平板显示驱动器件和驱动方法

文档序号:2591480阅读:400来源:国知局
专利名称:平板显示驱动器件和驱动方法
技术领域
本发明涉及有源矩阵型显示板驱动器件及其驱动方法。
背景技术
近年来,与使用含有像素的有机场致发光元件(下面称作EL显示元件)作为发光元件的显示板结合的场致发光显示器件(下面称作EL显示器件)受到了极大的关注。使用现有技术中已知的这些EL显示器件的平板显示的驱动方法包括简单矩阵驱动和有源矩阵驱动。有源矩阵驱动的EL显示器件的优点在于比简单矩阵型消耗更少的功率,并且在像素之间的串扰更小,特别适合大屏幕和高分辨率显示。
图1示出了有源矩阵驱动型EL显示器件的基本结构。
如图1所示,EL显示器件包括显示板10和根据图像信号驱动该显示板10的驱动器件100。
显示板10由阳极电源线16、阴极电源线17、在一个屏幕上构成n条水平扫描线的扫描线A1到An(扫描电极),以及与A1到An的每条扫描线交叉排列的m条数据线(数据电极)B1到Bm构成。而且,驱动电压Vc加到阳极电源线16上,地电位GND加到阴极电源线17上。此外,在上述显示板10中的扫描线A1到An与数据线B1到Bn的每个交叉点形成具有像素的EL单元E1,1到En,m。
图2示出了在一条扫描线A和一条数据线B的交叉处形成的EL单元E的实施例的内部结构。
在图2中,被选FET(场效应晶体管)11的栅极G连接到扫描线A,漏极D连接到数据线B。用于发光驱动的晶体管FET12的栅极G连接到FET11的源极S。驱动电压Vc通过阳极电源线16加到FET12,电容器13连接在栅极G和源极S之间。另外,EL元件15的阳极端连接到FET12的漏极D。地电位GND通过阴极电源线17加到EL元件15的阴极端。
驱动器件100依次对显示板10的每条扫描线A1到An选择性地施加扫描脉冲。而且,驱动器件100根据对应于每条水平扫描线的输入图像信号,与所加的上述扫描脉冲时序同步产生像素数据脉冲DP1到DPm,并将它们分别加到数据线B1到Bm。每个像素数据脉冲DP具有根据由输入图像信号表示的亮度级别的脉冲电压。连接到加有扫描脉冲的扫描线A的每个EL单元成为像素数据写入的目标。在作为像素数据写入的目标的EL单元E中的FET11响应上述扫描脉冲而处于导通状态,并且将通过数据线B提供的上述像素数据脉冲DP分别加到FET12的栅极G和电容器13上。FET12根据像素数据脉冲DP的脉冲电压产生发光驱动电流,并将其加到EL元件15。EL元件15根据发光驱动电流发出由上述像素数据脉冲DP的脉冲电压确定亮度的光。同时,电容器13根据上述像素数据脉冲DP的脉冲电压充电。通过这种充电方式,保持根据由输入图像信号表示的亮度级别的脉冲电压,从而实现所谓的像素数据写入。当释放像素数据写入的目标时,FET11处于关断状态,停止对FET12的栅极G提供像素数据脉冲DP。但是,在此期间,因为如上所述由电容器13保持的电压继续加到FET12的栅极G,所以FET12保持继续向EL元件15发送上述发光驱动电流。
EL元件15的特征之一是在延长发光时间之后,元件本身的电阻值逐渐增加。因为在由显示板10支撑的EL单元E1,1到En,m中,响应于每个EL元件15的输入图像信号的发光频率是不同的,所以累积发光时间出现差别。因此,当显示板10的驱动时间延长时,EL元件的阻值变得不均匀,引起发光亮度的变化,导致例如屏幕上的不规则亮度和屏幕燃烧(screen burning)等问题。
发明介绍本发明的一个目的是通过提供一种可用于延长时间并且能够均匀地显示高质量图像的显示板驱动器件及其驱动方法解决上述问题。而且,因为根据输入图像信号的发光频率对于上述EL单元E1,1到En,m中的每个EL元件15是不同的,所以累积发光时间出现差别。因此,当显示板10的驱动时间延长时,EL元件的阻值变得不均匀,引起发光亮度的变化,导致例如屏幕上的不规则亮度和屏幕燃烧等问题。
本发明还通过提供一种显示板驱动器件及其驱动方法解决上述问题,该显示板驱动器件能够在给定范围内永久保持屏幕的亮度级别,从而防止屏幕中出现亮度不规则的。
根据本发明第一方面的显示板驱动器件是用于驱动矩阵形式排列的多个支持像素的发光元件形成的显示板的显示板驱动器件,上述显示板驱动器件包括驱动电压产生电路,通过电源线为多个发光元件的每一个提供驱动电压;电流测量部件,用来在使每个发光元件以每个发光元件的发光时间的定时依次独立发光的同时得到在上述电源线中流过的电流值,从而获得对应于每个像素的电流值,并且将其存储在存储器中作为分配给每个像素的测量电流值;亮度修正部件,用来根据存储在存储器中的根据像素数据的一个像素的上述测量电流值,通过修正由对应于输入图像信号的每个像素的像素数据表示的亮度级别,获得亮度修正的像素数据;以及发光驱动部件,用来使上述发光元件只在对应于上述输入图像信号的每个帧周期中的图像显示发光周期期间,对应于亮度修正的像素数据的周期发光。
而且,根据本发明第一方面的显示板驱动方法是用于驱动矩阵形式排列的多个包含像素的发光元件形成的显示板的显示板驱动方法,显示板驱动方法包括以下步骤电流测量步骤,用来在使每个发光元件以每个发光元件的发光时间的定时依次独立发光的同时得到在上述电源线中流过的电流值,从而获得对应于每个像素的电流值;亮度修正步骤,用来通过存储在上述存储器中的根据上述像素数据的一个像素的上述测量电流值的方式,通过修正由对应于输入图像信号的每个像素的像素数据表示的亮度级别,获得亮度修正的像素数据;以及发光驱动步骤,用来使上述发光元件只在对应于上述输入图像信号的每个帧周期中的图像显示发光周期中的上述亮度修正像素数据的周期发光。
根据本发明第二方面的显示板驱动器件是用于根据输入图像信号驱动矩阵形式排列的多个包含像素的发光元件形成的显示板的显示板驱动器件,上述显示板驱动器件包括驱动电压产生电路,通过电源线为多个发光元件的每一个提供驱动电压;电流测量部件,用来通过在使每个发光元件以每个发光元件的发光时间的定时依次的独立发光时得到在上述电源线中流过的电流值,从而获得对应于每个像素的电流值,并且将其存储在存储器中作为分配给每个像素的测量电流值;以及驱动电压调节部件,用来以每个测量发光驱动电流值中的一个等于预定参考电流值的方式调节上述驱动电压的电压值。
根据本发明第三方面的显示板驱动器件是用于根据输入图像信号驱动矩阵形式排列的多个包含像素的发光元件形成的显示板的显示板驱动器件,上述显示板驱动装置包括驱动电压产生电路,通过电源线为多个发光元件的每一个提供驱动电压;电流测量部件,用来在使每个发光元件以每个发光元件的发光时间的定时依次独立发光的同时得到在上述电源线中流过的电流值,从而获得对应于每个像素的电流值,并且将其存储在存储器中作为分配给每个像素的测量电流值;驱动电压调节部件,用来以每个测量发光驱动电流值中的一个等于预定参考电流值的方式调节上述驱动电压的电压值;亮度修正部件,用来通过存储在上述存储器中的根据上述像素数据的一个像素的上述测量电流值,通过修正由对应于上述输入图像信号的每个像素的像素数据表示的亮度级别,获得亮度修正的像素数据;以及发光驱动部件,用来使上述发光元件只在对应于上述输入图像信号的每个帧周期中的图像显示发光周期期间,对应于亮度修正的像素数据的周期发光。
而且,根据本发明第二方面的显示板驱动方法是用于根据输入图像信号驱动矩阵形式排列的多个包含像素的发光元件形成的显示板的显示板驱动方法,上述显示板驱动方法包括以下步骤电流测量步骤,用来在使每个发光元件以每个发光元件的发光时间的定时依次独立发光的同时得到在上述电源线中流过的电流值,从而获得对应于每个像素的电流值;以及驱动电压调节步骤,用来以每个测量发光驱动电流值中的一个等于预定参考电流值的方式调节上述驱动电压的电压值。
而且,根据本发明第三方面的显示板驱动方法是用于根据输入图像信号驱动矩阵形式排列的多个包含像素的发光元件形成的显示板的显示板驱动方法,上述显示板驱动方法包括以下步骤在使每个发光元件以每个发光元件的发光时间的定时依次独立发光的同时得到在上述电源线中流过的电流值,从而获得对应于每个像素的电流值;通过存储在上述存储器中的根据上述像素数据的一个上述像素的上述测量电流值,通过修正由对应于输入图像信号的每个像素的像素数据表示的亮度级别,获得亮度修正的像素数据;以及使上述发光元件只在对应于上述输入图像信号的每个帧周期中的图像显示发光周期期间,对应于亮度修正的像素数据的周期发光。
根据本发明第四方面的显示板驱动装置是具有多个排列在其中的像素部分的显示板的驱动装置,每个像素部分包括发光元件和开关元件的串联电路,驱动装置用来根据输入图像信号驱动显示板,包括对所述多个像素部分的每一个的串联电路施加驱动电压的驱动电压发生器;测量从所述驱动电压发生器加到所述多个像素部分的每一个的串联电路的电流值的电流测量部件;在所述驱动电压发生器提供的所述电流中加入对应于所述显示板的泄漏电流的偏移电流分量,并且为所述多个像素部分的每一个的串联电路提供合成电流的电流供应部件;通过分别导通所述多个像素部分的每一个的所述开关元件,在依次使所述多个像素部分的每一个的所述发光元件单独发光时,在存储器中存储由所述电流测量部件在对应于所述多个像素部分的每一个的发光定时中测得的测量电流值的存储器控制部件;以及根据对应于存储在所述存储器中的测量电流值中的一个修正所述多个像素部分的每一个的发光器件输出的发光亮度的亮度修正器。
根据本发明第四方面的驱动方法是用于具有以矩阵形式排列的多个像素部分的显示板的显示板驱动方法,每个像素部分包括发光元件和开关元件的串联电路,驱动方法用来根据输入图像信号驱动显示板,包括对所述多个像素部分的每一个的串联电路施加驱动电压发生器的输出驱动电压;将在所述驱动电压发生器提供的所述电流中加入对应于所述显示板的泄漏电流的偏移电流分量得到的附加值加到所述多个像素部分的每一个的串联电路;测量从所述驱动电压发生器加到所述多个像素部分的每一个的串联电路的电流值;通过分别导通所述多个像素部分的每一个的所述开关元件,在依次使所述多个像素部分的每一个的所述发光元件单独发光时,在存储器中存储在对应于所述多个像素部分的每一个的发光定时中对来自所述驱动电压发生器的输出电流值测得得到的测量电流值;以及根据对应于存储在所述存储器中的测量电流值中的一个修正所述多个像素部分的每一个的发光器件输出的发光亮度。
附图简述图1示出了有源矩阵驱动型EL显示器件的组成的示意图;图2示出了包含像素的EL单元E的内部结构的示例图;图3示出了根据本发明的有源矩阵驱动型EL显示器件的结构示意图;图4示出了电流检测电路2的内部结构的实施例的示意图;图5示出了发光驱动形式的实施例,其中驱动包括将一个帧发光周期分为三个子帧SF1到SF3;图6是介绍由驱动控制电路4执行的发光驱动电流测量程序的流程图;图7是介绍由驱动控制电路4执行的亮度修正值产生程序的流程图;
图8示出了发光驱动形式的图,其中在一帧显示周期中提供发光驱动电流测量周期HT;图9示出了具有专门为每种颜色提供的驱动电压产生电路的电流检测电路2的实施例的示意图;图10示出了具有专门为显示板10中的每个屏幕区提供的驱动电压产生电路的电流检测电路2的实施例的示意图;图11示出了根据本发明的另一个有源矩阵驱动型EL显示器件的结构示意图;图12示出了电流检测电路2的内部结构的实施例的示意图;图13介绍了由驱动控制电路4执行的驱动电压设置程序的流程图;图14示出了具有用于获得参考电流值IREF的EL单元EX的显示板10的实施例;图15示出了体现本申请的显示装置的结构图;图16示出了在图15中所示装置中的电流检测电路和电流供应电路的结构图;图17示出了泄漏电流抵消程序的流程图;图18示出了泄漏电流抵消过程的示例图;图19示出了在图15中所示装置中的电流检测电路和电流供应电路的结构的另一个例子;图20示出了在图15中所示装置中的电流检测电路和电流供应电路的结构的又一个例子;图21示出了发光驱动电流测量程序的流程图;图22示出了亮度修正值产生程序的流程图;以及图23示出了驱动电压设置程序的流程图。
发明详细介绍参考附图详细介绍本发明的优选实施例。
图3示出了根据本发明的场致发光有源矩阵驱动型EL显示器件的结构示意图(下文中称作EL显示器件)。
如图3所示,该EL显示器件包括驱动电压产生电路1、电流检测电路2、乘法器3、驱动控制电路4、扫描线驱动器5、数据线驱动器6、操作单元7、发光驱动电流存储器8、不发光电流值寄存器9A、参考电流值寄存器9B和显示板10。
显示板1O由阳极电源线16、阴极电源线17、具有n条水平扫描线A1到An和m条数据线B1到Bm彼此交叉排列的1屏幕构成。而且,驱动电压Vc加到阳极电源线16上,地电位GND加到阴极电源线17上。此外,在上述显示板10中的扫描线A1到An与数据线B1到Bm的每个交叉点形成具有像素的EL单元E1,1到En,m。EL单元E的内部结构与图2中所介绍的相同,所以在这里不再说明。
驱动电压产生电路1产生上述DC驱动电压Vc,并通过电流检测电路2加到显示板10的阳极电源线16上。
电流检测电路2检测在阳极电源线16中流过的电流,并将表示检测到的电流值的电流值数据信号CD提供给驱动控制电路4。例如,如图4所示,电流检测电路2包括连接在驱动电压产生电路1和显示板10的阳极电源线16之间的电阻R1、测量开关SW以及A/D转换器AD。当驱动控制电路4提供的电流检测使能信号CE为逻辑电平1时,测量开关SW保持断开,当所提供的电流检测使能信号CE为逻辑电平0时,开关SW导通,从而使电阻R1的两端短路。即,当测量开关SW断开时,电流检测电路2处于检测方式,并且,将在电阻R1的两端根据电流值产生的电压提供给A/D转换器AD。接着,A/D转换器AD将通过把电阻R1两端产生的电压转换为数字值得到的结果提供给驱动控制电路4,作为电流值数据信号CD。
然后,依次为乘法器3提供根据图像信号的每个像素的像素数据PD,该图象信号携带了要显示在显示板10上的图象。像素数据PD描述了每个像素的显示亮度级别。乘法器3将提供的每个像素的像素数据PD乘以由驱动控制电路4提供的亮度修正值K,得到亮度修正的像素数据LD,然后将其提供给驱动控制电路4。即,每次依次输入包含显示板10的像素的EL单元E1,1到En,m的每一个的像素数据PD时,驱动控制电路4从发光驱动电流值存储器8中读入之前测量的每个像素的测量电流值,并且根据这些测量电流值产生亮度修正值K,并提供给乘法器3。下面详细介绍测量每个像素的电流值并产生亮度修正值的操作。
操作单元7接收用户的动作,并为驱动控制电路4提供相应的命令信号。例如,操作单元7根据用户发出的上电操作命令向驱动控制电路4提供上电信号ON,以便初始化显示板10的显示操作。同样,操作单元7根据用户发出的断电操作命令向驱动控制电路4提供断电信号OFF,以便终止显示板10的显示操作。而且,操作单元7根据用户发出的亮度修正指令向驱动控制电路4提供亮度修正控制信号LAD。
根据上述上电信号ON,驱动控制电路4产生上述亮度修正值K(如下面所述),并根据上述亮度修正的像素数据LD控制应当显示半色调(half-tone)亮度的显示板10的分级驱动。在显示板10中的分级驱动可以用任何类型的分级方法来实现,这里我们将介绍利用子帧方法的实施例。
在子帧方法中,一帧显示周期细分为N个子帧,其中不同的发光周期分配给不同的子帧。根据由像素数据表示的亮度级别,并且通过决定子帧组合实现发光的方式以(2n+1)步实现中间亮度。通过这种子帧方法的方式,驱动控制电路4为扫描线驱动器5和数据线驱动器6提供驱动显示板10的各种驱动控制信号。
下面以实施例的方式说明扫描线驱动器5和数据线驱动器6的操作,其中一个帧显示周期分为三个子帧SF1到SF3,如图5所示。
在图5所示的三个子帧SF1到SF3的每一个子帧期间,扫描线驱动器5对显示板10的每条扫描线A1到An选择性地施加扫描脉冲。同时,数据线驱动器6与上述扫描脉冲的施加时序同步地对每条数据线B1到Bm施加对应于每条扫描线中的m个像素中每一个的m个亮度修正的像素数据LD的每一个的像素数据脉冲DP1到DPm。在EL单元E在子帧期间发光的情况下,像素数据脉冲DP具有高电压脉冲,在不发光的情况下为低电压脉冲(例如,0伏)。现在,EL单元E连接到施加扫描脉冲的扫描线A,成为像素数据的写入目标。响应上述扫描脉冲,在成为像素数据的写入目标的EL单元E中的FET11处于导通状态,并将通过数据线B提供的上述像素数据脉冲DP分别加到FET 12的栅极G和电容器13。根据像素数据脉冲DP的脉冲电压,FET 12产生发光驱动电流(由EL元件15的阻抗决定的电流),并提供给EL元件15。即,如果为EL元件15提供高电压像素数据脉冲DP,则上述发光驱动电流使其置于发光状态。如果提供低电压像素数据脉冲DP,则被置于不发光状态。现在,如果在图5的子帧SF1期间为EL元件15提供高电压像素数据脉冲DP,则该EL元件15在周期“1”期间保持发光。而且,如果在子帧SF2期间为EL元件15提供高电压像素数据脉冲DP,则该EL元件15在周期“2”期间保持发光。如果在子帧SF3期间为EL元件15提供高电压像素数据脉冲DP,则该EL元件15在周期“4”期间保持发光。
因此,例如,如果只在子帧SF1到SF3中的子帧3期间发光,则在一帧显示周期期间只在周期“4”中发光,并且人眼感知到对应于发光周期“4”的亮度。而且,如果在子帧SF1和SF3期间发光,则在一帧显示周期期间只在周期“1”+“4”=“5”中发光,并且人眼感知到对应于发光周期“5”的亮度。同样,如果在子帧SF2和SF3期间发光,则在一帧显示周期期间只在周期“2”+“4”=“6”中发光,并且人眼感知到对应于发光周期“6”的亮度。
因此,当使用图5所示的三个子帧驱动显示板10时,能够实现9级中间亮度。
另一方面,驱动控制电路4响应上述断电信号OFF,执行图6所介绍的发光驱动电流测量程序。
在图6中,首先,驱动控制电路4向扫描线驱动器5和数据线驱动器6提供使全部EL单元E1,1到En,m的FET 12处于关断状态的驱动控制信号(步骤S1)。然后,驱动控制电路4为电流检测电路2提供逻辑电平1的电流检测使能信号CE(步骤2)。由此,电流检测电路2检测根据在阳极电源线16中流过的电流在电阻R1两端之间产生的电压,并将具有检测电压值的电流值数据信号CD提供给驱动控制电路4。即,当中断全部EL单元E1,1到En,m的操作时,检测阳极电源线16中流过的电流。接着,驱动控制电路4将由电流值数据信号CD表示的电流值存储在不发光电流值寄存器9A中,作为处于不显示方式时流向显示板10的不发光电流值(步骤3)。接着,驱动控制电路4在行号码寄存器(未在图中示出)中存储“1”作为初始行号码,在列号码寄存器(未在图中示出)中存储“1”作为初始列号码(步骤4)。接着,驱动控制电路4向扫描线驱动器5和数据线驱动器6提供驱动控制信号,该驱动控制信号仅用于驱动EL单元E1,1到En,m中对应于在行号码寄存器X中存储的行号码和在列号码寄存器Y中存储的列号码的EL单元EX,Y发光(步骤S5)。当进行步骤S5时,扫描线驱动器5仅对扫描线A1到An中由行号码寄存器X中存储的行号码指定的扫描线AX施加扫描脉冲。同时,数据线驱动器6仅对数据线B1到Bm中由列号码寄存器Y中存储的列号码指定的那些数据线BY提供高电压脉冲,而对数据线B中的其它组提供低电压像素数据脉冲DP。通过上述操作,发光驱动电流只流入在EL单元E1,1到En,m中的EL单元EX,Y中形成的EL元件15,以使该EL元件15发光。因此,只有EL单元EX,Y形成的EL元件15消耗的电流流过阳极电源线16。现在,电流检测电路2向驱动控制电路4提供表示在阳极电源线16中流过的电流的电流值数据信号CD。
这里,驱动控制电路4得到由上述电流值数据信号CD表示的电流值,并将其作为测量电流值存储在发光驱动电流值存储器8的地址[X,Y]中(步骤6)。接着,驱动控制电路4将存储在列号码寄存器Y中的列号码加1(步骤S7)。下一步,驱动控制电路4检查存储在列号码寄存器Y中的列号码是否大于最后的列号码m(步骤8)。在步骤8中,如果存储在列号码寄存器Y中的列号码不大于最后的列号码m,则驱动控制电路4跳回到上述步骤S5,并重复这里所介绍的操作。
通过重复上述步骤S5到S8,一个接一个地测量流过在由行号码寄存器X中存储的行号码指定的扫描线AX中的全部EL单元E1,1到En,m中形成的EL元件15的发光驱动电流,并且将它们的值存储在发光驱动电流值存储器8中。
另一方面,在上述步骤S8中,如果存储在列号码寄存器中的列号码Y经验证大于最后的列号码m,则驱动控制电路4仅将存储在行号码寄存器中的行号码X加1(步骤S7),并且通过写入1改写存储在列号码寄存器中的列号码Y(步骤S9)。即,通过执行步骤9,由要测量发光驱动电流的EL单元E的组形成的扫描线AX移动到下一条扫描线AX+1。驱动控制电路4检查存储在行号码寄存器中的行号码X是否大于最后的行号码n(步骤10)。在步骤8中,如果在行号码寄存器中存储的行号码X不大于最后的行号码n,则驱动控制电路4跳回到上述步骤S5,并重复这里所介绍的操作。
通过重复上述步骤S5到S10,测量流过形成显示板10的全部EL单元E1,1到En,m中形成的EL元件15的发光驱动电流,并且将测量结果存储在与每个像素相关的发光驱动电流值存储器8中。
而且,在上述步骤S10中,如果在行号码寄存器中存储的行号码X大于最后的行号码n,则驱动控制电路4在上述发光驱动电流值存储器8中存储的每个像素的测量电流值中搜索最小电流值,并将该值存储在参考电流值寄存器9B中(步骤S11)。接着,驱动控制电路4为电流检测电路2提供逻辑电平为0的电流检测使能信号CE(步骤S12)。由此,短路在电流检测电路2中提供的电阻R1的两端,从而由驱动电压产生电路1产生的驱动电压Vc直接加到阳极电源线16。在完成上述步骤S12之后,驱动控制电路4退出发光驱动电流测量程序,返回主程序(未在图中示出)。
响应用户停止显示板10中显示操作的电流关断操作执行上述发光驱动电流测量程序。即,虽然基于图像数据的显示操作还没有完成,但是如果独立发光,则测量流入每个像素的EL元件15的发光驱动电流,并且测量结果作为测量电流值存储在发光驱动电流值存储器8中。
现在,当用户使用操作单元7进行上电操作,以初始化显示板10的显示操作时,操作单元7为驱动控制电路4提供上电信号ON。响应上电信号ON,驱动控制电路4执行图7中介绍的亮度修正值产生程序,以便产生亮度修正值K。
在图7中,首先,驱动控制电路4检查是否已经输入像素数据PD;重复该检查直到有效输入像素数据PD(步骤S21)。在步骤21中,当输入像素数据PD时,驱动控制电路4从发光驱动电流值存储器8中读出对应于输入像素数据PD的的测量电流值(步骤S22)。接着,驱动控制电路4确定亮度修正值K,该值通过用存储在参考电流值寄存器9B中的参考电流值IREF除以上述测量电流值得到(步骤S23)。该K值提供给乘法器3(步骤S24)。由此,乘法器3通过下面的表达式为每个像素产生亮度修正的像素数据LDLD=像素数据PD·亮度修正值K=像素数据PD·(参考电流值IREF/测量电流值)接着,驱动控制电路4检查是否已经由操作单元7提供断电信号OFF(步骤S25)。在步骤S25中,如果没有提供断电信号OFF,则驱动控制电路4返回执行上述步骤S21,并重复这里所介绍的操作。另一方面,如果在步骤S25中已经提供了断电信号OFF,则驱动控制电路4退出该亮度修正值产生程序,并转而执行图6介绍的发光驱动电流测量程序。
通过执行上述亮度修正值产生程序,当为每个像素测量的发光驱动电流相对于上述参考电流值IREF变大时,所产生的亮度修正值使对应于每个像素的EL单元中的EL元件15的发光周期相对于像素数据PD表示的周期缩短。由此,得到亮度修正的像素数据作为为像素提供的像素数据PD和上述亮度修正值K的乘积。
例如,如果在EL单元E1,1中形成的EL元件15的测量电流值为参考电流值的120%,则亮度修正值为0.83,并且亮度修正像素数据LD将是所提供的该EL单元E1,1的像素数据PD乘以0.83。如果在EL单元E1,2中形成的EL元件15的测量电流值为参考电流值的110%,则亮度修正值为0.91,并且亮度修正像素数据LD将是所提供的该EL单元E1,2的像素数据PD乘以0.91。
即,以在大发光驱动电流的EL元件15的每一帧中的发光周期与小发光驱动电流的EL元件15的每一帧中的发光周期相比变短的方式进行像素数据PD的亮度修正。即,大发光驱动电流的EL元件15的发光亮度大于小发光驱动电流的EL元件15的发光亮度,当只根据对应于EL元件15的像素数据PD减少在每帧的发光周期的数量,屏幕的亮度可以具有均匀的显示。
由此,即使作为延长时间驱动显示板的结果,在对应于每个像素的每一个EL元件中出现亮度变化,也能够得到没有亮度不均匀性的高质量图像的显示。
另外,在上述实施例中,采用在发光驱动电流值存储器8中存储的每个像素的测量电流值中的最小电流值作为参考电流值IREF,但是也可以采用最大电流值作为参考电流值IREF。现在,如在图6中所示的步骤S11中所介绍的,驱动控制电路4在上述发光驱动电流值存储器8中存储的每个像素的测量电流值中搜索最大电流值,并将该值作为参考电流值存储在参考电流值寄存器9B中。由此,以EL元件15的每一帧的发光周期延长到其发光驱动电流小于具有最大发光驱动电流的基准EL元件15的程度的方式为像素数据PD修正亮度。在这种情况下,亮度修正值K总是大于1。现在,为了确定作为亮度修正值K与输入像素数据的乘积的亮度修正像素数据LD,进一步加入预定系数(不大于1)的乘积。例如,如果系数为0.7,则通过下面的表达式可以得到亮度修正像素数据LDLD=像素数据PD·0.7·亮度修正值K=像素数据PD·0.7·(参考电流值IREF/测量电流值)在上述实施例中,实际测得的每个像素的发光驱动电流的值作为测量电流值存储在发光驱动电流值存储器8中,但是也可以在与每个像素相关的发光驱动电流值存储器8中存储测量电流值与上述参考电流值IREF的差。
而且,在显示板10中除了流过EL元件15的发光驱动电流本身以外,还消耗一些微小电流。在这种情况下,为了精确测量流过EL元件15的发光驱动电流本身,从电流检测电路2检测的电流值中减去存储在不发光电流值寄存器9A中的不发光电流值的结果也可以存储在发光驱动电流值存储器8中作为最小测量电流值。
而且,如果通过测量流过每个像素的发光驱动电流得到的上述测量电流的电流值在特定的电流值范围之外,则驱动控制电路4认为对应于该测量电流值的含有像素的该EL单元E有故障,并且向乘法器3提供“0”作为对应于该像素的亮度修正值K。现在,像素数据PD乘以0,得到的亮度修正像素数据LD变为0,并且对应于该像素的EL元件15永久熄灭。即,驱动控制电路4禁止对应于故障像素的EL单元E的发光操作。
仍然在上述实施例中,响应用户的断电操作,图6中所示的发光驱动电流测量程序只执行一次,但也可以定期重复执行。而且,开始执行上述发光驱动电流测量程序的定时不必限于用户的断电操作。例如,如果图3中所示的EL显示器件集成到任何类型的便携信息终端器件中,例如,移动电话等,则上述发光驱动电流测量程序也可以在便携信息终端器件充电时进行,或者在关闭显示板10的显示表面时进行。而且,也可以响应用户的亮度修正指令强制执行。这里,如同亮度修正指令器件所要求的,如果操作单元7向驱动控制电路4提供亮度修正控制信号LAD,则驱动控制电路4响应上述亮度修正控制信号LAD,执行发光驱动电流测量程序,如图6所示。而且,上述发光驱动电流测量程序可以在除了上述子帧SF1到SF3之外的每一帧中的发光驱动电流测量周期HT期间进行,如图8所示。即,在除了每一帧中包括子帧SF1到SF3的像素显示发光周期之外的周期中执行发光驱动电流测量程序测量每个像素的发光驱动电流。
在上述实施例中,在驱动电压产生电路1和阳极电源线16之间提供实际检测发光驱动电流的电流检测电路2,但是,在驱动电压产生电路1包括多个独立的驱动电压产生电路的情况下,也可以为每个驱动电压产生电路提供电流检测电路。
例如,在图9中,独立提供红光发射驱动电压产生电路1R、绿光发射驱动电压产生电路1G和蓝光发射驱动电压产生电路1B作为驱动电压产生电路。红光发射驱动电压产生电路1R通过阳极电源线16R为在显示板10中的EL单元E1,1到En,m中发红光的每个EL单元E提供驱动电压。绿光发射驱动电压产生电路1G通过阳极电源线16G为在显示板10中的EL单元E1,1到En,m中发绿光的每个EL单元E提供驱动电压。蓝光发射驱动电压产生电路1B通过阳极电源线16B为在显示板10中的EL单元E1,1到En,m中发蓝光的每个EL单元E提供驱动电压。通过在红光发射驱动电压产生电路1R与阳极电源线16R之间提供电流检测电路2R、在绿光发射驱动电压产生电路1G与阳极电源线16G之间提供电流检测电路2G以及在蓝光发射驱动电压产生电路1B与阳极电源线16B之间提供电流检测电路2B可以分别检测该电流。
而且,如图10所示,可以独立提供在第一区中用于显示的驱动电压产生电路1a和在第二区中用于显示的驱动电压产生电路1b作为驱动电压产生电路1。第一区的驱动电压产生电路1a通过阳极电源线16a为在第一屏幕区GM1中包含像素显示的每个EL单元E提供驱动电压。第二区的驱动电压产生电路1b通过阳极电源线16b为在第二屏幕区GM2中包含像素显示的每个EL单元E提供驱动电压。通过在第一区的驱动电压产生电路1a与阳极电源线16a之间提供电流检测电路2a以及在第二区的驱动电压产生电路1b与阳极电源线16b之间提供电流检测电路2b可以分别检测该电流。此外,一个显示板不仅可以像图10那样分为两个区,而且根据电流检测电路的规模和检测速度可以任意分为几个区。
如上所述,在本发明的第一方面中,测量使含有像素的每个发光元件单独依次发光的驱动电流值,然后,通过上述发光驱动电流值的方式为每个与对应于输入像素数据的像素相关的输入像素数据修正亮度。
由此,根据本发明的第一方面,即使作为延长驱动显示板的结果在对应于每个像素的每个EL元件中出现亮度变化,也可以得到没有亮度不规则性的高质量图像的显示。
下面参考附图详细介绍本发明的其它实施例。
图11示出了使用根据本发明的用于显示图像的显示板驱动方法的场致发光显示器件(下文中称作EL显示器件)的另一个结构的示意图。
在图11中所示的EL显示器件与图3中所示的相似,不同之处在于这里使用可变驱动发生电路1A代替驱动电压产生电路1。
可变驱动电压产生电路1A产生具有由驱动控制电路4提供的驱动电压指定信号VD指定的电压值的上述DC驱动电压Vc,并加到显示板10的阳极电源线16上。
电流检测电路2检测在阳极电源线16中流过的电流,并将表示检测到的电流值的电流值数据信号CD提供给驱动控制电路4。如图12所示,电流检测电路2,类似于图4,包括连接在可变驱动电压产生电路1和显示板10的阳极电源线16之间的电阻R1、测量开关SW以及A/D转换器AD,所以在这里不再说明其操作。
驱动控制电路4通过,例如,图5中所示的子场方法进行分级(gradation display)显示,然后,在执行图6所示的发光驱动测量程序之后,驱动控制电路4执行图7中所介绍的驱动电压设置程序。
在图13中,首先,驱动控制电路4检查存储在上述参考电流值寄存器9B中的参考电流值IREF是否小于预定的上限电流值IMAX(步骤S31)。上限电流值IMAX是使EL元件15发光的发光驱动电流的范围的上限值,该范围使得在不超过预定的功耗值的同时保证要求的最小亮度。在上述步骤S31中,如果验证参考电流值IREF不小于上限电流值IMAX,则驱动控制电路4将从由之前的驱动电压指定信号VD指定的电压值减去规定电压值α得到的结果作为驱动电压指定信号VD的新的指定电压值,然后将该电压值加到可变驱动电压产生电路1(步骤S32)。通过执行步骤S32,可变驱动电压产生电路1将仅减小了对应于规定电压值α部分的驱动电压Vc加到阳极电源线16。接着,驱动控制电路4重新执行在图6中介绍的发光驱动电流测量程序(步骤S33)。即,在步骤S32中,在从加到阳极电源线16的驱动电压Vc中减去对应于规定电压值α部分的结果的情况下,重新执行在EL单元E1,1到En,m中的每个EL元件15的发光驱动电流的测量。在完成上述步骤S33之后,驱动控制电路4返回执行上述步骤S31,并重复这里所介绍的过程。即,驱动控制电路4继续将加到阳极电源线16的驱动电压Vc减小规定电压值α,直到参考电流值IREF小于上限电流值IMAX。
在上述步骤S31中,如果验证参考电流值IREF小于上限电流值IMAX,则驱动控制电路4接着检查参考电流值IREF是否大于规定的下限电流值IMIN(步骤S34)。下限电流值IMIN是使EL元件15以要求的最小亮度发光的最小发光驱动电流值。在上述步骤S34中,如果检查参考电流值IREF不大于下限电流值IMIN,则驱动控制电路4将从由之前的驱动电压指定信号VD指定的电压值加上规定电压值α得到的结果作为驱动电压指定信号VD的新的指定电压值,然后将该电压值加到可变驱动电压产生电路1(步骤S35)。通过执行步骤S35,可变驱动电压产生电路1将仅增加了对应于规定电压值α部分的驱动电压Vc加到阳极电源线16。在完成步骤S35之后,驱动控制电路4继续重新执行步骤S33的发光驱动电流测量程序。即,在从加到阳极电源线16的驱动电压Vc中加上对应于规定电压值α部分的结果的情况下,重新执行在EL单元E1,1到En,m中的每个EL元件15的发光驱动电流的测量。在完成上述步骤S33之后,驱动控制电路4返回执行上述步骤S31,并重复这里所介绍的过程。即,驱动控制电路4继续将加到阳极电源线16的驱动电压Vc增加规定电压值α,直到参考电流值IREF大于下限电流值IMIN。
在上述步骤S34中,当验证参考电流值IREF大于下限电流值IMIN时,参考电流值IREF保持在由下限电流值IMIN和上限电流值IMAX定义的范围内,则驱动控制电路4退出驱动电压设置程序,返回执行主程序(未在图中示出)。
由此,通过执行上述驱动电流电压设置程序,以在流过EL单元E1,1到En,m中的每个EL元件15的发光驱动电流中的最小发光驱动电流值成为使EL元件15在所希望的亮度范围内发光所需要的发光驱动电流值的方式调节驱动电压Vc。
因此,即使作为,例如,制造过程的变化、环境温度的变化或者由于发光寿命的累积等的结果出现EL元件15的内部电阻值的变化,显示板10的整个屏幕的亮度级别也可以保持在所希望的亮度范围内。
而且,在上述实施例中,在可变驱动电压产生电路1A与阳极电源线16之间提供实际检测发光驱动电流的电流检测电路2,但是,如果可变驱动电压产生电路1包括多个独立的可变驱动电压产生电路,如图9所示,则也可以为每个可变驱动电压产生电路提供电流检测电路。
而且,如图10所示,可以独立的提供在第一区中用于显示的驱动电压产生电路1a和在第二区中用于显示的驱动电压产生电路1b以及图11中所示的可变驱动电压产生电路1A。
此外,在上述实施例中,在执行图6中介绍的发光驱动电流测量程序之后执行图13介绍的驱动电压设置程序,但是它也可以定期重复执行。
而且,在上述驱动电流测量程序中,以在EL单元E1,1到En,m中的每个EL元件15中的测得的电流值中最小测量电流值保持在由下限电流值IMIN和上限电流值IMAX定义的范围内的方式进行驱动电压Vc的调节。但是,也可以以这些测量电流值的平均值保持在由下限电流值IMIN和上限电流值IMAX定义的范围内的方式进行驱动电压Vc的调节。在这种情况下,驱动控制电路4为存储在发光驱动电流值存储器8中的每个像素确定测量电流值的平均值,并用该值作为参考电流值IREF执行图13中的步骤S31到S35的操作。
在本发明中,如果需要,可以以每个EL单元E1,1到En,m中的最小测量电流值或者每个测量电流的平均值等于预定的参考电流值(从下限电流值IMIN到上限电流值IMAX的范围)的方式调节驱动电压Vc。
在设置上述参考电流值IREF中,也可以采用对形成显示板10的所有EL单元E中指定的多个EL元件15测得的发光电流值的平均值作为参考电流值IREF。此外,参考电流值IREF也可以是对在显示板10中的一个特定EL单元E测得的发光电流值。此外,该特定EL单元可以是EL单元E1,1到En,m中的一个,或者是专门为了得到参考电流值IREF而提供的EL单元EX(具有图2所示的内部结构),如图14所示。在这种情况下,EL单元EX像EL单元E1,1到En,m一样,通过阳极电源线16接收所提供的驱动电压。为了得到作为参考电流值IREF的EL单元EX的发光驱动电流值,驱动控制电路4为数据线驱动器6和扫描线驱动器5提供电流测量信号。响应该电流测量信号,数据线驱动器6通过数据线BEX为上述EL单元EX提供像素数据脉冲,扫描线驱动器5通过扫描线AEX为上述EL单元EX提供扫描脉冲。由此,发光驱动电流流过EL单元EX中的EL元件15,使其发光,并且发光驱动电流流过阳极电源线16。现在,电流检测电路2检测流过阳极电源线16的发光驱动电流,并将表示电流值的电流值数据信号CD提供给驱动控制电路4。驱动控制电路4得到由电流值数据信号CD表示的电流值,并将其存储在参考电流值寄存器9B中作为参考电流值IREF。
由此,如在本发明的第二和第三方面中所介绍的,为每个像素测量依次流过每个含有像素的发光元件的使像素单独发光的每个发光驱动电流值[为了进一步的使用]。根据输入像素数据,基于与像素有关的发光驱动电流值进行输入像素数据的亮度修正,并且以每个测量发光驱动电流值中的一个值等于预定参考电流值的方式调节为每个发光元件提供的驱动电压的电压值。
由此,通过本发明的第二和第三方面,能够防止在屏幕中出现亮度的不规则,并且在所有的时刻保持整个屏幕的亮度级别在特定的范围内。
参考


本发明的另一个实施例。
图15示出了作为本发明的另一个实施例的显示装置。显示装置由包括显示板21、控制器22、像素电流值存储器23、数据信号提供电路24、扫描脉冲提供电路25、电流检测电路26、电源电路27、电流提供电路28和电流求和电路29的元件构成。
显示板21包括多条数据线Y1到Ym(m为大于一的整数)和多条扫描线X1到Xn(n为大于一的整数)以及多条电源线Z1到Zn。如图15所示,多条扫描线X1到Xn以及多条电源线Z1到Zn彼此平行排列。多条数据线Y1到Ym与多条扫描线X1到Xn和多条电源线Z1到Zn交叉排列。在多条数据线Y1到Ym与多条扫描线X1到Xn的交叉点处排列各个像素部分PL1,1到PLn,m,从而形成矩阵型显示板。电源线Z1到Zn互相连接,形成单电源线Z,随后连接到电流求和电路29。多个像素部分PL1,1到PLn,m的每一个具有图2所示的结构。
显示板21通过扫描线X1到Xn连接到扫描脉冲提供电路25,还通过数据线Y1到Ym连接到数据信号提供电路24。控制器22产生扫描控制信号和数据控制信号,以便根据引入的图像信号在灰度级驱动控制下驱动显示板。扫描控制信号加到扫描脉冲产生电路25,数据控制信号加到数据信号提供电路24。
扫描脉冲提供电路25连接到扫描线X1到Xn,并且根据扫描控制信号以预定的顺序为扫描线X1到Xn提供扫描脉冲。
数据信号提供电路24连接到数据线Y1到Ym,并且通过数据线为位于施加扫描脉冲的扫描线上的像素部分中要驱动为发光状态的像素部分提供像素数据脉冲。
显示板21的灰度级驱动方案与参考图2介绍的方案相同,所以不再重复说明。
当使用如图4所示的三个子帧驱动显示板时,用三个子帧的不同组合可以显示八阶灰度的半色调(half tone)。
在像素存储器23中,由控制器将像素部分PL1,1到PLn,m的各个像素电流值作为数据写入。下面介绍该写入操作的过程。
电流检测电路26检测从电源电路27向电源线Z输出的电流值。电流提供电路28根据由电流检测电路26检测的电流值设置偏移电流值,并将检测电流值的偏移值提供给电流求和电路29。
如图16所示,电流检测电路26包括电流测量电路31和A/D转换器32。电流提供电路28包括判断电路36、D/A转换器37和电流产生电路38,仍如图16所示。
电流测量电路31插在电源电路27和电流求和电路29之间。电流测量电路31具有并联连接的电阻R和开关SW,从而当开关SW闭合时,来自电源电路27的电流通过开关SW提供给电源电路,当开关SW断开时,来自电源电路27的电流通过电阻R提供给电源电路。开关SW的开关状态由控制器22控制。电流测量电路31输出对应于流过电阻R的电流值的电压,即,电阻R两端的电压。
A/D转换器32将电流测量电路31的输出电压转换为数字信号,并将该数字信号提供给控制器22和判断电路36。判断电路36判断由从A/D转换器32输出的数字信号表示的泄漏电流值是否是在预定范围内。另外,判断电路36根据判断结果设置偏移电流值。由判断电路36指定的偏移电流值以数字信号的形式输出到D/A转换器37。D/A转换器37将数字信号转换为模拟形式的电压信号,并将该模拟信号提供给电流产生电路38。D/A转换器37的输出电压由来自控制器22的指令控制。作为将电压信号转换为电流的V/I转换电路的电流产生电路38由此输出具有由判断电路36指定值的偏移电流。
电流求和电路29将由电流测量电路31和电流产生电路38输出的电流相加,并将总电流提供给电源线Z1到Zn。
控制器22执行泄漏电流消除程序和发光驱动电流测量程序。泄漏电流消除程序是当在所有的像素部分PL1,1到PLn,m中停止发光驱动时,测量作为泄漏电流在显示板21中流过的电流的程序,并且用来驱动电流产生电路38输出对应于泄漏电流的电流。发光驱动电流测量程序是测量像素部分PL1,1到PLn,m的每一个的驱动电流的程序。虽然不需要在任何特定的时间点设置执行这些程序的定时,但是,可以在,例如,当关闭显示装置的电源时、当没有输入图像数据时,或者在一个子场与下一个子场之间的间隔中执行。
在泄漏电流消除程序中,如图17所示,控制器22使显示板21处于其上的所有像素部分PL1,1到PLn,m停止发光驱动的状态(步骤S41)。具体的,控制器22停止产生上述扫描控制信号和数据控制信号。然后,控制器22设置D/A转换器37的输出电压为0V,从而偏移电流值等于零(步骤S42)。当D/A转换器37的输出电压为0V时,来自电流产生电路38的偏移电流的输出由此关断。此外,控制器22设置电流测量电路31的开关处于断开位置(步骤S43)。
在该控制状态,电源电路27的输出电压(电源电压)Vc通过电流测量电路31和电流求和电路29的电阻R加到显示板21的电源线Z1到Zn和地线之间,从而在显示板21中流过泄漏电流。电流测量电路31的输出电压由A/D转换器32转换为数字值,并提供给判断电路36。控制器22驱动判断电路36做出由A/D转换器32输出的数字信号表示的泄漏电流值是否在预定范围内的判断(步骤S44)。作为判断电路36的判断结果,如果泄漏电流值大于预定范围,则对应于等于预定电流值Ir的电流增量的数字信号输出到D/A转换器37(步骤S45)。数字信号可以由控制器22和判断电路36中的一个提供给D/A转换器37。D/A转换器37将所提供的数字信号转换为模拟信号,并将该模拟信号提供给电流产生电路38。电流产生电路38将电流值增加预定电流值Ir,并输出增加的电流。电流产生电路38的输出电流提供给电流求和电路29。通过电流产生电路38的输出电流的方式,从电源电路输出的电流减少电流值Ir。即,从电流求和电路29流向显示板21本身的电流值保持不变。
当判断电路36判断所测量的泄漏电流在预定范围内时,控制器22使电流产生电路38保持此时的输出电流值作为偏移电流值(步骤S46)。
图18示出了在所测量的泄漏电流的电流值达到预定范围之前,该被测量的泄漏电流改变方式。第一次测量的泄漏电流值是在显示板21中流过的实际泄漏电流的值。第一次,没有电流从电流产生电路38输出。第二次的泄漏电流值是实际泄漏电流值减小电流值Ir的值。在第二次中,电流产生电路38的输出电流值等于Ir。这样,第j次的泄漏电流值是从实际泄漏电流值I0中减去电流值(j-1)Ir的值。判断电路36判断电流值是否满足O≤I0-(j-1)Ir≤Ia,其中0和Ia是电流值0到Ia的预定范围的端值。
在图18中,第六次测量泄漏电流值是从实际泄漏电流值中减去电流值5Ir的值,并且表示为I0-5Ir。在第六次测量中,电流产生电路38的输出电流值为5Ir。第六次测量泄漏电流值在预定范围0到Ia中。保持电流产生电路38的输出电流值作为偏移电流。
如图19所示,电流提供电路28由模拟运算电路39和电流产生电路38构成。模拟运算电路39根据表示由电流测量电路31输出的泄漏电流值的电压计算提供给电流产生电路38的电压电平。简而言之,模拟运算电路39驱动电流产生电路38输出电流(j-1)Ir,从而满足条件0≤I0-(j-1)Ir≤Ia。
如图20所示,电流提供电路28可以仅由电流产生电路38构成。在图20中的电流提供电路28中,其输出电流值可以由人工操作调节。利用该特性,手动调节电流产生电路38的输出电流,从而使电流测量电路31输出的测量泄漏电流值成为在预定范围0到Ia中的电流值。
此外,在图16、19和20中所示的每个实施例中,对构成显示板的像素部分PL1,1到PLn,m的发光元件的EL元件发出相同颜色光的情况进行了说明。在发光产生多种颜色,例如,RGB(红色、绿色和蓝色)的情况下,对于每种发光颜色的驱动电压VC可能是不同的。在这种情况下,可以为分别具有不同发光颜色的每个像素部分提供电源电路27、电流检测电路26和电流提供电路28。
在上述泄漏电流消除程序中保持电流提供电路28的输出电流作为偏移电流值之后,控制器22为像素部分PL1,1到PLn,m的每一个执行发光驱动电流测量程序。
如图21所示,控制器22首先在行号码寄存器X(未示出)中存储“1”作为初始行号码,并在列号码寄存器Y(未示出)中存储“1”作为初始列号码(步骤S51)。随后,控制器22向扫描脉冲提供电路25和数据信号提供电路24提供用于仅使在像素部分PL1,1到PLn,m中对应于存储在行号码寄存器X中的行号码和存储在列号码寄存器Y中的列号码的像素部分PLX,Y发光的驱动控制信号(步骤S52)。作为步骤S52的执行结果,扫描脉冲提供电路25只对扫描线X1到Xn中由存储在行号码寄存器X中的行号码表示的扫描线XX提供扫描脉冲。同时,数据信号提供电路24只对数据线Y1到Ym中由存储在列号码寄存器Y中的列号码表示的数据线YY提供低电平(例如,地电位)的数据信号,同时向除数据线YY以外的剩余数据线提供高电压的电位。通过上述处理操作,发光驱动电流只流过像素部分PL1,1到PLn,m的像素部分PLX,Y中的EL元件,从而该EL元件发光。相应地,只有像素部分PLX,Y中的EL元件消耗的发光驱动电流流过电源线ZY和Z。电流检测电路26向控制器22提供代表流过电源线Z的电流值的电流值数据信号CD。
在该过程中,控制器22得到由上述电流值数据信号CD表示的电流值,并将其存储在像素电流值存储器23中的地址[X,Y]中(步骤S53)。然后,控制器22将存储在列号码寄存器Y中的列号码加一(步骤S54)。随后,控制器22判断存储在列号码寄存器Y中的列号码是否大于最后的列号码m(步骤S55)。如果在步骤S55中判断存储在列号码寄存器Y中的列号码不大于最后的列号码m,则控制器22返回执行上述步骤S52,并重复执行上述操作。
通过反复执行上述步骤S52到S55,依次分别测量流过位于由存储在行号码寄存器X中的行号码表示的扫描线XY上的像素部分PL1,Y到PLn,Y中的EL元件的发光驱动电流,并存储在发光驱动电流存储器8中。
在步骤S55中,如果由控制器22检测存储在列号码寄存器Y中的列号码大于最后的列号码m,则存储在行号码寄存器X中的行号码加一,并且存储在列号码寄存器Y中的列号码改写为1(步骤S56)。简要地说,通过执行步骤S56,作为发光驱动电流的测量对象的像素部分从扫描线XX移动到下一个扫描线XX+1上的像素部分。控制器22还判断存储在行号码寄存器X中的行号码是否大于最后的行号码n(步骤S57)。如果在步骤S57中判断存储在行号码寄存器X中的行号码不大于最后的行号码n,则控制器22返回执行步骤S52,重复上述操作。
通过重复执行步骤S52到S57,对在显示板21中形成的像素部分PL1,1到PLn,m中的所有EL元件测量发光驱动电流,并且测量结果存储在分别对应于像素的像素电流值存储器23中。
如果在上述步骤S57中判断存储在行号码寄存器X中的行号码大于最后的行号码n,则控制器22搜索在上述像素电流存储器23中存储的像素的各个像素电流值中最小的电流值,并将搜索出的电流值存储在内部寄存器(未示出)中,作为典型电流值(步骤S58)。然后,控制器22执行控制操作,闭合在电流测量电路31中的开关SW(步骤S59)。
通过该操作,在电流测量电路31中提供的电阻R的两端发生短路,从而电源电路27产生的驱动电压Vc直接加在电源线Z上。在执行步骤S59之后,控制器22退出发光驱动电流测量程序,并返回执行主程序(未示出)。
如上所述,响应用户停止显示板21显示图像的关闭操作执行发光驱动电流测量程序。换句话说,在不进行图像数据的显示操作的时间段内,在单独驱动像素部分PL1,1到PLn,m中的每个EL元件发光的情况下,测量流过的发光驱动电流。测量结果存储在像素电流值存储器23中。因为在泄漏电流分量几乎被去掉的情况下进行像素电流值的测量,所以可以对像素部分PL1,1到PLn,m的每一个进行高精度像素电流值测量。此外,当使用上述泄漏电流消除程序和发光驱动电流测量程序时,分别为显示板设置偏移电流值,可以对像素部分PL1,1到PLn,m的每一个进行高精度像素电流值测量。
然后,为了开始显示板21的显示,执行图22中所示的亮度修正值产生程序,以便为每个像素产生对应于输入图像数据中的像素数据的上述亮度修正值K。
控制器22首先判断是否输入了图像数据,并且得到了像素数据PD(步骤S61)。反复执行步骤S61,直到得到像素数据PD。然后,控制器22从像素电流值存储器23中读出对应于像素数据PD的像素电流值(步骤S62)。然后,控制器得到存储在内部寄存器中的典型值除以上述像素电流值的结果,作为亮度修正值K(步骤S63),并且通过用亮度修正值K乘以像素数据PD计算亮度修正像素数据LD(步骤S64)。在步骤S64中,通过下面的公式得到亮度修正像素数据LD。
LD=像素数据PD·亮度修正值K=像素数据PD·(典型电流值/像素电流值)控制器22重复步骤S61到S64的过程,直到关闭屏幕的显示,从而得到每个像素的亮度修正像素数据LD。
通过执行上述亮度修正值产生程序,以每个像素测得的发光驱动电流相对于上述典型电流值越大,在对应于像素的像素部分中的EL元件的发光周期相对于由像素的像素数据表示的周期越短的方式得到亮度修正值K。由此,通过将上述亮度修正值K乘以对应于像素提供的像素数据PD得到的结果用作亮度修正像素数据LD。
例如,如果像素部分PL1,1的电流值为上述典型值的120%,则亮度修正值K为0.83,从而将为像素部分PL1,1提供的像素数据乘以0.83得到的值用作亮度修正像素数据LD。同样,当像素部分PL1,2的电流值为上述典型值的110%时,亮度修正值K等于0.91,从而将为像素部分PL1,2提供的像素数据乘以0.91得到的值用作亮度修正数据LD。
即,亮度修正以具有大驱动电流的EL元件的像素部分每一帧中的发光周期小于小驱动电流的EL元件的方式影响像素数据PD。简单地说,虽然具有较大驱动电流的EL元件发出的光的亮度较大,但是通过缩短对应于具有大驱动电流的EL元件的像素数据PD的一帧中的发光周期到克服亮度增加的程度,使在屏幕中EL元件的外观亮度均匀。
即使由于长期使用显示板21导致从每个EL元件发出的光的亮度在不同的器件之间出现变化,根据本发明也能够得到免于亮度不均匀性的高质量的显示。
在上述实施例中,在像素电流值存储器23中存储的像素电流值中的最小电流值用作典型电流值。但是,最大电流值也可以用作典型电流值。在这种情况下,在图21所示的步骤S58中,控制器22从存储在像素电流存储器23中的像素的各个像素电流值中搜索最大电流值,并将搜索到的电流值存储在内部寄存器中,作为典型电流值。通过该过程,当使用发光驱动电流最大的EL元件作为基准时,亮度修正以发光驱动电流越小,EL元件的发光周期越长的方式影响像素数据。亮度修正值K总是具有大于1的值。因此,当亮度修正值K乘以像素数据PD得到亮度修正像素数据LD时,第一次乘法的结果再乘以小于1的预定系数。例如,当预定系数为0.7时,根据以下公式计算亮度修正像素数据LD。
LD=像素数据PD·0.7·亮度修正值K=像素数据PD·0.7·(典型电流值/像素电流值)此外,在上述实施例中,在像素电流值存储器23中存储为每个像素实际测量的像素电流值。但是,也可以在像素电流值存储器23中存储对应于各个像素的像素电流值与上述典型电流值之间的差。
在执行发光驱动电流测量程序之后也可以采用控制器22继续执行图23中所示的驱动电压设置程序的方案。
在图23中,首先,控制器22执行存储在上述内部寄存器中的典型电流值IREF是否小于预定上限电流值IMAX(步骤S71)的判断。上限电流值IMAX是使像素部分中的EL元件以高于最小必须级别的亮度发光,同时保持功耗低于预定值的发光驱动电流的上限值。如果在步骤S71中判断典型电流值IREF不小于预定上限电流值IMAX,则控制器22将从由之前的驱动电压指定信号VD指定的电压值减去预定电压值α得到的驱动电压指定信号VD提供给电源电路27(步骤S72)。作为步骤S72执行的结果,电源电路27将减小了预定电压值α的驱动电压Vc加到电源线Z。然后,控制器22再次执行上述发光驱动电流测量程序(步骤S73)。这意味着,通过执行步骤S72,在加到电源线Z的驱动电压Vc中减去预定电压α的情况下,为像素部分PL1,1到PLn,m中的每个EL元件分别重新测量发光驱动电流。在执行步骤S73之后,控制器22返回执行步骤S71,重复执行上述过程。简单地说,控制器22重复上述过程,将加到电源线Z的驱动电压Vc减小预定值α,直到典型电流值IREF小于上限电流值IMAX。
在上述步骤S71中,如果判断典型电流值IREF小于上限电流值IMAX,则控制器22判断典型电流值IREF是否大于下限电流值IMIN(步骤S74)。下限电流值IMIN是使EL元件以最小必须的亮度级别发光的发光驱动电流的下限值。如果在步骤S74中判断典型电流值IMEF不大于下限电流值IMIN,则控制器22将一个驱动电压指定信号VD提供给电源电路27(步骤S75),该驱动电压指定信号VD是通过在前面很短的时刻将预定电压值α加到由所述驱动电压指定信号VD指定的电压值上而得到的。作为执行步骤S75的结果,电源电路27将增加了预定电压值α的驱动电压Vc加到电源线Z。在执行步骤S75之后,控制器22继续执行步骤S73中的发光驱动电流测量程序。这意味着,通过执行步骤S72,在加到电源线Z的驱动电压Vc中加上预定电压α的情况下,为像素部分PL1,1到PLn,m中的每个EL元件分别重新测量发光驱动电流。在执行步骤S73之后,控制器22返回执行步骤S71,重复执行上述过程。简单地说,控制器22重复该过程,将加到电源线Z的驱动电压Vc减小预定电压值α,直到典型电流值IREF大于下限电流值IMIN。
在上述步骤S74中,如果判断典型电流值IREF大于下限电流值IMIN,意味着典型电流值IREF位于由下限电流值IMIN和上限电流值IMAX之间的范围内,则控制器22退出驱动电压设置程序,返回执行主程序(未示出)。
如上所述,通过执行驱动电压设置程序,调节驱动电压,从而在流过像素部分PL1,1到PLn,m中的每一个的发光驱动电流中最小一个等于在所希望的亮度范围内驱动EL元件发光所需要的发光驱动电流。
而且,可以为驱动电压Vc设置上限,以便保护显示板。
具有了上述特性,即使由于温度变化或发光周期的累积引起EL元件的内部电阻的波动,也能够保持显示板21的整个显示区域的亮度级别。
如上所述,根据本发明,即使长时间使用显示装置,也能够没有亮度波动的高质量地显示图像。
权利要求
1.一种显示板驱动器件,用于驱动矩阵形式排列的多个支持像素的发光元件形成的显示板,包括驱动电压产生电路,通过电源线为所述多个发光元件的每一个提供驱动电压;电流测量部件,用来通过在使所述发光元件以每个所述发光元件的发光时间的定时依次独立发光的同时,得到在所述电源线中流过的电流值,从而测量电流值,并且将这样得到的电流值存储在存储器中作为分配给每个像素的测量电流值;亮度修正部件,用来根据存储在所述存储器中的依照所述像素数据的所述像素中的一个的所述测量电流值,通过修正由对应于输入图像信号的每个像素的像素数据表示的亮度级别,获得亮度修正的像素数据;以及发光驱动部件,用来使所述发光元件只在所述输入图像信号的每个帧周期中的图像显示发光周期期间,对应于所述亮度修正像素数据的周期发光。
2.根据权利要求1的显示板驱动器件,其中所述电流测量部件包括一个部件,该部件用于在除所述图像显示发光周期之外的周期中,得到流过所述电源线的电流值,同时使所述发光元件以每个所述发光元件的发光时间的定时依次独立发光,并将如此得到的电流值存储在所述存储器中作为分别分配给所述每个像素的测量电流值。
3.根据权利要求1的显示板驱动器件,其中所述电流测量部件包括一个部件,该部件用来响应于亮度修正指令,而得到流过所述电源线的电流值,同时使所述发光元件以每个所述发光元件的发光时间的定时依次独立发光,并且将如此得到的电流值存储在所述存储器中作为分别分配给所述每个像素的测量电流值。
4.根据权利要求1的显示板驱动器件,其中所述电流测量部件包括扫描发光驱动部件,使所述发光元件依次独立发光;电流检测电路,检测在所述电源线中流过的电流值;以及一个部件,用于以每个所述发光元件的发光时间的定时依次获得所述电流检测电路检测到的电流值,并且将所得到的电流值存储在所述存储器中作为分别分配给所述每个像素的测量电流值。
5.根据权利要求4的显示板驱动器件,其中所述电流检测电路包括串联连接到所述电源线的电阻;一个部件,用于输出在所述电阻两端产生的电压值作为所述电流值;以及一个开关,用于在不测量时短路所述电阻两端。
6.根据权利要求1的显示板驱动器件,包括不发光电流测量部件,用来在所述显示板中形成的所有所述发光元件熄灭时,得到在所述电源线中流过的电流值,作为不发光电流值;发光电流测量部件,用来在使所述发光元件以每个所述发光元件的发光时间的定时依次独立发光的同时,得到在所述电源线中流过的电流值,作为发光驱动电流;以及一个部件,用于在所述存储器中存储将所述发光驱动电流值减去所述不发光电流值得到的结果,作为所述测量电流值。
7.根据权利要求1的显示板驱动器件,其中所述亮度修正部件包括亮度修正值计算部件,用于计算亮度修正值,从而由分配给对应于所述像素数据的所述像素中的一个的所述测量电流值确定亮度修正值;以及乘法器,得到所述像素数据乘以所述亮度修正值的乘积,作为所述亮度修正像素数据。
8.根据权利要求7的显示板驱动器件,其中所述亮度修正值计算部件得到所述亮度修正值,所述亮度修正值随着所述测量电流值的增加而变小。
9.根据权利要求7的显示板驱动器件,其中所述亮度修正值计算部件得到所述亮度修正值,所述亮度修正值随着所述测量电流值的减小而变大。
10.根据权利要求1的显示板驱动器件,包括一个部件,用于检测故障像素,所述故障像素对应于位于指定的电流值范围外的存储在所述存储器中的所述测量电流值中的测量电流值;其中所述发光驱动部件包括禁止对应于所述故障像素的那些发光元件的发光操作的部件。
11.根据权利要求4的显示板驱动器件,其中所述驱动电压产生电路包括通过第一电源线为在所述显示板中形成的所述发光元件中发红光的每个发光元件提供驱动电压的第一驱动电压产生电路;通过第二电源线为在所述显示板中形成的所述发光元件中发蓝光的每个发光元件提供驱动电压的第二驱动电压产生电路;以及通过第三电源线为在所述显示板中形成的所述发光元件中发绿光的每个发光元件提供驱动电压的第三驱动电压产生电路;并且其中所述电流检测电路包括检测在所述第一电源线中流过的电流的第一电流检测电路;检测在所述第二电源线中流过的电流的第二电流检测电路;以及检测在所述第三电源线中流过的电流的第三电流检测电路。
12.根据权利要求4的显示板驱动器件,其中所述驱动电压产生电路包括当所述显示板分为多个区时,通过第一电源线为在第一屏幕区中支持图像显示的所述发光元件提供驱动电压的第一驱动电压产生电路;以及通过第二电源线为在不同于所述第一区的第二屏幕区中支持图像显示的所述发光元件提供驱动电压的第二驱动电压产生电路;并且其中所述电流检测电路至少包括第一电流检测电路,用于检测在所述第一电源线中流过的电流;和第二电流检测电路,用于检测在所述第二电源线中流过的电流。
13.一种显示板驱动方法,用于驱动矩阵形式排列的多个支持像素的发光元件形成的显示板,包括电流测量步骤,在使所述发光元件以每个所述发光元件的发光时间的定时依次独立发光的同时,通过得到在所述电源线中流过的电流值,获得对应于每个像素的测量电流值;亮度修正步骤,用来根据所述像素数据的像素中的一个的所述测量电流值,通过修正由对应于输入图像信号的每个像素的像素数据表示的亮度级别,获得亮度修正的像素数据;以及发光驱动步骤,用来使所述发光元件只在对应于所述输入图像信号的每个帧周期中的图像显示发光周期内的所述亮度修正像素数据的周期内发光。
14.根据权利要求13的显示板驱动方法,其中所述电流测量步骤还包括,在使所述发光元件以每个所述发光元件的发光时间的定时依次独立发光的同时,通过得到流过所述电源线的电流值,在除所述图像显示发光周期之外的周期中,获得对应于每个像素的测量电流值的步骤。
15.根据权利要求13的显示板驱动方法,其中所述电流测量步骤还包括,在使所述发光元件以每个所述发光元件的发光时间的定时依次独立发光的同时,响应于亮度修正指令,通过得到流过所述电源线的电流值,而获得对应于每个像素的测量电流值的步骤。
16.根据权利要求13的显示板驱动方法,其中所述电流测量步骤还包括不发光电流测量步骤,用来在所述显示板中形成的所有所述发光元件熄灭时,得到在所述电源线中流过的电流值,作为不发光电流值;发光电流测量步骤,用来在使所述发光元件以每个所述发光元件的发光时间的定时依次独立发光的同时,通过得到在所述电源线中流过的电流值,而获得发光驱动电流值;以及将所述发光驱动电流值减去所述不发光电流值,并将相减的结果作为所述测量电流值的步骤。
17.根据权利要求13的显示板驱动方法,其中所述亮度修正步骤还包括亮度修正值计算步骤,由分配给对应于所述像素数据的所述像素中的一个的所述测量电流值确定亮度修正值;以及相乘步骤,用于得到所述像素数据与所述亮度修正值的乘积,作为所述亮度修正像素数据。
18.根据权利要求17的显示板驱动方法,其中所述亮度修正值计算步骤得到所述亮度修正值,所述亮度修正值随着所述测量电流值的增加而变小。
19.根据权利要求17的显示板驱动方法,其中所述亮度修正值计算步骤得到所述亮度修正值,所述亮度修正值随着所述测量电流值的减小而变大。
20.根据权利要求13的显示板驱动方法,其中包括在存储于所述存储器中的所述测量电流值中检测对应于位于指定的电流值范围外的所述测量电流值的故障像素的部件;并且其中所述发光驱动部件包括禁止对应于所述故障像素的所述发光元件的发光操作的部件。
21.一种显示板驱动器件,用于根据输入图像信号驱动矩阵形式排列的多个支持像素的发光元件形成的显示板,包括驱动电压产生电路,通过电源线为所述多个发光元件的每一个提供驱动电压;电流测量部件,在使所述发光元件以每个所述发光元件的发光时间的定时依次独立发光的同时,通过得到在所述电源线中流过的电流值,而获得电流值,并且将这样得到的分配给每个像素的测量电流值存储在存储器中;以及驱动电压调节部件,用来以所述测量发光驱动电流值的其中之一等于预定参考电流值的方式调节所述驱动电压的电压值。
22.根据权利要求21的显示板驱动器件,还包括发光显示部件,用于使所述发光元件只在所述输入图像信号的每个帧周期中的图像显示发光周期期间对应于所述输入图像信号的周期中发光;其中所述电流测量部件包括一个部件,用于在使所述发光元件以每个所述发光元件的发光时间的定时依次独立发光的同时,在所述图像显示发光周期之外的周期中,通过得到流过所述电源线的电流值,而得到对应于每个像素的测量电流值,并将如此得到的分别分配给所述每个像素的电流值存储在所述存储器中。
23.根据权利要求21的显示板驱动器件,其中所述电流测量部件包括一个部件,用于在使所述发光元件以每个所述发光元件的发光时间的定时依次独立发光的同时,响应于亮度修正指令,得到流过所述电源线的电流值,并且将如此得到的分别分配给每个像素的电流值存储在为所述存储器中。
24.根据权利要求21的显示板驱动器件,其中所述电流测量部件包括扫描发光驱动部件,用于使所述发光元件依次独立发光;电流检测电路,用于检测在所述电源线中流过的电流值;以及一个部件,用于获得,以每个所述发光元件的发光时间的定时,由所述电流检测部件检测到的电流值,并且将所得到的电流值存储在所述存储器中作为分配给所述每个像素的所述测量电流值。
25.根据权利要求24的显示板驱动器件,其中所述电流检测电路包括串联连接到所述电源线的电阻;输出在所述电阻两端产生的电压值作为所述电流值的部件;以及开关,当不测量时,用于在所述电阻两端形成短路电路。
26.根据权利要求21的显示板驱动器件,其中所述电流测量部件包括不发光电流测量部件,用来在所述显示板中形成的所有所述发光元件熄灭时,得到在所述电源线中流过的电流值,作为不发光电流值;发光驱动电流测量部件,用来在使所述发光元件以每个所述发光元件的发光时间的定时依次独立发光的同时,通过得到在所述电源线中流过的电流值,而获得电流值作为发光驱动电流值;以及一个部件,用于在所述存储器中存储作为所述测量电流值的将所述发光驱动电流值减去所述不发光电流值得到的结果。
27.根据权利要求21的显示板驱动器件,其中所述驱动电压调节部件包括在存储在所述存储器中的所述测量电流值中搜索最小电流值作为最小测量电流值的部件;以及以所述最小测量电流值与所述参考电流值具有相同电流值的方式调节所述驱动电压的电压值的部件。
28.根据权利要求21的显示板驱动器件,其中所述驱动电压调节部件包括一个部件,用于以存储在所述存储器中的所述测量电流值的平均值与所述参考电流值具有相同电流值的方式调节所述驱动电压的电压值。
29.根据权利要求21的显示板驱动器件,其中所述驱动电压调节部件包括一个部件,用于以这样的方式调节所述驱动电压的电压值,即,对应于存储在所述存储器中的所述测量电流值中的预定的所述像素的其中之一的测量电流值,或者对应于预定的多个所述像素的测量电流值的平均值与所述参考电流值具有相同电流值。
30.根据权利要求24的显示板驱动器件,其中所述驱动电压产生电路包括第一驱动电压产生电路,用于通过第一电源线为在所述显示板中形成的所述发光元件中支持发红光的每个发光元件提供驱动电压;第二驱动电压产生电路,用于通过第二电源线为在所述显示板中形成的所述发光元件中支持发蓝光的每个发光元件提供驱动电压;以及第三驱动电压产生电路,用于通过第三电源线为在所述显示板中形成的所述支持发光元件中发绿光的每个发光元件提供驱动电压;并且其中所述电流检测电路包括第一电流检测电路,用于检测在所述第一电源线中流过的电流;第二电流检测电路,用于检测在所述第二电源线中流过的电流;以及第三电流检测电路,用于检测在所述第三电源线中流过的电流。
31.根据权利要求24的显示板驱动器件,其中所述驱动电压产生电路包括第一驱动电压产生电路,当所述显示板分为多个区时,用于通过第一电源线为至少在第一屏幕区中支持图像显示的每个所述发光元件提供驱动电压;以及第二驱动电压产生电路,用于通过第二电源线为在不同于所述第一区的第二屏幕区中支持图像显示的每个所述发光元件提供驱动电压;并且其中所述电流检测电路包括至少第一电流检测电路,用于检测在所述第一电源线中流过的电流;以及第二电流检测电路,用于检测在所述第二电源线中流过的电流。
32.一种显示板驱动方法,用于根据输入图像信号驱动以矩阵形式排列的多个支持像素的发光元件形成的显示板,包括电流测量步骤,用于在使所述发光元件以每个所述发光元件的发光时间的定时依次独立发光的同时,通过得到在所述电源线中流过的电流值,来获得对应于每个像素的测量电流值;以及驱动电压调节步骤,用来以所述测量发光驱动电流值的其中之一等于预定参考电流值的方式调节所述驱动电压的电压值。
33.根据权利要求32的显示板驱动方法,还包括发光显示步骤,用来使所述发光元件只在所述输入图像信号的每个帧周期中的图像显示发光周期期间对应于所述输入图像信号的周期内发光;其中所述电流测量步骤还包括,在使所述发光元件以每个所述发光元件的发光时间的定时依次独立发光的同时,在除所述图像显示发光周期之外的周期中,通过得到流过所述电源线的电流值,而获得对应于每个像素的测量电流值的步骤。
34.根据权利要求32的显示板驱动方法,其中所述电流测量步骤还包括,在使所述发光元件以每个所述发光元件的发光时间的定时依次独立发光的同时,响应于亮度修正指令,通过得到流过所述电源线的电流值,而获得对应于每个像素的所述测量电流值的步骤。
35.根据权利要求32的显示板驱动方法,其中所述电流测量步骤包括不发光电流测量步骤,用于当所述显示板中形成的所有所述发光元件熄灭时,得到在所述电源线中流过的作为不发光电流值的电流值;发光电流测量步骤,在使所述发光元件以每个所述发光元件的发光时间的定时依次独立发光的同时,通过得到在所述电源线中流过的电流值,来获得发光驱动电流值;以及将所述发光驱动电流值减去所述不发光电流值,以得到作为所述测量电流值的相减结果的步骤。
36.根据权利要求32的显示板驱动方法,其中所述驱动电压调节步骤还包括在所述测量电流值中搜索最小电流值作为最小测量电流值的步骤;以及以所述最小测量电流值与所述参考电流值具有相同电流值的方式调节所述驱动电压值的步骤。
37.根据权利要求32的显示板驱动方法,其中所述驱动电压调节步骤包括,以所述测量电流值的平均值与所述参考电流值具有相同电流值的方式调节所述驱动电压的电压值的步骤。
38.根据权利要求32的显示板驱动方法,其中所述驱动电压调节步骤包括,以对应于所述测量电流值中的一个预定像素的测量电流值,或者对应于预定的多个像素的测量电流值的平均值与所述参考电流值具有相同电流值的方式调节所述驱动电压的电压值的步骤。
39.一种显示板驱动器件,用于根据输入图像信号驱动矩阵形式排列的多个支持像素的发光元件形成的显示板,包括驱动电压产生电路,用于通过电源线为所述多个发光元件的每一个提供驱动电压;电流测量部件,在使所述发光元件以每个发光元件的发光时间的定时依次独立发光的同时,通过得到在所述电源线中流过的电流值,来测量电流值,并且将分配到每个像素的测量电流值存储在存储器中;驱动电压调节部件,用来以所述测量发光驱动电流值的其中之一等于预定参考电流值的方式调节所述驱动电压值;亮度修正部件,用来按照存储在所述存储器中的根据所述像素数据的所述一个像素的所述测量电流值,通过修正由对应于所述输入图像信号的每个像素的像素数据表示的亮度级别,来获得亮度修正像素数据;以及发光驱动部件,用来使所述发光元件只在所述输入图像信号的每个帧周期中的图像显示发光周期期间对应于所述亮度修正像素数据的周期内发光。
40.根据权利要求39的显示板驱动器件,还包括发光显示部件,使所述发光元件只在所述输入图像信号的每个帧周期中的图像显示发光周期期间对应于所述输入图像信号的周期中发光;其中所述电流测量部件包括一个部件,在使所述发光元件以每个所述发光元件的发光时间的定时依次独立发光的同时,用于在除所述图像显示发光周期之外的周期中,通过得到流过所述电源线的电流值,来测量对应于每个像素的测量电流值,并将分配给所述每个像素的测量电流值存储在所述存储器中。
41.根据权利要求39的显示板驱动器件,其中所述电流测量部件包括一个部件,在使所述发光元件以每个所述发光元件的发光时间的定时依次独立发光的同时,响应于亮度修正指令,通过得到流过所述电源线的电流值,来测量对应于每个像素的电流值,并且将分配给所述每个像素的测量电流值存储在所述存储器中。
42.根据权利要求39的显示板驱动器件,其中所述电流测量部件包括扫描发光驱动部件,用于使所述发光元件依次独立发光;电流检测电路,用于检测在所述电源线中流过的电流值;以及一个部件,用于获得由所述电流检测部件以每个所述发光元件的发光时间的定时检测到的作为所述测量电流值的电流值,并且将分配给所述每个像素的测量电流值存储在所述存储器中。
43.根据权利要求42的显示板驱动器件,其中所述电流检测电路包括串联连接到所述电源线的电阻;输出作为所述电流值的在所述电阻两端产生的电压值的部件;以及当不测量时在所述电阻两端产生短路电路的开关。
44.根据权利要求39的显示板驱动器件,包括不发光电流测量部件,当所述显示板中形成的所有所述发光元件熄灭时,得到在所述电源线中流过的电流值,作为不发光电流值;发光驱动电流测量部件,在所述发光元件以每个所述发光元件的发光时间的定时依次独立发光的同时,通过得到在所述电源线中流过的电流值,来获得对应于每个像素的电流值,作为发光驱动电流值;以及一个部件,用于在所述存储器中存储将所述发光驱动电流值减去所述不发光电流值得到的结果,作为所述测量电流值。
45.根据权利要求39的显示板驱动器件,其中所述亮度修正部件包括亮度修正值计算部件,用于由分配给对应于所述像素数据的所述像素其中之一的所述测量电流值确定亮度修正值;以及乘法器,用于得到作为所述像素数据与所述亮度修正值的乘积的结果的所述亮度修正像素数据。
46.根据权利要求45的显示板驱动器件,其中所述亮度修正值计算部件得到随着所述测量电流值的增加而变小的所述亮度修正值。
47.根据权利要求45的显示板驱动器件,其中所述亮度修正值计算部件得到随着所述测量电流值的减小而变大的所述亮度修正值。
48.根据权利要求1的显示板驱动器件,包括一个部件,用于在存储于所述存储器中的所述测量电流值中检测对应于位于指定的电流值范围外的测量电流值的故障像素;其中所述发光驱动部件包括禁止对应于所述故障像素的所述发光元件的发光操作的部件。
49.根据权利要求39的显示板驱动器件,其中所述驱动电压调节部件包括一个部件,用于在存储于所述存储器中的所述测量电流值中搜索最小电流值作为最小测量电流值;以及一个部件,用于以所述最小测量电流值与所述参考电流值具有相同电流值的方式调节所述驱动电压的电压值。
50.根据权利要求39的显示板驱动器件,其中所述驱动电压调节部件包括,以存储在所述存储器中的每个所述测量电流值的平均值与所述参考电流值具有相同电流值的方式调节所述驱动电压的电压值的部件。
51.根据权利要求39的显示板驱动器件,其中所述驱动电压调节部件包括一个部件,用于以如下方式调节所述驱动电压的电压值,即,对应于存储在所述存储器中的所述测量电流值中的预定的所述像素的其中之一的测量电流值,或者对应于预定的多个像素的测量电流值的平均值与所述参考电流值具有相同电流值。
52.根据权利要求42的显示板驱动器件,其中所述驱动电压产生电路包括第一驱动电压产生电路,用于通过第一电源线为在所述显示板中形成的所述发光元件中支持发红光的每个发光元件提供驱动电压;第二驱动电压产生电路,用于通过第二电源线为在所述显示板中形成的所述发光元件中支持发蓝光的每个发光元件提供驱动电压;以及第三驱动电压产生电路,用于通过第三电源线为在所述显示板中形成的所述发光元件中支持发绿光的每个发光元件提供驱动电压;并且其中所述电流检测电路包括第一电流检测电路,用于检测在所述第一电源线中流过的电流;第二电流检测电路,用于检测在所述第二电源线中流过的电流;以及第三电流检测电路,用于检测在所述第三电源线中流过的电流。
53.根据权利要求42的显示板驱动器件,其中所述驱动电压产生电路包括第一驱动电压产生电路,用于通过第一电源线为在所述显示板的屏幕中的第一屏幕区中支持图像显示的每个所述发光元件提供驱动电压;以及第二驱动电压产生电路,用于通过第二电源线为在不同于所述第一区的第二屏幕区中支持图像显示的每个所述发光元件提供驱动电压;并且其中所述电流检测电路包括检测在所述第一电源线中流过的电流的第一电流检测电路;以及检测在所述第二电源线中流过的电流的第二电流检测电路。
54.一种显示板驱动方法,根据输入图像信号驱动矩阵形式排列的多个支持像素的发光元件形成的显示板,包括电流测量步骤,在使所述发光元件以每个发光元件的发光时间的定时依次独立发光的同时,通过得到在上述电源线中流过的电流值,来得到对应于每个像素的测量电流值;以及驱动电压调节步骤,用来以所述测量电流值的其中之一等于预定参考电流值的方式调节所述驱动电压的电压值;亮度修正步骤,用来根据存储在所述存储器中的所述像素数据的所述像素的其中一个的所述测量电流值,通过修正由对应于所述输入图像信号的每个像素的像素数据表示的亮度级别,来获得亮度修正像素数据;以及发光驱动步骤,用来使所述发光元件只在所述输入图像信号的每个帧周期中的图像显示发光周期期间对应于所述亮度修正像素数据的周期内发光。
55.根据权利要求54的显示板驱动方法,还包括发光显示步骤,用来使所述发光元件只在所述输入图像信号的每个帧周期中的图像显示发光周期期间对应于所述输入图像信号的周期内发光;并且其中所述电流测量步骤包括,在使所述发光元件以每个所述发光元件的发光时间的定时依次独立发光的同时,在除所述图像显示发光周期之外的周期中,通过得到流过所述电源线的电流值,来获得对应于每个像素的测量电流值的步骤。
56.根据权利要求54的显示板驱动方法,其中所述电流测量步骤还包括,在使所述发光元件以每个所述发光元件的发光时间的定时依次独立发光的同时,响应于亮度修正指令,通过得到流过所述电源线的电流值,获得对应于每个像素的所述测量电流值的步骤。
57.根据权利要求54的显示板驱动方法,其中所述电流测量步骤包括不发光电流测量步骤,当所述显示板中形成的所有所述发光元件熄灭时,得到在所述电源线中流过的电流值,作为不发光电流值;发光电流测量步骤,在使所述发光元件以每个所述发光元件的发光时间的定时依次独立发光的同时,通过得到在所述电源线中流过的电流值,而获得对应于每个像素的电流值,作为发光驱动电流值;以及在所述存储器中存储所述发光驱动电流值减去所述不发光电流值的结果,并将相减的结果作为所述测量电流值的步骤。
58.根据权利要求54的显示板驱动方法,其中所述亮度修正步骤包括亮度修正值计算步骤,由分配给对应于所述像素数据的所述像素的其中一个的所述测量电流值来计算亮度修正值;以及乘法器,得到所述像素数据与所述亮度修正值的乘积,作为所述亮度修正像素数据。
59.根据权利要求58的显示板驱动方法,其中所述亮度修正值修正步骤得到随着所述测量电流值的增加而变小的所述亮度修正值。
60.根据权利要求58的显示板驱动方法,其中所述亮度修正值修正步骤得到随着所述测量电流值的减小而变大的所述亮度修正值。
61.根据权利要求54的显示板驱动方法,还包括在存储在所述存储器中的所述测量电流值中检测对应于位于指定的电流值范围外的测量电流值的故障像素的步骤;其中所述发光驱动步骤包括禁止对应于所述故障像素的所述发光元件的发光操作的步骤。
62.根据权利要求54的显示板驱动方法,其中所述驱动电压调节步骤还包括以下步骤在所述测量电流值中搜索最小电流值作为最小测量电流值;以及以所述最小测量电流值与所述参考电流值具有相同电流值的方式调节所述驱动电压的电压值。
63.根据权利要求54的显示板驱动方法,其中所述驱动电压调节步骤包括,以所述测量电流值的平均值与所述参考电流值具有相同电流值的方式调节所述驱动电压的电压值的步骤。
64.根据权利要求54的显示板驱动方法,其中所述驱动电压调节步骤包括,以如下方式调节所述驱动电压的电压值的步骤,即,存储在所述存储器中的所述测量电流值中对应于一个预定像素的测量电流值,或者对应于预定的多个像素的测量电流值的平均值与所述参考电流值具有相同电流值。
65.一种具有多个排列在其中的像素部分的显示板的驱动装置,每个像素部分包括发光元件和开关元件的串联电路,该驱动装置用于根据输入图像信号来驱动显示板,包括驱动电压发生器,用于对所述多个像素部分的每一个的串联电路施加驱动电压;电流测量部件,用于测量从所述驱动电压发生器加到所述多个像素部分的每一个的串联电路的电流值;电流供应部件,用于在所述驱动电压发生器提供的所述电流中加入对应于所述显示板的泄漏电流的偏移电流分量,并且为所述多个像素部分的每一个的串联电路提供合成电流;存储器控制部件,通过分别导通所述多个像素部分的每一个的所述开关元件,在依次使所述多个像素部分的每一个的所述发光元件单独发光的同时,在存储器中存储由所述电流测量部件以对应于所述多个像素部分的每一个的发光定时而测得的测量电流值;以及亮度修正器,用于根据对应于存储在所述存储器中的一个测量电流值来修正所述多个像素部分的每一个的发光器件的发光亮度输出。
66.根据权利要求65的显示板驱动装置,其中当所有所述多个像素部分的发光器件处于不发光状态时,所述偏移电流分量具有被选择的值,用来控制从所述驱动电压发生器输出的电流。
67.根据权利要求65的显示板驱动装置,其中所述电流供应部件包括读出和判断部件,当所有所述多个像素部分的发光器件处于不发光状态时,该读出和判断部件读出从驱动电流产生部件输出的电流值作为测量泄漏电流,并且判断测量的泄漏电流是否在预定电流范围之内;还包括控制器,当所述读出判断部件判断所述测量泄漏电流在预定电流范围之外时,该控制器进行增加所述电流供应部件的输出电流的控制操作,并使所述读出和判断部件再次进行所述读出操作和判断操作,并且当所述读出判断部件判断所述测量泄漏电流在预定电流范围之外时,所述控制器保持所述电流供应部件的输出电流作为所述偏移电流分量的值。
68.根据权利要求67的显示板驱动装置,其中所述读出和判断部件是将所述测量泄漏电流值转换为数字数据,并进行数字处理以用于所述判断操作的电路。
69.根据权利要求67的显示板驱动装置,其中所述读出和判断部件是根据已经读出的所述测量泄漏电流值进行模拟处理从而用于所述判断操作的电路。
70.根据权利要求65的显示板驱动装置,其中所述亮度修正器包括亮度数据修正器,用于根据存储在所述存储器中所述多个像素部分的测量电流值中对应于所述每个像素的测量电流值,修正所述输入视频信号中的每个像素的由像素数据表示的亮度级别,从而得到亮度修正像素数据,以及发光驱动器,用于驱动所述发光元件在所述输入视频信号的每个帧周期中,在图像显示发光周期中发光,其中所述周期对应于所述亮度修正像素数据。
71.根据权利要求65的显示板驱动装置,其中所述亮度修正器具有驱动电压调节器,用于调节所述驱动电压的电压值,从而一个所述测量电流值等于预定参考电压。
72.根据权利要求65的显示板驱动装置,其中为所述发光元件的每种发光颜色提供驱动电压发生器、所述电流测量部件以及所述电流供应部件。
73.一种显示板驱动方法,用于具有以矩阵形式排列的多个像素部分的显示板,每个像素部分包括发光元件和开关元件的串联电路,用于根据输入图像信号驱动显示板,该方法包括对所述多个像素部分的每一个的串联电路施加驱动电压发生器的输出驱动电压;将求和得到的值加到所述多个像素部分的每一个的串联电路,所述求和得到的值是通过将在所述驱动电压发生器提供的所述电流中加入对应于所述显示板的泄漏电流的偏移电流分量得到的;测量从所述驱动电压发生器加到所述多个像素部分的每一个的串联电路的电流值;在存储器中存储测量电流值,通过分别导通所述多个像素部分的每一个的所述开关元件,在依次使所述多个像素部分的每一个的所述发光元件单独发光的同时,以对应于所述多个像素部分的每一个的发光定时来测量来自所述驱动电压发生器的输出电流值,从而得到所述测量电流值;以及根据存储在所述存储器中的一个相应的测量电流值,修正所述多个像素部分的每一个的发光器件的发光亮度输出。
全文摘要
一种提供高质量图像并且即使在长时间使用之后也没有不规则亮度的显示板驱动器件和驱动方法。当使含有像素的每个发光元件依次独立发光时,测量流过的发光驱动电流值,然后根据与对应于输入像素数据的像素相关的上述发光驱动电流值为每个输入像素数据修正亮度。根据另一个方面,以每个测量发光驱动电流值的其中之一等于给定参考电流值的方式调节驱动电压的电压值。根据又一个方面,当对应于显示板的泄漏电流的偏移电流分量加到从驱动电压产生电路输出的电流中时,测量电流值,并且将合成电流提供到每个像素部分。
文档编号G09G3/20GK1703731SQ0282840
公开日2005年11月30日 申请日期2002年12月20日 优先权日2001年12月28日
发明者石塚真一, 土田正美, 越智英夫, 坂本强 申请人:先锋株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1