热障涂层系统及其方法

文档序号:2444705阅读:610来源:国知局
热障涂层系统及其方法
【专利摘要】涂层系统和可沉积所述涂层系统的方法,以耐污染物,特别是耐由CMAS引起的渗入和破坏。所述涂层系统包括内陶瓷层和外陶瓷层。内陶瓷层基本上由被约6-约9重量%氧化钇稳定的氧化锆组成并任选含有大于0.5-10重量%氧化铪。外陶瓷层覆在内陶瓷层上并接触内陶瓷层,以限定涂层系统的最外表面。外陶瓷层基本上由被约25-约75重量%氧化钇稳定的氧化锆组成,其厚度小于内陶瓷层的厚度,并且还含有大于0.5-10重量%氧化铪和任选1-10重量%氧化钽。外陶瓷层的孔隙率水平低于内陶瓷层。
【专利说明】热障涂层系统及其方法
[0001]相关申请的交叉引用
本申请为2011年12月30日提交的共同待审的美国专利申请序号13/341,247的部分继续专利申请,其要求2011年10月13日提交的美国临时申请号61/546,793的权益。这些先前申请的内容通过引用结合到本文中。
[0002]发明背景
本发明涉及能在暴露于高温的部件上使用的涂层,例如燃气轮机发动机的不利的热环境。更具体地,本发明涉及一种能呈现耐热循环和污染物(例如可在燃气轮机发动机的操作环境中存在的类型)渗入的热障涂层(TBC)。
[0003]在商业以及军事燃气轮机发动机中,热障涂层(TBC)在部件(例如燃烧器,高压涡轮机(HPT)叶片、叶轮和护罩)上的使用日益增加。由TBC提供的绝热使得这样的部件能够承受较高的操作温度、提高部件耐久性和改进发动机可靠性。TBC通常由陶瓷材料形成,并且在环境保护性的结合涂层上沉积,以形成所谓TBC系统。广泛用于TBC系统的结合涂层材料包括耐氧化覆盖涂层例如MCrAlX (其中M为铁、钴和/或镍,并且X为钇或另一种稀土元素)和扩散涂层(例如含有铝金属互化物的扩散铝化物)。通常选择结合涂层材料以能够在它们的表面上形成连续和粘着的氧化物积垢,以促进陶瓷涂层与结合涂层粘合。通过使结合涂层经受氧化环境,可形成氧化物积垢,使得所述积垢有时称为热生长氧化物(TGO)。
[0004]用于TBC的陶瓷材料的显著实例包括被氧化钇(氧化钇;Y203)或另一种氧化物(例如氧化镁、氧化铈、氧化钪和/或氧化钙)部分或完全稳定的氧化锆和任选其它氧化物,以降低热导率。二元氧化钇稳定氧化锆(YSZ)由于其高温能力、低热导率和相对容易沉积而广泛用作TBC材料。氧化锆被稳定,以抑制在约1000°c下四方晶体相转变为单斜晶体相,该转变导致可引起散裂的体积变化。在室温下,如果氧化锆被至少约6重量%氧化钇稳定,则得到更稳定的四方相,并且单斜相最小化。17重量%或更多的稳定剂(例如,氧化钇)含量确保完全稳定的立方晶体相。常规的实践是用6-8重量%氧化钇部分稳定氧化锆(6-8%YSZ),以得到当经历高温热循环时粘着和耐散裂的TBC。此外,已知部分稳定的YSZ(例如,6-8%YSZ)比完全稳定的YSZ (例如,20%YSZ)更加耐侵蚀。
[0005]各种方法可用于沉积TBC材料,包括热喷洒方法,例如空气等离子体喷洒(APS)、真空等离子体喷洒(VPS)、低压等离子体喷洒(LPPS)和高速氧燃料(HVOF)。用于燃气轮机发动机的最高温度区域的TBC通常通过物理气相沉积(PVD)来沉积,特别是电子束物理气相沉积(EBPVD),其得到柱状、耐应变的晶粒结构,该结构能膨胀和收缩而不会引起导致散裂的破坏应力。使用其它原子和分子气相方法,可产生类似的柱状微观结构,例如溅射(例如,高压和低压、标准或校准羽流(collimated plume))、离子等离子体/阴极电弧沉积和所有形式的熔融和蒸发沉积方法(例如,激光熔融等)。由于在TBC微观结构的晶粒边界处和之间存在微观结构缺陷和孔,通过上述各种方法形成的TBC通常具有比相同组成的致密陶瓷更低的热导率。
[0006]在服务条件下,被TBC系统保护的热区发动机部件可易受各种模式的破坏的影响,包括侵蚀、氧化和腐蚀,其来自暴露于燃烧的气态产物、外来物体破坏(FOD)和来自环境污染物的攻击。环境污染物的来源为环境空气,其通过发动机吸入,用于冷却和燃烧。在环境空气中,环境污染物的类型随位置而不同,但是对于飞行器可能是个问题,因为它们的目的是从一个位置移动至另一个位置。可存在于空气中的环境污染物包括沙砾、尘土、火山灰、二氧化硫形式的硫、飞灰、水泥颗粒、跑道灰尘,以及可排放至大气中的其它污染物,例如金属微粒,例如,镁、钙、铝、硅、铬、镍、铁、钡、钛、碱金属和它们的化合物,包括氧化物、碳酸盐、磷酸盐、它们的盐和混合物。这些环境污染物为除了由燃料的燃烧得到以外的腐蚀性和氧化性污染物。然而,所有这些污染物可粘附于热区部件的表面,包括被TBC系统保护的那些。
[0007]为了使TBC在其保护的部件的整个计划寿命周期中保持有效,重要的是TBC在部件的整个寿命中具有并且保持完整性,包括当暴露于污染物时。一些污染物随部件的寿命可导致TBC损失。例如,氧化钙(CaO)、氧化镁(MgO)、氧化铝(氧化铝;A1203)和二氧化硅(二氧化硅;SiO2)的微粒通常存在于含有细沙和/或灰尘的环境中。当在升高的温度下共同存在时,氧化钙、氧化镁、氧化铝和二氧化硅可形成在本文中称为CMAS的共晶化合物。已鉴定CMAS的具体组成含有约35摩尔% CaO、约10摩尔% MgO、约7摩尔% Al2O3和约48摩尔% SiO2以及约3摩尔% Fe2O3和约1.5摩尔% NiO0 CMAS具有相对低的熔融温度,使得在涡轮机操作期间,在部件表面上沉积的CMAS可熔融,特别是如果表面温度超过约2240° F(12270C )。熔融的CMAS能渗入TBC内的孔隙结构。例如,CMAS能渗入具有柱状结构的TBC、致密的垂直开裂的TBC和通过热和等离子体喷洒沉积的TBC的水平板形(splat)边界。熔融的CMAS在TBC的较冷的表面下区域内再固化,它在其中妨碍TBC的顺应性并且可导致TBC散裂和降解,特别是在热循环期间由于妨碍TBC膨胀和收缩的能力而造成。除了顺应性损失以外,还可发生与在TBC内的氧化钇和氧化锆以及与在结合涂层/TBC界面的处热生长氧化物的有害化学反应,并且引起TBC系统降解。一旦失去由TBC提供的被动热障保护,发动机的持续操作将导致TBC系统下面的基础金属氧化,这可最终导致通过经由裂纹燃烧而使部件失效。
[0008]试图减轻CMAS对高压涡轮机叶片和护罩的影响包括在TBC的表面上涂敷氧化铝的薄层,以将CMAS的熔点提高约100-150 0F (38°C -66 V ),例如,如美国专利5,660,885所报道的。加入氧化铝层提供操作温度提高到最多约2400 T (1316°C),其中液体CMAS有降低的渗入。然而,在制造和装配期间碾磨以及在燃气轮机发动机操作期间与涡轮机护罩碾磨和摩擦导致氧化铝层的使用和可靠性是困难并且不切实际的。此外,氧化铝层增加制造成本和复杂性,尤其是对于经历气体和颗粒侵蚀的涡轮机叶片,并且可能对于氧化铝涂层具有不同的要求以使侵蚀最小化。此外,较厚的氧化铝层经历在TBC涂层系统内热膨胀系数不匹配,导致在循环期间热应变。
[0009]鉴于以上,可认识到存在与现有技术关联的某些问题、短处或缺点,并且期望可得到能促进部件耐污染物(例如CMAS)的系统和方法,特别是在超过污染物的熔融温度的温度下操作的燃气轮机发动机部件。
[0010]发明概述
本发明提供一种涂层系统和可沉积所述涂层系统的方法,以耐污染物,特别是耐由CMAS引起的渗入和破坏。
[0011]根据本发明的第一方面,在部件的表面区域上提供涂层系统。所述涂层系统包括结合涂层和覆在所述结合涂层上的内陶瓷层和外陶瓷层。所述内陶瓷层覆在结合涂层上,基本上由被约6-约9重量%氧化钇稳定的氧化锆组成并任选含有大于0.5-10重量%氧化铪,并且具有厚度和孔隙率水平。所述外陶瓷层覆在内陶瓷层上并接触内陶瓷层,以限定涂层系统的最外表面。所述外陶瓷层基本上由被约25-约75重量%氧化钇稳定的氧化锆组成,并且还含有大于0.5-10重量%氧化铪和任选1-10重量%氧化钽。所述外陶瓷层的厚度小于内陶瓷层的厚度,并且孔隙率水平低于内陶瓷层。
[0012]根据本发明的第二方面,提供了一种在部件上形成涂层系统的方法。所述方法包括在部件的表面上沉积结合涂层,在所述结合涂层上沉积内陶瓷层,和随后在所述内陶瓷层上沉积外陶瓷层,以限定涂层系统的最外表面。所述内陶瓷层基本上由被约6-约9重量%氧化钇稳定的氧化锆组成并任选含有大于0.5-10重量%氧化铪,且沉积所述内陶瓷层以具有厚度和孔隙率水平。所述外陶瓷层基本上由被约25-约75重量%氧化钇稳定的氧化锆组成,并且还含有大于0.5-10重量%氧化铪和任选1-10重量%氧化钽。沉积外陶瓷层,使得厚度小于内陶瓷层的厚度并且孔隙率水平低于内陶瓷层。随后将内陶瓷层和外陶瓷层热处理至一定温度,并经历足够的持续时间以减轻其中由沉积步骤诱发的应力。
[0013]本发明的技术效果是当经受CMAS污染物时涂层系统承受热循环的能力。外陶瓷层的高氧化钇含量使得外陶瓷层能够与CMAS反应,以形成抑制熔融的CMAS进一步渗入涂层系统的保护层。通过在至少高氧化钇的外陶瓷层中掺入氧化铪,增强涂层系统的效率。通过在至少外陶瓷层的氧化钇-氧化锆系统中用氧化铪代替氧化锆,涂层系统的热导率可降低。氧化铪也用于提高氧化锆的熔点和改进氧化锆的耐烧结性。此外,认为氧化铪用作成核剂,通过溶解于玻璃中以催化无定形CMAS的脱玻化作用,从而提供成核部位和促进结晶CMAS的沉淀,结晶CMAS比无定形CMAS对涂层系统害处较小。氧化铪也可用作成核剂,用于含有硅酸钇钙(通常称为磷灰石相)的保护性反应产物的沉淀。氧化铪的另外的优点在于通过结晶铪酸钙的沉淀,其可减轻CMAS的玻璃形成。
[0014]显著地,内陶瓷层和外陶瓷层的相对厚度和密度也已显示对于涂层系统的耐散裂性是关键的。特别是,通过限制外陶瓷层相对于内陶瓷层厚度的厚度和通过确保外陶瓷层比内陶瓷层更致密(较少孔),涂层系统的耐散裂性显示显著增强。
[0015]由以下详细说明,将更好地理解本发明的其它方面和优点。
[0016]附图简述
图1示意性表示通过TBC系统的横截面。
[0017]图2为氧化锆-氧化钇系统的相图。
[0018]图3为根据本发明的一个实施方案的TBC系统的扫描图像。
[0019]图4为比较在本发明的范围以内和以外的TBC系统当经受CMAS污染时对热循环的相对耐性的图。
[0020]发明详述
本发明通常适用于经受高温的部件,特别是例如燃气轮机发动机的高压和低压涡轮机叶轮(喷嘴)和叶片(叶片)、护罩、燃烧器衬里和增压器硬件等部件。本发明提供TBC系统,其适合保护经受热燃烧气体的燃气轮机发动机部件的表面。虽然参考燃气轮机发动机部件来描述本发明的优点,但是本发明的教导通常适用于在其上可使用TBC来保护部件免受高温环境的任何部件。[0021]本发明的TBC系统10的一个实施方案在图1中不意性表不,其施用于基材22的表面,基材22与TBC系统10组合得到涂布的部件20。TBC系统10显示包括覆在基材22表面上的结合涂层12,基材22可为超合金或另一种高温材料。基材22通常为被TBC系统10保护的部件20的基础材料,但是基材22可或者是部件上的涂层。结合涂层12可为通常与TBC系统一起用于燃气轮机发动机部件的类型的富含铝的组合物,例如MCrAlX合金的覆盖涂层,或扩散涂层,例如本领域已知类型的扩散铝化物(包括被贵金属例如钼改性的扩散铝化物涂层)。一个具体实例为本领域已知类型的NiCrAH组合物。结合涂层12的合适厚度为约0.007英寸(约175微米),但是可预见较小和较大的厚度,只要结合涂层12能提供保护基材22和锚接TBC系统10的期望的功能。上述类型的富含铝的结合涂层逐渐形成氧化铝(氧化铝)积垢(未显示),其通过结合涂层12的氧化而热生长。
[0022]图1还显示覆在结合涂层12上的多层TBC 14。TBC 14包含内TBC层16和外TBC层18,内TBC层16在结合涂层12上直接沉积,以覆在结合涂层12上,而外TBC层18在内TBC层16上直接沉积,以覆在内TBC层16上,并且限定TBC系统10和部件20的最外表面24。因此,如果部件20经受污染物,则污染物将在外TBC层18的表面24上直接沉积。
[0023]根据本发明的一个优选的方面,内TBC层16和外TBC层18由具有不同氧化钇含量的YSZ材料形成。TBC 14的外TBC层18的氧化钇含量高于在内TBC层16上的氧化钇含量,并且足够高以促进外TBC层18与可在TBC系统10的最外表面24上沉积的污染物反应的能力。特别关注的污染物为前述CMAS,在这种情况下,外TBC层18的氧化钇含量能在超过约1200°C (约2200 0F )的温度下与熔融的CMAS沉积物反应,以形成含有硅酸钇钙(通常称为磷灰石相)的保护性反应产物。反应产物形成致密的粘着密封层,其保护下面的TBC系统10免受CMAS的进一步渗入。虽然在Darolia等人的美国专利号7,862,901中教导了含有多于20重量%氧化钇的YSZ层耐CMAS渗入,但是发现在Darolia等人教导的范围内的TBC系统易于散裂。本发明基于以下决定:通过更窄地限制氧化钇含量,特别是,通过控制内TBC层16和外TBC层18的相对厚度和密度,实现耐散裂性,如以下讨论。
[0024]根据本发明的优选的方面,外TBC层18含有约25-约75重量%氧化钇,余量基本上为氧化锆(允许伴随的杂质)。更优选,外TBC层18含有30-59重量%,优选小于55重量%氧化钇,其中36-42重量%的氧化钇含量显得特别足以能够进行形成期望的硅酸钇钙反应产物的反应,同时提供与更高氧化钇含量相比更大的耐侵蚀性和耐散裂性。与此相反,内TBC层16具有较低的氧化钇含量,并且可含有约6-约9重量%氧化钇的通常常规的氧化钇含量,余量基本上为氧化锆(允许伴随的杂质)。由图2显然的是,氧化钇-氧化锆系统的相图显示内TBC层16的组成落入亚稳定四方(或改性四方)相的区域,而外TBC层18优选的30-59重量%氧化钇的范围完全位于立方相区域内。
[0025]如上所述,关于密度(孔隙率)和厚度,外TBC层18也与内TBC层16不同。特别是,内TBC层16沉积的方式获得相对多孔的宏观结构,优选特征在于约10-约25体积%的孔隙率水平,更优选约10-约20体积%。与此相反,外TBC层18沉积的方式获得比内TBC层16较少孔的宏观结构。外TBC层18优选孔隙率水平为约3-约15体积%,更优选约5-约10体积%。鉴于与在内TBC层16内的四方YSZ相相比,在该层18内的立方体YSZ相的较低韧性和耐侵蚀性,需要外TBC层18的优选密度范围和相对较高的密度。
[0026]为了在TBC层16和18中得到期望的孔隙率水平,TBC层16和18优选具有由热喷洒技术沉积产生的非柱状结构,热喷洒技术例如等离子体喷洒(空气(APS)、真空(VPS)和低压(LPPS))或高速氧燃料(HVOF)。如本领域已知的,热喷洒涉及向表面驱动热可熔材料(例如,金属、陶瓷)的熔融颗粒或至少热软化的颗粒,颗粒在表面骤冷并且与表面结合,以产生涂层。因此,内TBC层16和外TBC层18以熔融的“板形”形式沉积,产生的微观结构特征在于由板形(扁平化的晶粒)的存在而导致的水平孔隙率。可修饰TBC层16和18任一个或两者的微观结构,以含有在美国专利号5073433、5520516、5830586、5897921、5989343和6047539中教导的致密的垂直裂纹。在本发明的范围内的还有,内TBC层16和/或外TBC层18可使用其它沉积方法沉积,其非限制性实例包括物理气相沉积方法、溶液等离子体喷洒方法、悬浮液等离子体方法、高速空气燃料热喷洒方法和高速氧燃料热喷洒方法。
[0027]内TBC层16和外TBC层18和结合涂层12可使用相同的热喷枪沉积。通过控制表面温度和改变用于沉积TBC层16和18的疏远距离(standoff distance),已得到特别可接受的结果,包括TBC层16和18的期望的密度差。通过使用相对常规的等离子体喷洒条件沉积结合涂层12和内TBC层16,已得到特别合适的结果,所述条件包括约4.5-约5英寸(约11.4-约12.7 cm)的疏远距离和使用清扫空气,同时保持结合涂层12的表面温度在约75-约200 0F (约24-约93°C )。此外,通过使用比用于沉积内TBC层16更短的疏远距离来沉积外TBC层18,例如,约3-约3.25英寸(约7.6-约8.3 cm),使用清扫空气,同时保持内TBC层16的沉积表面处于比用于沉积内TBC层16更高的温度,例如,约450-约550 T (约230-约260°C),得到特别合适的结果。换言之,外TBC层18可使用与用于沉积内TBC层16相同的热喷枪来涂敷,但是在比TBC层16更热和更近的基材表面上沉积TBC层18。这些参数的组合效果是,有意降低外TBC层18相对于内TBC层16的孔隙率。
[0028]图3显示含有结合涂层和两个上述类型的TBC层的TBC系统的非限制性实例。结合涂层在图像中显示为最亮的层,而外TBC层在图像中显示为最暗的层。
[0029]在沉积TBC层16和18 二者后,TBC系统10优选经历热处理,以减轻残余的应力。示例性热处理为在真空中在约1925-约1975 0F (约1050-约1080°C )温度范围内经过约2-约4小时的持续时间。认为特别优选的热处理是在真空中在约1975 0F (约1080°C )下经过约4小时。这种公开的热处理仅为示例性的,并且可采用其它有效的热处理。
[0030]如上所述,外TBC层18在厚度方面也与内TBC层16不同。对本发明的研究证明必须控制TBC层16和18的相对厚度,以实现改进TBC系统10的耐散裂性,甚至在不存在CMAS污染物的情况下。特别是,测试表面外TBC层18与内TBC层16的厚度比必须小于I。图4表示在需要从室温至约2075 T (约1135°C )之间的I小时循环的条件下进行的炉循环测试所累积的数据,其中在峰值温度下停留时间为约45分钟。当TBC系统约20%的表面积已散裂时,终止样品的测试。评价两组样品,各自在由Ren6 N5形成并且提供有由NiCrAH形成的结合涂层的基材上沉积。第一组样品具有约3密耳厚(约75微米)的约7%YSZ的内TBC层和约12密耳厚(约300微米)的约38%YSZ的外TBC层。第二组样品具有约10密耳厚(约250微米)的约7%YSZ的内TBC层和约5密耳厚(约125微米)的约38%YSZ的外TBC层。TBC层使用先前对本发明的内TBC层16和外TBC层18所描述的等离子体喷洒参数来沉积。由图4显然的是,第二组样品展示比第一组样品更长的TBC寿命。特别是,具有小于I (约0.5)的厚度比的样品的呈现炉循环寿命比具有大于I (约4)的厚度比的样品大,为5倍。[0031]由这些测试显示,除了内TBC层16和外TBC层18之间的组成和孔隙率差异以外,重要的是它们的厚度比(外/内)不大于I。由这些测试进一步推断,优选的厚度比小于1,认为特别优选不大于0.5的厚度比。TBC层16和18的单独厚度可改变,以实现期望的比率。例如,内TBC层16的厚度可为50微米至最多约500,例如,约250微米的标称厚度,而外TBC层18的厚度可为25微米至最多约250,例如,约125微米的标称厚度。
[0032]由以上应理解的是,相对于内TBC层16,外TBC层18的特性(尤其是,较高的氧化钇含量、更大的密度(较少孔隙率)和较小的厚度)能够使TBC系统10不仅减轻CMAS沉积物的有害影响,而且还呈现可接受的热循环寿命。因此,TBC系统10特别良好地适用于保护燃气轮机发动机的热区部件,并且能够使这样的部件能操作更长的持续时间和/或在更高的温度下操作。
[0033]此外,通过在至少外TBC层18的氧化钇-氧化锆系统中掺入氧化铪(二氧化铪;HfO2),可改进TBC系统10的几种特性。这些特性包括热导率降低、烧结速率降低和催化结晶CMAS。认为大于0.5重量%,更优选大于1.0重量%量的氧化铪对这些特性具有显著影响。在氧化钇-氧化锆系统中,氧化铪提高声子散射,因此降低热导率。氧化铪还降低高氧化钇含量的外TBC层18的氧离子传导率,进而降低层18的烧结速率。
[0034]此外,氧化铪不溶于CMAS,认为大于0.5重量%,更优选大于1.0重量%的量的氧化铪用作成核剂,用于保护性反应产物的沉淀,该产物含有硅酸钇钙(通常称为磷灰石相)和潜在含有由高氧化钇的外TBC层18与CMAS沉积物的相互作用产生的其它反应产物。通过催化结晶CMAS (例如,结晶铪酸钙)的沉淀,氧化铪颗粒还可用于减轻CMAS的玻璃形成,在TBC系统10中,结晶CMAS(例如,结晶铪酸钙)比无定形CMAS害处较小。出于这些原因,期望在氧化钇-氧化锆TBC系统10中掺入氧化铪,认为这样的氧化铪掺入与本发明的优选实施方案构成整体。然而,在TBC层16或18任一个中的氧化铪含量优选小于其氧化钇含量,基于重量百分比。此外,由于氧化铪为比氧化钇和氧化锆更重和更大的分子,因此TBC系统10的铪含量优选不多于得到其期望的效果所必需的。在高氧化钇(约38重量%)的外TBC层18中,约1.3重量%的氧化铪含量已显示在降低散裂方面赋予显著改进。基于此,推断通过包括大于0.5至最多约10重量%,更优选大于1.0至最多约2.5重量%的量的氧化铪,应可得到上述益处。
[0035]作为本发明的另外和任选的特性,可将最多10重量%的氧化钽(Ta2O5 ;氧化钽)掺入到至少外TBC层18中。除了氧化铪以外优选加入氧化钽(氧化钽代替氧化锆),但是可预见在TBC系统10中可包括氧化钽以部分或甚至完全代替氧化铪。与向TBC系统10中加入氧化铪的效果类似,认为氧化钽沉淀出结晶钽酸钙相,结晶钽酸钙相有益于抑制剩余的CMAS渗入TBC系统10中,并且提高周围CMAS的熔点。
[0036]虽然已关于具体的实施方案描述了本发明,但显然的是,本领域技术人员可采用其它形式。因此,本发明的范围仅由以下权利要求限定。
【权利要求】
1.一种在部件的表面区域上的涂层系统,所述涂层系统包含: 结合涂层;和 在所述结合涂层上的内陶瓷层和外陶瓷层,所述内陶瓷层覆在所述结合涂层上,所述内陶瓷层基本上由被约6-约9重量%氧化钇稳定的氧化锆组成,所述内陶瓷层具有厚度和孔隙率水平,所述外陶瓷层覆在所述内陶瓷层上并接触所述内陶瓷层,并且限定所述涂层系统的最外表面,所述外陶瓷层基本上由被约25-约75重量%氧化钇稳定的氧化锆组成,并且还含有大于0.5-10重量%氧化铪和任选1-10重量%氧化钽,所述外陶瓷层的厚度小于所述内陶瓷层的厚度,孔隙率水平低于所述内陶瓷层的孔隙率水平。
2.权利要求1的涂层系统,其中所述外陶瓷层含有大于1.0-10重量%氧化铪。
3.权利要求1的涂层系统,其中所述外陶瓷层含有大于1.0-2.5重量%氧化铪。
4.权利要求1的涂层系统,其中所述内陶瓷层的厚度为至少50-约500微米,而所述外陶瓷层的厚度为最多250微米。
5.权利要求1的涂层系统,其中所述外陶瓷层的厚度为至少约25微米。
6.权利要求1的涂层系统,其中所述外陶瓷层厚度与所述内陶瓷层厚度的比率不大于0.5。
7.权利要求1的涂层系统,其中所述内陶瓷层的孔隙率水平为约10-约25体积%,而所述外陶瓷层的孔隙率水平为约3-约15体积%。
8.权利要求1的涂层系统,其中所述外陶瓷层基本上由被约36-42重量%氧化钇稳定的氧化锆组成,并且所述外陶瓷层和内陶瓷层限定不大于0.5的厚度比。`
9.权利要求1的涂层系统,其中所述外陶瓷层包含立方晶体相,而所述内陶瓷层基本上由四方或改性四方晶体相组成。
10.权利要求1的涂层系统,其中所述外陶瓷层与含有氧化钙、氧化镁、氧化铝和二氧化硅的共晶化合物反应,以在超过1200°c的温度下形成硅酸钇钙。
11.权利要求1的涂层系统,其中所述结合涂层为选自MCrAlX覆盖涂层和/或扩散铝化物涂层的金属结合涂层。
12.权利要求1的涂层系统,其中所述部件为由基于镍或基于钴的超合金形成的燃气轮机发动机部件。
13.权利要求10的涂层系统,其中所述部件选自燃气轮机发动机的高压和低压涡轮机叶轮和叶片、护罩、燃烧器衬里和增压器硬件。
14.一种在部件上形成涂层系统的方法,所述方法包括: 在所述部件的表面上沉积结合涂层; 在所述结合涂层上沉积内陶瓷层,所述内陶瓷层基本上由被约6-约9重量%氧化钇稳定的氧化锆组成并任选含有大于0.5-10重量%氧化铪,沉积所述内陶瓷层以具有厚度和孔隙率水平; 在所述内陶瓷层上沉积外陶瓷层,所述外陶瓷层限定所述涂层系统的最外表面并且基本上由被约25-约75重量%氧化钇稳定的氧化锆组成,并且还含有大于0.5-10重量%氧化铪和任选1-10重量%氧化钽,沉积所述外陶瓷层以具有小于所述内陶瓷层厚度的厚度,并且具有高于所述内陶瓷层的孔隙率水平;和随后 在真空中热处理所述内陶瓷层和外陶瓷层至一定温度,并经历足够的持续时间,以减轻其中由沉积步骤诱发的应力。
15.权利要求14的方法,其中所述热处理步骤在真空中在约1050-约1080°C温度下进行约2-约4小时的持续时间。
16.权利要求14的方法,其中所述外陶瓷层厚度与所述内陶瓷层厚度的比率不大于0.5。
17.权利要求14的方法,其中沉积所述外陶瓷层和内陶瓷层,使得所述内陶瓷层的孔隙率水平为约10-约25体积%,而所述外陶瓷层的孔隙率水平为约3-约15体积%。
18.权利要求14的方法,其中沉积所述外陶瓷层,以基本上由被约36-42重量%氧化钇稳定的氧化锆和大于1.0-2.5重量%氧化铪组成,并且所述外陶瓷层和内陶瓷层限定不大于0.5的厚度比。
19.权利要求14的方法,其中沉积所述外陶瓷层以包含立方晶体相,和沉积所述内陶瓷层以基本上由四方或改性四方晶体相组成。
20.权利要求14的方法,其中所述部件为燃气轮机发动机部件,并且所述方法还包括使所述外陶瓷层与含有氧化钙、氧化镁、氧化铝和二氧化硅的沉积物反应,以形成硅酸钇钙。`
【文档编号】B32B18/00GK103874580SQ201280050181
【公开日】2014年6月18日 申请日期:2012年10月12日 优先权日:2011年10月13日
【发明者】B.A.纳加拉, D.G.科尼策尔, J.M.查普曼, V.S.文卡塔拉马尼 申请人:通用电气公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1