显示装置及其驱动方法与流程

文档序号:15519668发布日期:2018-09-25 19:07阅读:380来源:国知局

本公开涉及一种显示装置,且特别涉及能够确保该显示装置正常启动,或者是延长该显示装置的使用寿命的显示装置的驱动方法。



背景技术:

具有栅极驱动电路的显示装置开机(或启动)时,传统的驱动架构会检测开机温度,并根据检测到的温度来补偿提供给栅极驱动电路的电压。

然而,由于温度传感器与面板的实际温度可能有落差,导致电压补偿不足,而无法正确地启动栅极驱动电路。另外,栅极驱动电路经过长时间使用后,可能因为电荷的累积而导致最小驱动电压的偏移,但因为启动时仅根据温度来补偿电压,所以也可能发生补偿的电压仍然无法正常启动栅极驱动电路的状况。

由于传统的构造在开机补偿完电压之后无法得知栅极驱动电路是否被确实地启动,因此无法解决上述栅极驱动电路启动异常的问题。



技术实现要素:

本公开的目的是提出一种显示装置及其驱动方法,能够确保该显示装置正常启动,或者能够延长该显示装置的使用寿命。

本公开提出一种显示装置,其特征在于包括:一显示面板;一栅极驱动电路,形成于该显示面板上且依序输出多个栅极扫描信号及至少一虚拟栅极扫描信号;以及一驱动模块,输出多个时钟信号至该栅极驱动电路,其中该驱动模块接收来自该栅极驱动电路的一反馈信号,并根据该反馈信号调整这些时钟信号。

本公开也提出一种显示装置的驱动方法,其特征在于,该显示装置包括:一显示面板;一栅极驱动电路,形成于该显示面板上;一驱动模块,输出多个时钟信号至该栅极驱动电路,其中该驱动模块会接收来自该栅极驱动电路的一反馈信号,并根据该反馈信号调整这些时钟信号。该显示装置的驱动方法包括:启动该显示装置;在该显示装置的一启动期间内,当该驱动模块接收到异常的该反馈信号的类型时,逐步提高该驱动模块输出的该多个时钟信号的压差,或是选择适当的该多个时钟信号的压差,直到该驱动模块能够接收到正常的该反馈信号的类型;当该多个时钟信号的压差提高到一预定值,而该驱动模块仍然无法接收到正常的该反馈信号的类型时,关闭该显示装置。

根据上述的显示装置及其驱动方法,本公开能够寻找到较佳的开机驱动电压,以避免仅根据温度传感器来补偿开机驱动电压而补偿不足而无法正确开机的状况,或者是避免显示装置长时间使用后最小开机驱动电压提高而无法正确开机的状况。

附图说明

图1是显示根据本公开实施例1的显示装置中的栅极驱动电路的驱动架构图。

图2是显示本公开实施例1的时序控制器、驱动模块与栅极驱动电路的配置类型。

图3a-3c是显示图2的驱动模块接受到正常及异常的反馈信号的类型的示意图。

图4是显示本公开实施例1的时序控制器、驱动模块与栅极驱动电路的另一配置类型。

图5是显示本公开实施例1的显示装置在启动期间驱动电压因应反馈信号而调整的时序图。

图6是显示本公开实施例1的显示装置在启动期间驱动电压因应反馈信号而调整的另一时序图。

图7是显示本公开实施例1的显示装置在运作期间驱动电压因应反馈信号而调整的时序图。

图8是显示使用于本公开实施例1的显示装置的驱动方法。

图9是显示根据本公开实施例2的显示装置中的栅极驱动电路的驱动架构图。

图10a是显示本公开实施例2的驱动模块所输出的时钟信号未调整前的时序图。

图10b是显示本公开实施例2的驱动模块所输出的时钟信号调整后的时序图。

图11是显示使用于本公开实施例2的显示装置的驱动方法。

图12是显示使用于本公开实施例2的显示装置的另一驱动方法。

【符号说明】

1、2显示装置

10显示面板

20、20l、20r栅极驱动电路

30、30l、30r、30’驱动模块

301温度感测部

302反馈检测部

303脉宽调制部

304电平移位部

305、305’电流计

40时序控制器

clkn时钟信号

f反馈信号

f1081第一虚拟栅极扫描信号

f1082第二虚拟栅极扫描信号

reset重置信号

stv、stvl、stvr起始信号

vgh高电压电平

vgl_aa第二低电压电平

vgl_gate第一低电压电平

vcarry反馈补偿电压

vtemp温度补偿电压

t1、t2、t3时间长度

具体实施方式

以下的说明提供了许多不同的实施例、或是例子,用来实施本公开的不同特征。以下特定例子所描述的元件和排列方式,仅用来精简地表达本公开,其仅作为例子,而并非用以限制本公开。

此外,本说明书于不同的例子中沿用了相同的元件标号和/或文字。前述的沿用仅为了简化以及明确,并不表示于不同的实施例以及设定之间必定有关联。

本说明书的第一以及第二等词汇,仅作为清楚解释的目的,并非用以对应于以及限制专利范围。此外,第一特征以及第二特征等词汇,并非限定是相同或是不同的特征。

附图中的形状、尺寸、以及厚度可能为了清楚说明的目的而未依照比例绘制或是被简化,仅提供说明之用。

图1是显示根据本公开实施例1的显示装置中的栅极驱动电路的驱动架构图。图2是显示本公开实施例1的时序控制器、驱动模块与栅极驱动电路的配置类型。图3a-3c是显示图2的驱动模块接受到正常及异常的反馈信号的类型的示意图。图4是显示本公开实施例1的时序控制器、驱动模块与栅极驱动电路的另一配置类型。

如图1、2所示,根据本公开实施例1的显示装置1包括:显示面板10;栅极驱动电路20;驱动模块30;时序控制器40。栅极驱动电路20较佳地是直接整合于显示面板10内的基板上的电路(简称gop电路),一般形成于显示面板10上的一个侧边。然而由于大尺寸的显示装置的需求增加,为了避免栅极驱动电路20送出的信号传递到显示面板的另一侧时驱动能力大幅降低,现在经常采用两组栅极驱动电路分别配置在显示面板上的相对侧,两者同时驱动来确保足够的驱动力。因此在本公开中,图1的栅极驱动电路20虽以一个方块表示,但这个方块也可以包含如图2所示设置于显示面板10的一侧的栅极驱动电路20l及设置于显示面板10的另一侧的栅极驱动电路20r这种两组栅极驱动电路的类型。亦即,本公开可适用于单侧栅极驱动电路驱动,也可适用于双侧栅极驱动电路驱动,但不限于此。该显示面板10在一实施例中,例如液晶显示面板(liquidcrystaldisplay);在其他实施例中,例如可以是发光二极管(led)显示面板、有机发光二极管(oled)显示面板、量子点(qd)显示面板。显示面板的基板材料可为玻璃、塑胶或是其他有机材料。

驱动模块30是用来供给栅极驱动电路20各种驱动信号,藉由送出这些驱动信号使栅极驱动电路20依序送出栅极线扫描信号。这些驱动信号包括:起始信号stv、时钟信号clkn、重置信号reset、第一低电压电平vgl_gate、第二低电压电平vgl_aa。驱动模块30包括:温度感测部301;反馈检测部302、脉宽调制部303、电平移位部304。时序控制器40提供驱动模块30电源电压及各种时序控制信号。

温度感测部301会感测环境温度,并根据感测到的温度而输出对应这个温度的温度补偿电压vtemp,藉此补偿显示装置1处于不同环境中会需要不同的驱动电压来启动栅极驱动电路20的情况。例如,当显示装置1处于比预设操作温度更低温的环境下,栅极驱动电路20需要较高的驱动电压来启动,温度感测部301就会输出较高的温度补偿电压vtemp。在实施例1中,温度感测部301为驱动模块30的一部分,但本公开并不限定于此,温度感测部301可以与驱动模块30独立分别设置。

反馈检测部302会接收来自栅极驱动电路20的反馈信号f并根据这个反馈信号f而送出反馈补偿电压vcarry。在本实施例1中,由于栅极驱动电路20为面板整合型栅极驱动电路,是由串联的移位寄存器组成,每一个移位寄存器送出栅极扫描信号后会触发下一级的移位寄存器送出栅极扫描信号,若中途有任何中断,中断点之后的栅极扫描信号都无法送出。因此如果能确认最后一条栅极线的栅极扫描信号送出,则代表栅极驱动电路20顺利送出每一栅极扫描信号。基于上述理由,本实施例1将栅极驱动电路20送出显示面板10的显示区域中最后一条栅极线的栅极扫描信号后,再接着送出的虚拟栅极扫描信号(指送出至显示区域外的栅极线,并没有驱动显示像素的信号)做为反馈信号f,利用反馈信号f来判断栅极驱动电路20是否正确启动(运转)。当反馈检测部302没有接收到反馈信号f或是接收到的反馈信号f不正常时,反馈检测部302调整输出的反馈补偿电压vcarry。

脉宽调制部303是用来提供各个驱动信号所需的电平,并可控制各个驱动信号的工作周期。在本实施例1中,脉宽调制部303输出三个电压电平:高电压电平vgh、第一低电压电平vgl_gate、第二低电压电平vgl_aa,其中高电压电平vgh的值是由一预设电压加上温度补偿电压vtemp及反馈补偿电压vcarry而得。因此,温度补偿电压vtemp或反馈补偿电压vcarry的任一个的变化都会使脉宽调制部303输出不同的高电压电平vgh。脉宽调制部303会将第一低电压电平vgl_gate、第二低电压电平vgl_aa提供至栅极驱动电路20,另外也将高电压电平vgh及第一低电压电平vgl_gate提供至电平移位部304。

电平移位部304利用接收到的高电压电平vgh及第一低电压电平vgl_gate来产生具有n组时钟信号clkn(n为正整数),并输出至栅极驱动电路20。因此,当脉宽调制部303提供较高的高电压电平vgh时,电平移位部304会输出压差大(即驱动力较强)的n组时钟信号;反之,当脉宽调制部303提供较低的高电压电平vgh时,电平移位部304会输出压差较小(即驱动力较弱)的n组时钟信号。此外,电平移位部304也将栅极驱动电路20中所必要的起始信号stv及重置信号reset输出至栅极驱动电路20。

接下来说明反馈信号的类型。在图2的构造中,驱动模块30送出起始信号stvl至显示面板10的一侧的栅极驱动电路20l以及送出起始信号stvr至显示面板10的另一侧的栅极驱动电路20r,同步启动栅极驱动电路20l及栅极驱动电路20r。假设显示面板的栅极线有1080条,当栅极驱动电路20l逐条送出1080个栅极扫描信号后,会再送出一个第一虚拟栅极扫描信号f1081传回驱动模块30。另一方面,当栅极驱动电路20r逐条送出1080个栅极扫描信号及该第一虚拟栅极扫描信号f1081后,会再送出一个第二虚拟栅极扫描信号f1082传回驱动模块30。分别选择时间不重叠的第一虚拟栅极扫描信号f1081及第二虚拟栅极扫描信号f1082来做为栅极驱动电路20l及栅极驱动电路20r的反馈信号,可以方便将两者分开观察。

图3a~3c是将起始信号stvl(stvr)与第一虚拟栅极扫描信号f1081及第二虚拟栅极扫描信号f1082放在同一张时序图来显示,横轴为时间,纵轴为电压。当反馈信号的类型正常的情况下,如图3a所示,起始信号stvl(stvr)送出后经一段时间接连收到第一虚拟栅极扫描信号f1081及第二虚拟栅极扫描信号f1082,接着再送出下一次的起始信号stvl(stvr),做下一个帧(frame)的扫描。当反馈信号的类型异常的情况下,可能如图3b所示,第一虚拟栅极扫描信号f1081在两次的起始信号stvl(stvr)之间出现了两次,换句话说,第一虚拟栅极扫描信号f1081重复出现,明显为异常状态。另外,反馈信号的类型异常的情况下,也可能如图3c所示,收到的第一虚拟栅极扫描信号f1081低于既定电平,这有可能是栅极驱动电路20l的驱动力不足的异常状态。当然,除图3b、3c外,时而收到反馈信号,时而收不到反馈信号也是异常类型的一种。本实施例不限定只有第一虚拟栅极扫描信号f1081,当第二虚拟栅极扫描信号f1082出现如上述图3b、3c所示现象,也是反馈信号的异常情况。

在确认上述收到的反馈信号的类型异常的情况下,本公开实施例1中的反馈检测部302会调整输出的反馈补偿电压vcarry,使得脉宽调制部303输出的高电压电平vgh升高,进而改变电平移位部304所输出的n组时钟信号clkn的压差,尝试使反馈信号的类型恢复正常。

藉由本公开实施例1所记载的反馈机制,能够提供温度补偿之外的驱动电压调整,避免温度补偿不足够的情况。又,根据本公开实施例1所记载的反馈机制,能够确保栅极驱动电路正确地启动,以避免栅极驱动电路长时间使用后因为最小驱动电压提高而无法正确启动的状况。

图4是显示本公开在图2以外,时序控制器、驱动模块与栅极驱动电路的其他配置类型。相较于图2中一个驱动模块30同时输出起始信号stvl及起始信号stvr,并接收第一虚拟栅极扫描信号f1081及第二虚拟栅极扫描信号f1082作为反馈信号f,在图4中,驱动模块30可以分为2个驱动模块30l、30r。驱动模块30l、30r接连接至时序控制器40,驱动模块30l输出起始信号stvl至显示面板10一侧的栅极驱动电路20l,并接收栅极驱动电路20l的第一虚拟栅极扫描信号f1081;驱动模块30r输出起始信号stvr至显示面板10另一侧的栅极驱动电路20r,并接收栅极驱动电路20r的第二虚拟栅极扫描信号f1082,其中第一虚拟栅极扫描信号f1081及第二虚拟栅极扫描信号f1082即为反馈信号f。除了实际配置方式与图2不同外,图4的仍然属于本公开实施例1图1的架构,因此动作方式与图1、2相同。

以下说明,实施例1的显示装置在启动期间的动作态样。图5是显示本公开实施例1的显示装置在启动期间驱动电压因应反馈信号而调整的时序图。图6是显示本公开实施例1的显示装置在启动期间驱动电压因应反馈信号而调整的另一时序图。在图5、6中,皆由上到下分为三张小图,最上方的小图表示高电压电平vgh的时序图,纵轴为电压;中间的小图表示环境温度的时序图,纵轴为温度;最下方的小图表示反馈信号f的时序图,纵轴为电压。

在图5所示的启动(开机)态样下,启动开始时(时间点t0)开始提升高电压电平vgh,直到时间点t1高电压电平vgh到达最小驱动电压值vmin。高电压电平vgh在这个最小驱动电压值vmin的情况下驱动栅极驱动电路20,经过t1的时间长度到达时间点t2。在此,t1的时间长度相当在m个帧的时间长度(m为正整数)。也就是说,栅极驱动电路20从第一条栅极线扫描到最后一条栅极线,共扫描了m次。在此实施例中,一个帧时间内驱动电路会产生一次第一虚拟栅极扫描信号f1081作为反馈信号f。因此,在时间点t1至t2期间应该接收到m个反馈信号f,但这个期间完全没有反馈信号f,表示栅极驱动电路20并没有成功启动。接着,在时间点t2,通过增加提升反馈补偿电压vcarry来拉高高电压电平vgh,同样驱动栅极驱动电路20经过t1的时间长度到达时间点t3。在时间点t2至t3期间,虽然有收到反馈信号f,但数量并不为m个,表示有时候收到有时候收不到的不稳定的状态,栅极驱动电路20仍然没有成功启动。在时间点t3,再次增加反馈补偿电压vcarry来拉高高电压电平vgh,同样驱动栅极驱动电路20经过t1的时间长度到达时间点t4。在时间点t3至t4期间,收到m个反馈信号f,表示栅极驱动电路20已成功启动。虽然栅极驱动电路20已成功启动,但在实施例1中,高电压电平vgh会继续在时间点t4及时间点t5上升,并分别驱动t1的时间长度,确认每个t1的时间长度都能收到m个反馈信号f。在图5中,高电压电平vgh在时间点t5上升至最大驱动电压值vmax,并可选择在时间点t6降低高电压电平vgh到足以成功驱动栅极驱动电路20(足以获得m个反馈信号f)的适当值。在此实施例1中,高电压电平vgh在时间点t6降低到时间点t3至t4期间的电平,此后以这个电压值持续驱动栅极驱动电路20。栅极驱动电路20完成开机程序。

在图6所示的启动(开机)态样下,高电压电平vgh与图5同样地,在时间点t1升到最小驱动电压值vmin后,每隔t1的时间长度,分别在时间点t2、t3、t4、t5提升,直到高电压电平vgh到达一预定值,在本例中预定值为最大驱动电压值vmax。与图5不同的是,无论在哪一个t1时间长度的期间,驱动模块30都无法接收到完整的m个反馈信号f。这代表着高电压电平vgh在允许的电压范围内都无法成功启动栅极驱动电路20,因此代表栅极驱动电路20故障。为了避免烧毁,高电压电平vgh在时间点t6降到0v以停止启动程序(关机)。

接着,说明实施例1的显示装置在运作期间温度改变的动作态样。图7是显示本公开实施例1的显示装置在运作期间驱动电压因应反馈信号而调整的时序图。在运作期间,原本高电压电平vgh维持在一个较低的值,而反馈信号f都能够正确地送回驱动模块30。在时间点tn,运作环境的温度开始持续下降,此时,在时间点tn+1到tn+2的t1时间长度的期间,假设高电压电平vgh没有改变(当温度变化程度小于温度感测部301的灵敏度,温度在温度感测部301的感测范围之外时,会有温度感测部301不补偿高电压电平vgh的状况),但驱动模块30还是正常地接收到m个反馈信号f。直到时间点tn+2到tn+3的t1长度的期间,虽然温度已停止下降,但驱动模块30接收到不足m个反馈信号f的异常类型。这表示栅极驱动电路20在这个温度下以无法正确的被驱动。因此,在时间点tn+3,通过增加反馈补偿电压vcarry来拉高高电压电平vgh,同样驱动栅极驱动电路20经过t1的时间长度到达时间点tn+4。然而,在时间点tn+3到tn+4的t1长度的期间,驱动模块30仍然接收到不足m个反馈信号f。接着,在时间点tn+4,再次增加反馈补偿电压vcarry来拉高高电压电平vgh,同样驱动栅极驱动电路20经过t1的时间长度到达时间点tn+5。在时间点tn+4至tn+5期间,驱动模块30收到m个反馈信号f,表示栅极驱动电路20已正确地驱动。因此,在本实施例中,后续的时间,高电压电平vgh就以目前的值来持续驱动栅极驱动电路20。

根据上述图5~7的驱动类型,可知本公开在显示装置的启动期间及运作期间都能够随着反馈信号的变动而调整驱动电压,以确保栅极驱动电路能够正确地被启动或驱动。以下,将统整上述说明的动作态样,来说明对应本发明实施例1的显示装置的驱动方法。

图8是显示使用于本公开实施例1的显示装置的驱动方法。首先,启动显示装置1(步骤s01)。当显示装置1一启动,温度感测部301感测环境温度(步骤s02),并判断目前温度是否为预设温度(步骤s03)。当环境温度偏离预设温度,温度感测部301会根据目前的温度来输出温度补偿电压vtemp至脉宽调制部303(步骤s04),再前进至步骤s05。若目前温度是预设温度,则不需根据温度来补偿,前进到步骤s05。接着,如图5、6所示,在启动期间逐步增加提升电压vcarry,扫描最佳的启动电压(步骤s05)。判断在驱动电压扫描期间,使否可以得到正常的反馈信号类型(步骤s06)。如果可以得到反馈信号正常的类型则选择较佳的驱动电压来驱动栅极驱动电路20(步骤s07)。若驱动电压扫描期间,始终无法得到正常的反馈信号类型,则代表面板异常,显示装置关机以避免烧毁(步骤s08)。当选择出较佳的驱动电压,栅极驱动电路20可以被正确地驱动,显示装置1显示出正确画面,显示装置1的启动程序结束(步骤s09)。

在运作期间,温度感测部301仍会持续地感测环境的温度,来判断目前温度是否相较于先前的温度有所变化(步骤s10)。若温度产生变化,温度感测部301会根据目前的温度来输出温度补偿电压vtemp至脉宽调制部303(步骤s11),再前进至步骤s12。若温度没有什么变化,则不需根据温度来补偿,前进到步骤s12。接着,判断是否可以得到正常的反馈信号类型(步骤s12)。如果可以得到正常的反馈信号类型,表示以温度来补偿驱动电压已足够,就返回步骤s09。如果无法得到正常的反馈信号类型,如图7所示,表示即使通过温度来补偿的驱动电压仍然不够,需要进一步提升驱动电压。在步骤s13,判断目前驱动电压(或是高电压电平vgh)是否已经达到最大值。如果驱动电压还未达到最大值,则增加反馈补偿电压vcarry来补偿驱动电压(步骤s14),然后再回到步骤s12,判断是否可以得到正常的反馈信号类型。如果驱动电压已经达到最大值,表示已经不能再上升驱动电压,是面板异常,显示装置关机或调降至一个较低的特定电压来驱动显示装置以避免烧毁(步骤s15)。

以上,显示装置的驱动方法,详细说明了显示装置1的启动流程及运作流程,在各个期间,均能够使栅极驱动电路正确地被启动或驱动。

另外,本公开进一步考虑到,当栅极驱动电路在高温下产生漏电时的解决方法。图9是显示根据本公开实施例2的显示装置中的栅极驱动电路的驱动架构图。实施例2的显示装置2仅在驱动模块30’的部分与实施例1的显示装置1不同,其余构造、配置关系及变化都与实施例1相同。因此,以下仅说明实施例2与实施例1的差异点,相同的部分将省略说明。

在驱动模块30’中,脉宽调制部303与电平移位部304之间增加了电流计305(或305’)。电流计305是配置在脉宽调制部303输出高电压电平vgh的路径上,电流计305’是配置在脉宽调制部303输出第一低电压电平vgl_gate的路径上,两个电流计只要配置其中一个就能够实现本实施例2的机能。

在本实施例2中,除了利用反馈信号f来检测栅极驱动电路20是否正确地被驱动外,还能够藉由电流计305(或305’)来进一步地判断栅极驱动电路20是否有漏电的状况。当驱动模块30’接受到异常的反馈信号f的类型时,除了表示驱动信号的驱动力不足以外,也有可能是驱动信号的电流超过漏电流的上限而造成异常。因此,在本实施例2会通过电流计305(或305’)测量电流是否超过一正常值(漏电流上限),来判断栅极驱动电路20是否发生漏电异常。

由于元件的漏电流会与施加于该元件的压差成正比,因此降低漏电流的一个方式就是降低元件压差。另外,也可以缩短元件压差的施加时间长度,也就是缩短漏电的时间,同样也可以降低平均的漏电流。降低元件压差的方法与前述实施例1增加反馈补偿电压vcarry恰好相反,减少反馈补偿电压vcarry就可以实现(高电压电平vgh降低,时钟信号clkn的压差降低),因此不再赘述。缩短元件压差的施加时间的例子如本公开图10a及图10b。

图10a是显示本公开实施例2的驱动模块所输出的时钟信号未调整前的时序图。图10b是显示本公开实施例2的驱动模块所输出的时钟信号调整后的时序图。在本公开实施例2中,驱动模块30’输出六个时钟信号clk1~clk6。在未调整时钟信号的时间长度前,如图10a所示,每一个时钟信号clk1~clk6在高电平的期间为t2。然而,当电流计305(或305’)判断栅极驱动电路20有漏电时,为了降低漏电,脉宽调制部303会调节电平移位部304所输出的时钟信号,如图10b所示,每一个时钟信号clk1~clk6在高电平的期间缩短为t3。时钟信号的高电平期间缩短,相当在工作周期缩短。在本公开中,通常是采用将时钟信号的上升边缘的时间点延后的方式,来缩短时钟信号的工作周期。

接着,统整实施例1的电压补偿方法与实施例2所述的两种漏电流的解决方法,来说明对应本发明实施例2的显示装置的驱动方法。

图11是显示使用于本公开实施例2的显示装置的驱动方法,其中图11将采用前述降低元件压差的方法来解决漏电流的问题。步骤中与图8中标示相同符号的步骤,表示相同的动作。首先,启动显示装置1(步骤s01)。当显示装置1一启动,温度感测部301感测环境温度(步骤s02),并判断目前温度是否为预设温度(步骤s03)。当环境温度偏离预设温度,温度感测部301会根据目前的温度来输出温度补偿电压vtemp至脉宽调制部303(步骤s04),再前进至步骤s05。若目前温度是预设温度,则不需根据温度来补偿,前进到步骤s05。接着,如图5、6所示,在启动期间逐步增加反馈补偿电压vcarry,扫描最佳的启动电压(步骤s05)。判断在驱动电压扫描期间,是否可以得到正常的反馈信号类型(步骤s06)。如果可以得到反馈信号正常的类型则选择较佳的驱动电压来驱动栅极驱动电路20(步骤s07)。若驱动电压扫描期间,始终无法得到正常的反馈信号类型,则代表面板异常,则关机以避免烧毁(步骤s08)。当选择出较佳的驱动电压,栅极驱动电路20可以被正确地驱动,显示装置1显示出正确画面,显示装置1的启动程序结束(步骤s09)。

在运作期间,温度感测部301仍会持续地感测环境的温度,来判断目前温度是否相较于先前的温度有所变化(步骤s10)。若温度产生变化,温度感测部301会根据目前的温度来输出温度补偿电压vtemp至脉宽调制部303(步骤s11),再前进至步骤s12。若温度没有什么变化,则不需根据温度来补偿,前进到步骤s12。接着,判断是否可以得到正常的反馈信号类型(步骤s12)。如果可以得到正常的反馈信号类型,表示以温度补偿电压vtemp来补偿驱动电压已足够,就返回步骤s09。如果无法得到正常的反馈信号类型,进一步通过电流计305(或305’)检查提供高电压电平vgh或第一低电压电平vgl_gate的电流是否异常偏高(步骤s23)。如果电流计305(或305’)检查到电流不正常,表示有漏电流,则减少反馈补偿电压vcarry来降低驱动电压(时钟信号clkn)的压差,降低漏电流(步骤s24),之后再回到步骤s12,判断是否可以得到正常的反馈信号类型。如果电流计305(或305’)检查到电流正常,表示驱动电压不足,需要进一步提升驱动电压。在步骤s25,判断目前驱动电压(或是高电压电平vgh)是否已经达到最大值。如果驱动电压还未达到最大值,则增加反馈补偿电压vcarry来补偿驱动电压(步骤s26),然后再回到步骤s12,判断是否可以得到正常的反馈信号类型。如果驱动电压已经达到最大值,表示已经不能再上升驱动电压,是面板异常,关机或调降至一个较低的特定电压来驱动显示装置以避免烧毁(步骤s15)。

图12是显示使用于本公开实施例2的显示装置的另一驱动方法,其中图12将采用前述缩短元件压差的施加时间的方法来解决漏电流的问题。步骤中与图8中标示相同符号的步骤,表示相同的动作。首先,启动显示装置1(步骤s01)。当显示装置1一启动,温度感测部301感测环境温度(步骤s02),并判断目前温度是否为预设温度(步骤s03)。当环境温度偏离预设温度,温度感测部301会根据目前的温度来输出温度补偿电压vtemp至脉宽调制部303(步骤s04),再前进至步骤s05。若目前温度是预设温度,则不需根据温度来补偿,前进到步骤s05。接着,如图5、6所示,在启动期间逐步增加反馈补偿电压vcarry,扫描较佳的启动电压(步骤s05)。判断在驱动电压扫描期间,是否可以得到正常的反馈信号类型(步骤s06)。如果可以得到反馈信号正常的类型,则选择适当的驱动电压来驱动栅极驱动电路20(步骤s07)。若驱动电压扫描期间,始终无法得到正常的反馈信号类型,则代表面板异常,关机以避免烧毁(步骤s08)。当选择出较佳的驱动电压,栅极驱动电路20可以被正确地驱动,显示装置1显示出正确画面,显示装置1的启动程序结束(步骤s09)。

在运作期间,温度感测部301仍会持续地感测环境的温度,来判断目前温度是否相较于先前的温度有所变化(步骤s10)。若温度产生变化,温度感测部301会根据目前的温度来输出温度补偿电压vtemp至脉宽调制部303(步骤s11),再前进至步骤s12。若温度没有什么变化,则不需根据温度来补偿,前进到步骤s12。接着,判断是否可以得到正常的反馈信号类型(步骤s12)。如果可以得到正常的反馈信号类型,表示以温度补偿电压vtemp来补偿驱动电压已足够,就返回步骤s09。如果无法得到正常的反馈信号类型,进一步通过电流计305(或305’)检查提供高电压电平vgh或第一低电压电平vgl_gate的电流是否异常偏高(步骤s23)。如果电流计305(或305’)检查到电流不正常,表示有漏电流,进一步判断驱动电压(例如时钟信号clkn)的工作周期是否为0(步骤s34)。如果工作周期不为0,表示驱动电压的工作周期还可以降低,因此可通过缩短驱动电压的工作周期的方式来降低漏电流(步骤s35),之后再回到步骤s12,判断是否可以得到正常的反馈信号类型;反之,如果工作周期为0,表示面板异常,关机或调降至一个较低的特定电压来驱动显示装置以避免烧毁(步骤s15)。另外,如果电流计305(或305’)检查到电流正常,表示驱动电压的驱动力不足。在步骤s36,判断驱动电压的工作周期是否已经达到最大值。如果驱动电压还未达到最大值,则可通过拉长驱动电压的工作周期的方式来增加驱动电压的驱动力(步骤s37),然后再回到步骤s12,判断是否可以得到正常的反馈信号类型。如果驱动电压的工作周期已经达到最大值,表示已经不能再拉长驱动电压的工作周期,是面板异常,关机或调降至一个较低的特定电压来驱动显示装置以避免烧毁(步骤s15)。

根据本公开上述实施例1、2的显示装置及其驱动方法,能够确保该显示装置正常启动,或者能够延长该显示装置的使用寿命,另外,也可降低驱动该显示装置时的漏电流。

上述已公开的特征能以任何适当方式与一或多个已公开的实施例相互组合、修饰、置换或转用,并不限定于特定的实施例。

本公开虽以各种实施例公开如上,然而其仅为范例参考而非用以限定本公开的范围,本领域技术人员在不脱离本公开的精神和范围内,当可做些许的更动与润饰。因此上述实施例并非用以限定本公开的范围,本公开的保护范围当视所附权利要求书界定范围为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1