改进的塑料/金属层压材料的制作方法

文档序号:2426527阅读:1052来源:国知局
专利名称:改进的塑料/金属层压材料的制作方法
技术领域
本发明广泛地涉及改进的塑料/金属层压材料,其中材料已改进了对各种底材的粘着力、改进了热密封能力和具有较低的摩擦系数(“COF”)。使用本发明改进的塑料/金属层压材料,在生产电缆和其他成型的塑料/金属复合材料制品时也显示出低的断裂比率和大幅度降低了碎片和粉尘。另外,本发明涉及塑料/金属复合材料制品或层压材料,它预期可合理地进行安装和/或应用于有线电通讯电缆,以及潜在的用途是用来制造电器仪表壳、传热的输送管道、和在各种机动车方面的应用等的金属/塑料/金属层压材料。
从各种层压制品生产电缆和其他成型的塑料/金属复合材料制品,这种层压制品包含一层或多层金属层或底材,有一层或多层热塑性聚合物料的涂盖层粘附在金属底材上。对各种应用的适用性经常的控制因素或需要考虑的因素是这种塑料/金属层压材料可能塑造和成型的程度和它在层压的或复合材料的制品中,在各种聚合物层和金属层之间的粘着程度。
本发明的塑料/金属层压材料的一种特别有用的用途是在电缆方面,在设计和构造电缆的工艺方面,特别是在长途通讯如电话电缆方面。众所周知在缆芯部分装配绝缘的导体或玻璃纤维,并由保护层和外套部分围绕它。保护层部分经常称为“保护屏、保护带或铠装带”。
一般由塑料/金属层压材料(例如,保护带或铠装带)制成电缆的生产工序,通常由一个展开装置输送塑料/金属层压材料,典型的这些材料的宽度是0.5英寸(1.27厘米)到8.0英寸(20.32厘米)。输送的材料进入波纹轧机(如果要求生产的是平滑涂层电缆,那就不必经过波纹轧机)。经波纹轧机后,塑料/金属层压材料进入预压机或成型槽板,在那儿层压材料开始形成管子,然后预成型的层压材料进入至少一个成型模,在那儿形成具有交接缝的管子。在成型模内,缆芯送入已成型的塑料/金属管,然后含有缆芯的塑料/金属管进入至少一个压准模,在那儿将塑料/金属管压成按要求的适当尺寸的电缆。用热源促使交接缝处粘合。下一步一种外套树脂挤压到塑料/金属管上。之后,在水浴中冷却制成的电缆并按典型的方法缠绕在绕线盘上。依据要求的电缆类型和尺寸大小,电缆生产线的生产速度范围可从8英尺/分钟(2.44米/分钟)到300英尺/分钟(91.44米/分钟)。
按目前典型的工艺,塑料/金属材料对于预压机、成型模和压准模表面的接触表面能足以引起层压材料的被阻塞,在电缆生产过程当塑料/金属层压材料被牵引而产生急拉动作,这种阻塞和急拉动作有时会引起塑料/金属层压材料的破损。这种阻塞和产生的急拉动作,相信是由于目前工艺中成型模和压准模的紧密的空隙和目前工艺中所用的塑料/金属层压材料的典型的高摩擦系娄所导致。由于在电缆生产过程,塑料/金属层压材料被牵引时存在相当高的表面接触能,热塑性聚合物的表面被明显地磨损,并引起热塑性聚合物的碎裂和粉尘化,特别是在预压机、成型模和压准模的周围,但更典型的是在压准模之后。所产生的碎片和粉尘在生产过程会积聚起来,迫使生产过程停机。另外,当已成型的塑料/金属被牵引通过压准模时,压准模的温度会有相当的提高。
为了减少磨损、碎片化和粉尘化、降低模具的温度及层压材料断裂的比例。工业上优选的操作方法是在生产过程预成型操作之前在塑料/金属层压材料的表面施加润滑油。预期的目的是降低塑料/金属层压材料表面接触各种模具时的摩擦系数。然而,使用润滑油后,某些时候会大大降低塑料/金属层压材料与外套组分间的粘附性能以及降低了交接缝处的粘着力。润滑油的使用某些时候还会在塑料/金属层压材料和受影响的操作表面间引起控制方面的问题。
因此,工业上需要一种塑料/金属材料,它显示出低的断裂比例,低的碎片化和粉尘化、保持或提高对外套组分的粘着力,保持和提高交接缝的粘着力,同时在如电缆制品生产过程必须不用或大大降低润滑油的使用量。
本发明实际上已解决了当我们用这些层压材料模塑成型为电缆时,塑料/金属层压材料(例如塑料外套电缆的保护带)的磨损、碎片化、粉尘化和断裂方面的问题,同时大大降低或不再需要使用润滑油。总之,本发明申请人已发现,这些问题可通过在塑料/金属层压材料的塑料层中掺合东西而得到实质性的解决。掺合进足够量的压花料(embosser)可大大降低层压材料的摩擦系数并在塑料层的表面压上花纹。当成型和组合成塑料/金属复合材料的制品如电缆时,本发明的塑料/金属层压材料也显示出改进的热密封能力和对外部夹套组分的粘着力。
因此,一方面本发明是一种塑料/金属层压材料,它包含一种金属的底材和至少一种表面层,该表面层直接地或经过一层或多层中介的聚合物层粘附到上述底材上。上述的表面层基本上是由一种基础的粘合性聚合物或聚合物的混合物和适量的压花料组成,压花料的用量要足以大大降低层压材料的摩擦系数和足以在上述的表面层压花。
另一方面,本发明是一种更完美的塑料/金属复合材料制品,如一种电缆或通讯电缆。包括至少一种绝缘的导体或玻璃纤维的缆芯、一种围绕上述缆芯的保护层和一种外层的塑料套管,该套管围绕和粘附在上述保护层上。上述的保护层包含一种金属的底材;一种表面层,直接或经过一层或多层中介的聚合物层粘附到上述的金属底材上;上述表面层基本上是由一种基础的粘合性聚合物或聚合物的混合物和一种压花料构成。这儿提及的保护层相对于一种相似的保护层对外层的塑料套管显示出较大的结合强度,其差别仅仅在于不存在压花料。这儿提及的保护层相对于一种相似的保护层显示出大一些的热密封值,其差别仅仅在于不存在压花料。


图1是本发明实施方案中热密封能力试验结果的图形表示。
本发明的实施方案之一,是一种单层或多层的热塑性粘合体系。本发明的粘合体系至少包含了基本上由一种基础粘合树脂和适量压花料构成的一层,压花料的用量要足以降低粘合体系的摩擦系数和足以在粘合体系上压花。通常,本发明的粘合体系具有0.1密耳(2.54微米)到5密耳(127微米)的厚度。优选的粘合体系具有0.2密耳(5.08微米)到5密耳(127微米)的厚度,而最优选的粘合体系具有1密耳(25.4微米)到2.5密耳(63.5微米)的厚度。
本发明的另一实施方案是一种塑料/金属层压材料,它的形成是通过施加本发明的粘合体系到一种片状或带状的金属底材的一面或两面。本粘合体系可通过本领域已知的技术施用(例如,挤压贴胶或层压)。通常,本发明的塑料/金属层压材料具有2(50.8)到25密耳(635微米)的厚度,优选4(101.6)到15密耳(381微米)的厚度。
本发明再一实施方案,是一种复合结构,包含一种缆芯组分,一种保护层组分,它围绕着缆芯和一种外层的热塑性套管组分,它围绕并粘附在保护层组分上。这儿的保护层组分基本上是由本发明的塑料/金属层压材料构成。
本发明的粘合体系必须能够粘合到塑料/金属层压材料的金属底材上和任何复合材料制品的外套组分上,这样形成的层压材料将是结合为一体的。在多层粘合体系,外层或表面层(即,粘附到外套管组分上的那一层)必需含有所需的足够量的压花料。在多层粘合体系中,除了表面层以外的其他各层不需要含有压花料,但可包含除表面层之外任一相同的或不同的基础粘合树脂。
适宜于应用在本发明的基础粘合树脂的热塑性聚合物(“基础粘合聚合物”)通常是那些在生产用于制备通讯电缆的层压材料的领域中已知的。优选的基础粘合聚合物包括已知的普通固态无规共聚物,这种共聚物是以主要比例的烯与较小比例的烯类不饱和羧酸单体(例如,典型的是含共聚物总量的1%到30%,优选2%到20%)共聚制得。这类适宜的烯类不饱和羧酸(本术语包括一元或多元酸、酸酐和多元酸的部分酯、以及那些酸的各种金属盐)是丙烯酸、甲基丙烯酸、巴豆酸、富马酸、马来酸、衣康酸、马来酸酐、马来酸一甲酯、马来酸一乙酯、富马酸一甲酯、富马酸一乙酯、马来酸三丙二醇一甲醚酸式酯或马来酸乙二醇一苯醚酸式酯。优选的羧酸单体,选自α/β烯类不饱和一元和多元羧酸和每分子具有3到8个碳原子的酸酐和这类多元羧酸的部分酯,那类羧酸酯中,酸的部分至少具有一个羧酸基团和醇的部分具有1到20个碳原子。这类共聚物基本上可由乙烯和一种或多种烯类不饱和羧酸或其酸酐共单体组成或者也可包含小量的其他可与乙烯共聚的单体。因此,这类共聚物可包含其他可共聚的单体包括丙烯酸酯、甲基丙烯酸酯和类似物。这类无规共聚物及其制造方法在本领域是容易了解的。
适宜于应用在本发明中的其他热塑性聚合物包括已知的烯烃聚合物,一般说来是烯类烯烃聚合物,例如,各种已知的乙烯均聚物(例如,超低、线性的低、低、中和高密度聚乙烯,具有的密度范围是0.82到0.96g/cc),共聚物,它具有主要比例的乙烯与较小比例的已知的可共聚单体如高(例如,C3到C12)α-烯烃,烯类不饱和酯单体(例如,醋酸乙烯酯、丙烯酸乙酯等)和这类烯类均聚物和共聚物的接枝改性体(例如,与丙烯酸、马来酸酐接枝的等)。这种类型的烯烃聚合物、共聚物和化学改性的烯烃和/或这种类型的共聚物和它们的制造方法在本领域是容易了解的。
本发明的实施方案之一,基础的粘合树脂是(a)与(b)的共混物,(a)一种乙烯与烯类不饱和羧酸单体的无规共聚物,和(b)至少一种不同的烯类烯烃和/或一种烯类烯烃聚合物树脂的共聚物,它不是无规的乙烯/不饱和羰酸共聚物。优选的基础粘合树脂,按它的重量计算,包含5%到95%的(a),更优选的是含50-95%,最优选的是从65-95%的(a),优选的基础粘合树脂,按它的重量计算也包含0-95%的(b),更优选的包含0-50%,最优选的包含5-20%的(b)。
此外,应该了解当涉及“乙烯与一种烯类不饱和羧酸的无规共聚物”时,可预期包括与此有关的已知的部分或完全中和的它的变型体,在本领域,归诸为“离子型聚合物”。更进一步,应该了解当涉及“不同的烯类烯烃和/或一种不是无规乙烯/不饱和羧酸共聚物的烯类烯烃聚合树脂的共聚物”时,可预期包括烯类烯烃聚合物,这类聚合物是使用了一种烯类不饱和二元酸的酸酐或酸酐前体,一种烯类不饱和二元酸的酯和上述化合物的橡胶态改性的衍生物通过共聚反应或接枝共聚反应技术得到的改性体。
通常,在本发明中使用的压花料在本领域是已知的,为有机或无机填料。适合于本发明中使用的压花料,希望实际上是非相容性的,化学惰性的,而且在基础粘合聚合物中是不溶的。非相容性归因于与基础粘合性聚合物实际上缺乏化学的(例如聚合的)键合力,而且优选与在薄膜涂层中有关的任何其他物质都缺乏键合力。化学隋性归因于在基础粘合聚合物中实际上是不能溶解的,或者优选的是对在基础粘合树脂中的任何其他组分都是不溶的。所谓不溶归诸于在基础粘合聚合物中的不溶性达到这样一种程度以致于实际上保持了压花表面的物理完整性。
压花料的量必须足以实质上地降低了塑料/金属层压材料的摩擦系数(COF)并能在塑料/金属层压材料的表面压花。通过在塑料/金属层压材料的表面压花,意味着在表面有许多凸起部,它的凸起高度范围是粘合层厚度的1/100-1/4,较大的凸起使表面太粗糙并有害地影响了薄膜层的强度和其他性质。较小的凸起通常对于降低塑料/金属层压材料的摩擦系数较少有效。这儿表面凸起的评价是通过测定热塑性聚合物的在接触测定值方面的差异,按美国材料试验标准D374(ASTMD374)所规定的,和测定热塑性聚合物在重量测定值方面的差异,按美国材料试验标准E252(ASTME252)。
优选的表面层含有的压花料为0.1-16%重,更优选的是2-16%重、最优选的是4-8%重。
在本发明中宜于应用的有机压花料的例子包括微粒的聚酯,聚四氟乙烯(“PTFE”)。尼龙,聚苯乙烯、耐冲击的聚苯乙烯(“HIPS”)、苯乙烯丙烯腈共聚物(“ SAN”),丙烯腈-丁二烯-苯乙烯共聚物(“ABS”)、聚碳酸酯等。适用的无机压花料包括微粒的石墨、云母、白垩、硫酸钙、硅酸钙、碳酸钙、滑石粉、皂土、重晶石、高岭土、硅铝酸镁、硅酸镁、无机的胶体、叶蜡石、serite、硅石、石膏粉等。优选的压花料在基础粘合聚合物中是非相容性、非吸湿性的和非微孔性的形态。最优选的压花料是云母,它不仅具有能力可有效地分布到塑料/金属层压材料上成为均一的压花表面、而且也改进了塑料/金属层压材料的粘附性能。
通过塑料/金属层压材料的摩擦系数实质性的降低、意味着这种效果静态或起始摩擦系数和产生的动态或滑动态的摩擦系数与基本上是等同的塑料/金属层压材料、差别仅仅在于不存在任何压花料的那种材料的静态和动态的摩擦系数相比都较低。塑料/金属层压材料的静态和动态的摩擦系数是用改进的美国材料试验标准D1894进行测定的(见例I)。优选的塑料/金属层压材料的静态摩擦系数至多是在0.40,更优选的至多在0.30,最优选的至多是在0.2,根据修正的ASTMD1894进行测定的。优选的塑料/金属层压材料的动态摩擦系数至多是0.40,较优选的至多是0.30,最优选的至多是在0.20,也按修正的AMTSD1894进行测定的。
本发明的塑料/金属层压材料显示出改进的粘着力。粘附性能的评价是按照修正的ASTMB736规定的标准和方法测定塑料/金属层压材料的撕开强度(见例II)。塑料/金属层压材料对通常是夹套组分上的材料的粘着力是应用修正的ASTM1876制定的标准和方法进行测定的(见例v)。此外,应该了解这儿所指的改进粘合力,其含义是指粘合力被改进,相对于当利用基本上等同的塑料/金属层压材料或组合物件观察到的粘着力,其差别仅仅在于后者不存在压花料。
本发明优选的多层粘合体系的层间粘着力至少是5磅/英寸,更优选的至少是8磅/英寸(142.86公斤/米)、最优选的至少是12磅/英寸(214.30公斤/米),这些数据是按修正的ASTMB736规定的标准和方法测定的。优选的包覆层(即在一种电缆的外部绝缘夹套层)和本发明的塑料/金属层压材料之间的粘着力至少是8磅/英寸、更优选的至少是10磅/英寸(178.56公斤/米)和最优选的至少是15磅/英寸(267.86公斤/米),按修正的ASTM1876测定。
在本发明中使用的金属底材(例如,薄板、带条、金属箔等)的厚度没有严格的要求,可用小于1密耳的箔片也可用相对厚的薄板。典型的金属底物的厚度是从3(76.2)到25密耳(635.00微米)。优选4密耳(101.60)到15密耳(381.00微米)。金属底材可由广泛多样的金属原料组成,例如,铝、铝合金、包合金铝、铜、表面改性的铜、青铜钢、不含锡的钢、镀锡的钢、渗铝的钢、包铝钢,不锈钢,包铜不锈钢,包铜低碳钢、镀铅钢、电镀钢、镀铬或铬处理过的钢、铅、镁、锡和类似物。当然,若要求的话这些金属可经表面处理或在金属的表面具有转化覆盖层。应用上特别优选的金属底材,包括那些由铬/铬氧化物镀层的钢(在本领域一般归诸为不含锡的钢)、不锈钢、铝和铜组成的金属底材。
本发明的粘合剂体系可按所要求的任何便利的方法施加到金属底物上。例如,常规的挤压贴面技术可使用来施加粘合剂体系到选择的金属底材上。此外,传统的薄膜层压技术也可恰当地使用,把粘合剂薄膜体系粘附到期望的金属底物上。一种传统的共挤压和薄膜层压技术的组合也可使用。例如,可按要求首先将一种粘合剂体系挤压或共挤压成薄膜,然后将薄膜层压到一种金属底材的一面或两面。
实例本发明可通过以下例子作进一步的阐明,但在任何方面不要理解为限于这些例子。在下列例子中,所有部分和百分比都是按重量计算的,除非另有注明。
例1在本例中,应用常规的吹制薄膜工序,制作了1.6密耳(40.64微米)厚的单层粘合性薄膜。这种粘合性薄膜包含一种基础的粘合性树脂和一种含有高密度聚乙烯和40%重量比的云母(即Micafil40、可从加拿大杜邦公司购得)的混和物。这种基础粘合性树脂是一种无规的乙烯/乙烯酸(“EAA”)共聚物和一种烯烃聚合物的混合物。EAA共聚物含有占共聚物总量6%的丙烯酸和具有熔体指数5.5。所用的烯烃聚合物是具有熔体指数5.5和密度0.916克/毫升的聚乙烯(“LDPE-1”)或具有熔融指数5.0和密度0.958克/毫升的聚乙烯(“HDPE-1”)。表I中表明了在各种样品中应用EAA,LDPE-1、HDPE-1和Micafil40的数量。
各种薄膜样品被层压到厚度为7.5密耳(190.5微米)铝板的一面。在制备这类样品时,将金属板在加热到300°F(148.89℃)的循环空气炉中预热一分钟后层压上所需的单层膜,然后拉引预热了的金属薄板,让所需的单层薄膜通过一套橡胶压辊,制得的层压板再在已加热到300°F(148.89℃)的循环空气炉中后加热一分钟。制得的已后加热过的层压板,在做任何试验前,应让它在73°F(22.78℃)和具有50%相对湿度的空气中至少平衡12小时。
制得的层压板样品,用模板切成2.75英寸(6.99厘米)宽4.00英寸(10.16厘米)长的断片,沿机器的方向具有较大的尺寸。层压板样品,按照ASTMD1894制定的标准、方法,在标准的恒定的实验室条件下,接受摩擦系数试验。(除了使用每分钟5英寸的十字头速度、2000克的测力传感器、7#高光洁度的不锈钢板和1公斤的拖拉器,至少在73°F(22.78℃),空气的相对湿度为50%的条件下调理12小时,并且至少在5个试验样品上施行了试验)。摩擦系数的试验结果,在表I中列出。
表I*% %% % 静态 动态试样# EAA LDPE-1HDPE-1 Micafil40摩擦系数 摩擦系数对照 91.005.000.54290.5257I-140.00 56.00 0.33200.3120I-267.20 16.8012.000.23130.2099I-360.80 15.2020.000.20050.1696I.458.80 25.2012.000.17570.1518I-553.20 22.8020.000.17960.1532I-646.20 19.8030.000.14490.1289I-743.20 10.8030.000.14280.1359I-879.005.00 12.000.34000.3150I-971.005.00 20.000.27270.2509I-10 61.005.00 30.000.19400.1657I-11 94.00 2.00 0.45200.4152I-12 84.00 12.000.33000.3150I-13 76.00 20.000.27950.2572*薄膜组成的余额包含接近等重量百分比的防粘剂和热稳定/抗氧化剂。
制作了一组对照样品,并按上述例子相同的方法进行了试验,除了用于制造层压材料的粘合性薄膜中没有掺合进云母。
表I的结果表明,使用了相对高含量的高密度聚乙烯的层压材料显示降低的摩擦系数值,与相应的对照组显示的摩擦系数值比较(样品I-1与对照组相比)。然而,表I的数据也表明,在层压材料样品中加入云母后,结果是更明显地降低了摩擦系数值。
例II按例I中相同的方法制备了层压材料、除了在例I中使用的烯烃聚合物(即LDPE-1和HDPE-1)之外,使用了一种附加的低密度聚乙烯,具有熔体指数1.9和密度0.925克/毫升(“LDPE-2”)。层压材料切割成1英寸(2.54厘米)宽,6英寸(15.24厘米)的样品,在沿机器的方向,具有较大的尺寸。
表II*% %% %% 热密封 热密封试样# EAA LDPE-1LDPE-2 HDPE-1Micafil40 最大值 平均值(kg/m) (kg/m)对照 91.005.00 150.36 112.76II-1 40.00 56.00 18.54 17.45II-2 67.20 16.80 12.00 103.43 60.41II-3 60.80 15.20 20.00 96.15 46.27II-4 52.80 25.20 12.00 73.27 35.88II-5 53.20 22.80 20.00 89.70 37.20II-6 40.00 54.00 2.0017.84 17.18II-7 40.00 44.00 12.00 27.32 24.66II-8 40.00 36.00 20.00 31.56 30.75II-9 61.005.00 30.00 42.93 37.61II-10 94.00 2.00101.84 86.02II-11 84.00 12.00 73.74 49.77II-12 76.00 20.00 167.94 147.94*薄膜组成的余额包含接近等重量百分比的防粘剂和热稳定/抗氧化剂。
样品经受90°的热密封能力试验,依据ASTM B736并在标准的实验室条件下(除了使用每分钟12英寸的十字头速度,25千克的测力传感器,300°F(148.89℃)的热密封温度,40磅/平方英寸(psig)的热密封压力,2秒的停留时间,需在73°F(22.78℃),空气相对湿度为50%的条件下至少调理5分钟,至少在5个试验样品上进行了试验)。
为了对照目的,按其他样品相同的方法制作了对照样品并进行试验。对照样品不含有任何HDPE-1或Micafil40。
每个样品的热密封能力试验结果,在表II中列出。
表II的试验结果表明,在与EAA的混和物中,相对高水平的高密度聚乙烯的加入,与对照样品比较,明显地降低了样品的粘合性能。更进一步,可见在与低密度和高密度聚乙烯的混和物中加入云母也能实质性地降低层压材料的粘附性能。然而,在与无规乙烯/羧酸共聚物的混和物中(例如Micafil40)给予云母和高密度聚乙烯的量的适量平衡,与对照的层压材料比较,明显地改进了热密封粘附性能(II-12与对照样品比较)。
例III按相似于例I和例II中样品的方法,制备试样并进行试验。然而,用于制备样品的粘合性薄膜是2.3密耳(58.42微米)厚的两层粘合性薄膜,每层的厚度相同。与吹制薄膜工序相反,本例用传统的模铸薄膜工序制备粘合性薄膜,为了进行比较,用2.3密耳(58.42微米)厚的单层薄膜制备了对照样品。例III中的每个试样具有一层接触金属的层,该金属和对照样中的具有相同的组成。每个试样的其他层(表面层)的组成见表III。试样按例I和例II中试样相同的方法进行试验,试验结果也在表III中列出。
表III*% % % % 静态摩 动态摩 热密封 热密封试样#EAALDPE-1 HDPE-1 Micafil40 擦系数 擦系数 最大值 平均值(kg/m) (kg/m)对照 91.00 5.00 0.7834 0.7386 273.23 116.43III-145.60 30.40 20.000.1900 0.1734 170.72 141.19III-257.60 38.40 0.6150 0.6064 237.87 140.19III-345.60 30.40 20.000.3015 0.3440 118.04 92.33III-457.60 38.40 0.4375 0.2773 176.26 101.25III-591.005.00 0.4235 0.4356 263.94 121.61III-645.60 38.40 12.000.2682 0.2764 159.29 110.54III-776.0020.000.2934 0.2595 255.01 233.23III-8 45.60 38.40 12.00 0.4398 0.3788 191.26 88.93III-9 72.33 10.46 13.21 0.1900 0.1700 239.30 179.47III-10 57.31 24.38 14.21 0.1200 0.1080 202.33 160.19*薄膜组成份的差额包含接近等重量百分比的防粘剂和热稳定/抗氧化剂。
例IV按例III中制备试样相同的方法制备了两套样品。其中一套样品的厚度是1.6密耳(40.64微米)而另一套样品的厚度是2.3密耳(58.42微米)。每套样品中都含有按试样III-对照和样品III-7制作的样品。试样切割成1×6英寸的片段,在沿机器的方向具有较大的尺寸。
按照例III的修正的ASTMB736相同的方法对试样进行了热密封能力试验(除了使用的热密封温度是200、250、300、350和400°F(204.44℃)之外)。这些试验的结果用图形描绘在插图1中。从插图1中描绘的结果,可见到在低的热密封温度时,热密封性能得到实质性的改进。图1的结果也表明样品的厚度对热密封性的影响即使有也非常小。
例V按例III中制备样品的相同方法制备了试样,除了两层粘合性薄膜的总厚度是1.6密耳(40.64微米)而不是2.3密耳(58.42微米)。为了试验对典型的外套组分材料的粘合性,这些样品被模压到两套不同的75密耳(1,905微米)厚的聚乙烯薄板上形成复合材料结构。第一套薄板是由高密度聚乙烯制得的(UC3479,可从联合碳化物公司购得)。第二套薄板是由中密度聚乙烯制得的(UC8864,可从联合碳化物公司购得)。两套薄板中都包含接近2.6%重量比的碳黑。
在模压操作中为了形成这些复合材料结构,使用了一种印压机。放置层压材料样品使之与薄板在加压下紧密接触,在230℃和15磅/平方英寸压力下经三分钟完成压模操作。制得的复合材料结构在印压机中冷却到室温。从压床中移出,然后切成1英寸宽6英寸长的带条,沿机器方向具有较大的尺寸。
制得的带条中的某一些,按照ASTMD1876制定的标准和方法,进行了与底板180°撕开的试验(除了使用了每分钟两英寸的十字头速度,25千克的测力传感器,试样需在73°F(22.78),空气湿度为50%条件下调理12到48小时,结合的和非结合的聚合物层的长度分别是2.5英寸和0.5英寸,试验至少在3个试验样品上施行而不是10个)。其他带条浸入(即“陈化”)水中,在140°F(60℃)放置7、30、60和120天,让它达到平衡,并在73°F(22.78)、相对湿度为50%的空气中干燥过夜,然后进行前述的180°撕开试验。
为了进行对比,制备了对照试样,并用与其他样品相同的方法进行了试验,除了所用的粘合性薄膜是厚度为2.3密耳(58.42微米)的单层薄膜。
使用HDPE-2薄板的每个试样的撕开试验在表V-A中列出,而使用MDPE薄板的试验结果在表V-B中列出。正如从表V-A和表V-B中的结果中所能见到的,本发明的例子显示了在陈化粘附性能方面有了改进。
表V-AHDPE外套结合的粘着力(公斤/米)*% % % 剥离 剥离 剥离 剥离 剥离试样# EAALDPE-1 Micafil40 最初 7天 30天 60天 120天对照 91.00 5.0013.46 16.12 17.03 16.91 17.00V-A-1 75.60 8.4012.00 11.58 20.65 20.90 20.89 20.90V-A-2 58.80 25.20 12.00 11.68 18.08 19.15 18.67 19.00*表面层组成的余额包含接近等重量百分比的防粘剂和热稳定/抗氧化剂。
表V-BMDPE外套结合的粘着力(公斤/米)*%% %剥离 剥离 剥离 剥离 剥离试样# EAALDPE-1 Micafil40 最初 7天 30天 60天 120天对照91.00 5.00 13.77 15.39 16.29 16.27 16.20V-B-1 75.60 8.4012.00 11.92 19.71 21.81 21.83 21.80V-B-2 58.80 25.20 12.00 12.35 18.49 18.88 18.33 18.25*表面层组成份的差额包含接近等重量百分比的防粘剂和热稳定/抗氧化剂。
例VI本例中,按例III相同的方法制备了层压材料。制得的层压材料切成111/16英寸(4.29厘米)宽的带子并应用在本申请中描述的传统的电缆生产工序制成电缆和或通讯电缆。用于制造电缆的层压材料在表VI中列出。若干种制得的电缆的工艺数据在表VII中列出。
表VI应用于制造电缆的层压材料* % % % %静态摩动态摩 层压材试样#EAA LDPE-1 HDPE-1 Micafil40 擦系数擦系数 料表面对照 91.00 5.000.78340.7386 光滑的VI-1 57.60 38.40 0.41360.2814 光滑的VI-2 58.80 25.2012.00 0.27000.2800 压纹的VI-3 67.20 16.8012.00 0.32000.2400 压纹的VI-4 76.0020.00 0.26000.2200 压纹的*表面层组成的余额包含接近等重量百分比的防粘剂和热稳定/抗氧化剂。
从表VII的结果,观察到用本发明的层压材料,将塑料/金属层压材料制造电缆和/或通讯电缆方面可取得有实质性的进展。
虽然本发明通过引证特定的实施方案和实例已予以阐明,但这些事实在任何方面都不要理解为限止了本发明的范围。
表VII制作电缆的层压材料的工艺数据试样# 电缆生产 润滑油 在成型工具 在熔接点 压准模的线速度的使用 和压模中的 带子破裂 最终温度℃
米/分钟 碎片和粉末对照 40无有有29.4450无有有3060无有有31.11对照 40有有有2550有有有25.5660有有有26.11VII-140无有无27.7850无有无27.7860无有无28.33VII-240无无无28.8950无无无27.2260无无无27.22VII-340无无无26.6750无无无26.6760无无无26.67VII-440无无无27.权利要求
1.一种层压材料包含a)一种金属的底材b)一种表面层,直接地或经过一层或多层中间的聚合物层粘附到上述底材上;上述表面层基本上是由一种基础粘合树脂和适量的压花料组成,压花料的用量要足以实质性地降低层压材料的摩擦系数和足以在上述的表面层上压花。
2.权利要求1的一种层压材料,其中层压材料至少具有5磅/英寸(89.29公斤/米)的最大热密封值和5磅/英寸(89.29公斤/米)的平均热密封值。
3.权利要求1的一种层压材料,其中层压材料至少具有8磅/英寸(142.86公斤/米)的最大热密封值和8磅/英寸(142.86公斤/米)的平均密封值。
4.权利要求1的一种层压材料,其中的基础粘合树脂基本上是由(a)一种乙烯与一种烯类不饱和羧酸单体的无规共聚物,与(b)至少一种不同的烯类的烯烃和/或一种烯类烯烃聚合物树脂的共聚物,它不是无规的乙烯/不饱和羧酸共聚物,两者组成的一种混和物。
5.权利要求1的一种层压材料,其中烯类烯烃聚合树脂选自乙烯均聚物和共聚物,乙烯共聚物具有较大比例的乙烯与较小比例的具有可聚性和或可与此反应的共聚用单体。
6.权利要求1的一种层压材料,其中的烯类烯烃聚合物是高密度聚乙烯。
7.权利要求1的一种层压材料。其中的压花料是云母。
8.一种塑料/金属层压材料。包括a)一种金属的底材。b)一种中间的热塑性聚合物层,粘附到上述金属底材的至少一个表面上。上述的中间层包含一种乙烯与烯类不饱和羧酸单体的无规共聚物。c)一种粘附到上述中间层的表面层,它基本上由下列几项物质组成i)一种乙烯与一种烯类不饱和羧酸单体的无规共聚物。ii)至少一种烯烃聚合树脂,它不是乙烯与一种烯类不饱和羧酸单体的无规共聚物。iii)适量的压花料,其用量足以实质性地降低层压材料的摩擦系数和足以在上述的表面层压花。
9.权利要求8的一种层压材料,其中层压材料具有至少是5磅/英寸(89.29公斤/米)的热密封最大值和至少是5磅/英寸(89.29公斤/米)的热密封平均值。
10.权利要求8的一种层压材料,其中层压材料具有至少是8磅/英寸(142.86公斤/米)的热密封最大值和至少是8磅/英寸(142.86公斤/米)的热密封平均值。
11.权利要求8的一种层压材料,其中的烯类烯烃聚合树脂选自乙烯均聚物和共聚物,其中的乙烯共聚物具有较大比例的乙烯与较小比例的具有可聚性和或可与此反应的共聚用单体。
12.权利要求8的一种层压材料,其中的烯类烯烃聚合物是一种高密度聚乙烯。
13.一种制品,这种制品包含了至少一种绝缘的导体的电缆芯,一种围绕着上述缆芯的保护层和一种围绕并粘附在上述的保护层上的外层塑料套,这种保护层基本上是由权利要求1或权利要求8的任一种层压材料构成。
14.权利要求13的一种制品,其中上述的保护层对上述的外套的结合强度至少是8磅/英寸(142.86公斤/米)。
全文摘要
塑料/金属层压材料(例如,塑料外套电缆的保护层或铠装的带子)具有改进的摩擦力、粘着力和热密封性能。它至少包含一种金属的底材,一种含有适量压花料的热塑性粘合层,直接粘附到它的至少一个表面上。压花料的用量要足以实质性地降低层压材料的摩擦系数和足以在塑料/金属层压材料的表面压上花纹。
文档编号B32B15/08GK1173845SQ96191869
公开日1998年2月18日 申请日期1996年2月9日 优先权日1995年2月10日
发明者F·阿奇尔 申请人:陶氏化学公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1