件磁性地连接。

如在替代性实施例中广泛覆盖的,用于测量直线位移的测量装置的工具可以使用能够测量测量本体的头侧边缘与参考标记205之间的距离的任何已知技术。测量装置的优选版本包括设置在测量本体411的头侧表面中的眼睛单元403。眼睛单元是通过发射和接收信号并解释结果来确定直线距离的装置。眼睛单元可以结合工业上普遍已知的任何数量的标准测量装置,例如可购买到的飞行时间模块。

测量本体的优选版本另外包括信号处理模块404,该信号处理模块电连接至眼睛单元并容纳在测量本体内。信号处理模块适于处理、解释、以及操纵来自眼睛单元或在替代性实施例中所讨论的其他工具的数据。这种版本的测量本体另外包括用于信号处理、计算、数据存储、和操纵的存储器、用于装置与操作者通信的显示器408、用于操作者捕获和浏览存储在装置存储器中的数据的多个按钮410。

测量装置的可选的版本另外包括从本体的头侧边缘402延伸的伸缩天线503a,该伸缩天线用于与基站501通信。伸缩天线的长度足以达到下面讨论的基站设置的水平。

基站

图5a和图5b示出了可选的基站501,该基站将与测量装置的某些版本结合使用,用于在进行测量时确定测量装置的位置。在这个实施例中,基站被设置在浇筑到混凝土结构002中的凹坑005中,并且其位置被记录在数字地图中。基站的固定位置与钢筋束001之间的距离可以根据现场特定的安装图纸计算。基站发射和/或接收可以用于测量基站与测量装置的天线之间的距离502的信号。当测量装置的伸缩天线503a升高到测量装置上方已知高度(优选地基站的水平面)时,测量装置从固定基站测量伸缩天线的位置。

操作

以上披露的设备以下列方式用于进行现场伸长量测量,精确度提高并且使用者误差最小。

在浇注混凝土002之后并在钢筋束001受力之前,把钢筋束擦拭干净,并清除凹穴中的碎屑。楔形件004预设成围绕钢筋束并且部分地进入锚固件003中。接下来,做标记装置200的头部被放置在凹穴006中,围绕钢筋束001,并且抵靠锚固件003,使得当钢筋束的背侧表面与头部的通道108的背侧表面接触时,头部的接触表面101与锚固件齐平、磁性多点接触,并且避免与楔形件004接触(参见图3和图4b)。操作者可能需要手动提升松弛的钢筋束,以使钢筋束与通道之间的界面204最大化,并确保钢筋束处于与已经加载张力之后的相同位置。在这个位置,钢筋束将离开头部标准化距离104(优选为4英寸),该距离在锚固件的外侧并垂直于锚固件,锚固件本身平行于头部的尾侧表面106。然后,操作者将在由定位头部的尾侧边缘106限定的平面处对钢筋束做标记。在优选实施例中,如先前所讨论的,操作者将喷漆施加至钢筋束的界面204。

然后通过传统方法对钢筋束001加载,比如通过背景技术部分所述的液压千斤顶(未示出)。

测量装置100的头部围绕钢筋束001被放置在凹穴006中,并抵靠着锚固件003,使得接触表面101与锚固件形成多点磁性接触。当头部的通道108和测量本体407的安置通道跨坐于并搁置在钢筋束上时,头部与锚固件磁性接触,而不与封闭在楔形件凹穴103中的楔形件004接触(参见图4b)。在头部就位的情况下,测量装置的目标件105位于与伸长106之前的初始参考标记相同的横向平面106中并且距离锚固件104相同的距离。

操作者在不破坏头部与锚固件之间的磁性接触的情况下,沿着钢筋束滑动测量本体411,直到测量本体的头侧边缘402直接在参考标记上。当测量本体沿着脊柱件401和钢筋束001滑动时,测量本体保持与头部成一直线,维持眼睛单元403与目标件105之间的直线路径409。当测量本体就位时,该装置将启动伸长量测量的数据捕获。当操作者按下捕获按钮410时,数据捕获可以手动启动,或者可以是自动过程。捕获的数据可以保存至测量装置的存储器。可选地,测量装置将确定伸长量的长度和正被测量的钢筋束的身份,并通过将值存储为单个观察值来对照结果。

当执行测量时,测量装置的优选实施例在路径409上从位于测量本体上的眼睛单元403内的发射器向位于头部上的目标件105发送信号,并且该信号被目标件反射并返回到位于眼睛单元内的接收器中。测量本体内的信号处理模块404通过使用包括飞行时间计算、相位分析、或三角测量在内的任何已知技术分析信号来确定距眼睛和目标件的距离。眼睛与目标件之间的距离409与伸长量412的长度值相同(参见图4a)。这个距离值成为作为捕获的观察值存储在装置的存储器中的数据的一部分。

在优选实施例中,基站501用于在测量时确定测量装置的位置。这个位置捕获是可选的,但是如果使用基站,则必须首先将基站接合并放置在固定位置,优选地放置在混凝土结构002中设置的凹坑中,并且用测量装置的天线503a校准。此校准从基站和所有定位钢筋束的起点设置参考位置。测量装置将足够准确地确定其位置,以在确定伸长量的长度的同时识别正被测量的钢筋束。这个可选的定位步骤可以通过gps型卫星定位或者通过在其已知位置与基站交互来执行。图5a和图5b示出了基站501,该基站向设置在测量装置的头侧边缘中的伸缩天线503a发送信号。天线应该延伸至混凝土002边缘上方的已知高度,优选为与基站501相同的高度。测量装置将通过基站的信号的强度确定其到天线的直线距离502。

在这个可选的定位步骤中,将天线到基站的距离502和眼睛单元到锚固件的距离504与钢筋束的位置的数字地图进行比较。此数字地图本质上可以是表格,并根据现场特定的安装图纸进行填充,然后下载到装置的存储器中,并由信号处理模块进行分析。将要被试验的每个钢筋束都被识别并赋予一个钢筋束识别码。钢筋束识别码与物理空间中的位置相关联。在捕获时,测量装置可以使用其距基站的观测距离502和其到目标件002的观测距离加上标准化头部长度104来对锚固件到基站的距离进行三角测量。这个值与数字地图中的值进行比较,并用于确定钢筋束的识别码。该识别码与伸长量测量值进行对照,并作为捕获的观测值一起存储在存储器中。

在捕获数据之后,测量装置可以在显示器408上可视地显示捕获的观测值。测量装置将继续在存储器中存储额外的观测值,这些观测值可以通过计算机或类似装置(比如手机应用)输出到基于云的平台,以便进行实时远程查看和评论。

尽管已经参照某些优选版本非常详细阐述了本发明,但还可能有其他的版本,例如:

做标记装置的额外的实施例包括连接至油漆防护物的尾侧表面上的加压喷漆壳体。所述壳体的腹侧端具有用于将油漆喷洒到钢筋束上的喷嘴。此实施例包括用于传递施加在手柄处的压力的机械构件,比如杠杆或张力线,以压下喷漆壳体的喷嘴。此实施例通过允许他或她用一只手不弯腰地将油漆在远处释放到油漆防护物与钢筋束之间的界面上而使操作者易于使用。

做标记装置的额外的实施例将结合用于标记的抓持件,比如位于油漆放好无语的尾侧表面上的油脂铅笔、印章、油漆刷、或其他无损做标记构件。此实施例包括用于传递施加至手柄处的压力的装置,比如杠杆或张力线,以将标记按压在油漆防护物与钢筋束之间的界面上。

做标记装置的额外的实施例将另外包括:伸缩天线503b,伸缩天线的长度足以达到可选基站的高度(参见图5a);电源(未示出);以及操作者控制器(未示出)。在使用之前,基站501必须与做标记装置的天线接合并校准,以从基站确定参考位置。此实施例将从其天线发送信号,以使用商用gps或相关领域中已知的任何标准测量技术来确定做标记装置,从而识别做标记装置相对于混凝土结构的位置。在钢筋束上制作标记时,操作者将会发送这个信号。基站的这个实施例将确定钢筋束标识码和捕获时间。此数据将被存储为在正确的钢筋束处已使用正确的做标记装置制作了参考标记的记录。

做标记装置300的替代性实施例可以在图2a和图2b中看到。这个版本将另外包括附接至头部100的尾侧表面106上的加标签本体301。加标签本体将容纳多个识别标签或胶带302,并将识别标签定位并固定至钢筋束,使得标签的头侧边缘抵靠头部的尾侧表面106,以用作参考标记。此标记将在钢筋束受力之前做好。此实施例将通过从加标签本体301放置识别标签303并通过张紧构件、加热元件、或粘性构件将其固定至钢筋束001上来操作,使得紧固的标签没有任何未固定至钢筋束上的松散材料。识别标签不限于任何材料,可以由胶带、贴纸、或涂层制成。识别标签可以另外以光学编码模式(比如条形码)的形式对位置信息进行编码,或者以感应天线(比如rfid)的形式对信息进行编码。许多这种类型的编码在相关领域中是已知的,并且是可购买到的。识别标签的头侧边缘必须放置在头部的尾侧边缘处。标签的头侧边缘将充当测量装置的参考标记。

测量装置的替代性实施例将进一步包括传感器405,该传感器用于读取编码在识别标签上的信息。如图4b所示,此传感器的实施例显示嵌入测量本体411的腹侧、在通道407内、并朝向测量装置的头侧边缘402。传感器电连接至信号处理模块。在这个实施例中,传感器被定向成当测量本体的头侧边缘被放置在标签303的头侧边缘上时聚焦在识别标签上,如图4b所示。对于光学型标签,传感器可以是光学的,或者可以包括用于感应天线型标签的发射器和接收器。虽然在图4b所示的测量装置的版本中的传感器405将传感器定位在测量本体的腹侧,但是传感器可以位于设备上的任何地方。当操作者启动数据捕获时,编码在这种标签中的信息将作为观察到的数据的一部分被存储。

传感器405的另外的实施例可以使用传感器来确定测量装置的头侧边缘402何时正确地放置在参考标记上。传感器可以位于任何其他使传感器能够识别测量装置的头侧边缘在标记上方的正确位置的位置。传感器可以是光学的,适于聚焦于位于装置的头侧边缘正下方的线上。当这种传感器检测到从钢筋束001的有标记部分205和无标记部分反射的光的差异时,或者以其他方式确定该装置处于正确位置时,做标记装置将自动捕获伸长量和位置数据,或者将视觉地或听觉地提示操作者启动捕获。

在测量装置的另外的实施例中,眼睛单元403将包括激光三角测量型传感器。在这个实施例中,眼睛单元内的激光器将发射信号,该信号将从目标件反射,并进入眼睛单元内与发射器相邻的采集透镜。采集透镜将光以已知的角度引导到线性检测器中。信号处理模块404解释由线性检测器接收的聚焦光的位置,以确定眼睛单元到目标件的长度。这种类型的测距方法在本领域是公知的。

在测量装置的额外的实施例中,传感器将包括位于测量本体411内的脊柱件通道406内的齿轮或链轮,当测量本体从头部来回移动时,齿轮或链轮的齿与脊柱件401中的凹坑相互作用。当齿轮或链轮转动时,角位移作为张力储存在弹簧中,或者作为电荷储存在电容器中,与测量本体离开头部的距离成比例。这被转换成可以被显示和捕获的距离的测量值。这些类型的测量装置在本领域中是公知的,并且是可购买的。

测量装置的另外的实施例将进一步包括确认其在水平方向上是水平的装置,比如气泡水平仪或加速度计。

测量装置的另外的实施例使用刻度尺作为矩形脊柱件。该尺子可以用于确认通过其他方式进行的测量,或者可以由操作者目视观察并手动进入测量本体。

为了便于使用和储存,测量装置的另外的实施例用伸缩式脊柱件代替刚性脊柱件和通道。

测量装置的替代性实施例将使用其天线与可购买到的卫星定位系统(比如gps)进行通信,以确定测量本体的头侧边缘的位置。这种定位方法可以补充或代替其他可选的定位方法。出于钢筋束识别的目的,将位置数据与钢筋束的已知位置进行比较。

该设备的替代性实施例将包括一个或多个基站,该一个或多个基站设置在混凝土结构中的额外的(多个)凹坑中,以对测量装置的天线的位置进行三角测量。这些基站彼此同步,并确定其接收测量装置发送的信号的时间。这些时间相互比较用于确定装置的位置。装置的位置、两个站之间的距离被记录并发送到测量装置,以确定最终应力的时间和被测量的钢筋束的身份。

可选的基站装置的另外的实施例将包括卷轴型卷尺分配器。这种卷尺可以从基座中拉出,并用于测量基站位置到天线或测量装置的头侧边缘的距离。这样可以用于确认或校准其他测量方法,或者可以由操作者目视观察并手动进入测量本体。

因此,所附权利要求的精神和范围不应局限于本文中包含的优选版本的描述。

以上披露的方法和设备改进并解决了与以前的方法和装置相关的问题。做标记装置通过从锚固件上测量并使用统一的参考标记,确保所有测量都从同一平面进行。头部避免与楔形件接触,与锚固件平齐接触,并确保钢筋束正确地安置在通道中。做标记装置通过增加钢筋束与油漆引导件之间的界面面积来制作更大的标记,该标记对蹭脏和变形具有更大的抵抗力。测量装置和方法捕获多个数据点,通过允许实时上传数据,确保准确性,极大地减少了在发现误差和伸长差异时的时间延迟问题。这使得记录工程师能够即时核查可信赖的现场伸长量数据,从而实现实时响应。这种实时拒绝或批准为最终确定步骤(切割、喷漆、封盖、和灌浆)的实时批准提供了可能,使其在数小时内而不是数天内发生。这通过显著减少钢筋束、锚固件、以及楔形件暴露在环境中的时间来保护结构的完整性。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1