一种光热可复写储能纳米纸的制备方法

文档序号:30637638发布日期:2022-07-05 21:40阅读:183来源:国知局
一种光热可复写储能纳米纸的制备方法

1.本发明属于光热可复写储能纳米纸的制备方法,涉及一种光热可复写储能纳米纸的制备方法。


背景技术:

2.相变材料能够在几乎恒定的温度下,较小的体积内,存储相对较多的热能。其能量的存储和释放是由于相态变化过程中分子间化学键断裂或重组,作用力发生变化造成的。分子间作用力的变化也会使材料本身的折射率发生变化,表现为材料的透光率产生显著差异。
3.在众多相变材料中,有机类相变材料饱和烷烃,由于其良好的化学稳定性、低成本、轻质以及在冷热循环过程中无相分离等特性,广泛应用于储能设备中,进行热管理。这类材料在储能过程中,伴随固液相转变,其中液态相变材料具有流动性,会发生扩散和渗漏,需要合适的材料对其进行封装才能进行循环储能应用。纤维素纳米纤维剥离自可再生资源木材,结构中同时存在亲水性和疏水性结构单元,能够用作pickering粒子,稳定乳液体系中的油滴。优异的光学透明度和力学性能也使其成为光学研究很好的基底材料。用纤维素纳米纤维封装相变材料,制备储能纳米纸,既能保证相变材料循环使用不发生泄露,又能使纳米纸透明度随环境温度变化发生改变。
4.此外,光热染料能在特定的波长照射下,原位产生热量,在激光设备中发挥重要作用。将光热染料均匀分散到相变材料储能纳米纸中,在激光照射下,储能纳米纸在照射部位原位进行光热转化,产生的热能传递给相邻的相变材料,当温度达到熔点时,相变材料开始融化,局部区域透明度增加。由于光斑尺寸可调,光源可灵活移动,因此,可以通过时间和空间上的限定,实现储能纳米纸局部透明度可控,又由于相变材料可逆的相转变,使得储能纳米纸成为一种可重复使用的光学书写介质。在智能显示和温敏传感领域表现出极大的应用潜能。


技术实现要素:

5.要解决的技术问题
6.为了避免现有技术的不足之处,本发明提出一种光热可复写储能纳米纸的制备方法,通过将相变材料封装到透明基底薄膜中,并引入光热染料,制备出光热可复写储能纳米复合纸。当激光照射纳米纸时,光热染料可在照射区域将激光转化为热能,热能随即转移到封装在透明基底的相邻相变材料中。相变材料受热后从固体变成液体,从而使薄膜含液态相变材料部分透明,含固态相变材料部分不透明,显著的对比度使纳米纸成为光热书写介质。同时,相变是一个随环境温度变化可逆的过程,因此,储能纳米纸在降低温度后可恢复到初始状态,在激光再次照射时可重复书写,从而使所制备储能纳米纸表现出光热可复写性能。
7.技术方案
8.一种光热可复写储能纳米纸的制备方法,其特征在于步骤如下:
9.步骤1:将纤维素纳米纤维、水、相变材料、光热染料、溶剂按质量比为0.01~10︰1~1000︰0.1~20︰0.0001~0.01︰0.01~10的比例混合后,超声处理5~50min,形成稳定的乳液;
10.步骤2:将上述乳液转移至培养皿中,让水分充分挥发后得到光热可复写储能纳米纸。
11.所述相变材料为正十二烷、正十三烷、正十四烷、正十五烷、正十六烷、正十七烷、正十八烷、正二十烷、正二十二烷、正二十四烷、正二十六烷、正二十八烷、正三十烷中的至少一种。
12.所述溶剂为环己烷、正己烷、甲苯、二甲苯、戊烷、辛烷、环己酮、甲苯环己酮、氯苯、二氯苯、二氯甲烷、甲醇、乙醇、异丙醇、乙醚、环氧丙烷、醋酸甲酯、醋酸乙酯、醋酸丙酯、乙二醇单甲醚、乙二醇单乙醚、乙二醇单丁醚、乙腈、吡啶、苯酚、n,n-二甲基甲酰胺、二甲基亚砜中的至少一种。
13.有益效果
14.本发明提出的一种光热可复写储能纳米纸的制备方法,通过将相变材料封装到透明基底薄膜中,并引入光热染料,制备出光热可复写储能纳米复合纸。当激光照射纳米纸时,光热染料可在照射区域将激光转化为热能,热能随即转移到相邻的封装在透明基底的相变材料中。相变材料受热后从固体变成液体,从而使薄膜含液态相变材料部分透明,含固态相变材料部分不透明,显著的对比度使纳米纸成为光热书写介质。同时,相变是一个随环境温度变化可逆的过程,因此,储能纳米纸在降低温度后可恢复到初始状态,激光再次照射可重复书写,从而使所制备储能纳米纸表现出光热可复写性能。
15.本发明所涉及的一种光热可复写储能纳米纸制备方法,优势之处在于采用生物基材料一步法制备出可循环使用的光写介质,由于光的传播性,使得该光热书写方式可以实现非接触远距离书写。制备工艺简单,通用性强,成本较低,原料绿色环保、适合工业化大规模生产。
附图说明
16.图1:纤维素纳米纤维包覆正十六烷相变材料和ir 780近红外光热染料所得储能纳米纸通过移动光源所得光热书写效果图。
具体实施方式
17.现结合实施例、附图对本发明作进一步描述:
18.实施例1:纤维素纳米纤维包覆正十六烷相变材料和ir 780近红外光热染料制备储能纳米纸
19.将0.0001g ir 780光热染料、1ml甲醇、25ml水、0.1g纤维素纳米纤维、0.15g正十六烷混合后,超声处理10min,形成稳定的乳液,随后将乳液转移到培养皿中,待溶剂充分挥发后得到光热可复写储能纳米纸。
20.实施例2:纤维素纳米纤维包覆正十八烷相变材料和ir 780近红外光热染料制备储能纳米纸
21.将0.0001g ir 780光热染料、2ml甲醇、50ml水、0.1g纤维素纳米纤维、0.3g正十八烷混合后,超声处理20min,形成稳定的乳液,随后将乳液转移到培养皿中,待溶剂充分挥发后得到光热可复写储能纳米纸。
22.实施例3:纤维素纳米纤维包覆正二十烷相变材料和ir 780近红外光热染料制备储能纳米纸
23.将0.0001g ir 780光热染料、5ml甲醇、50ml水、0.1g纤维素纳米纤维、0.1g正二十烷混合后,超声处理30min,形成稳定的乳液,随后将乳液转移到培养皿中,待溶剂充分挥发后得到光热可复写储能纳米纸。
24.实施例4:纤维素纳米纤维包覆正十三烷相变材料和ir 780近红外光热染料制备储能纳米纸
25.将0.0003g ir 780光热染料、5ml甲醇、20ml水、0.1g纤维素纳米纤维、0.1g正十三烷混合后,超声处理5min,形成稳定的乳液,随后将乳液转移到培养皿中,待溶剂充分挥发后得到光热可复写储能纳米纸。
26.实施例5:纤维素纳米纤维包覆正十六烷相变材料和icg吲哚菁绿光热染料制备储能纳米纸
27.将0.0002g icg吲哚菁绿光热染料、3ml乙腈、40ml水、0.2g纤维素纳米纤维、0.2g正十六烷混合后,超声处理10min,形成稳定的乳液,随后将乳液转移到培养皿中,待溶剂充分挥发后得到光热可复写储能纳米纸。
28.实施例6:纤维素纳米纤维包覆正二十八烷相变材料和icg吲哚菁绿光热染料制备储能纳米纸
29.将0.0001g icg吲哚菁绿光热染料、3ml乙腈、30ml水、0.2g纤维素纳米纤维、0.1g正二十八烷混合后,超声处理10min,形成稳定的乳液,随后将乳液转移到培养皿中,待溶剂充分挥发后得到光热可复写储能纳米纸。
30.实施例7:纤维素纳米纤维包覆正十八烷相变材料和icg吲哚菁绿光热染料制备储能纳米纸
31.将0.0002g icg吲哚菁绿光热染料、5ml n,n-二甲基甲酰胺、40ml水、0.2g纤维素纳米纤维、0.1g正二十八烷混合后,超声处理10min,形成稳定的乳液,随后将乳液转移到培养皿中,待溶剂充分挥发后得到光热可复写储能纳米纸。
32.实施例8:纤维素纳米纤维包覆正十六烷相变材料和icg吲哚菁绿光热染料制备储能纳米纸
33.将0.0001g icg吲哚菁绿光热染料、5ml n,n-二甲基甲酰胺、50ml水、0.2g纤维素纳米纤维、0.2g正十六烷混合后,超声处理20min,形成稳定的乳液,随后将乳液转移到培养皿中,待溶剂充分挥发后得到光热可复写储能纳米纸。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1