图像显示装置的制作方法

文档序号:2640170阅读:108来源:国知局
专利名称:图像显示装置的制作方法
技术领域
本发明涉及图像显示装置,特别是涉及在象素中用发光元件的图像显示装置。
背景技术
作为在象素中使用发光元件的图像显示装置,已经报告了用电致发光(以下简称为EL)元件的EL显示器。进一步,在有源矩阵型的EL显示器中,将传输信号和电流的配线配置成矩阵状,在象素中,除了EL元件外,还内藏由作为有源元件的薄膜晶体管(以下简称为TFT)形成的象素电路。
作为控制EL元件的发光亮度的方法,具有由象素电路控制向EL元件供给的电压的方法和控制电流的方法,但是因为EL元件的发光亮度与流过EL元件的电流成正比地变化,所以在控制电流的方法中,具有能够稳定地控制发光亮度的优点。在专利文献1(日本特开2000-56847)中揭示了用电流控制EL元件的发光亮度的方法。
使用EL元件的已有的象素电路如图13所示。已有的象素电路由电阻101、p沟道TFT102、103、TFT开关104、电源线105和电容106构成,EL元件108和接地电极107与象素电路连接。当使TFT开关104接通,在输入端子109上加上电压信号时,在电阻101上流过电流,在p沟道TFT102的栅极上产生与漏极电流对应的栅极电压,将该栅极电压存储在电容106中。这时流过的电流i服从式1。其中,我们令电源线105的电压为Vdd,供给输入端子109的电压为Vin,TFT102的源极-漏极间的电压为Vds,电阻101的电阻值为R。
i=(Vdd-Vds-Vin)/R (式1)因为p沟道TFT102、103构成电流镜电路,所以在p沟道TFT103的源极-漏极间也产生电流i,在EL元件108中也流过电流i。其次,即便使TFT开关104断开,因为电容106存储TFT103的栅极电压,所以p沟道TFT103与输入端子109的电压无关,继续向EL元件108供给电流i。
所以,如图13所示的象素电路通过控制供给输入端子的电压Vin能够在EL元件108中流过按照式1的电流,进一步,电容106能够根据保持的栅极电压存储流过EL元件108的电流。因为流过EL元件108的电流与发光亮度成正比,所以能够根据供给输入端子的电压Vin控制EL元件108的发光亮度。通过2维地配列上述那样的象素电路和EL元件,在输入端子上顺次地写入信号电压Vin,能够显示图像。此外,作为与电流量成正比地改变发光亮度的EL元件,有机EL二极管是众所周知的。

发明内容
已有的图像显示装置配列多个图13所示的象素电路。但是,在多个象素电路之间,即便当在TFT102中流过相同的电流时,漏极-源极间的电压Vds的值也由于TFT自身的特性偏离而发生偏离。进一步,因为多个象素电路与1条电源线105连接,所以由于电源线105持有的配线电阻发生电压下降,在数个象素电路中电源线105的电压Vdd下降。在大画面的图像显示装置中由于电源线的长度变长引起的电压下降变得特别显著。
因为EL元件108的发光强度与按照式1的电流i成正比,所以EL元件108的发光强度直接受到Vds偏离和Vdd下降的影响。当受到这种影响时,在用图13的象素电路的图像显示装置中,在显示图像中观察到明暗的斑点,使图像质量降低。
因此,本发明的目的是提供不发生上述那样的图像质量降低的图像显示装置。
本发明的图像显示装置是由将多个象素配置成矩阵状的图像显示单元、用于接入上述象素和电压信号配置在上述图像显示单元内的多条信号线、和控制上述信号线的电压的驱动电路构成的,上述象素由发光元件和控制上述发光元件的发光强度的象素电路构成,其特征在于该图像显示装置具备选择地对上述信号线产生多个象素中的各个所具有的象素电路的内部电压的象素电路电压检测部件,驱动电路具备将信号线的电压和与显示图像对应的信号电压加起来再次将电压输出到信号线的电压加法电路。
上述象素电路电压检测部件由能够在多个上述象素中的各个象素具备的多个象素电路与信号线之间,得到断路状态、连接状态、用比上述连接状态高得多的电阻值连接的电阻连接状态这样3种状态的电路构成是合适的。
又,上述象素电路电压检测部件也可以由电阻和使与该电阻并联连接的电阻的两端短路/开路的开关晶体管构成。
又,上述象素电路具备向上述发光元件供给恒定电流的电流存储电路是合适的。
进一步,上述驱动电路也可以具有包含存储上述信号线的电压的取样电路和将上述存储的电压与图像信号的电压加起来的加法电路的构成,也可以由输出模拟电压的驱动器IC和连接在该驱动器IC与信号线之间的电容构成。
又,本发明的图像显示装置是由将多个象素配置成矩阵状的图像显示单元、用于接入上述象素和电压信号配置在上述图像显示单元内的多条信号线、和控制上述信号线的模拟电压的驱动电路构成的,上述象素由发光元件和控制上述发光元件的发光强度的象素电路构成,其特征在于与上述信号线平行地配置具有比上述信号线高的电阻值的多条电阻配线,在上述信号线与上述电阻配线之间设置多个第一开关部件,在上述电阻配线与上述象素电路之间设置多个第二开关部件。
这时,上述驱动电路具备将信号线的电压和与显示图像对应的信号电压加起来再次将电压输出到信号线的电压加法电路是合适的。
又,具备控制上述第一和第二开关部件使上述信号线与上述象素电路之间的电阻值至少分2个阶段地变化的控制电路是合适的。
进一步,上述信号线和电阻配线也可以是通过夹入绝缘膜重叠起来形成的。
又,上述电阻配线也可以用多晶硅薄膜形成。
进一步,构成上述象素电路的元件用薄膜晶体管构成是合适的,薄膜晶体管也可以只由n沟道或p沟道中的任何一方构成。
如果根据本发明,则通过减轻由于电源线的电压下降和TFT的门限电压偏离引起的发光元件的亮度偏离,能够实现具有良好图像质量的图像显示装置。


图1是表示与本发明有关的图像显示装置的第一实施方式例的电路构成图。
图2是表示图1所示的象素电路的详细构成的电路图。
图3是表示第一实施方式例的EL元件和接地电极的构造的图。
图4是表示第一实施方式例的驱动波形、开关的接通/断开工作、产生的电压和电流的定时图。
图5是表示与本发明有关的图像显示装置的第二实施方式例的电路构成图。
图6是表示第二实施方式例的EL元件、接地电极、信号线和电阻配线的构造的图。
图7是沿图6中所示的A-A′线的部分截面图。
图8是表示第二实施方式例的驱动波形、开关的接通/断开工作、产生的电压和电流的定时图。
图9是表示TFT开关的状态变化的图。
图10是在第一和第二实施方式例中使用的加法电路的电路图。
图11是在第一和第二实施方式例中使用的驱动器IC的替代电路的图。
图12是表示信号线电压对于驱动器输出电压的变化作出的响应的图。
图13是表示使用EL元件的象素电路的已有例的图。
标号说明1……玻璃基板,2……象素电路,3……信号线,4……扫描线总线,4a~4d……扫描线,5……扫描电路,6……驱动器IC,7……电缆,11~14……TFT开关,15……电流控制用TFT,16……电容,17……电阻,18……EL元件,18a……EL元件材料,19……接地电极,20……电源线,21……存储器(M),22……DA变换器(DAC),23……加法电路,24……电容,25~27……开关,30……阳极,41……玻璃基板,42……象素电路,43……信号线,44……扫描线总线,45……扫描电路,48……电阻配线,49……伪象素电路,51~54……TFT开关,55……电流控制用TFT,56……电容,58……EL元件,58a……EL元件材料,60……电源线,70……阳极,71~74……绝缘膜,81……运算放大器电路,82、83……电阻,86……驱动器IC,87、88……TFT开关,101……电阻,102、103……p沟道TFT,104……TFT开关,105……电源线,106……电容,107……接地电极,108……EL元件,109……输入端子具体实施方式

下面,我们一面参照附图一面详细说明与本发明有关的图像显示装置的实施方式。
<实施方式1>
图1是表示与本发明有关的图像显示装置的第一实施方式例的电路构成图。在玻璃基板1的表面上形成多个象素电路2、多条信号线3、多条扫描线总线4和扫描电路5。
将象素电路2配列成2列×2行的矩阵状,但是象素电路2的个数为2×2=4个的理由只是为了使说明容易,例如画面的图像分辨率,在彩色VGA(Video Graphics Array(视频图形阵列))的情形中,列数为640×3色=1920列,行数为480行。各条信号线3与象素电路2中的1列连接,各条扫描线总线4与象素电路2中的1行连接。扫描电路5与全部的扫描线总线4连接,在扫描线总线4上产生信号。又,驱动器IC6结合在玻璃基板1的表面上,与信号线3连接。驱动器IC6通过电缆7接受从外部输入的图像信号。
象素电路2由TFT开关11~14、电流控制用TFT15、电容16、电阻17、和EL元件18构成。电容16连接在电流控制用TFT15的栅极-源极之间,具有保持栅极-源极间的电压Vgs的功能。TFT开关13连接在电流控制用TFT15的漏极-栅极之间,控制是否将漏极的电压供给栅极和电容16。电流控制用TFT15的漏极与电源配线20连接,从电源配线20供给电流。电流控制用TFT15的源极与3个TFT开关11、12、14连接。TFT开关11连接在多条信号线3中的1条与电流控制用TFT15之间,具有当接通时使流过电流控制用TFT15的电流直接流过信号线3的作用。TFT开关12经过串联电阻17连接在信号线3中的1条与电流控制用TFT15之间,具有当接通时产生与加在电阻17的两端上的电压成正比的电流的作用。TFT开关14连接在EL元件18的阳极与电流控制用TFT15之间,具有当接通时将流过电流控制用TFT15的电流供给EL元件18的作用。EL元件18的阴极与接地电极19连接。
图中虽然省略了,但是TFT开关11~14与扫描线总线4连接,根据扫描线总线4的信号控制接通/断开的状态。多条扫描线总线4全部与扫描电路5连接,扫描电路5具有产生控制TFT开关11~14接通/断开的逻辑信号,供给扫描线总线4的功能。
驱动器IC6由存储器(M)21、DA变换器(DAC)22、加法电路23、电容24、和开关25~27构成。驱动器IC6与全部信号线3连接,对于每条信号线并列地构成相同的电路。全部多个存储器21与电缆7连接,具有分配并存储通过电缆7输入的数字图像信号的功能。DA变换器22与存储器21连接,具有将存储器21存储的数字图像信号变换成模拟电压的功能。电容24和开关25构成取样电路,具有当开关25接通时将信号线3的电压取样到电容24的作用。加法电路23将DA变换器22的输出电压“-Vdata”与电容24的电压Vc相加,产生相加电压Vo。开关26与加法电路23和信号线24连接,当开关26接通时将相加电压Vo输出到信号线3。TFT27是用于使信号线3的电压下降到比电源线20的电压充分低的电压的开关。此外,也可以用TFT形成构成驱动器IC6的存储器21、DA变换器22、加法电路23、电容24、和开关25~27中的全部或一部分的功能,形成在玻璃基板1上。
图2是象素电路2的更详细的电路图。在图1中由于担心在图面上变得很烦杂,而省略扫描线4与TFT开关11~14的连接关系和电源总线20,但是将这些描述在图2中。又,在图1中区别地描述TFT开关与电流控制用TFT,但是可以在构造上没有特别不同地形成。
在图2中,TFT开关11~14和电流控制用TFT15全部由n沟道TFT构成。扫描线4由4条扫描线4a~4d组成。扫描线4a与TFT开关13的栅极连接,扫描线4b与TFT开关11的栅极连接,扫描线4c与TFT开关12的栅极连接,扫描线4d与TFT开关14的栅极连接。
按照n沟道TFT的特性,当扫描线4a~4d的电压高时能够使TFT开关11~14接通,当扫描线4a~4d的电压低时能够使TFT开关11~14断开。电源线20围绕在象素电路的周边,共同地与全部象素电路2连接供给电流。也存在着当显示装置为彩色显示时,为了对每种红、蓝、绿的象素改变供给电压,分开电源线的情形。
在图1和图2中,将EL元件18和接地电极19包含在象素电路2内部进行描述,但是将EL元件18和接地电极19对于玻璃基板1形成如图3所示的立体配置。在象素电路2内设置与TFT开关14连接的阳极30,用蒸涂技术使EL元件材料18a在玻璃基板1形成薄膜。进一步在它的上面用蒸涂技术形成接地电极19的薄膜。由阳极30和接地电极19夹着的部分成为EL元件18。当显示装置为彩色时,EL元件材料18a用红、蓝、绿的多种颜色。通过在阳极30和接地电极19之间流过电流,EL元件18发光。当接地电极透明时,纸面的上方向成为显示面,当阳极透明时,纸面的下方向成为显示面。
图4表示用于驱动本实施方式例的图像显示装置的扫描线总线4的驱动波形、驱动器IC6的开关的接通/断开工作和在显示装置内各单元中产生的电压和电流。又,在图4中,说明在图1描述的多个象素电路2中,驱动左上的1个电路的情形。
L(4a)、L(4b)、L(4c)、L(4d)表示扫描电路5分别在扫描线4a~4d上产生的驱动波形。L(4a)~L(4d)的信号是2值的逻辑电压信号,当为高的电压信号(以下简略为H)时,TFT开关接通,当为低的电压信号(以下简略为L)时,TFT开关断开。S(25)、S(26)、S(27)分别表示驱动器IC6内的开关25~27的接通/断开状态。
分别地,Vsig表示信号线3的电压值,Vgs表示电流控制用TFT15的栅极-源极间的电压值,ids表示电流控制用TFT15的漏极-源极间的电流值,iLED表示流过发光元件18的电流值。
在全部图4中横轴是时间。从时刻t0到t5是将图像信号写入图1中左上的象素电路2的期间,从时刻t5到tEND是按照写入左上的象素电路2的图像信号、发光元件18发光的期间。
从时刻t0到t5,扫描线4d成为L,因为TFT开关14为断开状态,所以发光元件18熄灭。
在时刻t1,当使开关27在适当的期间成为接通状态时,信号线3的电压成为比电源线20的电压Vdd充分低的电压。在开关26断开后,也由信号线具有的寄生电容保持该电压。
在时刻t2,扫描线4a和4b成为H,使开关25接通。这时,开关TFT13和12成为接通状态。因为TFT13成为接通状态,所以将电源线20的电压Vdd供给电流控制用TFT15的栅极,因为TFT12成为接通状态,所以将信号线3的电压Vsig供给电流控制用TFT15的源极。因为信号线的电压Vsig成为比电源线的电压Vdd充分低的电压,所以栅极-源极间电压Vgs成为使电流控制用TFT15接通的充分的值,流动着电流控制用TFT15的漏极-源极间电流ids。不久,随着对信号线3的寄生电容进行充电,信号线3的电压Vsig上升,电流控制用TFT15的栅极-源极间电压Vgs成为电流控制用TFT15的门限电压Vth,电流ids成为0而稳定。
这时,信号线3的电压Vsig=Vdd-Vth,在驱动器IC6内,通过开关25,将电压Vdd-Vth加到电容24上。即,本实施方式例在时刻t2到t3之间,进行检测电流控制用TFT15的门限电压Vth并传送到驱动器IC6的工作。
在时刻t3,使扫描线4b成为L,扫描线4c成为H,开关25断开,开关26接通。这时,开关TFT11为断开状态,12为接通状态。因为在驱动器IC6内,开关25为断开状态,所以在电容24上保持电压Vdd-Vth。在加法电路23中,将电容24的电压Vdd-Vth和作为图像信号的DA变换器22的输出电压-Vdata加起来,加法电路23的输出电压Vo成为Vdd-Vth-Vdata。
因为开关26为接通状态,所以将加法电路23的输出电压Vo输出到信号线3,信号线的电压Vsig成为比时刻t3以前的电压低Vdata的Vdd-Vth-Vdata。即,本实施方式例在时刻t3到t4之间,进行将电压-Vdata加到时刻t3以前的信号线的电压Vsig上的工作。
另一方面,在象素电路2中,因为TFT11成为断开状态,TFT12成为接通状态,所以电流控制用TFT15的源极和信号线3经过电阻器17连接起来。因为信号线的电压Vsig为比时刻t3以前的电压低,所以在电流控制用TFT15中再次开始流过电流。当假定这时的栅极-源极间电压Vgs=Vth′时,因为源极的电压成为Vdd-Vth′,所以在电阻17的两端产生成为源极的电压和信号线3的电压Vsig之差的电压Vdata-(Vth′-Vth)。所以,根据欧姆定律,在电阻17中流过按照式2的电流值i的电流。电流控制用TFT的漏极-源极间电流ids也流着相同电流值i的电流。此外在式2中R是电阻的电阻值。
i=Vdata{1-(Vth′-Vth)/Vdata}/R (式2)在时刻t4,当使扫描线4a成为L时,TFT开关13断开,由电容16保持电流控制用TFT15的栅极-源极间电压Vgs=Vth′。此后,使扫描线4c成为L,使开关26断开。
在从时刻t5到时刻tEND之间,扫描线4d成为H,TFT开关14保持接通状态,通过电流控制用TFT15向EL元件18供给电流,EL元件18发光。(在该期间,驱动器IC6也可以将图像信号写入到其它象素)。这时,电流控制用TFT15的漏极-源极间电流ids由电流电容16保持的栅极-源极间电压Vgs=Vth′限制在电流值i。因此,流过EL元件18的电流iLED也被限制在电流值i。
因为EL元件18的发光强度与iLED的电流值成正比,所以EL元件18的发光强度也与电流值i成正比。从而,能够根据具有图像信号的信息的电压Vdata,控制EL元件18的发光强度。
因为通过在全部象素上重复进行以上工作,按照图像信号控制预定象素的发光强度,所以与本发明有关的图像显示装置的第一实施方式例能够显示图像。
可是,在上述的式2中,通过使电压Vdata的振幅比电压(Vth′-Vth)充分地大,能够用下面的式3近似式2。
i=Vdata/R (式3)这时,因为在式3的右边,只有电压Vdata和电阻17的电阻值R,所以这意味着通过用多晶硅形成的配线等形成电阻17,具有稳定的电阻值,能够使不受电源线20的电压Vdd和控制用TFT15的门限电压Vth影响的电流i与电压Vdata成正比。
所以,构成与本发明有关的图像显示装置的第一实施方式例的EL元件18的发光亮度不容易受到电源电压Vdd的变动和电流控制用TFT的Vth偏离的影响。
本实施方式例所示的图像显示装置能够应用于便携式电话、TV、PDA、网点PC和监视器,能够减轻由于便携式电话、TV、PDA、网点PC和监视器电源线的电压下降和TFT的门限电压偏离引起的发光元件的亮度偏离,能够实现具有良好图像质量的图像显示装置。
<实施方式2>
图5是表示与本发明有关的图像显示装置的第二实施方式的电路构成图。在玻璃基板41的表面上形成多个象素电路42、多个伪象素电路49、多条信号线43、多条电阻配线48、多条扫描线总线44和扫描电路45。将象素电路42配列成2列×2行的矩阵状,但是象素电路42的个数为2×3=6个的理由只是为了使说明容易,例如画面的图像分辨率,在彩色VGA的情形中,列数为640×3色=1920列,行数为480行。各条信号线43和电阻配线48与象素电路42和伪象素电路49中的1列连接,各条扫描线总线44与象素电路42和伪象素电路49中的1行连接。扫描电路45与全部的扫描线总线44连接,在扫描线总线44上产生信号。又,驱动器IC6与玻璃基板41的表面连接,与信号线43连接。驱动器IC6通过电缆7接受从外部输入的图像信号。
象素电路42由TFT开关51~54、电流控制用TFT55、电容56、和EL元件58构成。电容56连接在电流控制用TFT55的栅极-源极之间,具有保持栅极-源极间的电压Vgs的功能。TFT开关53连接在电流控制用TFT55的漏极-栅极之间,控制是否将漏极的电压供给栅极和电容56。电流控制用TFT55的漏极与电源配线60连接,从电源配线60供给电流。
电流控制用TFT55的源极与2个TFT开关52、54连接。TFT开关52连接在电阻配线48中的1条与电流控制用TFT55之间,具有当接通时使流过电流控制用TFT55的电流流过电阻配线48的作用。TFT开关54连接在EL元件58的阳极与电流控制用TFT55之间,具有当接通时将流过电流控制用TFT55的电流供给EL元件58的作用。EL元件58的阴极与接地电极59连接。
TFT开关51连接在与电阻配线48上的TFT开关52连接的连接节点和信号线43之间,具有当接通时使流过电阻配线48或TFT开关52的电流流过信号线43的作用。伪象素电路49只由TFT开关51构成,具有当TFT开关51接通时使流过电阻配线48的电流流过信号线43的作用。
在图5中区别地描述TFT开关与电流控制用TFT,但是可以在构造上没有特别不同地形成。又,TFT开关51~54和电流控制用TFT55全部由n沟道TFT构成。
又,图5中省略了,但是TFT开关51~54与扫描线总线44连接,根据扫描线总线44的信号控制接通/断开状态。多条扫描线总线44全部与扫描电路45连接,扫描电路45具有产生控制TFT开关51~54接通/断开的逻辑信号,供给扫描线总线44的功能。
驱动器IC6由存储器21、DA变换器22、加法电路23、电容24、和开关25~27构成。驱动器IC6与全部信号线43连接,对于每条信号线并列地构成相同的电路。全部多个存储器21与电缆7连接,具有分配并存储通过电缆7输入的数字图像信号的功能。DA变换器22与存储器21连接,具有将存储器21存储的数字图像信号变换成模拟电压的功能。电容24和开关25构成取样电路,具有当开关25接通时将信号线43的电压取样到电容24的作用。加法电路23将DA变换器22的输出电压“-Vdata”与电容24的电压Vc相加,产生相加电压Vo。开关26与加法电路23和信号线43连接,当开关26接通时将相加电压Vo输出到信号线43。TFT27是用于使信号线43的电压下降到比电源线60的电压充分低的电压的开关。此外,也可以用TFT形成构成驱动器IC6的存储器21、DA变换器22、加法电路23、电容24、和开关25~27中的全部或一部分的功能,并形成在玻璃基板41上。
在图5中,将EL元件58和接地电极59包含在象素电路42内部进行描述,但是将EL元件58和接地电极59对于玻璃基板形成如图6所示的立体配置。在象素电路42内,设置与TFT开关54连接的阳极70,用蒸涂技术使EL元件材料58a在玻璃基板41形成薄膜。进一步用蒸涂技术在其上形成接地电极59的薄膜。由阳极70和接地电极59夹着的部分成为EL元件58。当显示装置为彩色时,EL元件材料58a用红、蓝、绿的多种颜色。由于在阳极70和接地电极59之间流过电流,EL元件58发光。当接地电极透明时,纸面的上方向成为显示面,当阳极透明时,纸面的下方向成为显示面。
可是,信号线43和电阻配线48能够在玻璃基板41上重叠地形成。图6的A-A′间的截面图如图7所示。在玻璃基板41上形成绝缘膜74,在绝缘膜74上,形成通过在多晶硅薄膜中掺杂磷或硼中的任何一个形成的电阻配线48。在电阻配线48,夹着绝缘膜73地用铝等导电率高的金属形成信号线43。在信号线43上夹着绝缘膜72地形成阳极70和绝缘膜71。在其上面,形成EL元件材料58a,进一步在它上面蒸涂接地电极59。因为当重叠地形成电阻配线48和信号线43时,能够更大地确保在阳极70上蒸涂EL元件材料58a产生的EL元件58占据的面积,所以对于要使图像显示装置更明亮地发光的情形是有利的。
图8表示用于驱动本实施方式例的图像显示装置的TFT开关51~54的接通/断开工作、驱动器IC6的开关的接通/断开工作和在显示装置内各单元中产生的电压和电流。又,在图8中,说明在图5描述的多个象素电路42中,驱动左列最上段的1个电路的情形。9-ABC项目表示TFT开关51~54的状态,a~c情形的各状态分别如图9的(a)~(c)所示。图9是抽出图5的左列最上段的象素电路附近的图。x情形表示全部TFT开关成为断开的状态(图9中未画出)。图8的S(25)、S(26)、S(27)分别表示驱动器IC6内的开关25~27的接通/断开状态。分别地,Vsig表示信号线43的电压值,Vgs表示电流控制用TFT55的栅极-源极间的电压值,ids表示电流控制用TFT55的漏极-源极间的电流值,iLED表示流过发光元件58的电流值。
在全部图8中横轴是时间。从时刻t0到t5是将图像信号写入图5中左列最上段的象素电路42的期间,从时刻t5到tEND是按照写入左列最上段的象素电路42的图像信号,发光元件18发光的期间。
从时刻t0到t5之间,全部TFT开关为断开状态,所以发光元件58熄灭。
在时刻t1,当使开关27在适当的期间成为接通状态时,信号线43的电压Vsig成为比电源线60的电压Vdd充分低的电压。在使开关26断开后,也由信号线43具有的寄生电容保持该电压。
在时刻t2,如图9(a)所示,使成为驱动目的的象素电路42内的TFT开关51~53接通。因为TFT53为接通状态,所以向电流控制用TFT55的栅极供给电源线60的电压Vdd,因为TFT52为接通状态,所以向电流控制用TFT55的源极供给信号线的电压Vsig。因为信号线的电压Vsig是比电源线的电压Vdd充分低的电压,所以栅极-源极间的电压Vgs成为对于使电流控制用TFT55接通的充分的值,电流控制用TFT55的漏极-源极间的电流ids沿图中的虚线箭头流动。
不久,随着对信号线43的寄生电容进行充电,信号线43的电压Vsig上升,电流控制用TFT55的栅极-源极间电压Vgs成为电流控制用TFT55的门限电压Vth,电流ids成为0而稳定。这时,信号线的电压Vsig=Vdd-Vth,在驱动器IC6内,通过开关25,将电压Vdd-Vth加到电容24上。即,本实施方式例在时刻t2到t3之间,进行检测电流控制用TFT55的门限电压Vth并传送到驱动器IC6的工作。
在时刻t3,如图9(b)所示,使成为驱动目的的象素电路42的1个上段和1个下段的象素电路42(或伪象素电路49)内的TFT开关51接通。因为在驱动器IC6内,开关25为断开状态,所以电容24保持电压Vdd-Vth。在加法电路23中,将电容24的电压Vdd-Vth和作为图像信号的DA变换器22的电压-Vdata加起来,加法电路23的输出电压Vo成为Vdd-Vth-Vdata。因为开关26为接通状态,所以将加法电路23的输出电压Vo输出到信号线43,信号线的电压Vsig成为比时刻t3以前的电压低Vdata的Vdd-Vth-Vdata。即,在本实施方式例中在时刻t3到t4之间,进行将电压-Vdata加到时刻t3以前的信号线的电压Vsig上的工作。
因为信号线的电压Vsig比时刻t3以前的电压低,所以在电流控制用TFT55中再次开始流过电流。这时的电流路径按照图中的虚线箭头流动。当假定在电阻配线48上,象素电路(或伪象素电路)的纵方向间隔的长度的电阻为2R时,电流路径上的信号线43和电流控制用TFT55之间的电阻成为2R的并联电阻,电阻值为R。又,当假定这时的电流控制用TFT的栅极-源极间电压Vgs=Vth′时,因为源极的电压成为Vdd-Vth′,所以在电阻配线48上,产生成为源极的电压和信号线43的电压Vsig之差的电压Vdata-(Vth′-Vth)。所以,根据欧姆定律,在电阻配线48中流过按照式4的电流值i的电流。电流控制用TFT的漏极-源极间电流ids也流着相同电流值i的电流。
i=Vdata{1-(Vth′-Vth)/Vdata}/R (式4)在时刻t4,当使全部TFT开关断开时,由电容56保持电流控制用TFT55的栅极-源极间电压Vgs=Vth′。
在从时刻t5到时刻tEND之间,如图9(a)所示,使成为驱动目的的象素电路42内的TFT开关54成为接通状态。通过电流控制用TFT55向EL元件58供给电流,EL元件58发光。(在该期间,驱动器IC6也可以将图像信号写入到其它象素。)。这时,电流控制用TFT55的漏极-源极间电流ids由电流电容56保持的栅极-源极间电压Vgs=Vth′限制在电流值i上。因此,流过EL元件58的电流iLED也被限制在电流值i上。
因为EL元件58的发光强度与iLED的电流值成正比,所以EL元件58的发光亮度也与电流值i成正比。从而,能够根据具有图像信号的信息的电压Vdata,控制EL元件58的发光亮度。
因为通过在全部象素上重复进行以上工作,能够按照图像信号控制预定象素的发光亮度,所以本实施方式例的图像显示装置能够显示图像。
可是,在上述的式4中,通过使电压Vdata的振幅比(Vth′-Vth)充分地大,能够用下面的式5近似式4。
i=Vdata/R (式5)这时,因为在式5的右边,只有电压Vdata和从电阻配线48的电阻值求得的电阻值R,所以这意味着通过使电阻配线48持有稳定的电阻值,能够使不受电源线60的电压Vdd和控制用TFT55的门限电压Vth影响的电流i与电压Vdata成正比。所以,构成与本实施方式例的图像显示装置的EL元件58的发光亮度不容易受到电源电压Vdd的变动和电流控制用TFT的Vth偏离的影响。
本实施方式例所示的图像显示装置能够应用于便携式电话、TV、PDA、网点PC和监视器,能够减轻由于便携式电话、TV、PDA、网点PC和监视器电源线的电压下降和TFT的门限电压偏离引起的发光元件的亮度偏离,能够实现具有良好图像质量的图像显示装置。
<实施方式3>
在本实施方式例中,我们说明第一和第二实施方式例的变形例、加法电路的构成例等。
在上述第一和第二实施方式例中,象素电路的TFT全部用n沟道TFT,但是通过使各节点电压特性、电流方向、EL元件的阳极、阴极相反,能够用全部p沟道TFT构成象素电路的TFT,这是显而易见的。
又在图10中,表示在上述第一和第二实施方式例中使用的加法电路23的电路构成。加法电路23由运算放大器电路81、具有电阻值r的电阻82、83构成。加法电路23产生下列式6所示的电压作为输出电压Vo。
Vo=Vc-(r/r)Vdata=Vc-Vdata (式6)所以图10所示的加法电路能够将-Vdata的值与电容24的电压Vc加起来。
图11表示上述第一和第二实施方式例中使用的驱动器IC6的替代电路。代替驱动器IC6,能够使用驱动器电路6a。驱动器电路6a由以有的液晶显示器等中使用的模拟电压输出驱动器IC86和TFT开关87、88、电容89构成。TFT开关88是用于使信号线3的电压下降到低电压的开关,起着与图1和图5开关27相同的作用。TFT开关87连接在信号线3与电容89之间,当将驱动器IC86的输出电压加到信号线3的电压上时使TFT开关87接通。
图12是表示信号线电压Vsig对于图11中的驱动器输出电压Vd的变化作出的响应的图。当在使TFT开关87接通的状态中,驱动器IC86的输出电压Vd从0变化到作为图像信号的-Vdata时,因为电容的2个端子间的电压差不能够急剧地变化,所以信号线的电压Vsig也减少电压Vdata。但是,电容89使用比信号线3的寄生电容充分大的电容量。这里,当假定信号线原来的电压为Vdd-Vth时,由于上述工作,在信号线上产生新的电压Vdd-Vth-Vdata。即,这意味着图11的电路能够将-Vdata的电压加到信号线3的电压上。
权利要求
1.一种图像显示装置,包括将多个象素配置成矩阵状的图像显示单元;用于接入上述象素和电压信号配置在上述图像显示单元内的多条信号线;和控制上述信号线的电压的驱动电路,上述象素包括发光元件和控制上述发光元件的发光强度的象素电路,其特征在于该图像显示装置具备选择地对上述信号线产生多个上述象素分别具有的上述象素电路的内部电压的象素电路电压检测部件,上述驱动电路具备将上述信号线的电压和与显示图像对应的信号电压加起来再次将电压输出到上述信号线的电压加法电路。
2.权利要求1所述的图像显示装置,其特征在于上述象素电路电压检测部件包括由能够在多个上述象素分别具备的多个上述象素电路与上述信号线之间,得到断路状态、连接状态、用比上述连接状态高得多的电阻值连接的电阻连接状态这样3种状态的电路。
3.权利要求1所述的图像显示装置,其特征在于上述象素电路电压检测部件包括电阻和与该电阻并联连接的开关晶体管。
4.权利要求1所述的图像显示装置,其特征在于上述象素电路具备向上述发光元件供给恒定电流的电流存储电路。
5.权利要求1所述的图像显示装置,其特征在于上述驱动电路包含存储上述信号线的电压的取样电路和将上述存储的电压与图像信号的电压加起来的加法电路。
6.权利要求1所述的图像显示装置,其特征在于上述驱动电路包括输出模拟电压的驱动器IC和连接在上述驱动器IC与上述信号线之间的电容。
7.权利要求1所述的图像显示装置,其特征在于上述发光元件是发光二极管元件。
8.权利要求1所述的图像显示装置,其特征在于上述象素电路和上述象素电路电压检测部件是用薄膜晶体管构成的。
9.权利要求8所述的图像显示装置,其特征在于上述象素电路由n沟道或p沟道薄膜晶体管中某一方的沟道薄膜晶体管构成。
10.一种图像显示装置,包括将多个象素配置成矩阵状的图像显示单元;用于接入上述象素和电压信号配置在上述图像显示单元内的多条信号线;和控制上述信号线的模拟电压的驱动电路,上述象素包括发光元件和控制上述发光元件的发光强度的象素电路,其特征在于与上述信号线平行地配置具有比上述信号线高的电阻值的多条电阻配线,在上述信号线与上述电阻配线之间设置多个第一开关部件,在上述电阻配线与上述象素电路之间设置多个第二开关部件。
11.权利要求10所述的图像显示装置,其特征在于上述驱动电路具备将上述信号线的电压和与显示图像对应的信号电压加起来再次将电压输出到信号线的电压加法电路。
12.权利要求10所述的图像显示装置,其特征在于它备有控制上述第一和第二开关部件使上述信号线与上述象素电路之间的电阻值至少分两个阶段地变化的控制电路。
13.权利要求10所述的图像显示装置,其特征在于上述信号线和上述电阻配线是通过夹入绝缘膜重叠起来进行设置的。
14.权利要求10所述的图像显示装置,其特征在于上述电阻配线是多晶硅薄膜电阻。
15.权利要求10所述的图像显示装置,其特征在于上述发光元件发光二极管元件。
16.权利要求10所述的图像显示装置,其特征在于上述象素电路、上述第一开关部件和第二开关部件是用薄膜晶体管构成的。
17.权利要求16所述的图像显示装置,其特征在于上述象素电路由n沟道或p沟道薄膜晶体管中某一方的沟道薄膜晶体管构成。
全文摘要
本发明提供能够减轻由于电源线的电压下降和TFT的门限电压偏离引起的发光元件的亮度偏离,具有良好图像质量的图像显示装置。它备有选择地对信号线(3)产生多个象素中的各个象素具有的象素电路(2)的内部电压的象素电路电压检测部件,驱动电路(6)备有将信号线的电压和与显示图像对应的信号电压加起来再次将电压输出到信号线的电压加法电路。
文档编号G09G3/10GK1612192SQ2004100058
公开日2005年5月4日 申请日期2004年2月20日 优先权日2003年10月28日
发明者景山宽, 秋元肇 申请人:株式会社日立制作所, 株式会社日立显示器
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1