光罩/掩模系统的自适应实时控制的制作方法

文档序号:2764595阅读:252来源:国知局
专利名称:光罩/掩模系统的自适应实时控制的制作方法
技术领域
本发明涉及半导体处理系统,具体而言,涉及用于提供光罩/掩模系统的温度的实时控制的热处理系统。
背景技术
光刻在许多非常微型的器件的制造中是重要的一步。半导体器件、薄膜记录头和微机械器件是利用光刻制作的器件的示例。半导体器件电路正变得越来越微型化。微型化的发展使得光刻工艺的精度越来越严格。光刻工具是用于在半导体器件、薄膜记录头和微机械器件的生产中执行光刻工艺的机械。
用于集成电路(IC)的半导体器件可以由二十层或更多层构成。一般来说,每一层需要特定的光掩模。在IC设计已完成后,其必须被验证,然后工艺进行到光掩模创建步骤中。光掩模在半导体制造的光刻工艺中是一个非常重要的元件。通常,光罩、光掩模或掩模包括包含集成电路的不同层的精密图像的高质量石英或玻璃板。掩模用于将这些图像光学地转移到半导体晶片上。
在许多情况下,在设计被验证后,其被转换为GDSII格式文件,掩模制作工艺将该文件转换为描述到掩模发生器的图案的设计数据。光敏抗蚀剂层被施加到空白掩模顶部的铬层上,并且掩模发生器使用电子束或激光来将图案写到光敏抗蚀剂层上,以在光敏抗蚀剂层中产生图案。
然后对光敏抗蚀剂的图案化层进行显影。这暴露了只在期望电路图案处的下层的铬。然后刻透裸露的铬。在刻蚀后,剩余的抗蚀剂被完全剥离,留下了电路图像作为在不透明铬膜中的透明图案。
光掩模,“光罩”或“掩模”包含用于集成电路的光刻制造的图案。该工艺是复杂的,并且要求成像系统和光罩/掩模具有高度的稳定性以确保精确成像。例如,光刻工具可以使用光掩模来印刷小于0.15微米的电路元件,并以几个纳米的精度使其对准。电路元件(晶体管)产生在大的硅晶片上。一般来说,IC制造工艺包括将电路图案转移到已经涂覆在半导体晶片上的抗蚀剂膜中。
IC制造工艺通常需要对电路的每层制造光掩模。用于光掩模生成的制造过程和设备需要最好的精度和已知的可再现的成像技术。光罩的质量可以影响实际IC制造的产率。
光掩模在光掩模制造期间经受局部温度变化。这些温度导致可能对掩模制作精度有不利影响的温度梯度和热应力。这种情况下,强烈期望在光掩模制造期间更精确地控制光掩模的热处理温度。掩模制造期间掩模的温度控制因为难以实时监视整个掩模的局部温度而变得复杂。这种温度和其分布特性在制造过程期间不断改变。类似地,在使用掩模来制作半导体器件或其他器件的工艺中的掩模温度变化可能对光刻工艺的精度有不利影响,并且降低被制作的器件的质量。
例如,在用于制造半导体器件或液晶器件(LCD)的类型的光刻工艺中,抗蚀剂涂覆在衬底上,并对所得到的抗蚀剂涂层膜进行曝光和显影。这一系列处理可以在涂覆/显影系统中执行。涂覆/显影系统有诸如前烘单元和后烘单元之类的加热部分。这些加热部分中的每一个都有加热装置,加热装置内置有电阻加热型的加热器。
晶片处理的关键要求是用于控制晶片上的特征结构的光罩/掩模的精确性。光罩/掩模制造中的许多步骤可以导致产生不精确的光罩/掩模。例如,光罩/掩模的临界尺寸(CD)的变化可能由热处理步骤期间光罩/掩模上的热分布特性的变化引起,并且热响应的变化也可能导致在不同光罩/掩模和在不同时间生产的光罩/掩模之间产生匹配问题。
光罩/掩模的制造工艺还要求施加抗蚀剂和由此导致的加热步骤、曝光步骤和显影步骤。例如,前烘和后烘是根据具有预定极限的各个工艺方案在多种热处理条件下执行的。当光罩/掩模温度超出可接受的温度范围时,无法制造出可接受的光罩/掩模。

发明内容
本发明提供了一种用于在热处理系统中比现有技术更精确地控制光罩/掩模的温度的方法和装置。该操作热处理系统的方法包括将要由系统处理的光罩/掩模放置在包括多个分段的加热装置上;创建系统的动态热模型;利用系统的动态热模型建立多个智能设置点,其中对于加热装置的多个分段中的每一个创建至少一个智能设置点;以及利用至少某些智能设置点控制每个分段的实际温度。加热装置是可以加热或冷却分段的温度受控装置。该方法尤其适用于在光罩/掩模上维持基本均匀的温度分布特性。还提供了被配置用于执行该方法的热处理系统。
根据本发明的某些优选实施例,创建了包括被处理掩模的热处理系统的数字仿真模型。该模型在动态基础上复制了系统的温度和热梯度。该模型基于系统和掩模的热流特性计算整个系统和被处理掩模上的温度。其计算加热装置的分段的“智能”设置点温度(在掩模中各点处产生期望的温度所要求的温度),并控制获得所计算的设置点温度的加热系统参数。在系统中选定点处的实际温度测量结果可用于检验并修正计算,从而使模型对应于在系统和掩模中的相应点处的实际温度。包含在模型中的算法可以理论地或经验地导出,并且优选地通过组合这些技术导出。导出可以通过对测试掩模进行实际温度测量,同时操作该系统经过要控制的工艺的若干循环来完成。


并入在说明书中并且构成本说明书的一部分的附示了本发明的实施例,并且与上面给出的本发明的概述以及下面将要给出的详细描述一道,用来说明本发明的原理。
图1示出了根据现有技术和本发明实施例用于制作光罩/掩模的方法的简化流程图;图2示出了根据本发明实施例的热处理装置的简化框图;图3示出了根据本发明实施例的加热装置的示意图;图4示出了根据本发明实施例用在模型开发中的加热器功率以及板和掩模温度的图;图5图示了根据本发明实施例包括多变量控制的光罩/掩模系统的简化框图;图6示出了根据本发明实施例的多输入/多输出(MIMO)系统的简化框图;图7图示了根据本发明实施例包括智能设置点控制器的光罩/掩模系统的简化框图;图8图示了根据本发明实施例的虚拟传感器的示意性图示;图9图示了根据本发明实施例的热受控的光罩/掩模系统的动态模型的示意性图示;图10A和10B示出了根据本发明实施例的智能设置点的示例性图;图11示出了根据本发明实施例的虚拟传感器的测量和仿真数据;图12示出了光罩/掩模上不同位置处的归一化热剂量(反应供应量);图13-15示出了根据本发明实施例具有不同曲率的光罩/掩模上的不同位置处的结果;以及图16图示了根据本发明实施例用于操作热处理装置的方法的简化流程图。
具体实施例方式
根据本发明的某些实施例,自适应实时CD(ARCD)控制系统被用于克服现有技术的问题。ARCD控制系统可以包括一组核心技术包括虚拟感应,其可以使用户能够通过从系统的虚拟模型计算光罩/掩模温度来“测量”这些温度,从而消除在生产期间用仪器测量光罩/掩模的必要;多变量实时控制,其能够控制光罩/掩模温度,并且包括时变的设置点;以及智能设置点控制,其能够使整个光罩/掩模上的CD均匀。光学数字外形(ODP)技术可用于在光罩/掩模验证工艺期间获得CD测量结果。
图1示出了用于制作光罩/掩模的方法的简化流程图。在光刻工艺期间,光罩/掩模用于将复杂的电路图案成像到光敏材料上,光敏材料用于在半导体器件的处理期间提供物理阻隔层(barrier)。
过程100代表可以应用本发明的典型工艺。过程100开始于110,掩模制作系统可以包括一个或多个转移部件(未示出),其中转移臂机构用于在处理站之间转移光罩/掩模。转移臂机构可以包括用于夹持光罩/掩模的夹持器部分(未示出)和用于沿至少一个方向移动夹持器部分的移动机构(未示出)。
在115中,可以向空白板的一侧施加阻挡层(含金属的化合物);空白板对于用于光刻工艺的某种类型的辐射或带电粒子来说是透明的。一般来说,空白板是高纯度石英或玻璃材料。阻挡层可以包括不透明部分和半透明部分。例如,可以使用诸如铬之类的金属。
在120中,可以向空白板施加抗蚀性材料。抗蚀性材料可以利用旋涂器施加。例如,抗蚀性材料可以通过将光罩/掩模安装在杯座(未示出)内的旋转卡盘(未示出)上来施加。可以使用化学放大抗蚀剂(CAR)。CAR可通过检查酸性成分、淬灭成分和抑制剂淬灭剂来表征。在某些实施例中,抗反射层可以沉积在抗蚀性材料下方。在某些实施例中,可以在施加抗蚀性材料之前提供粘附层。
由于DUV辐射的低光谱能量,所以对CAR进行显影。对CAR显影是为了增强曝光工艺。CAR包括不可溶解在显影剂中的一种或多种成分。这些成分可以包括化学保护剂。CAR也可以包括光致酸发生剂(PAG)。在曝光步骤期间,PAG产生包括图像信息的酸性分子。理想地,酸性分子保持不活动,直到执行曝光后烘(PEB)。PEB驱动去保护反应正向进行,其中热能使得酸与化学保护剂反应。
在125中,可以执行施加后烘(PAB)来固化抗蚀剂。在替换实施例中,固化步骤是不需要的。另外,可以在PAB之后执行冷却步骤。一般来说,处理单元(冷却单元和加热单元)的布置减少了单元之间的热干扰。在替换实施例中,可以使用单个加热/冷却单元。
在PAB加热单元中,可以将光罩/掩模加热到至少高于室温的温度,而在冷却单元中,可以将光罩/掩模冷却到室温或低于室温的温度。例如,加热单元可以包括处理室,处理室可以包括内嵌有电阻加热器的加热装置。
在130中,图案化抗蚀剂。抗蚀剂材料的属性可以利用辐射或带电粒子图案化。所期望的图案可以利用高能电子束或激光束阵列产生在光罩上。例如,可以使用深紫外(DUV)光刻。DUV光刻是一种关键技术,其可用于制造特征尺寸为0.25微米或更小的半导体器件。另外,可以使用受激准分子激光器。受激准分子激光器为用于制造特征尺寸小于0.25微米的半导体器件的精密DUV光刻工具提供了高能光。受激准分子激光通过在室内混合两种气体(如氪和氟化物(KrF)或氩和氟化物(ArF)),然后施加短时间的放电来生成。
在其他情形中,极端紫外(EUV)源可用于低于0.05微米的临界尺寸。EUV光刻采用波长范围从约5nm到50nm(大多数情况下约为13nm)的光。
在135中,可以执行PEB工艺来驱动去保护反应正向进行。去保护反应是酸驱动的,并且发生在被曝光区域中。在替换实施例中,PEB步骤是不需要的。另外,可以在PEB之后执行冷却步骤。一般来说,处理单元(冷却单元和加热单元)的布置减少了单元之间的热干扰。在替换实施例中,可以使用单个加热/冷却单元。
在PEB加热单元中,可以将光罩/掩模加热到至少高于室温的温度,而在冷却单元中,可以将光罩/掩模冷却到室温或低于室温的温度。例如,加热单元可以包括处理室,处理室可以包括内嵌有电阻加热器的加热装置。
PEB工艺在光刻工艺中扮演了一个重要的角色。热处理抗蚀剂可能具有很多目的,从移去溶剂到催化化学放大。除了期望结果外,热处理还可能引起大量问题。例如,抗蚀剂的光敏成分可能在一般用来移去溶剂的温度处分解,这对于化学放大抗蚀剂来说是一个及其严重的问题,因为剩余的溶剂含量对扩散和放大速率有强烈的影响。另外,热处理可能影响抗蚀剂的溶解属性,从而对被显影的抗蚀剂外形有直接的影响。
在140中,对抗蚀剂显影。例如,可以使用显影溶液,如2.3wt%的氢氧化四甲基铵(TMAH)溶液。另外,还可以执行冲洗步骤。例如,显影溶液和/或冲洗溶液可通过将光罩/掩模安装在杯座(未示出)内的旋转卡盘(未示出)上来施加。
在145中,图案可以被转移到光罩。例如,可以使用刻蚀工艺。过程100在150结束。
此外,可以检查光罩/掩模以确定其是否已经正确地制造。光罩/掩模可以存储在无污染环境中,这是因为粒子可能会引起成像问题。
图2示出了根据本发明实施例的热处理装置的简化框图。热处理系统200包括处理室210、夹持组件220和控制器260。光罩/掩模215被示为在夹持组件220的顶部。光罩/掩模215可以利用转移系统(未示出)通过可控制的开口(未示出)加载到处理室210中以及从处理室210中卸载出来。夹持组件220可以包括包含加热元件235的加热装置230、隔离单元240和包括冷却元件255的安装组件250。夹持组件220可以包括用于测量温度的传感器(未示出)、用于支撑光罩/掩模的支撑装置和用于升高和降低光罩/掩模的抬升装置(未示出)。或者,夹持组件不包括抬升装置。
如图2所示,控制器260可以耦合到处理室210和夹持组件220,并且可用于控制处理室210和夹持组件220。另外,控制器260可以与一个或多个附加控制器(未示出)交换数据。例如,处理系统控制器可以向控制器260提供前馈数据。前馈数据可以包括光罩/掩模信息,如层信息、工艺信息和度量信息。层信息可以包括层的数目、层的组成和层的厚度。工艺信息可以包括关于在先步骤的数据和用于当前步骤的工艺方案信息。度量信息可以包括CD数据和光学数据,如折射率(n)数据和消光系数(k)数据。
光罩/掩模215和夹持组件220可以具有方形形状。另外,加热装置230可以具有方形形状,并且可以包括多个分段232。另外,每个分段232可以包括加热元件235。例如,单独可控加热元件可以位于加热装置的各段内。在替换实施例中,加热装置可以包括冷却元件和/或组合的加热/冷却元件。此外,加热装置230可以包括多个温度传感器。例如,温度传感器(未示出)可以位于加热装置230的每个分段内。另外,一个或多个附加温度传感器可以耦合到夹持组件220。
热处理系统200可以包括传感器(未示出),该传感器可以是物理传感器和/或虚拟传感器。这些传感器是控制器260所用的温度数据的源,并且代表各部分232和掩模215中的各点的实际温度,控制器260根据该实际温度进行判定以控制向加热装置230的各部分232的加热元件235施加的功率和其温度。例如,由软件计算并且维护在控制器260的存储器中的动态热模型可以包括温度组分,用于确定光罩/掩模215的温度分布特性,该温度分布特性部分是由所计算的掩模中各点处的温度的实时值构成的。这些计算值可以当作虚拟传感器的输出,这些虚拟传感器是动态热模型的元件,并且用来代替不能可靠使用的实际物理传感器。然而,优选地采用多个实际物理传感器来测量室组件的温度,并对掩模采取非接触式温度测量。来自这些物理传感器的数据可被控制器260用来调整并校正动态热模型中的计算。另外,热处理系统200可以包括至少一个压力传感器。
控制器260可以从附加控制器接收置入的光罩/掩模的前馈数据。前馈数据是与要放置在夹持组件220上的下一掩模215的属性和参数有关的数据。控制器260可以使用前馈数据来估计整个光罩/掩模的应力。控制器260可以包括用于确定光罩/掩模平整度的装置。控制器可以基于其接收到的前馈数据来预测对置入的光罩/掩模的热响应。然后,控制器可以对多个加热装置分段中的每一个创建智能设置点。智能设置点是由控制器260对于每个分段232所计算的设置点温度,该温度是控制器260要控制加热器235实现的温度。这些设置点可以是动态的或变化值的,该值是控制器260基于动态热模型的分析确定的。然后,置入的光罩/掩模以均匀的方式被加热,这是因为已计算了智能设置点以补偿光罩/掩模的各种独特属性(包括其外形)。
例如,控制器260可以包括微处理器、存储器(例如,易失性和/或非易失性存储器)和能够控制热处理组件的数字I/O端口。另外,存储在存储器中的程序可用于根据工艺流程控制热处理系统的前述组件。另外,控制器可被配置用于分析所测得的数据,将所测得的数据与目标数据相比较,并使用比较结果来改变工艺和/或控制热处理系统200的组件。另外,控制器可被配置用于分析所测得的数据,将所测得的数据与历史数据相比较,并使用比较结果来预测和/或声明故障。
热处理系统200还可以包括用于控制处理室210内的压强的压强控制系统(未示出)。另外,热处理系统200还可以包括用于向处理室210提供处理气体的气体供应系统(未示出)。在替换实施例中,热处理系统200可以包括监视设备(未示出)。监视设备例如可以对光罩/掩模进行光学监视。
在替换实施例中,热处理系统200还可以包括快门组件(未示出)。快门可以在处理期间位于不同位置处,以改变光罩/掩模的热响应。例如,快门可用于控制当在光刻工艺中通过掩模对半导体晶片曝光时来自光罩/掩模的辐射能,或者在掩模制造期间到达光罩/掩模的辐射能。通过控制这种快门,在掩模中各点处的温度和掩模中的热梯度可以以这样的方式控制,该方式最好地维持了所期望的温度分布特性、温度均匀性和热应力分布。曝光序列的示例由图3中所示的分段的数字序列示出。
图3示出了根据本发明实施例的加热装置的示意图。在图3中,示出的方形加热装置230具有多个方形段232。在图3中示出了25个分段,但是这并不是本发明所要求的。加热装置可以包括不同数目的分段,分段的形状也可以不同。例如,可以使用矩形、六边形和/或圆形。在图示实施例中,加热装置的每个分段包括加热元件(未示出),并且每个加热元件可以被独立控制。
图3中的每个分段232标有数字,该数字代表其在曝光序列中的位置。图示编号的序列不是本发明所要求的。可替换地,可以使用不同编号的序列。在实现序列时,控制器260可以设置传递到分段的能量的量,或者可以设置曝光的光强度,或者以其它方式设置从分段到分段的一个或多个参数。或者,控制器260可以确定最好地实现了控制目的的序列。
用于光罩/掩模的热处理步骤与用于晶片处理系统的热处理步骤类似。然而,存在许多区别。例如,光罩/掩模可以是方形的;加热装置可以是方形的;光罩/掩模比晶片厚;光罩/掩模可以包括不同材料;并且光罩/掩模可以包括不同的层结构。另外,光罩/掩模的较大的热容使得其行为与晶片不同。
下面的表1提供了典型系统的尺寸、材料类型和配置。
表1

图4示出了根据本发明实施例用在模型开发中的加热器功率以及板和掩模温度的图。例如,物理温度传感器可以位于加热装置内,和/或仪器化的测试光罩/掩模内。该图示出了施加到加热器的测试信号以及加热装置和/或光罩/掩模的动态温度响应。采样每秒进行。
图5图示了根据本发明实施例包括多变量控制的光罩/掩模系统的简化框图。本发明包括创建系统的热响应模型。该动态模型可以包括加热器分段、加热装置和/或光罩/掩模之间的相互作用。于是,动态模型可用于创建实时控制所估计的光罩/掩模温度的多变量控制器。在各种实施例中,仪器化的光罩/掩模可用于创建和/或验证该动态模型。
例如,对于要处理的各种光罩/掩模类型可以创建一组模型-这可以考虑到光罩曲率,并且可以实时补偿热响应中的变化。在一种情况下,分析包括3种光罩/掩模类型(例如,每种不同的已知曲率)。
本发明可以应用这些技术来减小光罩/掩模上临界尺寸(CD)的变化,减小光罩/掩模上特征结构外形的变化,最小化光罩/掩模曲率的影响,并提高一个光罩/掩模与另一个的匹配性。CD和外形的测量可以应用到特征结构、过孔和层。例如,可以对于曝光工艺创建智能设置点控制(ISC)方法。ISC方法(下面将说明)可以概括如下1)创建光罩/掩模系统的动态热模型。
2)在动态热模型中并入光罩/掩模曲率。
3)将扩散-放大模型耦合到动态热模型中。
4)创建光罩/掩模系统的至少一个多变量控制器。
5)将标称设置点参数化到包括智能设置点在内的向量中,并创建工艺敏感性矩阵。
6)利用高效优化方法和工艺数据创建智能设置点。
7)创建方法来选择运行期间的设置点和适当模型。
图6示出了根据本发明实施例的多输入/多输出(MIMO)系统300的简化框图。通常,实际系统是动态复杂的,并且是非线性的。其瞬时响应对于性能来说是重要的,并且常常难以确定。系统的控制输出,如运行时温度传感器304或确定的方法305,受未知扰动303的影响。通常,对于MIMO系统,每个输入(例如功率)301可以影响多个输出(例如气流、膜厚)302。
图7图示了根据本发明实施例包括智能设置点控制器的光罩/掩模系统的简化框图。在图示实施例中,示出了受控设备(DUC)以及虚拟传感器、多变量控制器和智能设置点控制器。例如,DUC可以是热受控的光罩/掩模系统。
另外,示出了第一工艺和第一传感器。例如,第一工艺可以是热工艺,第一传感器可以提供来自第一工艺的输出数据和/或误差数据,如温度数据,以用于使加热装置控制光罩/掩模的温度。另外,示出了第二工艺和第二传感器。例如,第二工艺可以是显影工艺,第二传感器可以提供来自第二工艺的输出数据和/或误差数据。在一种情况下,第二传感器可以是ODP传感器,并且CD、外形和均匀性数据可以由ODP传感器提供。在另一种情况下,第二传感器可以是扫描电子显微镜(SEM)。可替换地或另外地,第二或第三工艺可以是曝光工艺。
智能设置点控制器可以计算时变设置点(TVS),并向多变量控制器提供TVS。智能设置点控制器和多变量控制器可以包括硬件和软件组件。虚拟传感器可以向多变量控制器提供计算的光罩/掩模温度和/或加热装置温度,多变量控制器可以控制向加热装置分段内的加热元件施加功率的操作。
图8图示了根据本发明实施例的虚拟传感器的示意性图示。在图示实施例中,示出的虚拟传感器包括例如代表掩模内的温度的动态模型组分、测量物理变量(如加热装置或另一个室组件上的一点处的温度)的物理传感器组分、调控诸如施加到加热器的电压或功率之类的变量的被操作变量组分和将动态模型组分与来自物理传感器和被操作变量的信息相关联的软件算法组分。虚拟传感器可视作包括来自多个“物理”传感器的信息的基于算法的合并的复合设备。虚拟传感器是可以提供历史数据、实时数据和预测数据的自适应设备。
虚拟传感器允许利用所测得的加热装置温度来“测量”和控制光罩/掩模温度。构建的模型详细描述了加热装置和光罩/掩模之间的相互作用,包括光罩/掩模的成分和光罩/掩模平整度(曲率)的变化。虚拟感应提供了一种用于实时获得光罩/掩模温度的方法。
虚拟传感器消除了在生产期间用仪器测量光罩/掩模的必要。例如,对于光罩/掩模可以一次创建动态“黄金(Gold)”模型和虚拟传感器;可以在特定设备的初始鉴定期间利用可重写的测试光罩/掩模来调节模型;然后系统准备好用于生产。基于服务器的软件可用于任何再调节。
图9图示了根据本发明实施例的热受控的光罩/掩模系统的动态模型的示意性图示。在图示实施例中,示出了四个节点或模型组分(M1、M2、M3和M4)。然而,在本发明的替换实施例中,可以使用不同数目的模型组分,并且模型组分可以不同的体系结构布置。
另外,动态模型接收诸如加热器功率之类的控制输入(U)和诸如不可测量的变化之类的扰动输入(D),并确定诸如光罩/掩模温度之类的被调控输出(Z)和诸如热板温度之类的测量输出(Y)。模型结构可以表示为Z=M1U+M3D和Y=M2U+M4D。或者,可以使用不同的模型结构表达。
在图9中,控制输入可以包括加热器功率数据;扰动输入可以是不可测量的变化;测量输出可以是加热装置温度;被调控输出可以是光罩/掩模温度。
动态模型跟踪系统的“状态”,并实时地将输入与输出相关。例如,可以测量U、Y,并且通过模型,利用Y=M2U+M4Dest可以估计D,利用Zest=M1U+M3Dest可以估计Z。
当创建动态模型时,光罩/掩模曲率和PAC扩散-放大效应可以并入到模型中。多变量控制器可用于计算斜坡和稳定模式期间段与段的相互作用。智能设置点控制器可用于将多个标称设置点参数化到包括多个智能设置点的向量中;利用高效优化方法和工艺数据确定智能设置点;并选择运行期间的设置点和适当模型。
在构造智能设置点控制器的智能设置点控制(ISC)方法中的一步是创建动态模型,该动态模型描述了诸如热受控的光罩/掩模系统之类的处理系统的动态行为。这种模型可用于设计多变量控制器,然后用于创建敏感性矩阵和智能设置点。
多种方法可用于创建动态模型,包括但不限于基于热传递、气流和反应动力学的第一原理模型和利用实时数据创建的在线模型,其中实时数据是从诸如热处理系统之类的处理系统收集到的。
在第一原理热模型中,光罩/掩模和加热装置可以包括多个元,并且光罩/掩模和加热装置以及环境之间的热传递可以针对每个元建模。例如,光罩/掩模可以被划分为n个方形元,并且下面的方程示出了第k个这种元的热响应ρCpVkdTkdt=-KaAkδk(Tk-Tp)-hAk(Tk-Ta)-kpCkdk(Tk-Tk-1)-kpCk+1dk+1(Tk-Tk+1)]]>其中参数是kp光罩/掩模热导率3.91W cm-1℃-1Vk第k个元的体积Ak第k个元的面积dk第k和第(k-1)个元之间的距离Ck第k和第(k-1)个元之间的接触面积δk第k个元和加热装置之间的空气间隙ρ光罩/掩模密度 8.8g/cm3Cp光罩/掩模热容 0.385J g-1℃-1Ta环境温度 20℃h 对环境的热传递系数ka空气间隙热导率 0.0003W cm-1℃-1L 光罩/掩模厚度 0.635cmTp板温度 130℃δ空气间隙(距离) 0.11mmT 光罩/掩模温度 (仿真参数)参数δk依赖于元的位置,并且可以根据光罩/掩模的形状指定。类似地,加热装置也可以被划分为多个方形元,并且可以由类似的数学关系式来描述。
在一个用于对ISC建模的实施例中,假定热耦与加热装置中的加热器并存,并且与热耦相关联的任何动态参数(例如,热耦响应的时间常数)都不包括在模型中。实际上,模型采用瞬时温度测量。或者,热耦并不与加热装置中的加热器并存,和/或与热耦相关联的任何动态参数可以包括在模型中。实际上,模型采用瞬时温度测量。板和光罩/掩模之间的热传递是经由空气间隙进行的。每个元的空气间隙依赖于光罩/掩模的曲率,并且可以在模型中设置。
第一原理动态模型定义了一组n个微分方程。这些方程可以通过方程T·=f(T,Tp,Ta)]]>以简洁形式表达。这里,T是代表n个光罩/掩模元温度的向量。利用这些微分方程进行的仿真可用于示出由于光罩曲率引起的光罩/掩模上的热响应的变化,以及因而引起的热剂量(反应供应量)的变化。
在替换实施例中,ISC可由在线热模型描述。例如,一种获得动态模型的方法可以使用实时数据收集。在这种实时模型中,动态模型是基于例如从加热装置收集的实时数据创建的。一种用于收集光罩/掩模温度的方法是使用仪器化的光罩/掩模。在该光罩/掩模温度收集方法中,可以获得相对传感器时间常数的设置点轨迹。选择设置点轨迹以模拟系统的热行为。系统的整个响应记录在日志文件中,日志文件可以提供传感器设置点、传感器时间常数、加热器功率和光罩/掩模温度的同步时间轨迹。所测得的光罩/掩模温度可用于验证ISC模型的准确性。或者,也可以使用光罩/掩模温度的光学测量结果。
在线热模型可以定义一种以加热器功率作为输入、以各种温度、晶片以及传感器作为输出的动态系统,并且该模型可由一组线性微分方程来表示T·=f(T,P),]]>其中函数f(T,P)是线性的。为了获得闭环系统,可以围绕该组方程应用已知的控制器来获得闭环响应。该方法可以提供光罩/掩模温度热响应的更高保真度的模型。或者,在线热模型可由多个线性模型描述,这多个线性模型描述了很宽的温度范围上的热行为。为此,可以在多个温度范围内测量光罩/掩模温度,并且可以按需要创建从一个温度范围切换到下一温度范围的模型。
光罩/掩模曲率可以并入到上述的第一原理模型或在线热模型中,以建立智能设置点控制。对于第一原理模型,对于每个光罩/掩模元素加热装置和光罩/掩模之间的间隙可以直接建模。例如,如果rc被定义为光罩/掩模的曲率半径,则光罩/掩模对着角度θ=wdrc.]]>基于该角度,给定半径位置处的空气间隙可以计算为
δk=rc(1-cosθk).]]>在在线热模型方法中,可以利用数据驱动的在线建模创建具有多种已知曲率分布特性的模型库,并且可以利用一组模型覆盖所预期的光罩/掩模曲率范围。
在模型开发期间,包括光罩/掩模曲率的热模型的第一原理模型可以以合适的软件仿真应用(如Matlab)数字地实现在合适的微处理器上。软件应用驻留在合适的电子计算机或微处理器上,电子计算机或微处理器进行操作以便执行物理性能近似。然而,其他的数值方法也为本发明所预想。
图10A和10B示出了根据本发明实施例的智能设置点的示例性图形。在图示实施例中,示出了基线数据以及时变设置点。在图中,示出了单个时变设置点,但这不是本发明所要求的。在本发明中,可以使用多个设置点,并且这些时变设置点可以位于工艺期间的各个时刻。另外,对于每个加热器分段,可以使用一个或多个时变设置点。
图11示出了根据本发明实施例的虚拟传感器的仿真和测量数据。图中示出了光罩/掩模的一个分段(区域)的测量数据和虚拟传感器温度数据的比较结果。使用动态模型来创建虚拟传感器,并且使用了施加的加热器功率和所测得的加热装置温度。图中示出虚拟传感器可以跟踪光罩/掩模温度。
一旦获得了系统的动态热模型,就可以使用热响应来确定化学放大抗蚀剂(CAR)反应的化学放大和扩散特性。为此,热模型可以增加有上述反应的模型。
曝光后烘(PEB)工艺是一种热激活工艺,并且在光抗蚀剂处理中用作多个目的。首先,烘烤的温度升高驱动了光生产物的扩散。少量的扩散可有助于最小化驻波效应,驻波效应是膜的整个深度中曝光剂量的周期性变化,其来源于入射和反射辐射的干涉。PEB的其他主要目的是驱动酸催化反应,该反应改变了许多化学放大抗蚀剂中的聚合物的溶解性。
化学放大是非常重要的,这是因为其允许单个光生产物引起许多溶解性变化反应,从而提高这些光抗蚀剂系统的敏感性。一定量的酸输运是必要的,这是因为其允许单种酸移动到许多反应性聚合物位点。然而,从标称曝光到未曝光区域的酸输运可以使得抗蚀剂特征尺寸的控制复杂化。经过这些反应性系统的酸输运在力学上是复杂的测量结果显示在起始材料(对酸有反应性)和产物材料(不再有反应性)之间酸的迁移率有非常大的差异。
热处理的影响一般是经由三个活化过程建模的扩散、放大和酸损耗。扩散和放大的活化能相比于酸损耗来说都比较高。反应速率由常用的阿仑尼乌斯(Arrhenius)方程给出rate=C exp(-EaKT)]]>例如,对于示例性抗蚀剂,参数在下面的表2中给出表2

CAR反应可以并入到热模型中,以确定在PEB工艺期间光罩/掩模中的各个位置处的热剂量(反应供应量)。热剂量(反应供应量)计算可通过包括热轨迹的斜坡上升、稳定、处理和冷却部分来进行,并且相比于仅仅进行“定温(at-temperature)”计算这种计算可能更为精确。
例如,在第k个元素的热剂量(反应供应量)可以计算为Dk=∫t0tfCexp(-EaKTk(t))dt.]]>在上述计算中,温度时间轨迹Tk(t)可以从上述的多节热模型获得。
热剂量(反应供应量)的向量D在每个元素位置处定义。
D=D1···Dn]]>向量d中的变化可利用动态设置点轨迹最小化。可以使用基于模型的线性或非线性多变量控制方法对反应供应量建模,其中控制器包括要控制的系统的数学模型。多变量控制器可以基于现代的控制设计方法中的任何一种,如线性二次高斯(LQG)方法、线性二次调节器(LQR)方法、H无限(H-inf)方法等。热剂量(反应供应量)模型可以是线性的或非线性的,也可以是SISO或MIMO的。多变量控制方法(即MIMO)考虑到了所有输入和其对输出的影响。也可采用用于对热剂量建模的若干种其他方法,如物理模型和数据驱动模型。
在典型工艺方案中,在给定时段内设置点保持恒定。然而,允许设置点在标称值附近的足够小的温度“窗口”内变化提供了在实现最终运行的热剂量(反应供应量)均匀性的附加自由度。一种用于对热剂量(反应供应量)建模的这样的方法是对于热处理使用“智能的”时变设置点轨迹。为此,温度设置点可被参数化为智能设置点的向量;并且可以定义向量r,其包含在标称设置点附近作时变扰动的智能设置点r=r1···rm]]>工艺敏感性矩阵M可通过在每个控制分段的断点处进行微小的温度扰动来创建。然后,所得到的热剂量(反应供应量)中的扰动可以写为d1···dn=Mr1···rm]]>现在,优化任务变为找到向量r的适当值,从而使所得到的d消除在从标称曲线获得的光罩/掩模的反应供应量向量D的变化。
例如,对于具有25个控制分段和每个分段有3个断点的系统,可以通过在每个控制分段的每个断点处进行1℃的扰动,来确定敏感性矩阵M。
当创建智能设置点时,所得到的关于光罩/掩模的CD、外形和/或均匀性数据明显依赖于溶解速率,溶解速率又依赖于各个位置处的热剂量(反应供应量)。用于计算光罩/掩模上各个位置处的热剂量(反应供应量)以及热剂量(反应供应量)对温度设置点变化的敏感性的方法已在上面描述。CD、外形和/或均匀性数据可以认为正比于热剂量(反应供应量)Ci=α·Di。因而,CD、外形和/或均匀性数据的变化也可以认为正比于热剂量(反应供应量)的变化。因而,CD、外形和/或均匀性数据的变化可以写为
d1···dn=α·Mr1···rm]]>因此,光罩/掩模上CD、外形和/或均匀性数据的变化可以通过利用敏感性矩阵M计算至少一个智能设置点来减小。智能设置点可以通过解决受约束二次优化问题来优化,该问题由下式给出minr||d-α·Mr||,rmin<r,r<rmax]]>从而,找到智能设置点的过程变为1)利用标称设置点运行工艺,并且在选定位置处进行光罩/掩模上的CD、外形和/或均匀性测量。CD、外形和/或均匀性测量可以利用若干种方法进行一种这样的方法使用ODP。或者,CD、外形和/或均匀性测量数据可以从前馈数据获得。
2)选择CD、外形和/或均匀性数据的期望值并创建变化向量d,变化向量d是期望值和测量数据之间的差。例如,期望值可以是平均值、最小值、最大值、3∑值或另外的计算值。
3)解上面所示的优化问题来找到智能设置点r。
4)利用在前述步骤中找到的设置点更新工艺方案,并重新运行工艺。例如,更新值可通过运行更新工艺方案获得。
5)进行迭代直到获得了期望的CD、外形和/或均匀性数据。例如,期望的均匀性可以包括热剂量变化的3∑值、光罩/掩模温度变化的3∑值、临界尺寸变化的3∑值、外形测量变化的3∑值和均匀性测量变化的3∑值中的至少一个。另外,期望的均匀性值可以小于或等于大约1%。
一旦迭代收敛并且获得了期望的CD和/或外形均匀性,就可以存储结果以供以后使用。
为了说明该过程,使用了上面计算的敏感性矩阵和仿真模型。如所预期的,热剂量(反应供应量)被直接使用(其正比于CD)。对于标称设置点,光罩/掩模上的热剂量(反应供应量)有4.5%的3∑变化。
图12示出了光罩/掩模上不同位置处的归一化热剂量(反应供应量)的图。利用这些示例性设置点,热剂量(反应供应量)的变化从14.5%的3∑减小到4.5%。利用其他的时变设置点组,变化预期小于1.0%。
图13-15示出了具有不同曲率的光罩/掩模上的不同位置处的结果。图13示出了平坦光罩/掩模的结果。图14示出了中间部分低于外围部分的抛物线形光罩/掩模的结果;图15示出了中间部分高于外围部分的抛物线形光罩/掩模的结果。示出了光罩/掩模温度相对于时间的示例性图。示出了设置点相对于时间的示例性图。另外,示出了具有不同曲率的光罩/掩模上的不同位置处的归一化热剂量(反应供应量)的示例性图。
一种用于创建模型库的方法已在上面描述,这些模型解决了期望的光罩/掩模曲率,并且对于给定光罩/掩模曲率最小化了光罩/掩模上的CD和/或外形变化。对于给定光罩/掩模,控制器可以选择适当的模型以应用到热控制。若干种方法可用于实现这一目的。在一种方法中,模型通过检查光罩/掩模和加热装置的实时响应来确定弯曲量;基于响应,其会选择适当的模型。在另一种方法中,光罩/掩模的成分数据(可以包括n、k值)可以馈送到控制器;基于成分数据,控制器可以确定光罩/掩模应力和关联的光罩/掩模曲率,并选择适当的模型。
图16图示了根据本发明实施例用于操作热处理装置的方法的简化流程图。过程1600开始于1610。
在1620中,热处理装置接收置入光罩/掩模的前馈数据。前馈数据可以包括CD数据、外形数据、均匀性数据、光学数据(如折射率(n)数据和消光系数(k)数据)和层信息,层信息可以包括层的数目、层位置、层的组成、层均匀性、层密度和层厚度。另外,前馈数据可以包括抗蚀剂数据、空白数据、掩模数据和/或抗反射涂层(ARC)数据。
在1630中,可以利用前馈数据估计光罩/掩模应力。光罩/掩模应力可用于确定光罩/掩模外形。例如,光罩/掩模可以具有非均匀的外形,如抛物线形外形。
在1640中,动态热模型也可用于基于估计的光罩/掩模应力来预测置入光罩/掩模的热响应。
在1650中,对于与加热装置相关联的多个分段中的每一个确定智能设置点。这样,即使光罩/掩模具有不平坦的外形时,也在光罩/掩模上提供了均匀的温度。
在1660中,过程1600结束。例如,在已经确定了设置点后,可以利用设置点值对加热装置加热,并且光罩/掩模可以位于加热装置上。即使光罩/掩模是弯曲的,光罩/掩模也会在相对较短的时间量内被均匀加热到期望温度。
在热处理系统中,可以使用各种类型的温度传感器。例如,传感器可以包括热耦、温度指示电阻器、辐射型温度传感器等等。可以使用双金属型热耦。可以使用温度指示铂电阻器。另外,传感器可以包括接触型传感器和非接触型传感器。另外,加热器可以具有多个电阻加热元件,并且电阻加热元件可以排列在加热装置的区域内,传感器也可以排列在加热装置的区域内。
根据上述教导可以对本发明进行大量修改和变化。因此,应当理解,本发明应当体现在所附权利要求的范围内,而不是这里具体描述的。
权利要求
1.一种操作热处理系统的方法,包括将光罩/掩模放置在包括多个分段的加热装置上;创建所述系统的动态热模型;利用所述系统的动态热模型建立多个智能设置点,其中对于所述加热装置的每个分段创建至少一个智能设置点;以及利用所述至少一个智能设置点控制每个分段的实际温度,从而在所述光罩/掩模上建立受控的温度分布特性。
2.如权利要求1所述的方法,还包括接收前馈数据,所述前馈数据包括将放置在所述加热装置上的光罩/掩模的属性或参数信息;利用所述前馈数据估计光罩/掩模应力;创建对于所述光罩/掩模和所述加热装置之间的间隙的热模型,其中所述间隙的热响应是基于所估计的光罩/掩模应力预测的;以及将所述对于所述间隙的热模型并入到所述系统的动态热模型中。
3.如权利要求2所述的方法,其中所述光罩/掩模应力的估计包括使用从所述前馈数据提取的折射率(n)数据和消光系数(k)数据。
4.如权利要求2所述的方法,其中所述前馈数据包括层信息,所述层信息包括层的数目、层位置、层的组成、层均匀性、层密度和层厚度中的至少一个。
5.如权利要求2所述的方法,其中所述前馈数据包括所述光罩/掩模的临界尺寸(CD)数据、外形数据和均匀性数据中的至少一个。
6.如权利要求2所述的方法,其中所述前馈数据包括所述光罩/掩模上多个位置的临界尺寸(CD)数据、所述光罩/掩模上多个位置的外形数据和所述光罩/掩模上多个位置的均匀性数据中的至少一个。
7.如权利要求6所述的方法,其中所述多个位置是非径向地定位在所述光罩/掩模上的。
8.如权利要求6所述的方法,其中所述多个位置是径向地定位在所述光罩/掩模上的。
9.如权利要求1所述的方法,还包括检查所述光罩/掩模和加热装置的实时响应;利用所述实时响应估计光罩/掩模应力;创建对于所述光罩/掩模和所述加热装置之间的间隙的热模型,其中所述间隙的热响应是基于所估计的光罩/掩模应力预测的;以及将所述对于所述间隙的热模型并入到所述系统的动态热模型中。
10.如权利要求1所述的方法,还包括估计光罩/掩模曲率;创建对于所述光罩/掩模和所述加热装置之间的间隙的热模型,其中所述间隙的热响应是基于所估计的光罩/掩模曲率预测的;以及将所述对于所述间隙的热模型并入到所述系统的动态热模型中。
11.如权利要求1所述的方法,还包括对所述加热装置的分段之间的热相互作用建模;以及将所述热相互作用的模型并入到所述系统的动态热模型中。
12.如权利要求1所述的方法,还包括创建用于估计所述光罩/掩模的温度的虚拟传感器;以及将所述虚拟传感器并入到所述系统的动态热模型中。
13.如权利要求1所述的方法,还包括对所述加热装置和外部环境之间的热相互作用建模;以及将所述热相互作用的模型并入到所述系统的动态热模型中。
14.如权利要求1所述的方法,还包括创建扩散-放大模型;以及将所述扩散-放大模型并入到所述系统的动态热模型中。
15.如权利要求1所述的方法,还包括创建变化向量d,其中所述变化向量包括测量数据和期望值之间的差;将至少一个标称设置点参数化到包括至少一个智能设置点的向量r中;利用所述动态热模型创建敏感性矩阵;以及通过解优化问题来确定所述至少一个智能设置点,所述优化问题包括minr||d-α·Mr||,]]>其中rmin<r,r<rmax,r是包括所述至少一个智能设置点的向量,M是所述敏感性矩阵,α是将所述测量数据与所述敏感性矩阵M相关联的比例常数,d是所述变化向量。
16.如权利要求15所述的方法,还包括利用所述至少一个确定的智能设置点更新工艺方案;运行所述更新工艺方案;获得经更新的测量数据;以及进行迭代直到获得期望均匀性。
17.如权利要求16所述的方法,其中所述期望均匀性包括小于约1%的3∑变化。
18.如权利要求17所述的方法,其中所述期望均匀性包括小于约1.5%的3∑变化。
19.如权利要求15所述的方法,还包括接收前馈数据;从所述前馈数据获得所述测量数据,其中所述测量数据包括临界尺寸测量结果、外形测量结果和均匀性测量结果中的至少一个;以及确定所述期望值,其中所述期望值包括期望临界尺寸、期望外形和期望均匀性中的至少一个。
20.如权利要求15所述的方法,还包括利用对于所述加热装置的每个分段具有至少一个标称设置点的工艺方案来运行工艺;从所述被运行的工艺中获得所述测量数据,其中所述测量数据包括临界尺寸测量结果、外形测量结果和均匀性测量结果中的至少一个;以及确定所述期望值,其中所述期望值包括期望临界尺寸、期望外形和期望均匀性中的至少一个。
21.如权利要求15所述的方法,还包括对所述加热装置的每个分段进行温度扰动;以及利用所述温度扰动的结果建立所述敏感性矩阵M。
22.如权利要求15所述的方法,还包括利用仪器化的光罩/掩模来建立所述敏感性矩阵M。
23.如权利要求15所述的方法,还包括确定在每个径向元位置处的热剂量(反应供应量)的向量D,其中D=D1···Dn;]]>以及将所述热剂量(反应供应量)中的扰动的特征定义为d1···dn=Mr1···rm;]]>以及确定所述向量r的值,从而使所述向量d消除光罩/掩模上的所述向量D的差异。
24.如权利要求16所述的方法,还包括当获得了所述期望CD均匀性时存储经更新的工艺方案。
25.如权利要求1所述的方法,其中将所述光罩/掩模放置在加热装置上的操作包括将所述掩模放置所述加热装置上,以由所述系统进行处理。
26.如权利要求1所述的方法,其中将所述光罩/掩模放置在加热装置上的操作包括将所述掩模放置在所述加热装置上,以由所述系统通过其处理衬底。
27.一种热处理系统,包括用于将要由所述系统处理的光罩/掩模放置在包括多个分段的加热装置上的装置;用于创建所述系统的动态热模型的装置;用于利用所述系统的动态热模型建立多个智能设置点的装置,其中对于所述加热装置的每个分段创建至少一个智能设置点;以及用于利用所述至少一个智能设置点控制每个分段的实际温度,从而在所述光罩/掩模上建立预定的温度分布特性的装置。
28.一种处理系统,包括包括多个分段的温度受控装置;结构,该结构用于将光罩/掩模支撑在所述温度受控装置上以由所述系统进行处理或由所述系统通过其处理晶片;被编程用于提供所述系统的动态热模型,并且由此对所述温度受控装置的分段建立多个智能设置点的控制器;并且所述温度受控装置的每个分段的实际温度响应于所述至少一个智能设置点。
29.如权利要求28所述的处理系统,其中所述加热装置包括方形形状,并且所述多个分段包括多个均匀间隔的方形形状的分段。
30.如权利要求29所述的处理系统,其中每个分段包括用于加热或冷却以建立相应的实际温度的加热元件。
31.如权利要求30所述的处理系统,其中所述加热元件包括电阻加热器。
32.如权利要求30所述的处理系统,其中所述加热装置还包括冷却元件。
33.如权利要求1所述的方法,其中所述加热装置包括矩形形状,并且所述多个分段包括多个均匀间隔的矩形分段。
34.如权利要求1所述的方法,其中至少一个分段包括用于测量所述加热装置的温度的传感器元件。
35.如权利要求28所述的处理系统,其中所述温度受控装置还包括可操作来向所述控制器输入所述系统的至少一个可变参数的至少一个物理传感器;所述控制器被编程用于维护所述动态热模型,所述动态热模型包括经计算的所述系统和所述光罩/掩模的温度数据,以计算所述智能设置点从而控制所述温度受控装置的分段,以便使所述光罩/掩模维持在预定温度分布。
全文摘要
本发明给出了一种包括多变量控制器(260)的自适应实时热处理系统。通常,方法(1600)包括创建热处理系统的动态模型(1630);将光罩/掩模曲率并入到动态模型中;将扩散-放大模型耦合到动态热模型中;创建多变量控制器;将标称设置点参数化到智能设置点的向量中(1650);创建工艺敏感性矩阵;利用高效优化方法和工艺数据创建智能设置点;并建立工艺方案,该工艺方案在运行期间选择了适当的模型和设置点。
文档编号G03F1/00GK1910517SQ200580003080
公开日2007年2月7日 申请日期2005年1月19日 优先权日2004年1月30日
发明者萨恩吉夫·考沙尔, 帕迪普·帕恩戴伊, 杉岛贤次 申请人:东京毅力科创株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1