一种变压器运维取油机器人的制作方法

文档序号:23390906发布日期:2020-12-22 13:57阅读:85来源:国知局
一种变压器运维取油机器人的制作方法

本发明涉及变压器运维技术领域,具体而言,涉及一种变压器运维取油机器人。



背景技术:

传统人工不停电取油方式劳动强度大、安全风险高、工作环境恶劣,易受气象环境干扰影响,且属于高空、高危、高强度作业。不停电取油进入绝缘斗臂车时代后作业人员的触电、高处跌落等不安全因素有所降低,但是工器具性能、作业环境等还对人身和设备安全有较大影响。



技术实现要素:

鉴于此,本发明提出了一种变压器运维取油机器人,旨在解决现有不停电取油对人身和设备安全有较大影响的问题。

本发明提出了一种变压器运维取油机器人,该取油机器人包括:移动式底盘,用于在作业环境下自主运动;回转台,其设置在所述移动式底盘上且可沿移动式底盘的顶壁所在水平面旋转;机械臂,其可转动地设置在所述回转台上;旋拧机构,其可转动地设置在所述机械臂的输出端,所述旋拧机构用以旋拧变压器的取油阀以打开取油阀,以使所述取油阀内的油流动至所述旋拧机构内;取油机构,其设置在所述旋拧机构且与所述旋拧机构相连通,以进行取油采样;图像识别模块,用以获取并分析变压器的取油阀的位置;控制模块,其与所述移动式底盘、所述图像识别模块、所述回转台、所述机械臂、所述旋拧机构电连接,用以根据所述图像识别模块分析的位置信息控制所述移动式底盘、所述回转台、所述机械臂和/或所述旋拧机构动作,以使所述旋拧机构对准所述取油阀,并控制所述旋拧机构动作以打开取油阀,自所述变压器中进行取油采样。

进一步地,上述变压器运维取油机器人,所述旋拧机构包括:旋拧执行器,用以旋拧所述取油阀,以实现所述取油阀的打开或关闭;液压马达,其与所述旋拧执行器相连接,用以驱动所述旋拧执行器旋拧所述取油阀;扭矩传感器,其设置在所述旋拧执行器上,用以检测所述旋拧执行器的旋拧扭矩数据。

进一步地,上述变压器运维取油机器人,所述旋拧机构还包括:过载保护件,其设置在所述旋拧执行器上,用以对所述旋拧执行器进行过载保护。

进一步地,上述变压器运维取油机器人,所述图像识别模块包括:3d相机,用以对所述取油阀进行拍摄并输出彩色图像;三维点云图像定位单元,其与所述3d相机电连接,用以接收所述3d相机输出的彩色图像并据此识别所述取油阀的位置信息。

进一步地,上述变压器运维取油机器人,所述机械臂包括:第一转臂,其连接有第一油缸,用以驱动第一转臂转动;第二转臂,其可转动地连接在所述第一转臂上,并且,所述第二转臂连接有第二油缸,用以驱动所述第二转臂转动;第三转臂,其可转动地连接在所述第二转臂上,并且,所述第三转臂连接有第三油缸,用以驱动所述第三转臂转动。

进一步地,上述变压器运维取油机器人,所述取油机构包括:取油口,其设置在所述旋拧机构上;取样存储件,用以存储所述取油口输出的油;取油软质管,其两端分别连接所述取油口和所述取样存储件。

进一步地,上述变压器运维取油机器人,所述移动式底盘包括:底盘;设置在底盘底部的车轮;车轮转向组件,其与所述车轮相连接,用以控制所述车轮行驶方向;驱动减速机,其与所述车轮相连接,用以驱动所述车轮转动以驱动所述车轮行驶。

进一步地,上述变压器运维取油机器人,还包括:虚拟现实显示模块,其与所述图像识别模块的3d相机电连接,用以接收所述3d相机输出的彩色图像,以根据所述彩色图像建立并显示所述取油阀周边环境的三维模型。

进一步地,上述变压器运维取油机器人,所述虚拟现实显示模块包括:三维场景重建子单元,其与所述图像识别模块的3d相机电连接,用以接收所述3d相机输出的彩色图像,以根据所述彩色图像建立三维场景模型;场景渲染单子单元,其与所述三维场景重建子单元相连接,用以接收所述三维场景重建子单元建立的三维场景模型,并对所述三维场景模型进行渲染;场景显示子单元,其与所述场景渲染子单元电连接,用以接收并显示所述场景渲染单子单元渲染后的三维场景模型。

进一步地,上述变压器运维取油机器人,所述移动式底盘上设有雷达,用以检测周边物体的距离检测;所述虚拟现实显示模块还包括:警示子单元,其与所述雷达电连接,用以接收所述雷达检测的距离并在其小于阈值时生成警示信息。

本发明提供的变压器运维取油机器人,代替人工取油同样要克服环境中的高强电磁干扰和机械震动,该取油机器人自动规划路线、自动识别取油阀并适当地旋拧取油阀,以自动取出油样,提高整体效率且完全自动化和智能化,避免了人工施工的不安全性。

附图说明

通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:

图1为本发明实施例提供的变压器运维取油机器人的结构示意图;

图2为本发明实施例提供的变压器运维取油机器人的流程框图;

图3为本发明实施例提供的变压器运维取油机器人的沉浸式遥控示意框图。

具体实施方式

下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。

参见图1至图3,其示出了本发明实施例提供的变压器运维取油机器人的优选结构。如图所示,该取油机器人包括:移动式底盘1、回转台2、机械臂3、旋拧机构4、取油机构5、图像识别模块6、控制模块7和虚拟现实显示模块;其中,

移动式底盘1用于在作业环境下自主运动,以实现该取油机器人的移动,使得变压器的取油阀在该取油机器人的工作范围内。回转台2设置在所述移动式底盘1上且可沿移动式底盘1的顶壁所在水平面旋转,用以带动设置在回转台2上的机械臂3转动,机械臂3可转动地设置在所述回转台2上,以随移动式底盘1移动至预设位置后,通过回转台2带动机械臂3转动至预设方向,机械臂3的转动可调节机械臂3输出端的位置;旋拧机构4可转动地设置在所述机械臂3的输出端,以使旋拧机构4对准取油阀(图中未示出),旋拧机构4用以旋拧变压器的取油阀以打开取油阀,以进行排油工作,以使所述取油阀内的油流动至所述旋拧机构4内;取油机构5设置在旋拧机构4上且与旋拧机构4相连通,以使旋拧机构4内的油流动至取油机构5内,以通过取油机构5进行取油采样。图像识别模块6用以获取并分析变压器的取油阀的位置;控制模块7与所述移动式底盘1、所述图像识别模块6、所述回转台2、所述机械臂3、所述旋拧机构4电连接,用以根据所述图像识别模块6分析的位置信息控制所述移动式底盘1、所述回转台2、所述机械臂3和/或所述旋拧机构4动作,以使所述旋拧机构4对准所述取油阀,并控制所述旋拧机构4动作以打开取油阀,自所述变压器中进行取油采样。虚拟现实显示模块与所述图像识别模块6的3d相机电连接,用以接收所述3d相机输出的彩色图像,以根据所述彩色图像建立并显示所述取油阀周边环境的三维模型;虚拟现实显示模块还用以建立模拟机械臂3的三维模型,以实时模拟机械臂3的姿态,并融合取油阀周边环境的三维模型和机械臂3的姿态形成与真实场景保持一致的虚拟环境中的场景。

具体地,移动式底盘1上设有雷达,用以检测周边物体的距离;旋拧机构4可通过齿轮传动机构可转动地设置在所述机械臂3的输出端,以实现旋拧机构4的转动;图像识别模块6可设置在移动式底盘1上,以识别定位变压器的取油阀,以便获取取油阀的位置信息;回转台2、机械臂3、旋拧机构4、取油机构5均作为机器人的执行模块,控制模块7根据图像识别模块6识别的取油阀的位置信息控制移动式底盘1和机器人的执行模块以使旋拧机构4对准取油阀,并控制旋拧机构4旋拧取油阀,以打开取油阀使得变压器内的油流经旋拧机构4收集至取油机构5内,进而实现变压器的取油采样,以实现自主定位取油,也可以远程人-机交互协作完成取油任务,远程遥控采用沉浸式虚拟现实技术。虚拟现实显示模块与所述图像识别模块6之间可通过无线通信设备交互信息,无线通信设备包括蓝牙、wifi或zigbee。

继续参见图1,移动式底盘1包括:底盘11、车轮12、车轮转向组件(图中未示出)和驱动减速机(图中未示出);其中,车轮12设置在底盘11的底部;车轮转向组件12与所述车轮11相连接,用以控制所述车轮11行驶方向;驱动机构与所述车轮12相连接,用以驱动所述车轮12转动以驱动所述车轮12行驶。具体地,底盘11可以为矩形结构,车轮12为四个且分别设置在底盘11底部的四角位置,以带动底盘11移动至预设位置,以便适应不同环境进行取油。车轮转向组件和驱动减速机均与车轮12相连接,以分别控制车轮12的转向和提供车轮转动的动力源,进而控制车轮12的行驶,以使该取油机器人行驶至变压器的周边即工作范围内确保取油阀位于图像识别模块6的视野内尤其是位于最佳视野位置,进而提高机械臂3调整姿态。驱动减速机中驱动单元可以为电力驱动单元和/或内燃机驱动单元。

继续参见图1,机械臂3包括:第一转臂31、第二转臂32和第三转臂33;其中,第一转臂31连接有第一油缸34,用以驱动第一转臂31转动;第二转臂32可转动地连接在所述第一转臂31上,并且,所述第二转臂32连接有第二油缸35,用以驱动所述第二转臂32转动;第三转臂33可转动地连接在所述第二转臂32上,并且,所述第三转臂33连接有第三油缸36,用以驱动所述第三转臂33转动。具体地,第一油缸34可设置在回转台2上用以驱动第一转臂31,以调节第一转臂31和回转台2之间夹角;第二油缸35可设置在回转台2上亦可设置在第一转臂31上,用以驱动第二转臂32转动,以调节第二转臂32和第一转臂31之间的夹角;第三油缸36可设置在第二转臂32上,用以驱动第三转臂33转动,以调节第二转臂32和第三转臂33之间的夹角,进而调节第三转臂33的输出端(如图1所示的左下端)相对于第一转臂31的输入端(如图1所示的左下端)的位置的调整即高度位置和水平距离的调整。本实施例中,提高第一转臂31、第二转臂32和第三转臂33的转动调节机械臂3的姿态,亦可机械臂3影响图像识别模块6对取油阀位置的采集。本实施例中,机械臂采用液压机械臂,以保证机械臂在带电作业时避免发生意外情况。

继续参见图1和图2,旋拧机构4包括:旋拧执行器41和液压马达(图中未示出);其中,液压马达与所述旋拧执行器41相连接,用以驱动所述旋拧执行器41对取油阀进行旋拧,进而打开取油阀或开闭取油阀。优选地,旋拧执行器41上设有扭矩传感器42,用以检测所述旋拧机构旋拧扭矩数据,并可发送给控制模块7,控制模块7响应于旋拧扭矩数据,控制模块7计算待施加的旋拧作用力,基于所述待施加的旋拧作用力生成作用力信号使得液压马达驱动旋拧执行器41旋拧。由于露天情况下的阀门尤其是取油阀的松紧程度也是不同的,所以旋拧执行器41需要对阀门的关启进行力学反馈,同时也需要过载保护;普遍应用的力控末端执行器多为机械式或气动式,但存在迟滞大、响应速度较慢和力控制精度不高等缺点,且仅能实现单自由度恒力控制。控制模块7根据扭矩传感器42采集的信号来控制液压马达的启停,针对锈死的情况设计了过载保护件;即在机器人末端执行器上安装扭矩传感器42实时监控扭矩,可以保护机器人的机械结构部分,使之稳定运行。安装扭矩传感器42的旋拧执行器41对于阀门的实际情况调整输出扭矩。在一个实施例中,取油机器人在面对差异情况下,旋拧阀门手轮的力学反馈同时防止过载情况的发生,实现柔性下的力控操作。

继续参见图1,取油机构5包括:取油口51、取油存储件52和取油软质管53;其中,

取油口51设置在所述旋拧机构4上,取油存储件52用以存储所述取油口51输出的油,取油软质管53的两端分别连接所述取油口51和所述取样存储件52,用以将所述取油口51输出的油输送至取油存储件52内以进行存储,进而完成变压器内的取油采样。具体地,取油口51可设置在旋拧机构4的底部且与旋拧执行器41相连通,以使旋拧执行器41开启取油阀后,变压器内的油依次流经取油阀、旋拧执行器41、取油口51、取油软质管53后,收集至取油存储件52内。

在本实施例中,图像识别模块6包括:3d相机和三维点云图像定位单元;其中,3d相机用以对所述取油阀进行拍摄并输出彩色图像;三维点云图像定位单元与所述3d相机电连接,用以接收所述3d相机输出的彩色图像并据此识别所述取油阀的位置信息。具体地,3d相机具有彩色图像输出和三维点云图像输出功能,以便三维点云图像定位单元在彩色图像来识别取油阀,变压器取油阀一般颜色为红色,阀门手轮为多边形空心手轮,识别油阀方法可以采取颜色识别结合形状识别的方式,识别出油阀在彩色图像中的位置,再将彩色图像映射到点云图像中,就可以求算出,油阀在相机坐标系的位姿。由于相机相对于机械手是固定的,一旦进行标定后,即可获得机器人坐标系与相机坐标系的转换关系,这样就可以将油阀的坐标转换到六轴机器人的世界坐标系中,以得到阀门坐标,进而引导机器人旋拧取油阀。该图像识别模块2包括3d视觉与机器人融合的系统,该系统以协作机器人为基础,将彩色3d深度相机以眼到手到方式与机器人有机结合,采用变压器阀门作业3d实景还原,实现机器人旋拧阀门自主作业。

在本实施例中,控制模块7包括:多个角度传感器、处理单元和轨迹规划单元;其中,多个角度传感器分别设置在回转台2、机械臂3的第一转臂31、第二转臂32、第三转臂33和旋拧机构4上以分别测量角度数据;处理单元与各角度传感器和图像识别模块6相连接,以接收并处理角度数据和取油阀的位置数据;轨迹规划单元与处理单元相连接,用以接收处理后的角度数据和取油阀的位置数据,并据此进行轨迹的规划,进而控制回转台2、机械臂3和旋拧机构4的驱动单元以实现回转台2、机械臂3和旋拧机构4的控制,进而实现回转台2转动角度、机械臂姿态和旋拧机构4转动角度的控制,并可在控制到位后控制液压马达进行旋拧执行器41的控制以打开取油阀进行取油采样。

在本实施例中,虚拟现实显示模块包括:三维场景重建子单元,其与所述图像识别模块的3d相机电连接,用以接收所述3d相机输出的彩色图像,以根据所述彩色图像建立三维场景模型;场景渲染单子单元,其与所述三维场景重建子单元相连接,用以接收所述三维场景重建子单元建立的三维场景模型,并对所述三维场景模型进行渲染;场景显示子单元,其与所述场景渲染子单元电连接,用以接收并显示所述场景渲染单子单元渲染后的三维场景模型,使虚拟环境中的场景与真实场景保持一致;警示子单元,其与所述雷达电连接,用以接收所述雷达检测的距离并在其小于阈值时生成警示信息,即现实中的机器人即移动式底盘1与变压器或周围环境距离太近,容易发生碰撞,当虚拟场景中的机器人与虚拟场景中的变压器或者障碍物距离比较近时,为避免碰撞,优选地,通过警示子单元生成警示信息;当然,本实施例中警示子单元通过雷达检测现实中距离,亦可通过虚拟的三维场景模型中距离作为参考进行提醒。

参见图3,在本实施例中,采用无线网络连接机器人作业端及虚拟现实端,将通过服务器获取的机器人关节姿态信息发送至数据层,用于虚拟现实环境中机械臂姿态同步,同时使虚拟环境中的场景与真实场景保持一致。操作人员可以在虚拟现实环境下调整虚拟机械臂3的姿态,再将姿态关节信息发送至机器人,用于实体机械臂3的控制。采用与实体机器人一致的示教器控制虚拟场景中的机器人,再将虚拟场景机器人的数据反馈到实体机器人上,使其二者保持一致。虚拟显示模块采用全息眼镜作为显示设备,在初始的虚拟场景中,只有虚拟的取油机器人。由于虚拟机器人和实体机器人同步,在虚拟机器人和实体机器人运动过程中,由于实体机器人上安装有3d相机,可以对机器人周围环境进行实时拍摄,将拍摄好的点云数据返回到虚拟现实端,在虚拟现实端进行三维场景重建,这样虚拟端的操作者就可以看到与机器人作业端一致的场景,进而控制机器人取油。

综上,本实施例提供的变压器运维取油机器人,代替人工取油同样要克服环境中的高强电磁干扰和机械震动,该取油机器人自动规划路线、自动识别取油阀并适当地旋拧取油阀,自动取出油样,提高整体效率且完全自动化和智能化,避免了人工施工的不安全性。

需要说明的是,在本发明的描述中,术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。

此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。

显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1