具有减少色偏移的光学系统的制作方法

文档序号:2733575阅读:151来源:国知局
专利名称:具有减少色偏移的光学系统的制作方法
技术领域
本发明一般涉及关于具有减少色偏移性能的光学系统,尤其涉及背投影系统中使用的透射屏幕。
背景

图1举例说明现有技术的背投影系统10。典型的背投影系统包括光学投影装置(例如,投影仪)12和屏幕14。
在投影仪12中有很多技术可能被使用。液晶设备或液晶显示器是用在光学系统中的一个例子。具有基于投影仪的液晶显示器的光学系统能提供明亮的(例如,1000-2500流明),高分辨率性能。
背投影屏幕将投影图像传送到屏幕背面上的观看空间中。背投影屏幕14可以是放置在投影仪12处的一个图像表面上的具有相对薄的观看层的薄片状光学设备。背投影显示器的例子在PCT WO 99/064927,PCT WO 99/13378和EP 783 133中得到披露。
背投影光学系统通常包括菲涅耳镜头和/或透镜镜头或薄片。这种系统的例子在美国专利号3,712,707;3,832,032;4,379,617;4,418,986;4,468,092和4,509,823中得到披露。
前投影系统在技术上是已知的。它们包括设计用来将图像投影到一个表面(会议室的墙或屏幕)的投影仪。高射投影仪是前投影系统的一个例子。背投影屏幕在前投影之上提供了几个优点。一般,用一个背投影屏幕系统较容易达到合意的对比特征。用一个背投影屏幕,演示者不能投射一个阴影到图像上和投影设备可能从观看中被隐藏(也帮助遮蔽任何从电子部件散发的声学背景噪音)。前投影系统在吸收周围光的能力上比背投影系统要差。
一种已知的背投影屏幕包括一个通过蚀刻,喷沙或其它在光滑玻璃表面的粗加工构造而成的薄的光漫射层(闷光的或透明的玻璃)。因为透明的平面分散光,图像从观察角的一个范围内是可视的。只有透明的屏幕趋向于很强的在前面的,观察面上反射周围的入射光,导致被投影图像的褪色或侵蚀。结果,这个背投影屏幕感光于周围的光环境。
美国专利号2,378,252披露了一种背投影屏幕,它包括与一个透明支撑物和光吸收层相关联的紧密堆积在一起的玻璃珠阵列。玻璃珠具有类似于透镜的功能,以收集从屏幕后面投影的光线,并且将其聚焦到相对较小并靠近珠接触支撑物的区域附近的点上。玻璃珠接触透明底层,因而在玻璃珠和支撑物之间接触区域处,将大部分光吸收物质排除在外。在支撑物的正面处的环境入射光被光吸收层吸收。结果,除了透过玻璃珠的光以外,屏幕的前面呈黑色。
用玻璃珠的背投影屏幕在美国专利号5,563,738和5,781,344中也被披露。其它珠状屏幕和制造这种屏幕的方法在共同转让的专利申请PCT WO 99/50710和PCT WO 98/45753中被披露。
概述本发明特别适合在包括投影图像源和屏幕的光学系统中使用。屏幕具有多个(例如,一个阵列)的折射元件(例如,玻璃珠),一个可选择的光学透射底层(基片),一个用来控制环境光注入的可选择的光吸收层;和一个用来控制光学系统的色偏移的偏振光管理层。
照明源提供具有与第一颜色相关联的第一偏振状态和与第二种颜色相关联的第二偏振状态的光。第一偏振状态截然不同的于第二偏振状态。例如,第一种颜色在水平面内可以是完全线性偏振的,并且第二种颜色可以是在垂直面中完全线性偏振光。作为在这里的线性偏振光的环境中被使用的,当所述第一种颜色具有与第二种颜色的偏振状态不同的或截然不同的偏振状态时,即,相对于同一入射面,第一种颜色的p-偏振光和s-偏振光的相对量和第二种颜色的p-偏振光和s-偏振光的相对量是显著不同的(例如,超过百分之十)。最好第一种和第二种颜色中的至少一种颜色是主要颜色。
本发明也可以设计采用上述线性偏振光以外的其它偏振状态的光。例如,第一种颜色可以是具有电磁振动主轴的椭圆偏振光;而第二种颜色也可以是具有电磁振动主轴的椭圆偏振光。
第一种和第二种颜色的主轴可以是相互偏移的。当这些轴相互正交或垂直时,本发明具有特别的优点。
LCD投影仪能提供有足够亮度的光学系统(例如,亮度至少为1000流明ANSI)。当照亮时,由液晶设备(LCD)投影仪提供的光是线偏振的。人们知道,某些基于LCD的投影仪给出两种截然不同偏振状态的绿、红和蓝光分量。绿光的偏振状态和红光和蓝色光的偏振状态相互垂直。例如,绿光呈水平状态。红光和蓝光的混合(紫色)呈垂直状态。人们知道,当这种LCD投影仪与传统的玻璃珠状、背投影屏幕一起使用时,并且沿水平方向或者垂直方向偏轴观察时,观察者可以观察到变化的色偏移或色偏移梯度。
在本发明的一个实施例中,偏振光管理层可以包括一个颜色补偿涂层。颜色补偿涂层减少了光学系统用户可以观察到的色偏移。最好颜色补偿涂层是一个1/4波涂层。颜色补偿涂层也可以具有非均匀的厚度。同样,颜色补偿涂层也可以具有厚度小于1/4波厚度的部分。
在本发明的另一个实施例中,偏振光管理层包括一个颜色补偿漫射涂层。涂层最好包括在其中嵌入微粒(例如,珠)的一个聚合体。聚合体的折射率和珠的折射率之间的折射率差最好较小。
在这里披露的色偏移测试评估利用本发明的较佳实施例的光学系统的色偏移。根据本发明的具有玻璃珠状屏幕的光学系统最好具有根据色偏移测试进行测量时,在六十(60)或更大度数的偏轴角下约为0.010或更小的偏轴色偏移。同样,光学系统最好具有根据色偏移测试进行测量时,在四十五(45)或更大度数的偏轴角下约为0.005或更小的偏轴色偏移。令人惊讶的是,当采用本发明的玻璃珠状背投影屏幕以及具有在两种截然不同的状态下呈绿光、红光和蓝光的光分量的LCD投影仪时,观察者可以观察到色偏移减小了45-70%(取决于偏轴观察角)。
另一方面中,本发明包括如上所述与光学系统一起使用的背投影屏幕。
附图简介读者在结合附图阅读了下文中对本发明各种实施例的详细描述以后,将会更清楚地理解本发明,其中图1是现有技术光学系统的示意图;图2是根据本发明的一个方面的背投影系统的示意图;图3是在与珠状屏幕关联的偏振光的水平面内,的偏振状态强度的示意图;图4是在与珠状屏幕关联的偏振光的垂直面内偏振状态强度的示意图;图5绘出的是背投影屏幕,它具有根据本发明的一个实施例用来控制光学系统色偏移以四分之一波涂层形式的偏振光管理层;图6绘出的是背投影屏幕,它具有根据本发明另一个实施例用来控制光学系统的色偏移以漫射涂层形式的偏振光管理层;图7是用来测量色偏移的测试设备的示意图。
图8是采用图7中的测试设备进行测试时几种屏幕的射偏移与角度关系的图。
图9是图7中用来测量色偏移的测试设备的另一种示意图。
发明服从于不同的更改和可供选择的形式。发明的细节只作为例子在图中被显示。目的不在于限制发明到特殊的被描述的实施例。代替的是,发明覆盖落在权利要求书中定义的发明的精神和范围中的所有的修改,相等物,和可供选择。
详细描述参考图2,本发明特别适合用于光学系统,光学系统包括照明源28、框架25、偏振光管理元件21、可选择的镜面27和屏幕24。虽然举例说明的光学系统20包括镜面27,值得注意的是根据本发明的光学系统不需要包括镜面(例如在图7中所示的照明源和在下面更为详细的讨论)。光学系统可以包括许多不同类型的产品,例如,但不局限于,电视、视频墙、大屏幕电视,和数据监视器。
照明源28投影图像到屏幕24。屏幕24具有一个后背,用来接收从照明源28发出的光和一个前面或观察面。使用中,观察者看着屏幕24的前面来观察由光学系统20提供的图像。在一个较佳实施例中,屏幕24包括一个背投影屏幕例如一个珠状屏幕。将值得注意的是,本发明也可以使用其它的屏幕,包括那些使用有效折射来实现期望的观察角。例如,光学系统20可以包括一个菲涅耳镜头和/或一个透镜镜头或依照美国专利号3,712,707;3,832,032;4,379,617;4,418,986;4,468,092;4,509,823;4,576,850和5,183,597描述的或构造的薄片。
照明源28可以是两种或多个截然不同的偏振状态中的绿色、红色和蓝色光分量。例如,照明源28可以提供具有与至少一个(例如,第一)颜色相关联的第一线偏振状态和与至少一个(例如,第二)颜色相关联的第二线偏振状态。本发明特别可以用于,对于同一入射面,当第一颜色中的p-偏振光和s-偏振光的相对量和第二颜色中的p-偏振光和s-偏振光的相对量是显著不同的(例如,超过百分之十)。例如,纯p-偏振绿色光将具有和纯s-偏振紫(红色和蓝色)光(0%p-偏振光,100%s-偏振光)完全不同的p-偏振(100%)和s-偏振(0%)成分。本发明特别适合用于第一和第二偏振态的主电磁振动的轴相互正交或相互垂直的系统中。最好第一和第二颜色中的至少一个是一个添加的原色(例如,蓝色,红色或绿色)。
本发明适合于与不同的照明源一起使用但它特别适合于与一个提供具有与第一颜色相关联的第一偏振状态和与第二颜色相关联的与第一颜色的偏振状态截然不同的第二偏振状态的光的一个照明源一起使用。
偏振光管理元件21在图2中所示在镜面27和照明源28之间,但本发明的偏振光管理元件可以在光学系统20中的任何地方被提供。例如,偏振光管理元件可以在偏振源28,镜面27,屏幕24,或其组合内。通常,偏振光管理元件21导致了光学系统20的色偏移减小,特别是在增加的偏离轴的观察角上。在图2中所示的偏振光管理元件21可能包括一个颜色转动体或一个1/2波盘。颜色转动体旋转第一颜色来平行的充分地给出第一和第二颜色。
参考图5,所示的本发明的另一个实施例包括在一个屏幕60上的偏振光管理元件。在这个实施例中,偏振光管理元件(在下面讨论)改变了特定的颜色与特定线偏振状态关联性。屏幕60有一个前面或最靠近一个观察者的观察面67,和相对的观察面67一个后面69。可选择的是,观察面67可能具有一个(镀锡板的)糙面精整。
屏幕60具有多个折射元件62(例如,玻璃珠),光透射基片66,和一个光吸收层63。在本发明的这个实施例中,偏振光管理元件包括用来控制光学系统20的观察者观察的色偏移的偏振光管理层61。单独放置偏振光管理层61在屏幕上消除了放置它在光学系统的其它元件上的需要。
由于理解制造和费用限制可能限制放置的精确度,多个折射元件62适宜于放置在充分预先确定的位置中。例如,折射元件62可能被放置在一个排列中,一个精密的或松散的填充排列。
光吸收层63可以被涂在或与光透射基片62相关联。光吸收层63有助于本发明的光学系统控制环境光的注入。
光吸收层63可以是不透明的或完全不透明的。光吸收层63最好包括一个或多个碳黑粉状涂层、黑色染料、不透明的微粒、有机或无机色素或微粒,或这样一种分散在粘合材料中的微粒。它们可以是种类不同或外形不同。材料可以分散在液体的或固体的粘合剂系统中。在一个实施例中,吸收层63包括具有分散在其中的黑色微粒的透明粘合剂。粘合剂可以包括,例如,丙烯酸脂或其它紫外可矫正的聚合体。可以采用传统技术如涂层处理或粉末涂层来施加光吸收层63。
折射元件62可以由玻璃或聚合体物质制成。合适的例子包括玻璃或透明塑胶材料。珠可以包括在普通转让的专利申请PCT WO 99/50710和PCT WO 98/45753中被披露的那些。
基片66最好是透明的或半透明的。合适的透明基片包括柔软的和刚硬的基片例如丙烯酸。基片66在其引出端可以是任选的防眩光的并且是无光洁度的,最好通过模压加工来实现。将值得注意的是,基片66可以是任选的,或者是可以去掉的(例如,如果折射元件62和层63是自立式的)。
层64也可以是任选的。它可以包括用来提供结构整体性的一个透明粘合剂。
现在参考图3,应当理解,一些LCD投影仪给出绿色、红色和蓝色的光分量,呈现两种截然不同的偏振态。值得注意的是,绿色呈现在水平状态,而红色、蓝色组合(紫色)呈现垂直状态。应当理解,当这种LCD投影仪与传统的玻璃珠状、背投影屏幕一起被使用时,并且当沿水平或垂直方向观察时,观察者能够观察到色偏移。色偏移是在通过珠状屏幕这些偏振状态透射中差异的结果。不同的偏振状态是由角度而定来被优先透射或反射的。因为颜色是与偏振态相连的,因而产生可观察的色偏移。
图3示意描述水平面40内的偏振状态强度。在屏幕的背面上入射的光线41具有沿水平方向的偏振分量和沿垂直方向的偏振分量。光线41中,水平方向的偏振光在光线41上用一个圆表示,而垂直方向的偏振光用横越光线41的箭头表示。圆和箭头的相对大小不是按比例绘制的,为描述方便图中作了放大。
入射光41可以被反射为如光线42,或可以最终退出屏幕例如光线45。水平偏振光(这里是p-偏振状态)的输出高于垂直偏振光(这里是s-偏振状态),这是因为在高入射角度下s-偏振光具有更高的反射率的缘故。在退出光45上水平偏振光的较高输出由大箭头表示。结果,当在加大的偏轴角下进行观察时,垂直偏振(例如,蓝光和红光)的颜色比水平偏振(绿光)颜色相对较为暗淡。
图4绘出垂直面中反向应用的情况。图4绘出垂直面50中的偏振状态强度。屏幕背面上入射的光线51具有水平和垂直偏振分量。在光线51中,水平偏振光在光线51上用一个圆表示,而垂直偏振光用穿越光线51的箭头表示。入射光51可以反射为如光线52,或最终退出屏幕如光线54。垂直偏振光(这里是p-偏振状态)的输出高于水平偏振光(那里是s-偏振状态),这是因为在大的入射角度下具有更高的s-偏振光反射率的缘故。在退出光54上垂直偏振光的较高输出用大箭头表示。结果,当在加大的偏轴角下观察时,垂直偏振(例如,蓝光和红光)的颜色比水平偏振(绿色)颜色相对更亮。
现在参考图5,偏振光管理层61可以包括一个色补偿涂层。例如,色补偿涂层可以是选择用来减少光学系统的色偏移的防反射涂层。颜色补偿涂层的特性(例如,尺寸,位置和形状)选择用来大体减小第一和第二颜色在偏轴观察角下的相对透射强度之的差。最好是颜色补偿涂层被选择用来使负责不期望色偏移的颜色透射为最佳。可选择的是,颜色补偿涂层可能为一个特殊的光波长和一个特殊的观察角而被调整。更为适宜的是,颜色补偿涂层可能是一个1/4波涂层。在玻璃珠平面62上的一个1/4波颜色补偿涂层在偏离轴的观察角上为负责不期望色偏移(强度不足波长)的波长增加相对传输。1/4波涂层因此在期望的预先确定的偏离轴的观察角上导致增色的均匀性。
折射元件62适宜是安装在一个吸收性的,高光密度透明聚合体基体中的透明的、球形的折射珠。
珠适宜于与透明粘合剂材料亲密接触。
作为选择,偏振光管理元件可以包括在玻璃珠上的一个表面粗糙的或无反光的。这种结构可以通过喷沙使珠变粗糙来提供或通过提供弱酸浴(例如,氢氟酸)。这种实施例无需在屏幕上采用其它材料。
偏振光管理层61可以包括通过水蒸气涂上玻璃珠表面而采用的1/4波冰晶石(Na3AlF6)涂层。其它适合的颜色补偿涂层可包括,但不局限于氟化镁(MgF2)或一个多层的MgF2/ZnS。
层65是一个任选光学粘合剂,最好迭用层状结构。光学粘合剂65被认为是适合于在PCT WO 97/01610中所披露的。粘合剂层65可以被完全省略,如果,例如,或者粘合剂64或者光吸收层63将珠62黏附到基片66上。
另外,颜色补偿涂层可以具有一个非均匀的厚度(未显示)。也可作为选择的,颜色补偿涂层可以具有厚度小于1/4波厚度的部分。
图6示出根据本发明的一个方面的屏幕70的另一个实施例。屏幕70具有最接近于观察者的前面或观察面77,和相对于观察面77的后面79。可选择的是,观察面77可以有一个无反光面。
屏幕70有一个折射元件72(例如,玻璃珠)阵列,光透射基片76,光吸收层73;和用来控制光学系统的色偏移的偏振光管理层71。
光吸收层73与光透射基片76相关联并且有助于控制屏幕70的环境光注入。偏振光管理层71包括涂层,用来至少部分改变至少一种颜色的偏振态。涂层71至少部分地使背面79上引入的入射光去偏振。偏振状态和颜色的不相关导致屏幕的色偏移的减小。可选择的是,将冰晶石涂层(例如,在图5中的61)添加到涂层71上。
透明的,球形的,折射珠72最好安装在一个吸收性的,高光密度聚合体基体中并且与透明粘合剂材料紧密接触。层75表示一个可选择的光学粘合剂,最好采用层叠结构。层76是用在引出端上由模压加工完成的一个可选择的防反光的无发射粗糙面的基片(例如,刚硬的丙烯酸的)。涂层71可以是分散在聚乙烯醇缩丁醛(PVB)(nPVB=1.49)由15wt%聚苯乙烯珠(0.005mm)(nPS=1.55)组成的玻璃珠平面上的一个0.013mm涂层。
层74是可选择的。它可以包括用来提供结构整体性的一个透明粘合剂层。
合适的涂层71可以包括具有微粒在其中的一个基质或基体。
更为适宜的是,微粒折射指数接近于基体折射指数(例如,Δn=n微粒-n基体~小)所以相互作用的一个最大值用可能减少屏幕的光亮度的散射的一个最小值来获得。更适宜的是,在折射指数中的差异小于0.10,更为适宜的是0.06或更小。可选择的是,其它因素可能被改变来获得期望的结果。例如,在基体中的微粒数目可能被改变(例如,增加)来获得期望的结果。
本发明特别适合在光学系统中用来使用,其中观察者可能被安置在大的偏离轴的观察角上。更适宜于,本发明的光学系统可能在超过大约十(10)度的偏离轴的观察角上被观看。更为适宜的是,本发明的光学系统可能在超过大约二十(20)度的偏离轴的观察角上被观看。甚至更为适宜的是,本发明的光学系统可能在超过大约三十(30)度的偏离轴的观察角上被观看。
色偏移测试在这里披露的一个色偏移测试评估利用本发明的较佳实施例的一个光学系统的色偏移。图7和图9举例说明根据本发明的一个方面用来进行色偏移测试的一个测试设备。测试设备由一个Photo Research(光子研究)PR650光谱色度计8 1和额定在1400流明的一个Toshiba TLP-710 LCD投影仪组成,它使用具有在交叉偏振模式中操作的LCD的LCD imater。几个屏幕82被测试。屏幕82被放置在距投影仪83的投影镜头的一个距离Y(大约36英寸或91.3厘米)和到色度计81的输入孔的一个距离或半径X(大约32英寸或81.2厘米)处。
PR 650的角度θ是使用Parker 360度转盘来获得的。
色度计被用来测量通过投影仪83投影到背投影测试屏幕82上的图像的颜色。在为色偏移的测试期间,投影仪83在屏幕82上投影清晰的白色图像。色度计81被设置来观看在屏幕82上从特定区域(在图9中轴A和半径X的交叉点)中散发的2°锥面光。色度计81被放置在不同的角度O上和颜色坐标被测量,使用1976 CIE统一的色度坐标u’和v’。颜色坐标u’0,v’0,在θ=0上被测量,被采用作为基线颜色,所以从这些基线值在u’,v’中的差异可以在那时被采用作为色偏移,从此以后被表示为S。色偏移S被计算如下S={|u′-u′0|2-|v′-v′0|2}1/2]]>这些测试的结果在表1和在图8中被显示。大约0.010的色偏移通过肉眼可发觉。
可以安装测试设备来测量在0°(标号85),15°(标号86),30°(标号87),45°(标号88),60°(标号89),70°(标号90)和80°(标号91)角上的几个背投影屏幕82的色偏移。被测量的屏幕82如下1.一个先前技术的珠状背投影屏幕(3M的XRVS屏幕)。
2.本发明的一个实施例包括一个珠状背投影屏幕,它具有施加到珠状表面的1/4波冰晶石(Na3AlF6)涂层。
3.本发明的一个实施例包括一个珠状背投影屏幕,它具有在折射元件表面上被分散在聚乙烯醇缩丁醛中的15wt%聚苯乙烯珠(0.005mm)的一个0.013mm涂层。
4.一个先前技术珠状背投影屏幕,它具有在珠状表面上的聚乙烯醇缩丁醛的一个0.025mm涂层。
5.一个先前技术漫射背投影屏幕(3M的XRVS屏幕)由被薄片叠成到一个刚性丙烯酸基片的一个0.40mm紫外可矫正的丙烯酸脂组成。这个例子被包括作为当与一个交叉偏振投影仪一起被使用的时候展示一个低色偏移的一个屏幕的一个例子。
在表1中披露色偏移测试中的结果。
表1
表1的结果示于图8中。曲线101相应于屏幕#1。曲线102相应于屏幕#2。曲线103相应于屏幕#4。曲线104相应于屏幕#3。曲线105相应于屏幕#5。
更适宜的是,根据本发明的具有一个玻璃珠状屏幕的一个光学系统展示根据色偏移测试测量时,在六十(60)或更大度数的偏离轴的角上大约为0.010或更小的一个偏离轴的色偏移。同样更适宜的是,光学系统展示根据色偏移测试测量时,在四十五(45)或更大度数的偏离轴的角上大约为0.005或更小的一个偏离轴的色偏移。
如在表1和图7和8中可见的,为小于偏离轴60°的观察角或(一个120°可视锥),被涂上1/4波冰晶石的屏幕展示在一个传统玻璃珠状屏幕上从70%(0°-45°)到45%(~60°)的色偏移范围的一个减少。被涂上1/4波冰晶石的屏幕也展示和或胜于在这个范围的角度上的传统漫射屏幕在大于60°的角上,1/4波冰晶石涂层的效率逐渐减少,它与这个类型的颜色补偿涂层相一致。然而,大多数的背投影屏幕在大于60°的偏离轴的角上几乎不可见。
用在聚乙烯醇缩丁醛中被分散的15wt%聚苯乙烯珠(0.005mm)的一个0.013mm层涂上的珠状背投影屏幕减少了色偏移,相似于偏离轴为小于60°的观察角的冰晶石涂层屏幕。然而在大于60°的角度上这个涂层展示了一个20%的提高相对于在或者聚乙烯醇缩丁醛或者冰晶石涂层屏幕上。这种涂层可能与一个最佳的糙面反光精整结合来将斑点(或发出火花)减到最少。如在这里使用的,斑点(或发出火花),一个任意强度分布,被组成当部分相干光遇到一个漫射平面例如一个糙面精整时。由漫射平面的分散引起的作为结果的干涉图案导致了斑点。斑点通过掩饰高空间频率信息内容显著的减少了屏幕的清晰度并且导致了一个非常不期望的粒状的外观。
在以上描述中,元件的位置有时在术语“上部的”,“下部的”,“在上的”,“在下的”,“垂直的”,“水平的”,“顶部的”和“底部的”中来被描述。这些术语只被使用来简化发明不同元件的描述,例如在图中举例说明的那些。它们不需要被理解在本发明元件的有用方向上放置任何限制。
因此,本发明将不被认为限制了以上说明的特殊实施例,但是更合适的是应该理解来覆盖发明的所有方面如清楚地在权利说明书中陈述的。对于本发明可能应用的不同的修改,相等物,和众多的结构对于在本发明规格书的评论上用来引导本发明的在技术上的那些熟练技能者来说是相当显然的。权利说明书意在覆盖这种修改和设备。
权利要求
1.一种光学系统,其特征在于,它包括照明源,用来提供具有与第一颜色相关联的第一偏振状态和与第二颜色相关联的第二偏振状态的光;所述第一偏振状态截然不同于所述第二偏振状态,屏幕,它包括多个排列的折射元件,用以提供具有预定光学特性的光学系统,光传输基体,与所述光传输基体关联的光吸收层,用来控制环境光的注入;所述照明源和所述屏幕为所述光学系统限定了一条光路;偏振光管理元件,它位于所述光路中,用来减少光学系统的色偏移。
2.根据权利要求1所述的光学系统,其特征在于,所述第一颜色是线性偏振光,所述第二颜色是线性偏振光。
3.根据权利要求1所述的光学系统,其特征在于,所述第一颜色是绿色,所述第二颜色是红色和蓝色的的混合(例如,紫色)。
4.根据权利要求1所述的光学系统,其特征在于,所述第一颜色和第二颜色中的至少一种颜色是一种主要颜色。
5.根据权利要求1所述的光学系统,其特征在于,所述照明源是一种液晶装置(LCD)。
6.根据权利要求1所述的光学系统,其特征在于,所述光学系统具有偏轴观察角,所述第一颜色和第二颜色在偏轴观察角处具有不同的透射强度,并且所述偏振光管理元件的大小和形状用以减小偏轴观察角下第一颜色和第二颜色的相对透射强度的差异。
7.根据权利要求1所述的光学系统,其特征在于,所述屏幕具有一个后面和一个观察面,并且所述偏振光管理元件包括在屏幕的后面上的一个颜色补偿涂层。
8.根据权利要求7所述的光学系统,其特征在于,所述颜色补偿涂层是一个1/4波涂层。
9.根据权利要求7所述的光学系统,其特征在于,所述颜色补偿涂层具有非均匀的厚度。
10.根据权利要求7所述的光学系统,其特征在于,所述颜色补偿涂层具有厚度小于1/4波厚度的部分。
11.根据权利要求1所述的光学系统,其特征在于,所述光学系统包括珠状屏幕,用于在按照色偏移测试进行测量时,在六十(60)或更大度数的偏轴观察角下,给出大约为0.010或更小的偏轴色偏移。
12.根据权利要求1所述的光学系统,其特征在于,所述光学系统在按照色偏移测试进行测量时,在四十五(45)或更大度数的偏轴观察角下,给出大约为0.005或更小的偏轴色偏移。
13.根据权利要求1所述的光学系统,其特征在于,所述管理元件是一个颜色转动体,用以旋转第一颜色,从而大体平行地给出第一颜色和第二颜色,并且其中,颜色定位器位于屏幕以外所述光学系统的一个元件上。
14.根据权利要求1所述的光学系统,其特征在于,所述照明源在下述状态下提供光与第一颜色关联的第一线性偏振状态;与第二颜色关联的第二线性偏振状态;和与第三颜色关联的第三线性偏振状态,其中,所述第一、第二和第三颜色相互之间是不同的并且互相之间偏移。
15.一种用于光学系统中的背投影屏幕,所述光学系统具有偏轴观察角,并使用一个提供具有与第一颜色相关联的第一偏振状态和与第二颜色相关联的第二偏振状态的光的照明源;所述第一偏振状态截然不同于第二偏振状态,所述第一和第二颜色具有在偏轴观察角下的透射强度,所述背投影屏幕包括多个折射元件;和偏振光管理层,其大小和形状用以减小偏轴观察角下的第一和第二颜色的相对透射强度的任何差异,以减少光学系统的色偏移。
16.根据权利要求15所述的背投影屏幕,其特征在于,所述偏振光管理层包括一个颜色补偿涂层,它减小了由于光具有与第一颜色相关联的第一偏振状态和与第二颜色相关联并且与第一偏振状态截然不同的第二偏振状态而形成的所述光学系统的色偏移。
17.根据权利要求16所述的背投影屏幕,其特征在于,所述颜色补偿涂层是一个1/4波涂层。
18.根据权利要求16所述的背投影屏幕,其特征在于,所述颜色补偿涂层具有非均匀的厚度。
19.根据权利要求16所述的背投影屏幕,其特征在于,所述颜色补偿涂层具有厚度小于1/4波厚度的部分。
20.根据权利要求15所述的背投影屏幕,其特征在于,所述屏幕包括玻璃珠,并且所述屏幕具有根据色偏移测试进行的测量时,在六十(60)或更大度数的偏轴观察角下,小于大约为0.010的偏轴色偏移。
21.根据权利要求15所述的背投影屏幕,其特征在于,所述屏幕具有根据色偏移测试进行测量时,在四十五(45)或更大度数的偏轴观察角下小于大约为0.005的偏轴色偏移。
22.根据权利要求15所述的背投影屏幕,其特征在于,所述偏振光管理层包括用来至少部分改变至少一种颜色的偏振状态的涂层。
23.根据权利要求22所述的背投影屏幕,其特征在于,它还包括一个1/4波涂层。
24.根据权利要求15所述的背投影屏幕,其特征在于,所述多个折射元件包括玻璃珠,并且在玻璃珠之前,所述偏振光管理层接收光。
25.根据权利要求15所述的背投影屏幕,其特征在于,所述偏振光管理层包括的层数大于一层。
26.根据权利要求15所述的背投影屏幕,其特征在于,所述屏幕包括与用来控制环境光注入的光透射基片相关的光吸收层和一个光透射基片。
27.一种光学系统,其设计用来在超过大约十(10)度和小于大约六十(60)度的偏轴观察角下进行观察,其特征在于,它包括照明源,用来提供具有与第一颜色相关联的第一偏振状态和与第二颜色相关联的第二偏振状态的光;所述第一偏振状态截然不同于所述第二偏振状态,屏幕,它包括折射元件阵列,光透射基片,与光透射基片关联的光吸收层,用来控制环境光的注入;介于照明源和屏幕内和之间的光路;和颜色补偿装置,它位于所述光路中,通过减少偏轴观察角下所述第一颜色和第二颜色之间的相对透射强度的差异,用来减小所述光学系统的色偏移。
全文摘要
本发明描述一种具有改进色偏移特性的光学系统。最好系统包括一个背投影显示器,它包括在第一和第二截然不同的偏振状态下提供光的光源(28),和珠状屏幕(24)。
文档编号G03B21/10GK1474959SQ01819154
公开日2004年2月11日 申请日期2001年11月7日 优先权日2000年11月21日
发明者A·J·皮佩尔, R·S·莫什若夫扎德, G·T·博伊德, A J 皮佩尔, 博伊德, 莫什若夫扎德 申请人:3M创新有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1