使用测试特征检测光刻工艺中的焦点变化的系统和方法

文档序号:2677622阅读:279来源:国知局
专利名称:使用测试特征检测光刻工艺中的焦点变化的系统和方法
技术领域
本发明总地涉及用于检测光刻工艺中的焦点变化的系统和方法。更具体而言,本发明涉及构建具有适于印刷具有临界尺寸的测试特征的测试图案的光掩模的方法,所述测试特征可以被测量和分析来确定光刻工艺期间从曝光工具的最佳焦点位置的离焦的幅度和方向。
背景技术
光刻是制造半导体集成电路(IC)中的一种整体工艺。通常,光刻工艺包括使用光致抗蚀剂层涂覆半导体晶片(或衬底)和通过具有集成电路图像的光掩模使用光化性光源(比如准分子激光、汞灯等)将光致抗蚀剂曝光。例如,比如深UV步进曝光机的光刻工具可以用来将光通过光掩模和大孔径透镜投射到光致抗蚀剂层上,在那里光强度将光掩模图案投射在光致抗蚀剂上。已经开发了各种光掩模用于光刻,比如二元掩模、嵌入减薄相移掩模(EAPSM)、交替孔径相移掩模(AAPSM)以及各种混合掩模。
目前,高集成电路(IC)装置被设计为呈小临界尺寸的IC器件特征。临界尺寸(CD)指的是根据给定器件制造工艺的设计规则的最小线宽或两条线间的最小空白。事实上,IC器件目前采用亚波长特征尺寸构建,其中印刷在硅晶片上的电路图像要小于用于曝光该图案的光源的波长。例如,现有技术的DUV步进曝光机使用波长为193nm的氟化氩(ArF)激光来形成特征尺寸为100nm(0.1微米)或以下的集成电路。
然而,随着特征图案变小(例如,亚波长特征),由于光学邻近效应(OPE),而越来越难于满足临界尺寸要求,光学邻近效应减小了用于印刷亚波长图案的光刻工艺窗口。OPE现象由于紧密分隔的相邻电路特征的光波的衍射而发生,该衍射导致光波相互作用而扭曲了转移的图案的特征并产生图案相关工艺变化。对此,已经开发了各种技术来在印刷亚波长特征时减轻或补偿OPE的影响。
例如,使用公知的标线增强技术,比如光学邻近校正(OPC)和相移掩模(PSM)技术来构建光掩模。对于OPC,将小的亚解析(非印刷)特征(比如“散射条”)结合到电路掩模图案以补偿邻近效应。而且,PSM技术用来构建光掩模(例如,交替孔径相移掩模,嵌入减薄相移掩模等),该光掩模具有设计来减小邻近效应和在亚波长特征的临界边缘提高对比度的相移结构的掩模图案。另一方面,与PSM结构相比,通常已知二元掩模由于衍射更易于受到OPE的影响,这限制了使用二元掩模用于亚波长特征的光刻印刷的能力。
图1A、1B和1C示意性的图示了使用二元掩模的传统光刻工艺。具体而言,图1A是二元光掩模10的俯视平面图,图1B是二元光掩模10沿图1A中的线1B-1B’的示意性横截面视图。一般而言,二元掩模10包括形成于掩模基板12上掩模图案11。掩模基板12由对用于曝光的给定波长的曝光的光透明的材料制成。例如,基板12由通常由高纯度石英或玻璃制成。对于二元掩模,成像图案11通常由比如铬(Cr)的光阻挡材料制成,其在给定波长具有大约0%的透射率并阻挡(和反射)光的通过。对此,二元掩模被视为反射性掩模。
在图1A和1B中,掩模图案11包括节距为P的多条延长的平行线特征11a,以及由蚀刻掩模基板12上的光阻挡材料(例如,Cr)层形成的空白11b。掩模图案11可以通过光刻工艺传递到基板上的光致抗蚀剂层。具体而言,如图1B所示,在曝光工艺期间,入射在掩模10的图案化表面上的给定波长的光可以通过掩模10的显露区域(例如,空白11b)投射到涂覆光致抗蚀剂(抗蚀剂)的晶片上,从而将与空白11b对齐的光致抗蚀剂的区域曝光。例如,对于正性抗蚀剂,可以在显影期间去除抗蚀剂的曝光区域,从而在光致抗蚀剂中印刷掩模图案11。
随着待印刷的特征的临界尺寸变小并趋近于光刻曝光工具的分辨率,使用二元掩模技术准确印刷小特征的能力本身由于衍射所导致的邻近效应而显著降低。在图1C中示意性地示出了该限制。具体而言,图1C图示了包括形成在半导体衬底16(例如,晶片)上的光致抗蚀剂层15的半导体器件14。在图1C中,假设光致抗蚀剂层15是使用具有1X缩减的图1A和1B的二元掩模10曝光的“正性抗蚀剂”。还假设待印刷的线特征(11a)和空白(11b)的临界尺寸接近曝光系统的分辨率限制。
如图1C所示,由于紧密分隔的线特征11a的光邻近效应阻止线-空白图案印刷在光致抗蚀剂15中。具体而言,图1C绘制了由于衍射效应在晶片平面中光致抗蚀剂15上的电场曲线13(幅度和方向)。具体而言,由于线和空白特征11a和11b的小的尺寸,在光致抗蚀剂15上的入射光的衍射效应导致相邻空白特征11b的电场矢量相互作用并相长性地增加,从而在与线特征11a对齐的光致抗蚀剂15的区域处光强度增加。图1C图示了其中电场13达到或超过在与线-空白图案11a和11b对齐的整个光致抗蚀剂区域上的光致抗蚀剂曝光阈值Tp。于是,在光致抗蚀剂15中,没有印刷线特征11a,而是印刷了空白特征11b,成为单个宽的空白特征而非分离的空白特征。使用PSM技术可以减小这些衍射效应。
例如,图2A、2B和2C示意性图示了使用嵌入减薄相移掩模(EAPSM)结构的传统光刻工艺。具体而言,图2A是EAPSM结构20的俯视平面图,图2B是EAPSM结构20沿图2A中的线2B-2B’的示意性横截面视图。一般而言,EAPSM结构20包括形成掩模基板22上掩模图案21。掩模基板22由在曝光的光的给定波长透明的材料制成,比如高纯度石英或玻璃。掩模图案21由光阻挡材料(或相移材料)形成,比如硅化钼(MoSi),在给定波长具有2-10%范围的透射率。与图1A/1B中的线-空白掩模相似,图2A/2B示出了包括节距为P的多条延长的平行线特征21a以及空白21b的掩模图案21。与图1A/1B的光掩模10相比,图2A/2B的光掩模20导致晶片平面的DUV相消性干涉,这使得线特征可以更加准确地印刷为比光波长要短的亚波长尺寸。这在图2C中概念性地示出了。
具体而言,图2C图示了包括形成在半导体衬底26(例如,晶片)上的光致抗蚀剂层25的半导体器件24。在图2C中,假设光致抗蚀剂层25是使用具有1X缩减的图2A/2B的二元掩模20曝光的“正性抗蚀剂”。图2C绘制了得到的在晶片平面中光致抗蚀剂25上的电场曲线23(幅度和方向)。线特征21a允许小百分比的入射光通过掩模基板22导达光致抗蚀剂,但是这些光的强度弱并且不会曝光晶片26上的抗蚀剂25。与在基板的暴露区域(空白特征21b)通过掩模20的光相比,掩模线特征21a导致了通过掩模20的光的相移为180度,这增加了在掩模特征的临界边缘的图像对比度,并且因此增加了光刻工艺的分辨率。更具体而言,如图2C所示,在与玻璃相邻的线特征21a的临界边缘发生相消性干涉。对此,与掩模线特征21a对齐的光致抗蚀剂25的区域,电场强度保持在远低于抗蚀剂阈值Tp之下,使得能够使用当前可利用的光刻工具以增加的分辨率印刷具有亚波长CD的线-空白图案。
交替孔径是另一种PSM技术,其依赖于DUV相消性干涉来减小OPE的影响并且印刷亚波长特征。例如,图3A、3B和3C示意性图示了使用交替孔径相移掩模(AAPSM)的传统光刻工艺。具体而言,图3A是AAPSM结构30的俯视平面图,图3B是AAPSM结构30沿图3A中的线3B-3B’的示意性横截面视图。一般而言,AAPSM结构30包括形成掩模基板32上掩模图案31。掩模基板32由在曝光的光的给定波长透明的材料制成,比如高纯度石英或玻璃。掩模图案31通常由比如铬(Cr)的光阻挡材料制成,其在给定波长具有大约0%的透射率并阻挡(和反射)光的通过。与图1A/1B中的线-空白掩模相似,图3A和3B示出了包括节距为P的多条延长的平行线特征31a以及空白31b的掩模图案31。与图1A/1B的光掩模10相比,图3A/3B的光掩模30还包括沟槽32a,该沟槽32a每隔一个空白特征31b选择性地蚀刻到掩模(石英)基板32中。相对于那些未蚀刻的掩模基板的区域,沟槽32a产生180度的相移。所得到的相差导致DUV相消性干涉,这提高了图像对比度。这在图3C中概念性地示出了。
具体而言,图3C图示了包括形成在半导体衬底36(例如,晶片)上的光致抗蚀剂层35的半导体器件34。在图3C中,假设光致抗蚀剂层35是使用具有1X缩减的图3A/3B的二元掩模30曝光的“正性抗蚀剂”。图3C绘制了得到的在晶片平面中光致抗蚀剂35上的电场曲线33(幅度和方向)。空白特征31b允许入射光通过掩模基板32到达光致抗蚀剂,而线特征31a反射光。与在空白特征31b处通过基板32暴露且未蚀刻的区域而通过掩模20的光相比,沟槽32a导致了通过掩模30的光180度的相移。于是,电场33在线特征31a相反侧上将是等幅度的和相反的相,并且相消性干涉发生在蚀刻了的和未蚀刻的区域之间的过渡部分中,产生了增加了图像对比度的暗区域,用于高准确性地在抗蚀剂36中印刷线-空白特征31a、31b。
虽然上面所讨论的PSM技术可以通常用来提供增加的分辨率用于印刷亚波长特征,但是这些特征可光刻地复制的质量主要取决于光刻工艺窗口的大小。通常,如本领域所知的,术语“工艺窗口”指的是可以容忍的曝光剂量和焦点的变化量,从而印刷的光致抗蚀剂特征的特性(例如,线宽、壁角度、抗蚀剂厚度)可以保持在规定规范内。对于给定的光刻环境,这些光致抗蚀剂特征对曝光剂量和焦点的灵敏度可以通过获得焦点-曝光数据矩阵来实验性地确定(或通过计算机模拟)。例如,对于给定光刻工艺和掩模,焦点-曝光矩阵数据可以用来确定作为焦点和曝光剂量的函数的线宽变化。
图4A是示例性Bossung(焦点-曝光)图,其包括线宽(CD)对焦点的参数曲线,以曝光剂量作为参数。具体而言,该示例性Bossung示了在不同曝光能量(E1~E5)下作为离焦(x轴)的函数的CD的变化(y轴)。在图4A中,虚线40代表目标(标称)CD,虚线41和42分别表示可接收的上(CD+)和下(CD-)值,其不同于目标CD40。离焦参数(x轴)代表从最佳焦点位置的相对偏离。在图4A中,最佳焦点位置被描述为离焦=0。
如果大的焦点变化和剂量对目标CD40影响极小(将印刷的CD保持在可接收CD的希望范围内),那么可将光刻工艺视为鲁棒性的。具体而言,可使用的工艺窗口可以规定为DOF(焦点深度)和曝光宽容度(EL)的组合,其将印刷的特征保持在目标CD的±10%以内。术语曝光宽容度(EL)表示将CD保持在规定的限度内的曝光能量的百分比剂量范围(通常表述为从标称值的偏离百分比)。可使用的焦点范围或焦点深度(DOF)通常指代焦点设置的范围,其中印刷的特征的横向尺寸或特征间的空白落入通常为目标线宽或CD的±10%的规范内。在图4B中示意性地示出了DOF的概念。
具体而言,图4B图示了使用标线来曝光光致抗蚀剂涂覆的基板的光刻投影工艺。具体而言,图4B是投影系统的高级示意性图示,该投影系统包括光源43、会聚透镜44、标线45和投影透镜46。光源43发射入射到会聚透镜44上的光。光通过会聚透镜44并均匀地照射标线45的整个表面,在标线45上形成了预定图案。之后,通过标线45的光经投影透镜46减小预定比例因子并且曝光在半导体基板48上的光致抗蚀剂层47。通过使用投影透镜46,在标线45上的掩模特征的大小通常是在光致抗蚀剂47中印刷的相同特征的4或5倍大。例如,在5X缩减投影系统中,在标线上宽度为1微米的掩模线特征将转换为在光致抗蚀剂中印刷的0.2微米宽的线。
图4B概念性地图示了DOF。通常,光学系统的焦平面是包含有焦点FP的平面。焦平面通常指光学系统最佳焦点的平面。术语焦点指相对于参考平面的光学系统最佳焦点的平面的位置,比如在沿着光轴测量时(即垂直于最佳焦点的平面)抗蚀剂层的顶表面或光致抗蚀剂的中心。例如,如图4B所示,最佳焦点的平面(焦平面)放置接近光致抗蚀剂层47的表面。在图4B的示范性实施例中,通过相对于成像系统的焦平面的抗蚀剂层47的表面的位置来设定焦点。术语离焦指的是沿着光轴(即垂直于最佳焦点的平面)测量的在抗蚀剂涂覆的晶片的参考平面的实际位置(例如抗蚀剂层47的表面)和如果晶片在最佳焦点的位置之间的距离。在光刻工艺期间,焦点可以从最佳焦点改变至±离焦位置。DOF指±离焦的可接收范围。
再次参考图4A,焦点和曝光剂量的变化可以导致在可接受的CD范围之外的印刷的特征的CD(从目标CD)增加或减少。通常,如果线宽作为焦点变化的函数急剧变化,那么将实现窄的工艺窗口。例如,如图4A所示,参数曲线E1、E2、E4和E5图示了,对于相应的曝光剂量,CD对于从最佳焦点位置(离焦=0)焦点的偏离更加敏感。比较而言,曲线E3更线性,其图示了,对于给定曝光剂量,CD对于从最佳焦点位置(离焦=0)焦点的偏离则不太敏感。
虽然比如上述讨论的AAPSM和EAPSAM的增强技术可以用来提高分辨率,但是这些技术可能是复杂而昂贵的,并且可能需要增加芯片尺寸。而且,PSM技术受到“禁止节距(forbidden pitch)”现象的影响,导致工艺窗口减小。更特别地,通过离轴照射,对于给定特征和目标CD,可以有一个或多个节距,其中这样的特征的致密图案的工艺宽容度比相同大小的分离特征的可能要差。当离轴照射对于给定节距(例如掩模上的最小节距)被优化时,则可以存在具有这样节距的图案,其中照射的角度与衍射角度一道导致产生对于该节距减小的DOF的衍射。禁止节距现象在用于印刷亚波长特征的先进光刻中已经变成为限制因素。
曝光工具具有“焦点预算”,其指需要来覆盖曝光工具的焦点变化的光刻工艺的最小DOF要求。如果给定布局图案节距的DOF不大于该曝光工具的曝光预算,那么该布局图案节距被认为是禁止节距。这样,使用目前的半导体装置制造工具和技术,减轻禁止节距现象的能力通常将提高CD和可获得的工艺宽容度。
当印刷亚波长特征时,重要的是控制CD均匀性。然而,光刻曝光设备(扫描仪/步进曝光机)上的曝光工艺的参数的小变化可导致印刷的特征的临界尺寸(CD)落在可接收的制造容限之外。例如,DOF通常被视为决定光刻投影仪器的分辨率的最重要因素之一。在光刻工艺期间,由于例如温度或压强漂移、晶片平整度变化或其它因素,曝光系统的焦点可以漂移到所期望的光刻涂覆基板的参考表面之上或下。根据工艺窗口,焦点从最佳焦点的漂移(或离焦)的量可以对印刷的特征的大小有显著的影响。这样,很希望能够控制该工艺,使得焦点对于每个晶片保持在可用的范围之内。为此,在没有适当方法测量最佳焦点的情形,不能确定离焦的量。
综上,很希望开发掩模技术和OPC解决方案来改善光刻工艺窗口并增加当前的光学曝光系统的分辨率以准确印刷亚波长特征。而且,给定在亚波长光刻工艺中关于焦点偏移的CD变化的灵敏性,很希望开发这样的技术,以有效检测光刻工艺期间焦点漂移(幅度和方向)和使曝光工具的自动控制成为可能,以调节焦点和获得CD均匀性。

发明内容
通常,本发明的示例性实施例包括用于检测光刻工艺中的焦点变化的系统和方法。更特别地,本发明的示例性实施例包括用于构建具有适于印刷具有临界尺寸的测试特征的测试图案的光掩模的方法,所述测试特征可以被测量和分析来确定光刻工艺期间从曝光工具的最佳焦点位置的离焦的幅度和方向。
在本发明的一个示例性实施例中,提供了一种用于监视光刻工艺的焦点的方法。该方法包括获得在其上形成有光致抗蚀剂图案的半导体晶片,该光致抗蚀剂图案包括印刷测试图案,该印刷测试图案包括第一和第二印刷测试特征;确定第一印刷测试特征的印刷临界尺寸CD1和第二印刷测试特征的印刷临界尺寸CD2;确定印刷临界尺寸CD1和CD2之间的相对CD差异;以及基于所确定的相对CD差异,确定从所述光刻工艺的最佳焦点设置的离焦的幅度和方向。
在一个实施例中,印刷测试图案形成来使得在离焦的量和所述相对CD差异之间存在线性关系。当所述相对CD差异被确定为约0时,所述焦点设置被视为最佳焦点设置。构建光刻工艺模型,该模型使用相应的焦点曝光矩阵数据将离焦和相对CD差异之间的线性关系量化。
在本发明的另一个示例性实施例中,一种光掩膜包括电路布局图案;以及包括第一和第二测试特征的测试图案。第一和第二测试特征形成来具有等于设计CD的至少一个特征尺寸。该测试图案适于来产生具有印刷临界尺寸CD1的第一印刷测试特征和具有印刷临界尺寸CD2的第二印刷测试特征,使得所述印刷临界尺寸CD1和CD2之间的相对差异与从光刻工艺的最佳焦点设置的离焦的幅度和方向相关。第一和第二印刷测试特征形成具有贯穿焦点CD性质,该贯穿焦点CD性质产生相应的第一和第二焦点曝光曲线,该第一和第二焦点曝光曲线相对于最佳焦点位置相等且反方向平移而且对所述最佳焦点位置基本上成镜像。
在一个实施例中,第一和第二印刷测试特征是由节距P分开的延长的条元件,并且其中所述印刷临界尺寸CD1和CD2是所述印刷条特征各自的宽度。第一和第二印刷测试特征是通过将第一和第二测试特征转移到基板而形成的。第一和第二测试特征包括由节距P分开的第一延长的条元件和第二延长的条元件,其中所述第一和第二延长的条元件具有等于设计CD的线宽。第一延长的条元件包括适于提供约90度相移光的基本100%的透射率的第一内非印刷特征,所述第二延长的条元件包括适于提供270度相移光的基本100%的透射率的第二内非印刷特征。
在一个实施例中,第一和第二非印刷特征每个包括空白特征,显露与各所述第一和第二测试特征的内部区域对齐的掩膜基板区域;以及沟槽特征,形成在所述掩膜基板中并与所述空白特征对齐。
在本发明的另一个示例性实施例中,一种光刻系统,包括曝光系统,使用通过具有包括电路布局和测试图案的掩膜图案的光掩膜的光来曝光光致抗蚀剂涂敷的晶片,其中所述测试图案包括第一和第二测试特征,所述第一和第二测试特征具有等于设计CD的至少一个特征尺寸,其中所述测试图案适于来产生具有印刷临界尺寸CD1的第一印刷测试特征和具有印刷临界尺寸CD2的第二印刷测试特征。该系统还包括焦点监视系统,检测所述曝光系统的焦点漂移,其中所述焦点监视系统处理所述第一和第二印刷测试特征的测量的CD数据,以基于CD1和CD2之间的CD差异来确定焦点漂移的幅度和方向。
在另一个实施例中,该系统包括控制系统,该控制系统响应于从所述焦点监视系统输出的控制信号来调整所述曝光系统的焦点设置。在又一个实施例中,该系统包括CD测量系统,该CD测量系统自动测量各个印刷测试特征的CD2和CD1并将测量的CD2和CD1输出到所述焦点监视系统用于分析。
在本发明的另一个实施例中,该系统包括光刻工艺参数模型和焦点-曝光矩阵(FEM)数据的贮存部分。该光刻工艺模型使用对应的焦点-曝光矩阵数据来量化离焦和相对CD差异之间的线性关系。该光刻工艺模型规定第一和第二测试特征的贯穿焦点CD性质,所述贯穿焦点CD性质产生了各自的第一和第二焦点-曝光曲线,所述第一和第二焦点-曝光曲线相对于最佳焦点位置相等且反方向平移而且对所述最佳焦点位置基本上成镜像。
本发明的这些和其它示例性实施例、方面、目的、特征和优点将从下面示例性实施例的详细说明变得清楚,将结合附图来理解它们。


图1A、1B和1C示意性的图示了使用二元掩模的传统光刻工艺。
图2A、2B和2C示意性图示了使用嵌入减薄相移掩模(EAPSM)结构的传统光刻工艺。
图3A、3B和3C示意性的图示了使用交替孔径相移掩模(AAPSM)的传统光刻工艺。
图4A是示例性Bossung(焦点-曝光)图,其包括线宽(CD)对于焦点的参数曲线,以曝光剂量为参数。
图4B图示了使用标线来曝光光致抗蚀剂涂覆的基板的光刻投影工艺。
图5A和5B示意性地图示了根据本发明示例性实施例的光掩模。
图5C示意性地图示了使用图5A和5B的示例性光掩模的光刻工艺。
图6A~6F示意性地图示了构建根据本发明示例性实施例的光掩模的方法。
图7图示了传统的光掩模图案。
图8图示了根据本发明示例性实施例的光掩膜图案。
图9A和图9B图形化地绘示了基于使用图7的传统掩膜图案进行计算机模拟所获得的光刻工艺窗口。
图10A和图10B图形化地绘示了基于使用图8的传统掩膜图案进行计算机模拟所获得的光刻工艺窗口。
图11A和图11B图形化地绘示了基于使用图8的传统掩膜图案进行计算机模拟所获得的光刻工艺窗口。
图12A示意性图示了包括根据本发明示例性实施例的用于监视焦点变化的测试图案的光掩膜结构。
图12B示意性图示了使用图12A的示例性光掩膜结构通过曝光抗蚀剂涂敷的晶片所获得的印刷测试图案。
图13A和13B图形化地图示焦点-曝光矩阵,包括用来对于目标测试图案将焦点变化与测量的CD值关联的工艺参数。
图13C是图示根据本发明示例性实施例的基于测量的CD确定焦点方向偏移的焦点响应图。
图14示意地图示了根据本发明一个实施例的用于检测工艺变化的光学晶片检测系统。
具体实施例方式
现在将参考附图更加全面地说明根据本发明实施例的光掩模和使用该光掩模的方法,其为了改善光刻工艺窗口使用光掩模结构,且为了制备这样的装置使焦点检测成为可能。应该理解,附图仅仅是示意性说明,其中各种元件、层和区域的厚度和尺寸不是按比例的,相反为了清楚起见被夸大了。还应该理解,当描述层位于另外的层或基板“上”或“上方”时,这样的层可以直接在另外的其它层或基板上,或可以存在插入的层。还应该理解,在整个附图中所使用的参考标号表示相同或相类似或具有相同或相类似功能的元件。
图5A和5B示意性地图示了根据本发明示例性实施例的光掩模。具体而言,图5A是示例性光掩模50的俯视平面图,图5B是示例性光掩模50沿图5A中的线5B-5B’的示意性横截面视图。一般而言,光掩模50包括形成掩模基板55上的掩模图案。根据本发明示例性实施例,掩模图案包括延长的条元件51。延长的条元件51是可印刷特征,所述特征具有厚度t和在临界边缘51a和51b之间的宽度W4。延长的条元件51包括宽度W1的延长的第一光阻挡元件52、宽度W2的延长的第二光阻挡元件54和设置在第一和第二光阻挡元件52和54之间内相移特征53(或这里被称为“相条”)。相条53是宽度W3的内部区域,其延伸到掩模基板55中在掩模基板55的表面之下的深度d。
一般而言,相条53是非印刷的分辨率增强特征,其可以使用多种掩模技术实现以改善用于印刷亚波长特征的工艺窗口。相条53形成来具有亚分辨率尺寸(例如宽度W3小于设计CD),使得相条53不是印刷的。重要地,相条53是提供100%透射率的延长的条元件51的内部透光区域,其相对于通过围绕条元件51的基板55的显露的透光区域的光相移。相移的量取决于相条53的沟槽深度d、掩模基板55的材料和光源的波长。在一个示范性实施例中,相条53设计来以从在周围透光区域成180度相移地透光。具体而言,为了提供180度相移,沟槽的深度d将如下确定d·(η基板-η空气)=λ。所产生的相差导致干涉,这改善了图像对比度。
而且,条元件51总的透射率可以通过改变构成元件52、53、54的尺寸(例如,宽度W1、W2和W3)和/或用来形成光阻挡元件52和54的材料的类型来控制。具体而言,条元件51包括三个条,它们一起充当具有如下有效透射率的单个条元件((W1·T1)+(W2·T2)+(W3·T3))W4]]>其中,T1、T2和T3分别表示第一光阻挡元件52、第二光阻挡元件53和第三光阻挡元件54的透射率%。如上所述,相条53提供了100%的透射率。光阻挡元件52和54的透射率T1和T3将根据材料而变化。例如,可以使用比如铬的基本上具有0%的透射率的光阻挡材料,或可以使用比如MoSi的约5-10%的低透射率%的光阻挡材料。实际上,形成光阻挡元件52和52的结构和尺寸来控制光透射的百分比和外部光透射区域和内部光透射(相条)区域之间的光强度分布,从而优化图像对比度。这与其中条的透射率不能改变的传统光掩模技术不同。
条元件51的多个元件52、53和54可以设计来在光致抗蚀剂表面上分布光强度,其方式为最佳地增强在特征临界边缘51a和51b的光学对比度,由此改善用于印刷条元件51的分辨率和工艺窗口。例如,图5C示意性地图示了使用示例性光掩模50的光刻工艺。图5C描绘了在沿着基板58上的光致抗蚀剂层在晶片平面的电场曲线57,这通过使用示例性光掩模50将正性抗蚀剂涂覆的基板58曝光而产生。在示例中,假设条元件51由光阻挡材料(或相移材料)形成,比如硅化钼(MoSi),在给定波长具有范围为2-10%的透射率,并且假设相条53的沟槽元件的深度d提供了180度的相移。图5C绘示了对应于延长的条元件51、宽度W4的所得的印刷抗蚀剂图案59。内相移区域53允许180度相移的光100%的透射,但是不印刷在抗蚀剂特征59中。
图6A~6F示意性地图示了根据本发明示例性实施例构建光掩模的方法。具体而言,为图示目的,图6A~6F示意性地绘示了构建图5A和5B的示例性光掩模50的方法。先参考图6A,掩模材料层51’和光致抗蚀剂层60依次形成在掩模基板55上。将光致抗蚀剂层60处理来形成抗蚀剂图案60a,如图6B所示。在一个示例性实施例中,根据预定的掩模布局设计使用激光曝光工艺来曝光光致抗蚀剂层60的预定区域,之后通过显影工艺来去除光致抗蚀剂60由激光曝光的部分,来形成光致抗蚀剂图案60a。
参考图6C,光致抗蚀剂图案60a用作蚀刻掩模,用于使用公知的技术来蚀刻掩模材料层51’以图案化层51’并产生光掩模图案。例如,如图6C所示,用于延长的条元件51的光阻挡元件52和54在第一蚀刻工艺期间形成。参考图6D,第二光致抗蚀剂图案61形成来显露在光阻挡元件52和54之间的空白区域。在图6E中,使用光致抗蚀剂图案61作为蚀刻掩模来进行蚀刻工艺以在掩模衬底55中蚀刻出希望深度d的沟槽。在图6F中,然后去除光致抗蚀剂掩模61,导致如上参考图5A/5B所述的光掩模结构。
在图6A~6F的示例性方法中,仅进行了两个掩模写步骤以形成掩模图案51。伴随形成掩模图案51和界定相边缘的第一掩模写工艺(图6A/6B)是一项重要的工艺,使用激光工艺可以准确地进行该工艺。伴随将相条沟槽蚀刻到掩模基板55中的第二掩模写工艺(图6D/6E)则不那么重要。具体而言,由于沟槽通过光阻挡元件52和54自对齐,所以第二掩模写工艺不需要光致抗蚀剂掩模61的精确覆盖。具体而言,光致抗蚀剂掩模61遮蔽掩模基板55的其它区域使其不被蚀刻,而在基板55中蚀刻沟槽时,光阻挡元件52和54基本上充当蚀刻掩模。
为了图示使用根据本发明的具有非印刷相移区域的光掩模结构可以获得增强工艺窗口,对图7和图8中示出的光掩模图案进行了各种模拟。具体而言,图7图示了传统的光掩模图案70,其包括一系列延长的条71(可印刷特征),布置得基本彼此平行并由节距P分开。另外,图案70包括多个布置在延长的条71之间的亚分辨率(不可印刷)辅助特征72(或AF)。辅助特征72是非印刷特征,其设置在掩模中以补偿衍射效应。图8绘示了与图7类似的图案,但是其中主要的条71由具有相条的示例性条81替代,比如上面参考图5A/5B所讨论的。
基于下面的条件使用掩模图案70和80对65nm的目标CD进行光刻模拟。光源确定为通常的DUV/ArF(193nm)/4x,具有类星体的照射,NA=0.85,曝光剂量的范围为0.53~0.80。采用6.5透射率的掩模材料和提供180度相移的厚度,将掩模70和80建模为减薄的PSM掩模。节距P设定为600nm,条71和81的宽度确定为105nm,而辅助特征71的宽度确定为35nm。另外,对于图8的示范性条状元件81,光阻挡元件和内相移区域的宽度确定为具有相等宽度-35nm/35nm/35nm,并且沟槽深度确定为对于给定光波长提供180度的相移。
图9A和图9B图示了在上述条件下图7的传统掩膜图案的模拟结果。具体而言,图9A绘示了从0.53到0.8变化的曝光阈值的曲线的Bossung曲线图90。线91、92和93指代目标CD(65nm)、上范围值(CD+=69nm)和下CD值(CD-=61nm),为从目标CD的CD变化提供了大约±6.2%的容限。图9B图形化地图示了作为曝光和焦点的函数的工艺窗口95(CD工艺窗口),其分别包括高和低CD规格的曲线96和97。在图7的示例性图案的模拟中,最佳焦点确定为-0.21μm,而最佳剂量为20。在这些条件下,DOF和EL等于0(如那些落在希望的工艺窗口之外的参数)。
图10A和10B图示了在上述条件下图8的掩膜图案的模拟结果。具体而言,图10A绘示了从0.53到0.8变化的曝光阈值的曲线的Bossung曲线图100。线101、102和103指代目标CD(65nm)、上范围值(CD+=69nm)和下CD值(CD-=61nm),基于从目标CD的CD变化大约±6.2%的容限。图10B图形化地图示了作为曝光和焦点的函数的工艺窗口105(CD工艺窗口),其分别包括高和低CD规格的曲线106和107。在图8的示例性图案的模拟中,最佳焦点确定为0μm,而最佳剂量为28.30,导致如图10B中所示的可用工艺窗口108。工艺窗口108相对较宽,这表现了显著的离焦能力(DOF是0.25μm)。工艺窗口108在高度上相对较小,这表现了相对较小的曝光宽容度能力(EL=0.71%)。
图11A和11B图示了在上述条件下图8的掩膜图案的模拟结果,除了图8中延长的条81建模为具有宽55nm的内相移区域和宽25nm的光阻挡元件(同时如上述模拟一样保持105nm的总宽)外。图11A绘示了从0.53到0.8变化的曝光阈值的曲线的Bossung曲线图1100。线1101、1102和1103指代目标CD(65nm)、上范围值(CD+=69nm)和下CD值(CD-=61nm),基于从目标CD的CD变化大约±6.2%的容限。图11B图形化地图示了作为曝光和焦点的函数的工艺窗口1105(CD工艺窗口),其分别包括高和低CD规格的曲线1106和1107。在图8的示例性图案的模拟中,最佳焦点确定为0μm,而最佳剂量为29.10,导致如图11B中所示的可用工艺窗口1108。该工艺窗口1108相对较宽,这表现了显著的离焦能力(DOF是0.25μm)。该工艺窗口1108具有增加的高度(与图10B相比),这表现了与图10B相比增加的曝光宽容度能力(EL=3.44%)。
与图9A的Bossung曲线相比,图11A和10A的Bossung曲线图示了增加的CD线性。而且,与图10A的Bossung曲线相比,图11A的Bossung曲线图示了增加的CD线性。总地说来,这些模拟结果表示,使用作为具有非印刷内相移区域的设计的掩膜,对于亚波长特征可以获得增加的工艺窗口。可以理解,具有比如图5A/5B所示的内相条特征的示例性条特征仅仅是示例性的,并且本发明的发明构思可以容易地应用来增加工艺窗口,用于印刷亚波长特征的其它形状和构造。
在本发明的其它方面,使用具有内相移区域的掩膜特征来构建测试图案,该测试图案使能够在光刻工艺其间有效地检测焦点漂移的幅度和方向,因此允许曝光系统的焦点能被调节来产生CD均匀性。事实上,根据如下所解释的本发明的示例性实施例,可以结合焦点检测来实现曝光工艺的自动控制,由此可以在一定焦点深度范围内将光致抗蚀剂调节为投影光学系统的最佳的成像面,即最佳的焦平面,从而可以以高分辨率和精确度将光掩膜图案转移到光致抗蚀剂层。提供了示例性方法来检测从投影光学系统的最佳焦平面的焦点的变化的幅度和方向。
图12A和12B示意性地图示了根据本发明示例性实施例的焦点检测方法。具体而言,图12A图示了包括根据本发明示例性实施例的掩膜基板1201和掩膜测试图案1202的示范性光掩膜1200。掩膜测试图案1202包括通过节距P分开的两个测试结构T1和T2。通常,测试结构T1和T2是具有各自的内相移区域B1和B2的延长的条元件。该测试结构在结构上类似于上面参考图5所述的延长的条元件,并且可以使用参考图6所述的方法构建。测试结构T1和T2设计来使得由相条B1和B2所提供的相移是180度。例如,第一测试结构T1可以形成有相条B1,该相条B1设计来发射与周围发光区域中所发射的光相移90度的光。具体而言,为了提供90度的相移,沟槽的深度d1可以确定为d·(η基板-η空气)=λ。第二测试结构T2可以形成有相条B2,相条B2设计来发射与周围发光区域中所发射的光相移270度的光。具体而言,为了提供270度的相移,沟槽的深度d2可以确定为d·(η基板-η空气)=3/4λ。测试结构T1和T2形成来在临界边缘之间具有相同的CD,其中CD被选择为等于掩膜图案的最小CD。对于1微米和更小的CD,节距P被选择为大约10XCD和更大。
图12A的掩膜图案曝光来形成如图12B的印刷测试图案。具体而言,图12B示意性绘制了在其上形成有光致抗蚀剂图案1211的基板1210。光致抗蚀剂图案1211包括对应于图12A中的各个测试图案结构T1和T2的印刷测试图案特征T1’和T2’。印刷测试特征T1’显示为具有宽度CD1,印刷测试特征T2’显示为具有宽度CD2。在图12A中,掩膜测试图案T1和T2形成来具有相同的CD。根据本发明示范性实施例,由相同照射形成的印刷测试特征T1’和T2’的宽度的差异(即,CD2-CD1)可以被测量和分析以容易地检测焦点的变化。具体而言,如下面将参考图13A~13C详细所解释的,使用差异CD2-CD1来确定焦点漂移的幅度和方向,由此允许光刻工艺期间的焦点调节。
图13A~13B示意性地图示了根据本发明示例性实施例的焦点检测方法,该方法能够在光刻工艺期间基于印刷测试结构的测量CD值来确定焦点漂移的幅度和方向。具体而言,图13A和13B图形化地图示了焦点-曝光矩阵测试数据,其是对于比如图12A所示的示范性掩膜测试图案通过试验和/或计算机模拟所得到的。图13A和13B是Bossung曲线图,其图示了作为焦点和曝光能量变化的函数的对于各个印刷测试结构T1’和T2’(图12B)的CD(线宽)的变化。该焦点-曝光矩阵测试数据用来构建数学模型,其采用测量的印刷测试结构的CD值定义了焦点和曝光的变化之间的关系/关联,并且识别管芯中时间(晶片到晶片)变化或晶片(空间)变化。图13C图示了确定作为图12B中的印刷测试结构T1’和T2’的CD差异(CD2-CD1)测量结果的函数的(从最佳焦点)焦点漂移的方向和幅度方法。
图12A的示例性掩膜测试图案设计的方式使得测试结构T1和T2的贯穿焦点CD性质产生对应的Bossung曲线,其相对于最佳焦点位置(例如,0离焦)在相反方向平移,并且基本上为彼此的镜像。具体而言,如图13A所示,示例性测试结构T1的Bossung曲线(90度)的中心在离焦位置D+,其对于最佳焦点位置D(在示例性实施例中假设为0离焦)向右平移。而且,如图13B所示,示例性测试结构T2的Bossung曲线(270度)的中心在离焦位置D-,其对于最佳焦点位置D向左平移。而且,在图13A中的Bossung曲线是图13B中的Bossung曲线的镜像。换言之,对于给定曝光能量,D+的幅度等于D-,并且焦点中的变化产生测量的CD1中的变化与所测量的CD2的变化相反。该特性导致其中对于给定的工艺,CD的差异(CD2-CD1)的幅度以对于给定工艺从最佳焦点位置(例如,0离焦)的±焦点偏移的函数而线性变化的关系。
例如图13C图示了作为图13A和13B所示的数据的离焦(μm)(x轴)的函数成纳米的CD的差异(CD2-CD1)(y轴)。在示范性实施例中,在0离焦位置D(最佳焦点),差异(CD2-CD1)=0表示工艺的焦点在最佳焦点处。在点P1,大约+20nm的CD2-CD1测量结果表示工艺中至大约-0.10微米的离焦状态的焦点偏移,而在点P2,大约-20nm的CD2-CD1测量结果表示工艺中至大约+0.10微米的离焦状态的焦点偏移。因此,图13C图示了允许焦点偏移幅度和方向的方法。
图12A的示例性掩膜测试图案可以结合到光掩膜结构来提供印刷测试结构,其可以被用来基于印刷测试结构测量的CD(线宽)之间的相对差异来精确而有效地确定光刻制造工艺中的焦点漂移的幅度和方向。光掩膜结构可以构建来具有电路布局图案和特意位于器件图案内不同位置的一个或多个测试图案结构,使得这样产生的印刷测试图案对于CD测量可以被容易地检测和识别,而不会不利地影响具有该印刷测试图案的半导体器件的性能。例如,该光掩膜测试结构可以形成来使得所得到的印刷测试结构形成为晶片不同管芯之间的划线(或空白),其允许将芯片从晶片分离。
对于给定光刻工艺,可以针对给定工艺的每个级别的光掩膜获得比如图13A和13B所示的焦点-曝光矩阵数据,由此基于(比如图13C中图形化图示的)印刷测试结构的CD之间的差异构建量化离焦的幅度和方向的模型或公式。例如,在光掩膜制备之前,光刻模拟工具可以用来准确地模拟光刻制备工艺和响应于光刻工艺参数的变化预测具有(比如图12A所示)示例性掩膜测试图案的电路布局的行为。例如,可以使用任何已知的商业模拟工具来进行模拟,从而模拟由对于给定布局图案的工艺参数的变化(例如,焦点变化)所引起的临界尺寸的变化。对于模拟,可以将比如焦点、剂量的光刻工具设置,比如步进曝光机设置的许多其它参数,抗蚀剂参数和其它影响CD的参数输入到模拟工具中并对其进行处理。模拟工具可以计算对应于曝光工具的焦点和剂量的漂移的临界尺寸变化,并且产生焦点-曝光数据矩阵(FEM)。光刻模拟工具包括用于构建在整个焦点和曝光窗口上的光刻工艺的综合模型。模拟结果可以用来构建测试标线。这些测试标线可以用来试验性地获得FEM数据,这些FEM数据可以结合模拟数据使用来修改或优化光刻工艺模型和公式,例如用于确定焦点变化(图13C)。
图14是光刻系统1400的高级示意图,其实现了根据本发明的实施例的焦点监视系统。一般而言,系统1400包括曝光系统1401、光致抗蚀剂显影系统1402、CD测量系统1403、焦点检测系统1404、工艺参数模型和FEM数据的贮藏部分1405以及工艺参数控制系统1406。
曝光系统1401包括曝光工具,使用通过具有掩模图案的光掩膜的光,来曝光光致抗蚀剂涂敷的晶片,掩模图案包括电路布局图案以及根据本发明示例性实施例的测试结构图案。曝光系统1401可以包括任何一种已知的系统,比如缩减投影曝光系统(步进曝光机),其中将掩膜图案以缩减的尺寸投射到光致抗蚀剂上。曝光工具最初的工艺参数,比如最佳焦点和最佳曝光剂量,是根据通过与给定光掩膜相关的FEM数据所确定的最佳参数而设定的。该步进曝光机机器使用步进及扫描(step-an-scan)程序将标线曝光在晶片上。曝光之后,将曝光的晶片传送到显影系统1402,其中将曝光的光致抗蚀剂图案首先进行曝光后烘焙工艺,然后进行化学处理以去除光致抗蚀剂曝光(或未曝光)的区域。曝光/显影工艺的结果是具有图案的抗蚀剂层的晶片。
在显影工艺之后,抗蚀剂图案化晶片被传送到CD测量系统1403,其中例如测量印刷测试结构的CD。CD测量系统1403可以是晶片检验系统的一部分,其允许对晶片的自动和/或手动检验以检测图案特征的缺陷测量尺寸等。CD测量系统1403可以使用已知的度量工具来实现,包括光学覆盖工具、散射仪、扫描电子显微镜和原子力显微镜。CD测量系统1403可以直接测量印刷测试结构的CD,通过可选地测量线宽,或通过使用图形处理方法,该方法通过比较当前光学图像与一个或多个与给定光掩膜和曝光调节相关的基线图像来确定CD。
焦点检测系统1404处理测量的CD数据来检测在印刷晶片时的焦点变化。具体而言,如上所述,可以通过确定印刷测试结构的测量CD的差异和使用对于给定印刷测试结构的相关处理参数的数学模型将该CD差异与焦点/曝光变化相关,从而确定光刻工艺的焦点漂移的幅度和方向。如果测量的CD变化,那么焦点检测系统1404将产生和输出适当的控制信号/参数到工艺参数控制系统1406,以对曝光工具1401的工艺参数(焦点)进行任何适当的调整。在一个示范性实施例中,监视和控制系统1404和1406的功能可以是完全自动化的。在其它示范性实施例中,该功能可以是半自动化的,由此例如焦点检测系统1404提醒操作者焦点变化,这允许操作者校验和确认工艺变化,然后手动调整曝光系统的工艺参数或提供适当的命令到工艺参数控制系统1406以进行所需要的调整。
可以理解,这里所说明的示例性系统和方法可以以硬件、软件、固件、专用处理器或它们的组合的形式实现。在一个示例性实施例中,该示例性实施例可以以软件实现为包括程序指令的应用程序,其可以有形地实现在一个或多个程序存储器件(例如,硬盘、磁性软盘、RAM、CDROM、DVD、ROM、闪存等)上,并且可以通过包括适当架构的装置或机器来执行。还可以理解,在附图中示出的示例性系统模块和方法步骤可以优选地用软件实现,根据应用程序编程的方式,系统部件(或处理步骤流)之间的实际联系可能不同。给予了这里的教导,相关技术领域的普通技术人员将能够想到本发明这些和类似的实施或构造。
可以理解,根据本发明示例性实施例的掩膜测试图案可以与明场、暗场或相移掩膜或与为其它辐射源设计的标线使用,并且可以与涉及正性或负性光致抗蚀剂、双层、多层或表面成像抗蚀剂的光刻工艺使用。
尽管这里已经通过参考附图对示例性实施例进行了说明,但是可以理解,本发明不限于这里所述的示例性实施例,而在不偏离本发明的范围和精神的情形,本领域的普通技术人员可以很容易地想到各种变化和修改。所有这样的改变和修改被意于包括在权利要求所界定的本发明的范围内。
权利要求
1.一种监视光刻工艺的焦点的方法,包括获得在其上形成有光致抗蚀剂图案的半导体晶片,所述光致抗蚀剂图案包括印刷测试图案,所述印刷测试图案包括第一和第二印刷测试特征;确定第一印刷测试特征的印刷临界尺寸CD1和第二印刷测试特征的印刷临界尺寸CD2;确定印刷临界尺寸CD1和CD2之间的相对CD差异;以及基于所确定的相对CD差异,确定从所述光刻工艺的最佳焦点设置的离焦的幅度和方向。
2.根据权利要求1的方法,还包括自动调节曝光工具的焦点设置来校正离焦条件。
3.根据权利要求1的方法,其中印刷测试图案形成来使得在离焦的量和所述相对CD差异之间存在线性关系。
4.根据权利要求3的方法,其中当所述相对CD差异被确定为约0时,所述焦点设置被视为最佳焦点设置。
5.根据权利要求3的方法,还包括使用对应的焦点-曝光矩阵数据来构建光刻工艺模型,所述模型将离焦和相对CD差异之间的线性关系量化。
6.根据权利要求1的方法,其中所述印刷临界尺寸CD1和CD2被自动确定。
7.根据权利要求1的方法,其中获得所述半导体晶片包括将光掩膜的掩膜图案的图像印刷到形成在所述半导体晶片上的光致抗蚀剂层中,其中所述掩膜图案包括掩膜测试图案,所述掩膜测试图案包括形成来具有等于设计CD的至少一个特征尺寸的第一和第二测试特征。
8.根据权利要求7的方法,其中所述第一和第二测试特征构建来形成具有贯穿焦点CD性质的第一和第二印刷测试特征,所述贯穿焦点CD性质产生各自的第一和第二焦点-曝光曲线,所述第一和第二焦点-曝光曲线相对于最佳焦点位置相等且反方向平移而且对所述最佳焦点位置基本上成镜像。
9.根据权利要求1的方法,其中所述第一和第二印刷测试特征是由节距P分开的延长条元件,并且其中通过测量所述印刷条特征各自的宽度确定所述印刷临界尺寸CD1和CD2。
10.根据权利要求9的方法,其中P的范围为设计CD的约10倍或更大。
11.根据权利要求9的方法,包括通过转移形成在光掩膜装置上的掩膜测试图案的图像来形成印刷测试图案。
12.根据权利要求11的方法,其中所述掩膜测试图案包括由节距P分开的第一延长的条元件和第二延长的条元件,其中所述第一和第二延长的条元件具有等于设计CD的线宽,其中所述第一延长的条元件包括适于提供90度相移光的基本100%的透射率的内非印刷特征,所述第二延长的条元件包括适于提供270度相移光的基本100%的透射率的内非印刷特征。
13.一种可以由机器读取的程序存储装置,有形地实现了可以由所述机器执行来执行监视光刻工艺的焦点的方法步骤的指令程序,所述方法步骤包括获得在其上形成有光致抗蚀剂图案的半导体晶片,所述光致抗蚀剂图案包括印刷测试图案,所述印刷测试图案包括第一和第二印刷测试特征;确定第一印刷测试特征的印刷临界尺寸CD1和第二印刷测试特征的印刷临界尺寸CD2;确定印刷临界尺寸CD1和CD2之间的相对CD差异;以及基于所确定的相对CD差异,确定从所述光刻工艺的最佳焦点设置的离焦的幅度和方向。
14.根据权利要求13的程序存储装置,还包括用于自动调节曝光工具的焦点设置来校正离焦条件的指令。
15.根据权利要求13的程序存储装置,其中印刷测试图案形成来使得在离焦的量和所述相对CD差异之间存在线性关系。
16.根据权利要求15的程序存储装置,其中当所述相对CD差异被确定为约0时,所述焦点设置被视为最佳焦点设置。
17.根据权利要求15的程序存储装置,还包括使用对应的焦点-曝光矩阵数据来构建光刻工艺模型的指令,所述模型将离焦和相对CD差异之间的线性关系量化。
18.一种光掩膜,包括电路布局图案;以及包括第一和第二测试特征的测试图案,其中所述第一和第二测试特征形成来具有等于设计CD的至少一个特征尺寸,其中所述测试图案适于来产生具有印刷临界尺寸CD1的第一印刷测试特征和具有印刷临界尺寸CD2的第二印刷测试特征,使得所述印刷临界尺寸CD1和CD2之间的相对差异与从光刻工艺的最佳焦点设置的离焦的幅度和方向相关。
19.根据权利要求18的光掩膜,其中所述第一和第二印刷测试特征形成以具有贯穿焦点CD性质,所述贯穿焦点CD性质产生各自的第一和第二焦点-曝光曲线,所述第一和第二焦点-曝光曲线相对于最佳焦点位置相等且反方向平移而且对所述最佳焦点位置基本上成镜像。
20.根据权利要求19的光掩膜,其中所述第一和第二印刷测试特征是由节距P分开的延长条元件,并且其中所述印刷临界尺寸CD1和CD2是所述印刷条特征各自的宽度。
21.根据权利要求18的光掩膜,其中所述第一和第二印刷测试特征是由节距P分开的第一延长条元件和第二延长条元件,并且其中所述第一和第二延长条元件具有宽度等于设计CD的线宽,其中所述第一延长的条元件包括适于提供90度相移光的基本100%的透射率的内非印刷特征,所述第二延长的条元件包括适于提供270度相移光的基本100%的透射率的内非印刷特征。
22.根据权利要求21的光掩膜,其中所述第一和第二线性非印刷特征每个包括空白特征,显露与各所述第一和第二测试特征的内部区域对齐的掩膜基板区域;以及沟槽特征,形成在所述掩膜基板中并与所述空白特征对齐。
23.根据权利要求18的光掩膜,其中所述光掩膜是二元掩膜,并且其中所述电路和测试特征由在给定波长具有约0%的透射率的材料形成。
24.根据权利要求18的光掩膜,其中所述光掩膜是相移掩膜,并且其中所述电路和测试特征由在给定波长具有大于约0%的透射率的材料形成。
25.根据权利要求18的光掩膜,其中所述测试图案设置在对应于晶片不同管芯之间的刻线区域的光掩膜区域中。
26.一种光刻系统,包括曝光系统,使用通过具有包括电路布局图案和测试图案的掩膜图案的光掩膜的光来曝光光致抗蚀剂涂敷的晶片,其中所述测试图案包括第一和第二测试特征,其中所述第一和第二测试特征形成来具有等于设计CD的至少一个特征尺寸,其中所述测试图案适于来产生具有印刷临界尺寸CD1的第一印刷测试特征和具有印刷临界尺寸CD2的第二印刷测试特征;以及焦点监视系统,检测所述曝光系统的焦点漂移,其中所述焦点监视系统处理所述第一和第二印刷测试特征的测量的CD数据,以基于CD1和CD2之间的CD差异来确定焦点漂移的幅度和方向。
27.根据权利要求26的系统,还包括控制系统,所述控制系统响应于从所述焦点监视系统输出的控制信号来调整所述曝光系统的焦点设置。
28.根据权利要求26的系统,还包括CD测量系统,所述CD测量系统自动测量各个印刷测试特征的CD2和CD1并将测量的CD2和CD1输出到所述焦点监视系统。
29.根据权利要求26的系统,还包括光刻工艺模型和焦点-曝光矩阵数据的贮存部分,其中所述光刻工艺参数模型使用对应的焦点-曝光矩阵数据来量化离焦和相对CD差异之间的线性关系。
30.根据权利要求29的系统,其中所述光刻工艺模型规定第一和第二测试特征的贯穿焦点CD性质,所述贯穿焦点CD性质具有各自的第一和第二焦点-曝光曲线,所述第一和第二焦点-曝光曲线相对于最佳焦点位置相等且反方向平移而且对所述最佳焦点位置基本上成镜像。
全文摘要
本发明公开了用于检测光刻工艺中的焦点变化的系统和方法,使用具有适于印刷具有临界尺寸的测试特征的光掩膜,可以将其测量和分析来确定光刻工艺期间从曝光工具的最佳焦点位置的离焦的幅度和方向。
文档编号G03F1/42GK1862385SQ20061007543
公开日2006年11月15日 申请日期2006年4月14日 优先权日2005年4月15日
发明者金淏哲 申请人:三星电子株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1