用于喷墨打印头的喷嘴防护装置的调整的制作方法

文档序号:2493463阅读:298来源:国知局
专利名称:用于喷墨打印头的喷嘴防护装置的调整的制作方法
技术领域
本发明涉及打印介质产品,并且具体地涉及喷墨打印机。
背景技术
喷墨打印机是众所周知的并且是广泛使用的打印介质产品的形式,墨被供应到打印头上的数字控制的喷嘴阵列。当打印头经过该介质时,墨从喷嘴阵列喷射出,以在介质上产生一幅图像。
打印机性能依赖于例如运行成本,打印品质,运行速度以及使用的方便程度等因素。从该喷嘴喷射单个墨滴的质量,频率以及速度将会影响这些性能参数。
最近,喷嘴阵列一直采用微电子机械系统(MEMS)技术而制作,它具有亚微米厚度的机械结构。这样就允许生产能够快速地喷射体积在皮升(10的-12次方升)范围的墨滴的打印头。
当这些打印头的微观结构能够以相对低的成本提供高速度以及好的打印品质时,它们的尺寸使它们非常脆弱并且非常容易被手指,灰尘或者介质衬底的轻微接触而损坏。这样使该打印头对于很多必须具有一定的强度的应用来说变得不实际。另外,一个损坏的喷嘴可能不能够喷射供应给它的墨。随着墨的集结并在喷嘴的外部上的形成墨滴,周围喷嘴的喷射墨可能会受到影响以及/或者该损坏的喷嘴将直接将墨泄露到打印的衬底上。这两种情况对打印品质是有害的。
为了解决这个问题,可以在上安装有孔的防护装置以保护它们不受到损坏性的接触。从该喷嘴喷射的墨通过孔喷到纸或者其他要打印的基物上。然而,要有效地保护该喷嘴,该孔需要足够小,以最大程度地限制外物的进入,却仍然允许墨滴的通过为宜。优选地,每个喷嘴通过该防护装置中各自的单独的孔来喷墨。然而,就MEMS设备的微观尺寸而言,该防护装置与该喷嘴之间的轻微的不对齐将阻塞墨滴的路径。

发明内容
根据第一方面,本发明提供了一个用于喷墨打印机的打印头,该打印头包括一个用于向打印的介质上喷墨的喷嘴阵列;以及调整装置,被配置为用以与有孔的喷嘴上的互补装置相接合,该防护装置具有与该喷嘴阵列相对应的墨孔阵列;其中在该调整装置和该互补装置之间的接合使该孔与该喷嘴之间精确对位,以使该防护装置不会阻塞从该喷嘴向该介质上喷墨的正常轨道。
在本说明书中,“喷嘴”一词应该被理解为限定一个开口的元件而不是该开口自身。
根据本发明的另一方面,本发明提供了用于喷墨打印机的一个打印头组件,该打印头组件包括一个打印头,具有向打印介质上喷墨的喷嘴阵列;以及,一个有孔的喷嘴防护装置,具有与该喷嘴阵列对应的墨孔阵列;
该打印头还包括调整装置,与该有孔的喷嘴防护装置上的互补装置相互接合,以使该孔与该喷嘴精确对位,以使该防护装置不会阻塞从该喷嘴向该介质上喷墨的正常轨道。
优选地,该阵列中的每个喷嘴单独与该喷嘴防护装置中的一个墨孔对齐。然而,本发明的某些形式可能有两个或者更多的喷嘴共用该喷嘴防护装置的一个墨通道。
在本发明的某些实施方式中,该喷嘴阵列制作在与该集成有调整装置的一个硅衬底上。该喷嘴防护装置可以有包括该墨孔阵列的一个罩,该罩通过若干一体制作的支柱而相对于硅衬底间隔设置,所述支柱沿该罩延伸以与该调整装置相接合。在一种便利的形式中,该调整装置是在该硅衬底上分隔设置的脊部,其被定位为与这些支柱的侧边平滑地接合,以维持该孔与该喷嘴阵列对齐。
在另一种形式中,该调整装置是该衬底中的凹陷,其被定位为与该支柱的侧边平滑地接合,以使该喷嘴防护装置与该喷嘴阵列对齐。当然,本发明的其他形式也可以采用形成一体的支柱,所述支柱从该硅衬底延伸以与在在该喷嘴防护装置中形成的连续的脊部或凹陷接合。
在一种特殊的优选实施方式中,该调整装置是在生产该喷嘴阵列的过程中形成的。可以设想的是这个生产系统将在0.1微米的范围内使该喷嘴和该通道对齐。另外,由于微型机械化的简易和精确、强度、刚性以及与该打印头相匹配的热膨胀系数,优选地是采用硅来制作该喷嘴防护装置。
该调整装置必要地占用该打印头的表面区域的一部分,而这将会对该喷嘴组装密度有不良影响。所需的额外的打印头芯片区域增加了制造该芯片的成本。然而,在组装该打印头以及该喷嘴防护装置的常规方法有可能提供所需要的精确度的情形下,本发明将很可能导致一个相对比较高的喷嘴故障率。
该喷嘴防护装置可以还包括流体进口,用于引导流体通过该通道,以阻止在该喷嘴阵列上堆积异物颗粒。在此实施方式中,该流体进口可以被设置在该支柱中。
值得重视的是,当通过该开口、该喷嘴阵列以及通过该通道输出而引导空气时,在该喷嘴阵列上的异物颗粒的堆积会被阻止。
该流体进口可以被设置在远离该喷嘴阵列的结合衬垫的支持元件中。
通过为该打印头提供喷嘴防护装置,该喷嘴结构能够被保护使之不被接触或者与大多数其他表面相撞。为了使提供的保护最佳,该防护装置形成了一个平罩,覆盖了该喷嘴的外侧,其中该罩具有一个通道阵列,所述通道大到足以允许墨滴的喷射,但是却小到足以防止意外的接触或者大多数灰尘颗粒的进入。通过采用硅来制作该罩,它的热膨胀系数基本上与该喷嘴阵列的热膨胀系数匹配。这将有助于防止该罩中的该通道阵列失去与该喷嘴阵列的精确对位。使用硅也允许使用MEMS技术来精确地微加工该罩。另外,硅的强度很高并且基本上是不可变形的。


现在对于本发明优选的实施方式,仅通过例子并参照附图进行描述图1是用于喷墨打印头的喷嘴组件的三维的示意图;图2-4是示意图1中的该喷嘴组件操作的三维视图;图5是组成具有喷嘴防护装置或密封壁的喷墨打印头的一个喷嘴阵列的三维视图;图5a是具有一个喷嘴防护装置或密封壁的打印头的三维剖面视图;图5b是从隔离每个喷嘴的密封壁处截取的喷嘴的截面平面视图。
图6是图5阵列的部分放大视图;图7是包括一个喷嘴防护装置而不包括该密封壁的一个喷墨打印头的三维视图;图7a是具有在硅晶片上的与该喷嘴防护装置接合的调整装置的喷墨打印头的放大的三维视图;图8a到8r是制造喷墨打印头的喷嘴组件的步骤的三维视图;图9a到9r是该制作步骤的剖面侧视图;图10a到10k是在该制作过程中的不同的步骤中使用的掩模图案。
图11a到11c是示意按照图8和图9的方法制作的喷嘴组件操作的三维视图;以及图12a到12c是按照图8和图9的方法制造的喷嘴组件的操作的剖面侧视图。
具体实施例方式
首先参见附图1,根据本发明的喷嘴组件通常由参考数字10来表示。一个喷墨打印头具有多个喷嘴组件10,在硅衬底16上以阵列14排列(图5和图6)。该阵列14将在下面详细地描述。
该组件10包括一个硅衬底或晶片16,在其上面沉积了一个介电层18。在该介电层18上面沉积了一个CMOS钝化层20。
每个喷嘴组件10包括限定一个喷嘴开口24的喷嘴22,一个杠杆臂26形式的连接件以及一个执行机构28。该杠杆臂26将该执行机构28连接到该喷嘴22。
如图2到4中的详细图示,该喷嘴22包括一个冠顶部分30以及从该冠顶部分30下垂的环绕部分32。该环绕部分32形成了一个喷嘴腔34的部分外壁。在该喷嘴开口24与该喷嘴腔34之间液体可以自由流通。需要注意的是该喷嘴开口24被凸起的边框36所围绕,它“固定”了在该喷嘴腔34中的墨40主体的一个弯月面38(图2)。
一个墨入口孔42(在附图的图6中最清楚)被确定在该喷嘴腔34的衬底46上。在该孔42与由该衬底16确定的一个墨入口通道48之间液体可以自由流通。
一个壁体部分50围绕孔42,并且从衬底部分46向上方延伸。如上面所指示的该喷嘴22的该环绕部分32,确定了该喷嘴腔34的外壁的第一部分,并且该壁体部分50确定了该喷嘴腔34的外壁的第二部分。
该壁50在其自由端具有一个方向向内的边缘52,它在该喷嘴22被移动时用作一个流体密封,以阻止墨水的泄露,这一点在以下内容将给予详细的描述。值得重视的是,由于该墨水40的粘性以及在该边缘52和该环绕部分32之间的间隔尺寸很小,该向内的边缘52以及表面张力起到阻止墨水从该喷嘴腔34流失的有效密封的作用。
该执行机构28是一个受热弯曲的执行机构,并且被连接到从该衬底16或者更具体地从该CMOS钝化层20向上延伸的一个固定器54。该固定器54被安装在与该执行机构28形成电连接的导电垫56上。
该执行机构28包括第一主动梁58,安置在第二被动梁60的上方。在一种优选的实施方式中,梁58和60都是采用或者包括,一种导电材料例如钛氧化物(TiN)。
梁58和60两者都把其第一末端固定到该固定器54并且其相反的一端连接到臂26。当使流体流经该主动梁58,会导致该梁58的热膨胀。对于该被动梁60,没有流体流过,不以同样的速率膨胀,就产生了一个弯矩导致该臂26并且因此该喷嘴22向下向该衬底16移动,如图3中所示。这将导致通过62所示的该喷嘴开口喷射墨水。当热源从该主动梁58处移开时,即通过停止流体的流动,该喷嘴22返回到如图4中所示的其静止位置。当该喷嘴22返回到其静止位置时,如图4中66处所示的墨滴颈部断开导致小墨滴64的形成。该小墨滴64然后移动到该打印媒介例如是一页纸上。作为形成小墨滴64的结果,一个“负向”弯月面形成于图4中所示的68处。此“负向”弯月面68导致了墨水40向内流动并流入到该喷嘴腔34中,这样就事先形成了一个新的弯月面38(图2),以便于从该喷嘴组件10的下次墨滴的喷射。
参见图5和图6,对该喷嘴阵列14给予更详细的描述。将阵列14用于一个四色打印头。因此,该阵列14包括四组70的喷嘴组件,每组用于一种颜色。每组70具有以两行72和74排列的喷嘴组件10。图6中给出了一个组70的更多细节。
为了在该行72和74中实现紧凑的该喷嘴组件10的安装,将行74中的喷嘴组件10相对于行72中的喷嘴组件10偏置或交错设置。另外,将该行72中的该喷嘴组件10互相以充分远的距离而间隔设置,以使行74中的喷嘴组件10的杠杆臂26能够在行72的组件10的相邻喷嘴22之间通过。需要注意的是,每个喷嘴组件10基本上是哑铃形的,以使该行72中的该喷嘴22可以嵌套在该喷嘴22和该行74中的相邻的喷嘴组件10的该执行机构28之间。
另外,要使该行72和74中的该喷嘴22安装紧凑,每个喷嘴22基本上是六边形的。
所属领域普通技术人员将会理解当该喷嘴22向该衬底16移动时,在使用中,由于该喷嘴开口24相对于该喷嘴腔34具有一个很小的角度,墨水的喷射会略微地偏离直角。图5和图6中所示的配置的一个优点是该行72和74中的该喷嘴组件10的执行机构28以与该行72和74的一侧同样的方向延伸。因此,从该行72中的该喷嘴22喷射的墨水以及从该行74中的该喷嘴22喷射的墨水互相以相同的角度偏移,这样就提高了打印的品质。
另外,如图5中所示,该衬底16具有在其上配置的提供电连接的结合垫76,通过该垫76连接到该喷嘴组件10的该执行机构28。这些电连接是通过该CMOS层(没有示出)而形成的。
参见图5a和5b,将如图5中所示的喷嘴阵列14间隔设置以容纳环绕每个喷嘴组件10的密封结构。该密封结构是一个环绕该喷嘴22的密封壁144,并且从该硅衬底16延伸到一个有孔的喷嘴防护装置80的上侧,以形成一个密封室146。若由于喷嘴的损坏使墨水喷射不正常,则该裂缝受到限制以避免影响周围喷嘴的功能。也可以设想的是,每个密封室146将具有检测出现墨水泄露的能力,并对控制该喷嘴阵列14操作的微处理器提供反馈。通过使用容错功能,该损坏可以由该阵列14中剩余的喷嘴来补偿从而保持了打印的品质。
该容器壁144必需占据该硅衬底16的一部分,这样就降低了该阵列的喷嘴的组装密度。反之这也增加了该打印头芯片的生产成本。然而,在制造技术导致了相对较高的喷嘴磨损速率时,单个的喷嘴密封结构将避免,或者至少最小化对该打印品质的不良影响。
所属领域普通技术人员将可以理解,也可以设置该密封结构来隔离喷嘴组。隔离的喷嘴组提供了更好的喷嘴组装密度但是使用周围的喷嘴组对损坏的喷嘴进行补偿变得更加困难。
参见图7,出示了用于保护该喷嘴阵列的一个喷嘴防护装置。参见先前的附图,除非另外指定,同样的参考数字指示同样的部分。
将一个喷嘴防护装置80安装在该阵列14的该硅衬底16上。该喷嘴防护装置80包括一个罩82,其中限定多个孔84。孔84与阵列14的喷嘴组件10的喷嘴开口24精确对位,以使当墨水从喷嘴开口24的任何一个喷出时,该墨水在到达该介质之前通过相关的孔84。
该防护装置80用硅来制作以使其具有必要的强度和刚性,以保护该喷嘴阵列14不会因与纸,灰尘或者用户的手指接触而发生损坏。通过用硅来形成该防护装置,其热膨胀系数基本上与该喷嘴阵列匹配。这样做的目的是为了在打印头被加热至其正常的工作温度范围内时,罩82中的孔84不会失去与该喷嘴阵列14的精确对位。硅也同样很适合于精确的微型机械化,使用下面详细讨论的与该喷嘴组件10的制造有关的MEMS技术。
该罩82的安装通过分支或支柱86相对于该喷嘴组件10形成间隔的关系。一个支柱86具有其中确定的进气口88。
在使用中,当该阵列14在操作时,空气通过该进气口88被注入,并在力的作用下与墨水一起通过该孔84。
该墨水并不夹带在该空气中,因为该空气通过该孔84的注入是以与该小墨滴64不同的速率进行的。例如,该小墨滴64从该喷嘴22以大约3m/s的速率喷出。该空气通过该孔84的注入速率大约为1m/s。
该空气的用途是保持该孔84没有异物颗粒。存在的一个危险是这些异物颗粒,例如灰尘颗粒,能够落到该喷嘴组件10上,对其操作产生不良的影响。通过在喷嘴防护装置80中设置进气口88,在很大程度上排除了此问题。
在该孔84和该喷嘴22之间的对齐是很关键的。然而,该MEMS设备的微观尺寸使相对该喷嘴的该防护装置80的精确定位变得很难。如图7a中所示,可以对该硅晶片或衬底16配置调整装置,例如间隔的脊148,配置该脊以与该支柱86的自由端相接合。使用同样的蚀刻和沉积技术该脊148可以与该喷嘴22一起精确地制作。图7a出示俘获牺牲材料,例如形成该成行脊148的聚酰亚胺。在其他的配置中,额外的脊148与该容器壁144相接合如图5a到图5b所示。在此形式中,该脊148将占据一些表面空间并且对该喷嘴聚集密度产生不良的影响,但是它能够有力地保持每个孔84与该对应的喷嘴22的对齐。
当然,其他的配置能够在该晶片衬底16中提供调整装置,例如凹陷或者槽,它们能够与设置在该防护装置80上的互补装置相接合。
使用CMOS蚀刻和沉积技术形成的调整装置能够提供0.1μm数量级的校准精度。
参见图8到图10,描述了喷嘴组件10的制作过程。
从该硅衬底16开始,该介电层18被沉积到该晶片16的表面。该介电层18是采用大约1.5微米的化学汽相沉积(CVD)氧化物的形式制作的。在层18上旋压(spin)抗蚀层并且将层18对掩膜100曝光并且随后显影。
在显影后,将层18等离子蚀刻到该硅层16下。该抗蚀层被剥掉并且清洗层18。此步骤形成了墨水入口孔42。
在图8b中,在该层18上沉积了大约0.8微米的铝102。将抗蚀层旋压到层18上并且使铝102对掩膜104曝光并且随后显影。在显影以后,将铝102等离子蚀刻到该氧化层18下面,将该抗蚀层剥掉并且对该设备进行清洗。此步骤形成该结合垫并且与该喷墨执行机构28互连。此互连至一个NMOS驱动晶体管和一个具有连接的在该CMOS层(没有示出)中制作的电源层。
沉积约0.5微米的PECVD氮化物作为CMOS钝化层20。将抗蚀层旋压在层20并将其对掩膜106曝光然后被显影。在显影之后,将该氮化物等离子蚀刻到该铝层102之下以及该入口孔42的区域中的硅层16。将该防护层被剥并且对该设备进行清洗。
将牺牲材料层108焊接到层20上。该层108是6微米的光敏材料聚酰亚胺或者大约4μm的高温抗蚀层。该层108被软烧结并随后将其曝光于掩膜110之后显影。然后若层108是由聚酰亚胺组成,则对层108在400℃硬烧结一个小时,或者若层108是高温抗蚀层则在大于300℃烧硬。需要注意的是在附图中由收缩引起的该聚酰亚胺层108的对图案的变形在该掩膜110的设计中被考虑到了。
在下一步中,如图8e所示,采用了第二牺牲层112。该层112或者是2μm的旋压上的光敏材料聚酰亚胺,或者是大约1.3μm的高温抗蚀层。将该层112软烧结并随后曝光于掩膜114。在曝光于掩膜114之后将该层112显影。然后,若该层112由聚酰亚胺组成则在400℃硬烧结大约一个小时,或者若该层108是高温抗蚀层则在大于300℃烧硬大约一个小时。
随后沉积一个0.2微米的多层金属层116。此层116的部分形成了该执行机构28的被动梁60。
该层116的是通过在300℃左右溅射1,000的氮化钛(TiN),之后在溅射50的氮化钽(TaN)而形成的。进一步再溅射1000的TiN层,之后溅射50的taN和1000的TiN。其他可以用于替代TiN的材料是TiB2,MoSi2或者(Ti,A1)N。
随后将该层116对掩膜118曝光,显影并且等离子蚀刻到该层112之下,在此之将涂敷到该层116抗蚀层湿剥除,注意不要去除已固化的层108或112。
通过旋压4um光敏的聚酰亚胺或者大约2.6um的防高温层而涂敷第三牺牲层120。对该层120进行软烧结,随后曝光于掩膜122。随后该曝光层显影并且随后进行硬烧结。在采用聚酰亚胺的情况下,将该层120在400℃温度下硬烧结大约一个小时,在该层由高温抗蚀层构成的情况下,在大于300℃温度下进行硬烧结。
将第二多层金属层124涂敷至层120。该层124的成分与该层116的成分相同并且以同样的方式涂敷。需要注意的是层116和124都是导电层。
将层124对掩膜126曝光并且随后被显影。将层124等离子蚀刻到该聚酰亚胺或防护层120之下,其后将覆盖该层124的防护层被湿剥除,并注意不要将已固化的层108或112或120去除。需要注意的是该层124的剩余部分形成执行机构28的主动梁58。
通过旋压4um光敏聚酰亚胺或者大约2.6μm的高温抗蚀层而涂敷第四牺牲层128。该层128被软烧结,曝光于该掩膜130并且随后显影以留下如附图的图9k中所示的岛状部分。该层128的剩余部分在采用聚酰亚胺的情况下在400℃温度进行硬烧结大约一个小时,当采用高温抗蚀层的情况下,在大于300℃的温度进行硬烧结。
如图8I中所示沉积一高杨氏模量的介电层132。层132是由大约1μm的硅氮化物或铝氧化物所组成。该层132是在低于该牺牲层108,112,120,128的硬烧结温度下沉积的。此介电层132需要的基本特性是高弹性模量,化学惰性,以及与TiN的良好粘合。
通过旋压上2μm的光敏聚酰亚胺或者大约1.3μm的高温抗蚀层而形成第五牺牲层134。对该层134进行软烧结,并对掩膜136曝光,随后进行显影。在采用聚酰亚胺的情况下将该层134的剩余部分在400℃温度下硬烧结大约一个小时,当采用高温抗蚀层的情况下,在大于300℃温度下硬烧结。
介电层132是经等离子蚀刻到牺牲层128下面,注意不要去除任何牺牲层134。
此步骤限定喷嘴组件10的喷嘴开口24、杠杆臂26以及固定器54。
沉积一个高杨氏模量的介电层138。该层138的形成是通过在低于牺牲层108,112,120以及128的硬烧结温度下沉积0.2微米的硅氮化物或者铝氮化物而形成的。
然后,如图8p所示,将该层138各向异性地等离子蚀刻到0.35微米的厚度。此蚀刻是为了清除整个表面的除该介电层132和该牺牲层134的侧壁之外的绝缘物。此步骤产生了围绕在喷嘴开口24周围的喷嘴边框36,它如上面所述“牵制”了该墨水的弯月面。
采用一个紫外(UV)分离带140。4μm的抗蚀层被旋压到该硅晶片衬底16的后面。将该晶片衬底16对掩膜142曝光,以回蚀该晶片衬底16以形成喷墨通道48。随后将该抗蚀层从该晶片16剥掉。
对该晶片衬底16的后面涂敷另一UV分离带(没有示出)并且该将分离带140去除。在氧等离子体中将该牺牲层108,112,120,128和134剥除,以形成如附图8r和9r中所示的该最终喷嘴组件10。为了便于参考,在这两个图采用与图1相同的参考数字来表示喷嘴组件10的相关元件。图11和12说明了该喷嘴组件10的操作过程,该喷嘴组件是由如上述过程而制造的,参照图8和9,并且这些附图与图2到图4相对应。
需要注意的是本领域的技术人员可以在不脱离广义描述的本发明的精神或范围的情况下,可以对本发明进行很多改变和/或修改。因此,本实施例在各个方面都应被看作描述性的而非限定性的。
权利要求
1.一种用于喷墨打印机的打印头,该打印头包括一个喷嘴阵列用于将墨水喷射到待被打印的介质上;以及调整装置,被配置用于与有孔的喷嘴防护装置上的互补装置接合,该防护装置具有与该喷嘴阵列对应的墨水孔阵列;其中在该调整装置与该互补装置之间的接合使该孔与该喷嘴精确对位,以使该防护装置不会阻塞墨水从该喷嘴喷射到该介质上的正常轨道。
2.如权利要求1所述的打印头,其中该阵列中的每个喷嘴单独与该喷嘴防护装置中的一个墨水孔对齐。
3.如权利要求1所述的打印头,其中该喷嘴阵列制作在集成有该调整装置的一个硅衬底上。
4.如权利要求3所述的打印头,其中该喷嘴防护装置具有包含该墨水孔阵列的一个罩,该罩通过若干一体形成的支柱而与该硅衬底间隔设置,所述支柱从该罩延伸以与调整装置相接合。
5.如权利要求3所述的打印头,其中该调整装置是在该硅衬底上间隔设置的脊部,其被定位为可与该支柱的侧边滑动接合从而使该孔与该喷嘴阵列保持对齐。
6.如权利要求4所述的打印头,其中该调整装置是衬底中的凹陷,其被定位为可与该支柱的侧边滑动接合以使该喷嘴防护装置与该喷嘴阵列保持对齐。
7.如权利要求4所述的打印头,其中一体形成的支柱沿该硅衬底延伸而与在该喷嘴防护装置中形成的脊部或凹陷相接合。
8.如权利要求1所述的打印头,其中该调整装置是在生产该喷嘴阵列的过程中形成的。
9.如权利要求1所述的打印头,其中该喷嘴防护装置是采用硅制作的。
10.一个用于喷墨打印机的打印头组件,该打印头组件包括一个打印头,具有一个用于将墨水喷射到待被打印的介质上的喷嘴阵列;以及一个有孔的喷嘴防护装置,具有与该喷嘴阵列相对应的一个墨水孔阵列;该打印头还包括调整装置,其与该有孔的喷嘴防护装置上的互补装置相互衔接,以保持该孔与该喷嘴的精确对位,以使该防护装置不会阻塞从该喷嘴向该介质上喷射墨水的正常轨道。
11.如权利要求10所述的打印头组件,其中该阵列中的每个喷嘴单独与该喷嘴防护装置中的一个墨水孔对齐。
12.如权利要求10所述的打印头,其中该喷嘴阵列制作在集成有该调整装置的硅衬底上。
13.如权利要求12所述的打印头组件,其中该喷嘴防护装置具有包含该墨水孔阵列的一个罩,该罩通过若干一体形成的支柱而与硅衬底分隔设置,所述支柱从该罩延伸以与调整装置相接合。
14.如权利要求13所述的打印头组件,其中该调整装置是在该硅衬底上间隔的脊部,其被定位为与该支柱的侧边滑动接合以使所述孔与所述喷嘴阵列保持对齐。
15.如权利要求13所述的打印头组件,其中该调整装置是该衬底中的凹陷,其被定位为与所述支柱的侧边滑动接合以使该喷嘴防护装置与该喷嘴阵列保持对齐。
16.如权利要求12所述的打印头组件,其中一体制作的支柱从该硅衬底延伸以与制作在该喷嘴防护装置中的脊部或凹陷相接合。
17.如权利要求10所述的打印头组件,其中该调整装置是在生产该喷嘴阵列的过程中形成的。
18.如权利要求10所述的打印头,其中该喷嘴防护装置是采用硅制成的。
全文摘要
一种用于喷墨打印机的打印头,具有一个采用微电子机械系统(MEMS)技术制作的喷墨喷嘴(22)阵列(14)。为了保护该精密的喷嘴结构,一个喷嘴防护装置(80)覆盖了该阵列(14)的外表面。在该防护装置(80)中制作一个对应的孔(84)阵列。为把该防护装置(80)连接到安装该喷嘴(22)的硅衬底(16)上,配置了用于与喷嘴防护装置(80)上面的互补装置相接合的调整装置(148)。为了在该喷嘴(22)和该防护装置(80)中的各个孔(84)之间精确的定位,可以使用与用于制作该喷嘴(22)的同样的蚀刻和沉积技术来形成该校准调节装置(148)。
文档编号B41J2/16GK1489523SQ02804312
公开日2004年4月14日 申请日期2002年1月24日 优先权日2001年1月30日
发明者卡·西尔弗布鲁克, 卡 西尔弗布鲁克 申请人:西尔弗布鲁克研究有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1