液晶显示器的制作方法

文档序号:2612778阅读:134来源:国知局
专利名称:液晶显示器的制作方法
技术领域
本发明涉及一种液晶显示器。
背景技术
液晶显示器(LCD)是最广泛使用的平板显示器之一。LCD包括一对包含例如像素电极和公共电极的场产生电极的面板,和插入在面板之间的液晶(LC)层。LCD通过施加数据电压到像素电极和施加公共电压到公共电极而在LC层中产生电场。通过控制确定LC分子取向和入射光的偏振和透射率的电场的强度而获得期望的图像。
在垂直配向(VA)模式LCD中,在无电场时LC分子的长轴垂直于面板排列。这种类型的LCD重要性在于其高对比度和宽的参考视角,即对比度为1∶10或灰度的亮度次序开始被反转时的视角。
VA模式LCD的宽视角可以通过在场产生电极中的切口部分和在场产生电极的上面或下面的突起而实现,它们引起倾斜角在几个方向分布。然而,切口部分使横向可视度与前面可视度相比减小了。为了提高横向可视度,像素被分为彼此电容耦合的两个子像素。两个子像素之一被直接提供电压,而另一个通过电容耦合进行压降,使得两个子像素具有不同电压,导致不同透射率。
然而,常规方法不能精确控制两个子像素的透射率。特别是,由于透射率随着光的颜色而变化,因此希望为不同颜色提供不同的电压。此外,增加导体以提供电容耦合而减小了开口率并且由于电容耦合所引起的压降减小了透射率。

发明内容
根据本发明实施例的液晶显示器包括多个像素,设置成矩阵,每个像素包括第一子像素和第二子像素;多条第一栅线,连接到所述第一子像素并传送第一栅信号;多条第二栅线,连接到第二子像素并传送第二栅信号;和多个数据线,交叉所述第一和第二栅线,连接到第一和第二子像素,并传送数据电压,其中每个像素的第一和第二子像素的电压具有相反的极性并从单一图像信息获得,且数据线携带的数据电压被进行N×1(N=1,2,...)点反演,N:M×1(M=1,2,...)点反演,或者N行反演。
第一子像素可以包括连接到第一栅线之一和数据线之一的第一开关元件,以及耦合到所述第一开关元件的第一子像素电极,且第二子像素可以包括连接到第二栅线之一和数据线之一的第二开关元件,以及耦合到所述第二开关元件的第二子像素电极。
每个第一和第二子像素电极可以具有内边缘和外边缘,第一和第二子像素电极的内边缘至少弯折一次并彼此面对,且第一和第二子像素电极的外边缘可以基本形成矩形。
第一子像素电极可以具有至少弯折一次的成对的弯折边缘,且第二子像素电极可以具有至少弯折一次的成对的弯折边缘。
根据本发明另一实施例的液晶显示器包括多个像素,设置成矩阵,每个所述像素包括第一子像素和第二子像素;多条第一栅线,在第一方向延伸,连接到第一子像素并传送第一栅信号;多条第二栅线,在第一方向延伸,连接到第二子像素并传送第二栅信号;多个数据线,交叉第一和第二栅线,连接到第一和第二子像素,并传送数据电压,其中每个像素的第一和第二子像素的电压具有相反的极性并从单一图像信息获得,第一子像素包括连接到第一栅线之一和数据线之一的第一开关元件,以及耦合到所述第一开关元件并具有彼此面对的成对弯折边缘的第一子像素电极,且所述第二子像素包括连接到第二栅线之一和数据线之一的第二开关元件,以及耦合到第二开关元件并具有彼此面对的成对弯折边缘的第二子像素电极。
每个像素的第一子像素电极和第二子像素电极在第一方向相邻。
由数据线携带的数据电压被进行点反演、列反演或行反演。
第一子像素电极和第二子像素电极的面积彼此不同。具体地,第一子像素电极在第一方向的长度不同于第二子像素电极在第一方向的长度。第二子像素电极的第一方向长度大于第一子像素电极的第一方向长度且小于第一子像素电极第一方向长度的三倍。第一子像素电极提供有大于提供到第二子像素电极的数据电压的数据电压。
该液晶显示器还可以包括面对第一和第二子像素电极的公共电极。
该液晶显示器还可以包括设置于公共电极的倾斜方向确定元件。该倾斜方向确定元件可以包括切口部分,其穿过第一和第二子像素电极并具有基本平行于第一和第二子像素电极的弯折边缘的弯折部分。
该液晶显示器还可以包括公共电极,面对第一和第二子像素电极并具有第一切口部分;和绝缘层,设置在数据线和第一及第二栅线上,其中第一和第二子像素电极具有第二切口部分。
第二子像素电极的面积可以大于所述第一子像素电极的面积并小于第一子像素电极面积的三倍。第一子像素电极可以提供有大于提供到所述第二子像素电极的数据电压的数据电压。
根据本发明实施例的驱动液晶显示器的方法包括施加第一数据电压到液晶显示器的数据线;施加栅极导通电压到第一栅线以传送第一数据电压到液晶显示器的第一像素的第一子像素;施加第二数据电压到数据线,第二数据电压具有与第一数据电压相反的极性;和施加栅极导通电压到液晶显示器的第二栅线以传送第一像素的第二子像素的第二数据电压,其中第一数据电压和第二数据电压由单一图像数据产生并具有彼此不同的大小,且第一和第二数据电压被进行N×1(N=1,2,...)点反演,N:M×1(M=1,2,...)点反演,或者N行反演。
该方法还可以包括施加栅极导通电压到液晶显示器的第三栅线以传送第二数据电压到第二像素的第一子像素;施加与第二数据电压相同极性的第三数据电压到所述栅线;和施加栅极导通电压到第三栅线以传送第三数据电压到第二像素的第一子像素。
栅极导通电压施加到第二栅线以传送第二数据电压可以保持长于栅极导通电压施加到第一栅线以传送第一数据电压。


通过与附图一起阅读随后的描述,本发明的上述和其他目的和优点将变得更为明显,在附图中图1A和1B是根据本发明的实施例的LCD的方框图;图2是根据本发明实施例的LCD的像素的等效电路图;图3是根据本发明实施例的LCD的像素的示意性等效电路图;图4是示出在根据本发明实施例的LCD中像素电极和公共电极的排列以及像素电极的电压极性的分布图;图5是示出在根据本发明实施例的LCD中像素电极和公共电极的设置以及像素电极的电压极性的分布图;图6和7示出用于本发明实施例的LCD的数据电压和栅信号的波形图;图8示出在根据本发明的另一实施例的LCD中的像素电极、公共电极中的切口部分以及数据电压的极性;图9A和9B是根据本发明另一实施例的像素电极、公共电极的切口部分的分布图;图10是根据本发明的实施例的LC面板组件的分布图;图11是图10所示的LC面板组件沿线XI-XI所取的剖面图;图12是根据本发明另一实施例的LC面板组件的分布图;图13是图12所示的LC面板组件沿线XIII-XIII所取的剖面图;图14是根据本发明实施例的LC面板组件的下面板的分布图;图15是根据本发明实施例的LC面板组件的上面板的分布图;图16是包括图14所示的下面板和图15所述的上面板的LC面板组件的分布图;图17A和17B是图16所示的LC面板组件分别沿线XVIIA-XVIIA和XVIIB-XVIIB’-XVIIB”所取的剖面图。
具体实施例方式
在附图中,为了清楚而放大了层、膜和区域的厚度。相同的标号通篇表示相同元件。将理解的是,当例如层、膜、区域或基板的元件被称为在另一元件“上”时,它可以直接在另一元件上,或者存在居间元件。相反,当元件被称为“直接在”另一元件上时,不存在居间元件。
图1A和1B是根据本发明的实施例的LCD的方框图,图2是根据本发明实施例的LCD的等效电路图,图3是根据本发明实施例的LCD的像素的示意性等效电路图。
参考图1A和1B,根据实施例的每个LCD包括LC面板组件300、耦合到面板组件300的栅极驱动器400和数据驱动器500、耦合到数据驱动器500的灰度电压产生器800、和控制上述元件的信号控制器600。
参考图1A和1B,面板组件300包括多条栅信号线G11-Gn2和数据信号线D1-Dm以及与它们连接并基本设置为矩阵的多个像素PX。在图3所示的结构图中,面板组件300包括下面板100、面对下面板100的上面板200、和插入它们之间的IC层3。
设置在图3所示的下面板100上的信号线包括传送栅信号(也称为“扫描信号”)的多对栅线G11-Gn2和传送数据信号的多条数据线D1-Dm。栅线G11-Gn2基本在行方向延伸并基本彼此平行,而数据线D1-Dm基本在列方向延伸并基本彼此平行。
信号线还可以包括基本平行于栅线G11-Gn2延伸并提供有例如公共电压Vcom的预定电压的多条存储电极线(未示出)。
图2示出示范性信号线,其包括成对的第i(i=1,2,...n)条上栅线Gi1和第i条下栅线Gi2、第j(j=1,2,...m)条数据线Dj和存储电极线SL。存储电极线SL设置在上栅线Gi1和下栅线Gi2之间。
参考图2,每个像素PX包括成对的子像素PX1和PX2,且每个子像素PX1/PX2包括开关元件Q1/Q2、液晶(LC)电容器Clc1/Clc2,和存储电容器Cst1/Cst2。如果不需要,那么存储电容器Cst1或Cst2可以省略。
例如薄膜晶体管(TFT)的开关元件Q1/Q2设置在图3所示的下面板100上。开关元件Q1/Q2具有三个端子连接到上/下栅线Gi1/Gi2的控制端子;连接到数据线Dj的输入端子;和耦合到LC电容器Clc1/Clc2及存储电容器Cst1/Cst2的输出端子。应该注意两个子像素PX1和PX2的开关元件Q1和Q2连接到不同的栅线Gi1和Gi2。
参考图3,LC电容器Clc1/Clc2包括设置在下面板100上的子像素电极PE1/PE2和设置在上面板200上的公共电极CE作为两个端子。LC层3设置在电极PE1/PE2之间且CE充当LC电容器Clc1/Clc2的电介质。成对的子像素PE1和PE2彼此分离并形成像素电极PE。公共电极CE提供有公共电压Vcom并覆盖上面板200的整个表面。LC层3具有负介电各向异性,且LC层3中的LC分子可以被定向从而在无电场时LC分子的长轴垂直于面板100和200的表面。
再次参考图2,存储电容器Cst1/Cst2是LC电容器Clc1/Clc2的辅助电容器。存储电容器Cst1/Cst2通过子像素电极PE1/PE2经由绝缘体(未示出)与存储电极线SV的交叠而形成。作为选择,存储电容器Cst1/Cst2可以通过子像素电极PE1/PE2与称为在先栅线的相邻栅线的交叠而形成,该栅线经由绝缘体(未示出)交叠子像素电极PE1/PE2。
为了彩色显示,每个像素PX惟一地表示原色之一(即空间划分),或者每个像素PX依次轮流代表原色(即时间划分),使得原色的空间或时间之和被识别为希望的颜色。一组原色的示例包括红、绿和蓝色。图3示出了空间划分的示例,其中每个像素PX包括在面对像素电极PE的上面板200的区域中的代表原色之一的滤色器CF。作为选择,滤色器CF可以设置在下面板100上的像素电极PE之上或之下。
成对的偏振器(未示出)贴附到面板100和200的外表面。两个偏振器的偏振轴可以交叉,使得交叉的偏振器阻隔入射到LC层3上的光。可以省略一个偏振器。
再次参考图1,栅极驱动器400连接到面板组件300的栅线G11-Gn2并合成来自外部装置的栅极导通(gate-on)信号Von和栅极截止(gate-off)信号Voff,以产生施加到栅线G11-Gn2的栅信号。图1A和1B所示的每个栅极驱动器400包括分别连接到上、下栅线G11-Gn1和G12-Gn2的成对的驱动电路401和402。
灰度电压产生器800产生与像素PX的透射率相关的成对的灰度电压组。该对灰度电压组被分别提供到各个子像素PX1和PX2,每组灰度电压包括相对于公共电压Vcom具有正极性的正极性灰度电压和相对于公共电压Vcom具有负极性的负极性灰度电压。然而,灰度电压产生器800可以仅产生一组灰度电压,以提供到子像素PX1和PX2。此外,灰度电压产生器800可以不产生所有灰度电压而是仅产生给定数目的灰度电压(称为参考灰度电压)。
数据驱动器500连接到面板300的数据线D1-Dm并提供数据电压到数据线D1-Dm,该数据电压选自灰度电压产生器800所提供的灰度电压。然而,当灰度电压产生器800产生参考灰度电压时,通过划分参考灰度电压并从产生的灰度电压选择数据电压,数据驱动器500可以产生用于所有灰度的灰度电压。
信号控制器控制栅极驱动器400和数据驱动器等。
每个驱动和处理单元400、500、600、和800可以包括至少一个以带载封装(TCP)型安装在LC面板组件300上或柔性印刷电路板(FPC)膜上的集成电路(IC)芯片,它们贴附于面板组件300上。作为选择,驱动和处理单元400、500、600、和800中的至少一个例如图1所示的栅极驱动器400可以与信号线G11-Gn2、D1-Dm和SL以及开关元件Q1和Q2一起集成进面板组件300中。作为选择,所有驱动和处理单元400、500、600、和800可以集成进单个IC芯片,但驱动和处理单元400、500、600、和800中至少一个或者在该驱动和处理单元400、500、600、和800的至少一个中的至少一个电路元件可以设置在单个IC芯片之外。
现在,将详细描述上述LCD的操作。
信号控制器600提供有输入图像信号R、G和B以及来自外部图像控制器(未示出)的控制其显示的输入控制信号。输入图像信号R、G和B包含每个像素PX的亮度信息,且该亮度具有例如1024(=210)、256(=28)或64(=26)的预定数目的灰度。输入控制信号包括垂直同步信号Vsync、水平同步信号Hsync、主时钟MCLK和数据使能信号DE等。
信号控制器600传送栅控制信号CONT1到栅极驱动器400,并传送具有预定数目的值(或灰度)的数字图像信号DAT和数据控制信号CONT2到数据驱动器500。
在图7所示的LCD中,信号控制器600接收输入图像信号R、G和B,并把用于每个像素PX的输入图像信号R、G和B转换为用于两个子像素PXa和PXb的成对的输出图像信号DAT以提供到数据驱动器500。另外,灰度电压产生器800产生用于各个子像素PXa和PXb的成对的灰度电压组。两组灰度电压通过灰度电压产生器800交替提供到数据驱动器500或者由数据驱动器500交替选择,使得两个子像素PXa和PXb提供有不同的电压。
此时,数字输出图像信号的值和每组中的灰度电压值优选确定来使得两个子像素PXa和PXb的伽马曲线的合成接近前视的参考伽马曲线。例如,前视的合成伽马曲线与前视的最适合的参考伽马曲线相一致,且侧视的合成伽马曲线最接近前视的参考伽马曲线。
栅控制信号CONT1包括用于指导的扫描开始信号STV以开始扫描,和至少用于控制栅极导通电压Von的输出时间的时钟信号。栅控制信号CONT1还可以包括用于限定栅极导通电压Von的持续时间的输出使能信号OE。
数据控制信号CONT2包括用于表明一组子像素PX1或PX2的数据传送开始的水平同步开始信号STH、用于指导以提供数据电压到面板组件300的负载信号LOAD、和数据时钟信号HCLK。数据控制信号CONT2还可以包括用于反转数据电压(相对于公共电压Vcom)的极性的反转信号RVS。
响应于来自信号控制器600的数据控制信号CONT2,数据驱动器500从信号控制器600接收用于子像素PX2或PX2的组的图像信号DAT的数据包。数据驱动器500将图像信号DAT转换为从灰度电压产生器800提供的灰度电压中选择的模拟数据电压,并将该模拟数据电压提供到数据线D1-Dm。
栅极驱动器400响应于栅控制信号CONT1提供栅极导通电压Von到栅线G11-Gn2,因此开启相应的开关元件Q1或Q2,该开关元件Q1或Q2通过激活的开关元件Q1或Q2在数据线D1-Dm上提供电压到子像素PX1或PX2。
形成每个像素PX的两个子像素PX1和PX2通过同样的数据线在不同时刻提供有它们各自的数据电压。为此,灰度电压产生器800产生用于各个子像素PX1和PX2的成对的灰度电压组。两组灰度电压通过灰度电压产生器800交替提供到数据驱动器600或由数据驱动器500交替选择。作为选择,信号控制器600可以将用于每个像素PX的每个输入图像信号R、G和B转换为用于其各个子像素PX1和PX2的成对的输出图像信号DAT,并可以将该输出图像信号DAT提供到数据驱动器500。
当在两个LC电容器Clc1/Clc2的两个端子之间产生电压差时,在LC层3中产生基本垂直于面板100和200表面的初级(primary)电场,且像素电极PE和公共电极CE统称为场产生电极。LC层3中的LC分子响应于电场倾向于改变它们的取向,使得它们的长轴可以垂至于场方向。分子取向确定了穿过LC层3的光的偏振。偏振器将光偏振转变为光透射率,使得像素PX显示由图像信号DAT代表的亮度。
LC分子的倾斜角取决于电场的强度。当LC电容器Clc1和Clc2的电压彼此不同时,子像素中的LC分子的倾斜角彼此不同,且因此两个子像素的亮度不同。因此,可以调整两个子像素的电压使得从横侧观察的图像更接近从前面观察的图像,即,横向伽马曲线更接近前视伽马曲线,因此提高横向可视度。
通过以水平周期(由“1H”表示且等于水平同步信号Hsync或数据使能信号DE的一个周期)重复此过程,所有的像素PX被提供有数据电压。
当一帧结束之后开始下一帧时,控制施加到数据驱动器500的反转控制信号RVS,使得数据电压的极性反转(称为“帧反转”)。
反转控制信号RVS也可以被控制,使得在数据线D1-Dm中流动的数据电压的极性在一帧中被周期性反转(例如,行反转和点反演),或者在一个数据包中的数据电压的极性被反转(例如,行反演和点反演)。在点反演等中,在相邻数据线中流动的数据电压具有相反的极性,且在每条数据线D1-Dm中的数据电压的极性在正负之间摇摆。
将参考图4和5详细描述根据本发明实施例的LCD中的像素电极和公共电极的详细结构。
图4是示出在根据本发明实施例的LCD中像素电极和公共电极的设置以及像素电极电压的极性的布局图,图5是示出在根据本发明另一实施例的LCD中的像素电极和公共电极设置以及像素电极电压极性的布局图。
参考图4和5,LCD的每个像素电极PE包括彼此分离的第一子像素电极PEa或PEe以及第二子像素电极PEb或PEf。基本在横向延伸的成对的栅线Gia和Gib、Gi+1,a和Gi+1,b、或Gi+2,a和Gi+2,b靠近每个像素电极PE的横向边缘设置。
参考图4,每个像素电极PE的子像素电极PEa和PEb在横向相邻,且公共电极CE(图2所示)具有分别面对子像素电极PEa和PEb的多个切口部分70a和70b。
每个子像素电极PEa和PEb具有成对的弯折边缘和成对的横向边缘,并具有V形。弯折边缘包括与横向边缘以例如约135度的钝角相接的凸出边缘,以及与横向边缘以例如约45度的锐角相接的凹入边缘。由成对的的倾斜边缘垂直相接形成的每个弯折边缘具有大致直角的弯曲角。横向边缘和像素电极PE的每个子像素电极PEa或PEb的弯折边缘之一(称为外部边缘)形成像素电极PE的外部边界,而其另外的弯折边缘(称为内部边缘)与其他子像素电极PEb或PEa相邻设置。
在公共电极CE中的每个切口部分70a和70b包括多个彼此连接并在列方向延伸的弯折部分。每个弯折部分包括以直角相接的成对的倾斜部分,基本平行于子像素电极PEa或PEb的弯折边缘延伸,并将子像素电极PEa或PEb等分为左右两部分。
每个子像素电极PEa和PEb以及每个切口部分70a和70b的弯折部分关于连接子像素电极Pea或PEb的突出顶点和凹入顶点的虚拟直线(称为中心横断线)具有反演对称。
参考图5,每个像素电极PE基本是矩形,且构成像素电极PE的第一和第二子像素电极PEe和PEf以插入在其间的间隙92彼此啮合。形成间隙92的子像素电极PEe和PEf的边缘称为内部边缘,而形成像素电极PE的矩形的子像素电极PEe和PEf的边缘称为外部边缘。第一子像素电极PEe具有大约以直角旋转的字母V的形状,并几乎被第二子像素电极PEf包围。第二子像素电极190b包括上梯形部分、下梯形部分、和中间梯形部分,它们在靠近其左边缘彼此连接。中间梯形部分包含在第一子像素电极PEe的凹入部分中。第一子像素电极PEe和第二子像素电极PEb之间的间隙92包括两对上、下倾斜部分和三个纵向部分。第二子像素电极PEf的面积大于第一子像素电极PEe,而比第一子像素电极PEe小三倍。施加到第一子像素电极PEe的电压(对于公共电极CE)高于施加到第二子像素电极PEf的电压(对于公共电极CE)。此结构可以使得横向伽马曲线接近前视伽马曲线。
同时,LC分子的倾斜方向由水平场分量Fa(图4所示)或Fl(图5所示)预先确定。水平场分量Fa或Fl由公共电极CE的切口部分70a和70b、间隙92、和子像素电极PEa和PEb的边缘产生,它们扭曲初级电场。水平场分量Fa或Fl基本垂直于切口部分70a和70b的边缘、间隙92的倾斜边缘以及子像素电极PEa和PEb的边缘。
参考图4和5,由于在切口部分70a和70b或间隙92所分割的每个子区域上的LC分子垂直于该子区域的倾斜边缘倾斜,倾斜方向的方位角分布定位于四个方向,因此增加LCD的参考视角。
参考图4,由于相邻的像素电极PE之间的电压差所引起的次级电场Fb的方向垂直于子区域的倾斜边缘。因此,次级电场Fb的场方向与初级电场的水平分量Fa的场方向一致。因此,相邻像素电极PE之间的次级电场Fb提高了LC分子的倾斜方向的确定。
同时,从数据驱动器500输出的电压极性的图案可以与面板组件30中的子像素的电压极性的图案不同。此后,由数据驱动器500通过数据线171驱动的反演(inversion)称为驱动器反演,而出现在面板组件300中的子像素上的反演称为表观反演(apparent inversion)。
现在,将参考图6和7以及图4和5详细描述根据本发明实施例的LCD的反演。
图6和7示出用于根据本发明实施例的LCD的数据电压和栅极信号的波形。
参考图4和5,表观反演类型是1×1点反演,其中每个像素电极PE的子像素电极PEa和PEb或PEe和PEf具有相反极性,且在行方向或在列方向相邻的子像素电极PEa、PEb、PEe和PEf具有相反极性。根据子像素电极PEa、PEb、PEe和PEf以及数据线之间的连接,驱动器反演类型可以是行反演、1×1点反演、2×1点反演、或列反演。
此结构引起每个像素电极PE的子像素电极PEa和PEb或PEe和PEb之间以及不同像素电极PE的子像素电极PEa、PEb、PEe和PEb之间的强横向场,其提高了液晶分子倾斜方向的确定并增加了响应时间。因此,大于约40”显示器的显示器可以实现高透射率,并可以具有宽度大于约30微米的子区域。
具体地,图5所示的像素电极PE可以具有间隙92,该间隙92具有降低的宽度从而开口率增加。
此外,与每个像素的极性反转而不是每个子像素的极性反转的结构相比,此结构可以减小当LCD显示以给定数目像素的单元周期性设置的图像图案时可能发生的闪烁(flickering)。
参考图6和7,数据电压Vd的极性在1H周期内反转。驱动器反演的类型是2×1点反演或双行反演。即,在数据线中流动的数据电压的极性每两个连续数据电压反转。例如,在第i行中的第一子像素电极PXa或PXe提供有正极性数据电压,且在第i行中的第二子像素电极PXb或PXf提供有负极性数据电压。随后,在第(i+1)行中的第一子像素电极PXa或PXe提供有负极性数据电压,且在第(i+1)行中的第二子像素电极PXb或PXf提供有正极性数据电压。此操作通过将反演控制信号RVS的时序控制为(1/2)H而容易获得。
为了给出足够的充电时间,用于第一栅线Gia、Gi+1,a和Gi+2,a的栅信号Vgia、Vgi+1,a和Vgi+2,a保持在栅导通电压Von约1H,虽然用于第二栅线Gib和Gi+1,b的栅信号Vgib和Vgi+1,b保持在栅导通电压Von约(1/2)H。此外,由于第一子像素电极PXa或PXb与先前行中的第二子像素电极PXb或PXf具有相同极性,所以栅导通信号Von到第一栅线Gi+1,a和Gi+2,a的施加与栅导通信号Von到在先前行中的第二栅线Gi+1,b和Gi+2,b的施加交叠。
参考图7,对第二子像素电极PXb和PXf的充电时间增加到大于约(1/2)H,且为此,向数据线施加用于第一子像素PXa和PXe的数据电压的时间减少到小于约(1/2)H,同时向数据线施加用于第二子像素PXb和PXf的数据电压的时间减少到小于约(1/2)H。此外,用于向第二栅线Gib和Gi+1,b施加栅导通电压的时间增加到大于约(1/2)H,且因此向第一栅线Gi+1,a和Gi+2,a以及第二栅线Gib和Gi+1,b施加的栅导通电压Von的交叠增加。因此,用于向第一和第二子像素PXa、PXb、PXe和PXf施加数据电压的充电时间均增加,使得可以提高由于帧反演中相邻的在先帧之间的极性反演所导致的不足的充电时间,并提高由相邻数据电压之间的极性反演导致的数据线中的信号延迟。
接着,将参考图8详细描述根据本发明另一实施例的像素电极和公共电极的结构以及反演驱动。
图8示出在根据本发明另一实施例的LCD中像素电极以及在公共电极中的切口部分和数据电压的极性。
参考图8,根据本实施例的LCD的像素电极PE设置在行方向和列方向,且每个像素电极PE包括彼此分离的第一子像素电极PEc和第二子像素电极PEd。基本在横向延伸的成对的栅线Gic和Gid、Gi+1,c和Gi+1,d、Gi+2,c和Gi+2,d、Gi+3,c和Gi+3,d、Gi+4,c和Gi+4,d设置在每个像素电极PE的横向边缘附近。
每个像素电极PE的子像素电极PEc和PEd在横向方向相邻,且公共电极270(图2所示)具有多个分别面对子像素电极PEc和PEd的切口部分70c和70d。
每个子像素电极PEc和PEd具有成对的两次弯折边缘和成对的横向边缘,并具有V字形状。每个弯折边缘包括四个彼此连接的倾斜边缘,以形成字母W,且弯折边缘连接到横向边缘。通过以90度角连接倾斜边缘而形成的弯折边缘具有大致直角的弯曲角度。
公共电极CE中的每个切口部分70c和70d包括多个彼此连接并在列方向延伸的弯折部分。每个弯折部分包括以约直角连接并基本平行于子像素电极PEc或PEd的每个弯折边缘延伸的成对倾斜部分。切口部分70c和70d的两个连续弯折部分将子像素电极PEc或PEd等分为左右两半。
形成每个像素电极PE的第一和第二子像素电极PEc和PEd具有相反的极性。在子像素列中的第一子像素电极PEc或第二子像素电极PEd的电压的极性以2-1反演的方式反转。例如,在子像素列中,两个连续的正/负数据电压和一个负/正电压交替设置。此后,上述反演被称为子像素电极的2:1×1点反演。在两个连续像素行中的数据电压可以相同,且在下一像素行中的数据电压可以与其相反,这称为2:1行反演。
参考标号Fc和Fd分别代表像素电极PE之间的初级电场和次级电场的水平分量。
图1A-7所示的LCD的许多特征可以应用到图8所示的LCD。
接着,将参考图9A和9B描述根据本发明另一实施例的像素电极和公共电极的切口部分的结构。
图9A和9B是根据本发明另一实施例的像素电极和公共电极切口部分的布局图。
图9A和9B所示的像素电极PE和公共电极CE的切口部分70a-70d的结构几乎分别与图4和8这所示的相同。
然而,每个第二子像素电极PEb和PEd的横向边缘的长度Lb或Ld约为每个第一子像素电极PEa和PEc的每个横向边缘的长度La或Lc的1-3倍,且因此每个第二子像素电极PEb和PEd的面积约为每个第一子像素电极PEa和PEc的横向边缘的面积的1-3倍。
此结构引起横向伽马曲线接近上述前视伽马曲线。具体地,当第一子像素电极PEa或PEc与第二子像素电极PEb或PEd的面积比约为1∶2时,横向伽马曲线进一步接近前视伽马曲线,以提高横向可视度。
现在,将参考图10和11以及图1A-4详细描述根据本发明实施例的LC面板组件。
图10是根据本发明实施例的LC面板组件的布局图,图11是图10所示的LC面板组件沿线XI-XI所取的剖面图。
参考图10和11,根据本发明实施例的LC面板组件包括下面板100、面对该下面板100的上面板200、和插入在面板100与200之间的液晶层3。
首先,将描述下面板100。
包括多对第一和第二栅线121a和121b的多个栅极导体以及多个存储电极线131形成在例如透明玻璃和塑料的绝缘基板110上。
栅线121a和121b传送栅极信号且基本上在横向延伸,并分别设置在相对的上、下位置。
每条第一栅线121a包括向下突出的多个第一栅电极124a和具有用于接触另一层或外部驱动电路的较大面积的端部129a。每条第二栅线121b包括向上突出的多个第二栅电极124b和具有接触另一层或外部驱动电路的大面积的端部129b。栅线121a和121b可以延伸以连接到栅极驱动器400,该栅极驱动器400可以集成在基板110上。
存储电极线131提供有例如公共电压Vcom的预定电压,并基本平行于栅线121a和121b延伸。每条存储电极线131设置在第一和第二栅线121a和121b之间,且几乎与第一栅线121a和第二栅线121b等距离设置。每条存储电极线131包括向上和向下延伸的多对第一和第二存储电极137a和137b。然而,存储电极线131可以具有各种形状和设置。
栅极导体121a、121b和131可以由例如Al和Al合金的含Al金属、例如Ag和Ag合金的含Ag金属、例如Cu和Cu合金的含Cu金属、例如Mo和Mo合金的含MO金属、Cr、Ta或Ti制成。然而,它们可以具有多层结构,这包括具有不同物理性质的两个导电膜(未示出)。两层膜之一可以由低电阻率金属制成,包括含Al金属、含Ag金属和含Cu金属,以减少信号延迟或电压降。另一层膜可以由例如含Mo金属、Cr、Ta或Ti的材料制成,其与其它材料例如氧化铟锡(ITO)或氧化铟锌(IZO)之间具有良好的物理、化学和电接触特性。两层膜组合的好的示例是下Cr膜和上Al(合金)膜以及下Al(合金)膜和上Mo(合金)膜。然而,栅极导体121a、121b和131可以由各种金属或导体制成。
栅极导体121a、121b和131的侧面相对于基板表面倾斜,且其倾斜角在约30-80度变化。
可以由氮化硅(SiNx)或氧化硅(SiOx)制成的栅极绝缘层140形成在栅极导体121a、121b和131上。
可以由氢化非晶硅(简称为“a-Si”)或多晶硅制成的多个第一和第二半导体岛154a和154b形成在栅极绝缘层140上。第一/第二半导体岛154a/154b设置在第一/第二栅电极124a/124b上。
多个欧姆接触岛163a、163b和165b形成在半导体岛154a和154b上。欧姆接触岛163a、163b和165b可以由重掺杂有例如磷的n型杂质的n+氢化a-Si制成,或者它们可以由硅化物制成。欧姆接触163b和165b成对地设置在第二半导体岛154b上,且欧姆接触163a和其他欧姆接触岛(未示出)成对地设置在第一半导体岛154a上。
半导体岛154a和154b以及欧姆接触163a、163b和165b的侧面关于基板110的表面倾斜,且其倾斜角可以在约30-80度范围。
包括多个数据线171的多个数据导体以及多对第一和第二漏电极175a和175b形成在欧姆接触163a、163b和165b以及栅极绝缘层140上。
数据线171传送数据信号并基本在纵向延伸,以与栅线121a和121b以及存储电极线131交叉。
每条数据线171分别包括朝第一和第二栅电极124a和124b延伸并弯曲得类似字母U的多个第一和第二源电极173a和173b,以及具有用于接触另一层或外部驱动电路的较大面积的端部179。数据线171可以延伸从而连接到可以集成在基板110上的数据驱动器500。
第一和第二漏电极175a和175b彼此分离并与数据线171分离。第一/第二漏电极175a/175b与第一/第二源电极173a/173b关于第一/第二栅电极124a/124b相对设置。每个第一/第二漏电极175a/175b包括宽端部177a/177b和窄端部。宽端部177a/177b具有倒角的矩形形状,并交叠存储电极137a/137b,且窄端部被第一/第二源电极173a/173b部分围绕。
第一/第二栅电极124a/124b、第一/第二源电极173a/173b和第一/第二漏电极175a/175b随同第一/第二半导体岛154a/154b形成第一/第二TFT Qa/Qb,该第一/第二TFT Qa/Qb具有形成在设置于第一/第二源电极173a/173b和第一/第二漏电极175a/175b之间的第一/第二半导体岛154a/154b中的沟道。
数据导体171、175a和175b可以由例如Cr、Mo、Ta、Ti或其合金的难熔金属制成。然而,它们可以具有多层结构,包括难熔金属膜(未示出)和低电阻率膜(未示出)。多层结构的好例子是包括下Cr/Mo(合金)膜和上Al(合金)膜的双层结构,以及下Mo(合金)膜、中间Al(合金)膜和上Mo(合金)膜的三层结构。然而,数据导体171、175a和175b可以由各种金属或导体制成。
数据导体171、175a和175b具有倾斜边缘轮廓,且其倾斜角在约30-80度范围变化。
欧姆接触163a、163b和165b仅插入在下面的半导体岛154a和154b与其上的上覆数据导体171、175a和175b之间,并减小它们之间的接触电阻。半导体岛154a和154b包括一些未被数据导体171、175a和175b覆盖的暴露部分,例如位于源电极173和漏电极175a和175b之间的部分。
钝化层180形成在数据导体171、175a和175b以及半导体岛154a和154b的暴露部分上。钝化层180可以由无机或有机绝缘体制成,且它可以具有平坦的顶表面。无机绝缘体的示例包括氮化硅和氧化硅。有机绝缘体可以具有光敏性及小于约4.0的介电常数。钝化层180可以包括无机绝缘体的下膜和有机绝缘体的上膜,使得其具有有机绝缘体的优异的绝缘特性,同时通过有机绝缘体防止半导体岛154a和154b的暴露部分被破坏。
钝化层180具有暴露数据线171的端部179的多个接触孔182和分别暴露第一和第二漏电极175a和175b的多个接触孔185a和185b。钝化层180和栅极绝缘层140具有暴露栅线121a和121b的端部129a和129b的多个接触孔181a和181b。
多个像素电极191和多个接触辅助81a、81b和82形成在钝化层180上。它们优选由例如ITO或IZO的透明导体,或者例如Ag、Al、Cr或其合金的反射导体制成。
每个像素电极191包括成对的子像素电极191a和191b。
子像素电极191a和191b的形状几乎与图4所示的相同。然而,子像素电极191a/191b包括从凹入边缘的凹入顶点几乎延伸到朝向突出边缘的突出顶点的子像素电极191a/191b中心的切口部分91a/91b。
第一/第二子像素电极191a/191b通过接触孔185a/185b物理和电连接到第一/第二漏电极175a/175b,使得第一/第二子像素电极191a/191b从第一/第二漏电极175a/175b接收数据电压。第一/第二子像素电极191a/191b和公共电极270形成第一/第二LC电容器Clca/Clcb,其存储在TFT截止之后施加的电压。
用于提高电荷存储能力的第一/第二存储电容器Clca/Clcb通过把连接到第一/第二子像素电极191a/191b的第一/第二漏电极175a/175b的扩展部分177a/177b经栅极绝缘层140与存储电极137a/137b相交叠而形成。
接触辅助81a、81b和82分别通过接触孔181a、181b和182连接到栅线121a和121b的端部129a和129b以及数据线171的端部179。接触辅助81a、81b和82保护端部129a、129b和179并增强端部129a、129b和179与外部器件之间的附着。
下面是上面板200的描述。
称为黑矩阵的阻光元件220形成在由例如透明玻璃或塑料的材料制成的绝缘基板210上。阻光元件220可以包括面对下面板100上的像素电极191弯折边缘的多个弯折部分(未示出),以及面对下面板100上的TFT Qa和Qb的多个展宽部分(未示出)。阻光元件220阻挡在像素电极191和TFT Qa和Qb附近泄漏的光,并可以具有各种形状。
多个滤色器230也形成在基板210和阻光元件220上。滤色器230基本设置在由阻光元件220围绕的区域中,且滤色器230可以沿着像素电极191基本上在纵向延伸。每个滤色器230R代表例如红色、绿色和蓝色的三原色之一。
覆层250形成在滤色器230和阻光元件220上。覆层250可以由(有机)绝缘体制成,且它防止滤色器230被暴露,并提供平坦表面。覆层250可以被省略。
公共电极270形成在覆层250上。公共电极270可以由例如ITO和IZO的透明导电材料制成,并具有多组切口部分71a和71b。
公共电极270中的每个切口部分71a和71b包括具有弯曲点的弯折部分、连接到弯折部分的弯曲点的中心横向部分、和连接到弯折部分末端的成对的终端横向部分。切口部分71a或71b的弯折部分基本平行于子像素电极191a或191b的弯折边缘延伸并将子像素电极191a或191b等分为左右两半。切口部分71a或71b的中心横向部分与弯折部分形成钝角,并朝子像素电极191a或191b的突出顶点延伸。终端横向部分与子像素电极191a或191b的横向边缘对准,并与弯折部分形成钝角。
切口部分71a和71b的数目可以根据设计因素而变化,且阻光元件220也可以交叠切口部分71a和71b以阻挡通过切口部分71a和71b泄漏的光。
可以为各向同性的配向层11和21涂覆在面板100和200的内表面上。
偏振器12和22设置在面板100和200的外表面上,使得它们的偏振轴可以交叉,且该偏振轴可以与子像素电极191a和191b的弯折边缘形成约45度角以提高光效率。当LCD是反射LCD时,偏振器12和22之一可以被省略。
LCD还可以包括至少一个延迟膜(未示出),用于补偿LC层3的延迟。LCD还可以包括背光单元(未示出),通过偏振器12和22、延迟膜、和面积100和200向LC层3提供光。
优选LC层3具有负介电各向异性,并进行垂直配向。
切口部分71a、71b、92a和92b的形状和设置可以改进。
切口部分71a和71b中至少一个能够被突起(未示出)或凹陷(未示出)所取代。突起可以由有机或无机材料制成并设置在场产生电极191或270之上或之下。
上述LCD和极性反转的操作可以应用到图10和11所示的LC面板组件。
接着,将参考图12和13以及图1A-3和图8详细描述根据本发明另一实施例的LC面板组件。
图12是根据本发明另一实施例的LC面板组件的布局图,图13是图12所示的LC面板组件沿线XIII-XIII所取的剖面图。
参考图12和13,根据本实施例的LC面板组件包括下面板100、面对下面板100的上面板200、LC层3和成对的偏振器12和22。
根据本实施例的LC面板组件的层状结构与图10和11所示的类似。
对于下面板100,包括多个第一和第二栅线121c和121d的栅极导体以及多个存储电极线131形成在基板110上。第一和第二栅线121c和121d分别包括第一和第二栅电极124c和124d以及端部129c和129d。存储电极线131包括多对第一和第二存储电极137c和137d。栅极绝缘层140形成在栅极导体121c、121d和131上,且多个半导体元件154c和154d形成在栅极绝缘层140上。多个欧姆接触163d和165d形成在半导体条154c和154d上。包括多个数据线171和多个第一和第二漏电极175c和175d的数据导体形成在欧姆接触163d和165d上。数据线171包括第一和第二源电极173c和173d及端部179,且漏电极175c和175d包括宽端部177c和177d。钝化层180形成在数据导体171、175c和175d、栅极绝缘层140上,并暴露部分半导体条151。多个接触孔181c、181d、182、185c和185d设置于钝化层180和栅极绝缘层140。包括第一和第二子像素电极191c和191d并具有切口部分91c-93c和91d-93d的多个像素电极191和多个接触辅助81c、81d和82形成在钝化层180上,且配向层11形成在其上。
对于上面板200,阻光元件220、多个滤色器230、覆层250、具有多个切口部分71c和71d的公共电极270、和配向层21形成在绝缘基板210上。
与图10和11所示的LC面板组件不同,子像素电极191c和191d的形状与图8所示的类似,即,每个子像素电极191c和191d类似约以直角旋转的字母W。然而,第一子像素电极191c的每个切口部分91c-93c在横向从凹入顶点朝突起顶点延伸,且类似地,第二子像素电极191d的每个切口部分91d-93d在横向从凹入顶点朝突起顶点延伸。
每个切口部分71c和71d包括具有三个弯曲点的弯折部分、三个中间横向部分、和成对的终端横向部分。
弯折部分基本平行于子像素电极191c或191d的弯折边缘延伸,并把子像素电极191c或191d等分为左右两半。中间横向部分从弯折部分的弯曲点大致延伸到子像素电极191c或191d的突出顶点,并与弯折部分形成钝角。终端横向部分连接到弯折部分的末端,与弯折部分形成钝角,并交叠子像素电极191c或191d的横向边缘。
此外,半导体元件154c和154d沿数据线171和漏电极175c和175d延伸以形成半导体条纹151,且欧姆接触163d沿数据线171延伸以形成欧姆接触条161。半导体条151几乎具有与数据导体171、175c和175d以及下面的欧姆接触161和165d相同的平面形状。
根据本实施例的下面板的制造方法使用一个光刻工艺同时形成数据导体171、175c和175d、半导体元件151、欧姆接触161和165。
用于光刻工艺的光致抗蚀剂图案具有随位置变化的厚度,且具体地,其具有厚度减小的第一和第二部分。第一部分位于将被数据导体171、175c和175d占据的布线区上,且第二部分位于TFT Qc和Qd的沟道区上。
光致抗蚀剂随位置变化的厚度通过几种技术获得,例如通过在曝光掩模上提供半透明区和光透射区以及光阻隔不透明区。半透明区可以具有狭缝图案、格子图案、具有中等透射率和中等厚度的薄膜。当使用狭缝图案时,优选狭缝的宽度或狭缝之间的距离小于用于光刻的曝光器的分辨率。另一个例子是使用可回流光致抗蚀剂。具体地,一旦由可回流材料制成的光致抗蚀剂图案通过使用常规的仅有透明区和不透明区的曝光掩模形成,它被进行回流工艺以流到没有光致抗蚀剂的区域上,因此形成薄部分。
结果,通过省略光刻步骤而简化了制造工艺。
图10和11所示的LC面板组件的许多上述特点可以应用于图12和13所示的LC面板组件。
现在,将参考图14-17B以及图1A-3和图5详细描述根据本发明另一实施例的LC面板组件。
图14是根据本发明实施例的LC面板组件的下面板的布局图,图15是根据本发明实施例的LC面板组件的上面板的布局图,图16是包括图14所示的下面板和图15所示的上面板的LC面板组件的布局图,图17A和17B是图16所示的LC面板组件分别沿线XVIIA-XVIIA和XVIIB-XVIIB’-XVIIB”所取的剖面图。
参考图14-17B,根据本发明实施例的LC面板组件包括下面板100、上面板200、和插入在面板100和200之间的液晶层3。
首先,将参考图14和16-17B描述下面板100。
包括多对第一和第二栅线121e和121f以及多个存储电极线131的多个栅极导体形成在绝缘基板110上。
栅线121e和121f传送栅极信号且基本在横向延伸,设置于分别相对的上、下位置。
每条第一栅线121e包括向上延伸的多个第一栅电极124e和包括端部129e。每条第二栅线121f包括向下突出的多个第二栅电极124f和包括端部129f。
存储电极线131基本平行于栅线121e和121f延伸,且每条存储电极线131设置在第一和第二栅线121e和121f之间。每条存储电极线131比第一栅线121e更靠近第二栅线121f一点,且它几乎与相邻的两条第一栅线121e等距离。每条存储电极线131包括向上和向下扩展的多个存储电极137。存储电极137基本是矩形,并具有关于存储电极线131的对称性。
栅极绝缘层140形成在栅极导体121e、121f和131上,且多个半导体岛154e、154f、156和157形成在栅极绝缘层140上。半导体岛154e/154f设置在第一/第二栅电极124e/124f上。半导体岛156和157覆盖栅线121e和121f以及存储电极线131的边界。
多对欧姆接触岛163e和165e形成在半导体岛154e上,且多对欧姆接触岛163f和165f形成在半导体岛154f上。多个欧姆接触岛166形成在半导体岛156上,且多个其他欧姆接触岛(未示出)形成在半导体岛157上。
包括多条数据线171和多对第一和第二漏电极175e和175f的多个数据导体形成在欧姆接触163e、163f、165e、165f和166以及栅极绝缘层140上。
数据线171基本在纵向延伸以交叉栅线121e和121f以及存储电极线131。
每条数据线171包括分别朝第一和第二栅电极124e和124f突出并弯曲成类似字母C的多个第一和第二源电极173e和173f,以及具有大面积的端部179。
第一和第二漏电极175e和175f彼此分离并与数据线171分离。第一/第二漏电极175e/175f与第一/第二源电极173e/173f关于第一/第二栅电极124e/124f相对设置。每个第一/第二漏电极175e/175f包括宽端部177e/177f和窄端部。宽端部177e/177f具有倒角的矩形形状,并交叠存储电极137,且窄端部被第一/第二源电极173e/173f部分围绕。第一漏电极175e的宽端部177f大于第二漏电极175f的宽端部177f。
第一/第二栅电极124e/124f、第一/第二源电极173e/173f、和第一/第二漏电极175e/175f随同第一/第二半导体岛154e/154f形成第一/第二TFTQe/Qf,第一/第二TFT Qe/Qf具有形成在设置于第一/第二源电极173e/173f和第一/第二漏电极175e/175f之间的第一/第二半导体岛154e/154f中的沟道。
钝化层180形成在数据导体171、175e和175f和半导体岛154e、154f、156和157的暴露部分上。
钝化层180具有暴露数据线171的端部179的多个接触孔182和分别暴露第一和第二漏电极175e和175f的多个接触孔185e和185f。钝化层180和栅极绝缘层140具有暴露栅线121e和121f的端部129e和129f的多个接触孔181e和181f。
多个像素电极191、屏蔽电极88和多个接触辅助81e、81f和82形成在钝化层180上。每个像素电极191包括以插入的间隙92彼此面对的成对的子像素电极191e和191f,并具有与图5所示基本相同的形状。然而,每个像素电极191在角部被倒角,且像素电极191的倒角边缘与栅线121e和121f形成约45度的角。
第二子像素电极191f的上部和下部具有从右边缘大致延伸到上下边缘的多个切口部分93a-93c和94a-94c。切口部分93a和94a和切口部分93b和94b被栅线121f分离。
第二子像素电极191f的中心部分具有切口部分91,其包括横向部分和与其连接的成对的倾斜部分。中心切口部分91的横向部分沿第二子像素电极191f的中心横向线短短地延伸。倾斜部分从横向部分的末端朝第二子像素电极191f的左边缘延伸,并与存储电极线131形成约45度的角。
为了描述方便,间隙92也称为切口部分。
切口部分91-94c具有关于存储电极线131的反演对称性。切口部分91-94c相对于栅线121e和121f形成约45度的角,并基本平行或垂直于彼此延伸。
切口部分91-94c把像素电极191分割为多个部分。被存储电极线131分割的上半部和下半部的每个都被切口部分91-94c分为六个区。
切口部分的数目或区的数目根据设计因素例如像素电极191的尺寸、像素电极191的横向边缘与纵向边缘的比率、液晶层3的类型和特性等而变化。
第一/第二子像素电极191e/191f通过接触孔185e/185f物理和电连接到第一/第二漏电极175e/175f,使得第一/第二子像素电极191e/191f从第一/第二漏电极175e/175f接收数据电压。第一/第二子像素电极191e/191f和公共电极270形成第一/第二LC电容器Clc1/Clc2,且第一/第二子像素电极191e/191f和与其连接的第一/第二漏电极175e/175f的扩展部分177e/177f与包括存储电极137的存储电极线131交叠,从而形成存储电容器Cst1/Cst2。
屏蔽电极88包括沿数据线171延伸的纵向部分和沿第一栅线121e延伸的横向部分。纵向部分完全覆盖数据线171,而横向部分连接相邻的纵向部分并位于栅线121e的边界内。
屏蔽电极88提供有公共电压,并阻隔在数据线171与像素电极191之间和数据线171与公共电极270之间产生的电场,以减少像素电极191的电压扭曲和由数据线171传送的数据电压的信号延迟。屏蔽电极88可以被省略。
接触辅助81e、81f和82分别通过接触孔181e、181f和182连接到栅线121e和121f的端部129e和129f以及数据线171的端部179。
下面将参考图15-17B描述上面板200。
阻光元件220形成在绝缘基板210上。阻光元件220具有面对像素电极191的多个开口225,且开口225可以具有与像素电极191基本相同的形状。另外,阻光元件220可以包括面对下面板100上的数据线171的多个直线部分以及面对下面板100上的TFT Qe和Qf的多个展宽部分。阻光元件220阻隔像素电极191和TFT Qe和Qf附近的光泄漏,并可以具有各种形状。
多个滤色器230也形成在基板210和阻光元件220上,且覆层250形成在滤色器230和阻光元件220上。公共电极270形成在覆层250上。公共电极270具有多组切口部分71、72、73、74a、74b、75a、75b、76a和76b。
一组切口部分71-76b面对像素电极191并包括中心切口部分71、72和73、上切口部分74a、75a和76a以及下切口部分74b、75b和76b。每个切口部分71-76b设置在像素电极191的相邻切口部分91-94c之间或者在切口部分94c、94b或94c与像素电极191的左边缘或倒角的边缘之间。此外,每个切口部分71-76b至少具有平行于像素电极191的切口部分93a-93c和94a-94c延伸的倾斜部分,且切口部分72-76b的每个倾斜部分具有凹口。
每个下切口部分和上切口部分74a-76b包括倾斜部分,和包括成对的横向和纵向部分或成对的纵向部分。倾斜部分大致从像素电极191的右边缘大致延伸到像素电极191的上边缘、下边缘、或左角。横向部分和纵向部分从倾斜部分的各个边缘沿着像素电极191的边缘延伸,交叠像素电极191的边缘,并与倾斜部分形成钝角。
每个中心切口部分71和72包括中心横向部分、成对的倾斜部分、和成对的终端纵向部分。中心横向部分沿存储电极线131短短地延伸。倾斜部分从中心横向部分大致延伸到像素电极的左边缘并与中心横向部分形成斜角。终端纵向部分从各个倾斜部分的末端沿像素电极191的左边缘延伸,交叠像素电极191的左边缘,并与各个倾斜部分形成钝角。
公共电极270中的切口部分72-76b中的凹口确定切口部分72-76b上的LC分子的倾斜方向。这些凹口可以是矩形、梯形、或圆形,并可以是凸的或凹的。
切口部分71-76b的数目也可以根据设计因素而变化,且阻光元件220可以交叠切口部分71-76b以阻隔通过切口部分71-76b的光泄漏。
配向层11和21涂覆在面板100和200的内表面上。
图10和11所示的LC面板组件的许多特点可以应用于图14-17B所示的LC面板组件。
根据本发明实施例的驱动方法可以适用于包括子像素电极的各种LCD。
虽然参考优选实施例详细描述了本发明,本领域的技术人员应该理解,可以对其进行各种改进和替换而不脱离由权利要求所限定的本发明的精神和范畴。
权利要求
1.一种液晶显示器,包括多个像素,设置成矩阵,每个像素包括第一子像素和第二子像素;多条第一栅线,连接到所述第一子像素并传送第一栅信号;多条第二栅线,连接到所述第二子像素并传送第二栅信号;和多条数据线,与所述第一和第二栅线交叉,连接到所述第一和第二子像素,并传送数据电压,其中每个像素的第一和第二子像素的电压具有相反的极性并从单一图像信息获得,且由所述数据线携带的数据电压被进行N×1(N=1,2,...)点反演,NM×1(M=1,2,...)点反演,或者N行反演。
2.根据权利要求1所述的液晶显示器,其中所述第一子像素包括连接到所述第一栅线之一和所述数据线之一的第一开关元件,以及耦合到所述第一开关元件的第一子像素电极,且所述第二子像素包括连接到所述第二栅线之一和所述数据线之一的第二开关元件,以及耦合到所述第二开关元件的第二子像素电极。
3.根据权利要求2所述的液晶显示器,其中每个第一和第二子像素电极具有内边缘和外边缘,所述第一和第二子像素电极的内边缘至少弯折一次并彼此面对,且所述第一和第二子像素电极的外边缘基本形成矩形。
4.根据权利要求2所述的液晶显示器,其中所述第一子像素电极具有至少弯折一次的成对的弯折边缘,且所述第二子像素电极具有至少弯折一次的成对的弯折边缘。
5.一种液晶显示器,包括多个像素,设置成矩阵,每个所述像素包括第一子像素和第二子像素;多条第一栅线,在第一方向延伸,连接到所述第一子像素并传送第一栅信号;多条第二栅线,在第一方向延伸,连接到所述第二子像素并传送第二栅信号;多条数据线,与所述第一和第二栅线交叉,连接到所述第一和第二子像素,并传送数据电压,其中每个所述像素的第一和第二子像素的电压具有相反的极性并从单一图像信息获得,所述第一子像素包括连接到所述第一栅线之一和所述数据线之一的第一开关元件,以及耦合到所述第一开关元件并具有彼此面对的成对弯折边缘的第一子像素电极,且所述第二子像素包括连接到所述第二栅线之一和所述数据线之一的第二开关元件,以及耦合到所述第二开关元件并具有彼此面对的成对弯折边缘的第二子像素电极。
6.根据权利要求5所述的液晶显示器,其中每个所述像素的第一子像素电极和第二子像素电极在所述第一方向相邻。
7.根据权利要求5所述的液晶显示器,其中由所述数据线携带的数据电压被进行点反演、列反演或行反演。
8.根据权利要求5所述的液晶显示器,其中所述第一子像素电极和第二子像素电极的面积彼此不同。
9.根据权利要求8所述的液晶显示器,其中所述第一子像素电极在所述第一方向的长度不同于所述第二子像素电极在所述第一方向的长度。
10.根据权利要求9所述的液晶显示器,其中所述第二子像素电极的第一方向长度大于所述第一子像素电极的第一方向长度且小于所述第一子像素电极第一方向长度的三倍。
11.根据权利要求10所述的液晶显示器,其中所述第一子像素电极提供有大于提供到所述第二子像素电极的数据电压的数据电压。
12.根据权利要求5所述的液晶显示器,还包括面对所述第一和第二子像素电极的公共电极。
13.根据权利要求12所述的液晶显示器,还包括设置于公共电极的倾斜方向确定元件。
14.根据权利要求13所述的液晶显示器,其中所述倾斜方向确定元件包括切口部分,所述切口部分穿过第一和第二子像素电极并具有基本平行于第一和第二子像素电极的弯折边缘的弯折部分。
15.根据权利要求5所述的液晶显示器,还包括公共电极,面对所述第一和第二子像素电极并具有第一切口部分;和绝缘层,设置在所述数据线和第一及第二栅线上,其中所述第一和第二子像素电极具有第二切口部分。
16.根据权利要求15所述的液晶显示器,其中所述第二子像素电极的面积大于所述第一子像素电极的面积并小于所述第一子像素电极面积的三倍。
17.根据权利要求16所述的液晶显示器,其中所述第一子像素电极提供有大于提供到所述第二子像素电极的数据电压的数据电压。
18.一种驱动液晶显示器的方法,该方法包括施加第一数据电压到所述液晶显示器的数据线;施加栅极导通电压到第一栅线以传送所述第一数据电压到所述液晶显示器的第一像素的第一子像素;施加第二数据电压到所述数据线,所述第二数据电压具有与所述第一数据电压相反的极性;和施加栅极导通电压到所述液晶显示器的第二栅线以传送所述第一像素的第二子像素的第二数据电压,其中所述第一数据电压和第二数据电压由单一图像数据产生并具有彼此不同的幅度,且所述第一和第二数据电压被进行N×1(N=1,2,...)点反演,NM×1(M=1,2,...)点反演,或者N行反演。
19.根据权利要求18所述的方法,还包括施加栅极导通电压到所述液晶显示器的第三栅线以传送所述第二数据电压到第二像素的第一子像素;施加与第二数据电压相同极性的第三数据电压到所述数据线;和施加栅极导通电压到所述第三栅线以传送第三数据电压到所述第二像素的第一子像素。
20.根据权利要求18所述的方法,其中将所述栅极导通电压施加到所述第二栅线以传送所述第二数据电压保持得长于将所述栅极导通电压施加到所述第一栅线以传送所述第一数据电压。
全文摘要
本发明提供了一种液晶显示器,包括多个像素,设置成矩阵,每个像素包括第一子像素和第二子像素;多条第一栅线,连接到第一子像素;多条第二栅线,连接到第二子像素;和多个数据线,交叉第一和第二栅线,连接到第一和第二子像素,并传送数据电压,其中每个像素的第一和第二子像素的电压具有相反的极性并从单一图像信息获得,且数据线携带的数据电压被进行N×1(N=1,2,...)点反演,N:M×1(M=1,2,...)点反演,或者N行反演。
文档编号G09G3/36GK1900777SQ20061010595
公开日2007年1月24日 申请日期2006年7月19日 优先权日2005年7月19日
发明者都熙旭, 严允成, 仓学璇, 柳承厚, 金贤昱 申请人:三星电子株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1